1
|
Soler-Cedeño O, Alton H, Bi GH, Linz E, Ji L, Makriyannis A, Xi ZX. AM6527, a neutral CB1 receptor antagonist, suppresses opioid taking and seeking, as well as cocaine seeking in rodents without aversive effects. Neuropsychopharmacology 2024; 49:1678-1688. [PMID: 38600154 PMCID: PMC11399149 DOI: 10.1038/s41386-024-01861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.
Collapse
Affiliation(s)
- Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Postdoctoral Research Associate Training (PRAT) Fellow, National Institute of General Medical Sciences, Bethesda, MD, USA
| | - Hannah Alton
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Emily Linz
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lipin Ji
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
2
|
Lin J, Peng Y, Zhang J, Cheng J, Chen Q, Wang B, Liu Y, Niu S, Yan J. Interfering with reconsolidation by rimonabant results in blockade of heroin-associated memory. Front Pharmacol 2024; 15:1361838. [PMID: 38576487 PMCID: PMC10991728 DOI: 10.3389/fphar.2024.1361838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-associated pathological memory remains a critical factor contributing to the persistence of substance use disorder. Pharmacological amnestic manipulation to interfere with drug memory reconsolidation has shown promise for the prevention of relapse. In a rat heroin self-administration model, we examined the impact of rimonabant, a selective cannabinoid receptor indirect agonist, on the reconsolidation process of heroin-associated memory. The study showed that immediately administering rimonabant after conditioned stimuli (CS) exposure reduced the cue- and herion + cue-induced heroin-seeking behavior. The inhibitory effects lasted for a minimum of 28 days. The effect of Rimonabant on reduced drug-seeking was not shown when treated without CS exposure or 6 hours after CS exposure. These results demonstrate a disruptive role of rimonabant on the reconsolidation of heroin-associated memory and the therapeutic potential in relapse control concerning substance use disorder.
Collapse
Affiliation(s)
- Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Mohammad Aghaei A, Saali A, Canas MA, Weleff J, D'Souza DC, Angarita GA, Bassir Nia A. Dysregulation of the endogenous cannabinoid system following opioid exposure. Psychiatry Res 2023; 330:115586. [PMID: 37931479 PMCID: PMC10842415 DOI: 10.1016/j.psychres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Rates of opioid-related deaths and overdoses in the United States are at record-high levels. Thus, novel neurobiological targets for the treatment of OUD are greatly needed. Given the close interaction between the endogenous opioid system and the endocannabinoid system (ECS), targeting the ECS may have therapeutic potential in OUD. The various components of the ECS, including cannabinoid receptors, their lipid-derived endogenous ligands (endocannabinoids [eCBs]), and the related enzymes, present potential targets for developing new medications in OUD treatment. The purpose of this paper is to review the clinical and preclinical literature on the dysregulation of the ECS after exposure to opioids. We review the evidence of ECS dysregulation across various study types, exposure protocols, and measurement protocols and summarize the evidence for dysregulation of ECS components at specific brain regions. Preclinical research has shown that opioids disrupt various ECS components that are region-specific. However, the results in the literature are highly heterogenous and sometimes contradictory, possibly due to variety of different methods used. Further research is needed before a confident conclusion could be made on how exposure to opioids can affect ECS components in various brain regions.
Collapse
Affiliation(s)
- Ardavan Mohammad Aghaei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Alexandra Saali
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Jeremy Weleff
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; VA Connecticut Healthcare System, West Haven, CT, United States
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Anahita Bassir Nia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| |
Collapse
|
4
|
Uenoyama R, Ooka S, Miyazaki T, Mizumoto H, Nishikawa T, Hurst JL, Miyazaki M. Assessing the safety and suitability of using silver vine as an olfactory enrichment for cats. iScience 2023; 26:107848. [PMID: 37810229 PMCID: PMC10558724 DOI: 10.1016/j.isci.2023.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Olfactory enrichment is a strategy that can improve welfare among animals managed in captivity, such as household domestic cats. Catnip (Nepeta cataria) and silver vine (Actinidia polygama) that produce iridoids are used as olfactory enrichments for cats, but little is known about the safety or the best plant resources to use that maximize positive cat responses. We report physiological effects and suitable harvest and drying methods for using silver vine as olfactory enrichment. Continuous exposure of cats to silver vine showed no hallmarks of addictive behavior, while blood indicators of stress and hepatic or renal injury showed no increase in cats stimulated with it. Drying the leaves changed the iridoid profile, enhancing the feline response. In conclusion, dried silver vine leaves are the most suitable resource for developing olfactory enrichment that maximizes feline typical response, which would not result in dependence, stress, or toxicity to the liver or kidneys in cats.
Collapse
Affiliation(s)
- Reiko Uenoyama
- Department of Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Sae Ooka
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Tamako Miyazaki
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Hiroki Mizumoto
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jane L. Hurst
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Masao Miyazaki
- Department of Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
5
|
Best LM, Hendershot CS, Buckman JF, Jagasar S, McPhee MD, Muzumdar N, Tyndale RF, Houle S, Logan R, Sanches M, Kish SJ, Le Foll B, Boileau I. Association Between Fatty Acid Amide Hydrolase and Alcohol Response Phenotypes: A Positron Emission Tomography Imaging Study With [ 11C]CURB in Heavy-Drinking Youth. Biol Psychiatry 2023; 94:405-415. [PMID: 36868890 DOI: 10.1016/j.biopsych.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reductions in fatty acid amide hydrolase (FAAH), the catabolic enzyme for the endocannabinoid anandamide, may play a role in drinking behavior and risk for alcohol use disorder. We tested the hypotheses that lower brain FAAH levels in heavy-drinking youth are related to increased alcohol intake, hazardous drinking, and differential response to alcohol. METHODS FAAH levels in the striatum, prefrontal cortex, and whole brain were determined using positron emission tomography imaging of [11C]CURB in heavy-drinking youth (N = 31; 19-25 years of age). C385A FAAH genotype (rs324420) was determined. Behavioral (n = 29) and cardiovascular (n = 22) responses to alcohol were measured during a controlled intravenous alcohol infusion. RESULTS Lower [11C]CURB binding was not significantly related to frequency of use but was positively associated with hazardous drinking and reduced sensitivity to the negative effects of alcohol. During alcohol infusion, lower [11C]CURB binding related to greater self-reported stimulation and urges and lower sedation (p < .05). Lower heart rate variability was related to both greater alcohol-induced stimulation and lower [11C]CURB binding (p < .05). Family history of alcohol use disorder (n = 14) did not relate to [11C]CURB binding. CONCLUSIONS In line with preclinical studies, lower FAAH in the brain was related to a dampened response to the negative, impairing effects of alcohol, increased drinking urges, and alcohol-induced arousal. Lower FAAH might alter positive or negative effects of alcohol and increase urges to drink, thereby contributing to the addiction process. Determining whether FAAH influences motivation to drink through increased positive/arousing effects of alcohol or greater tolerance should be investigated.
Collapse
Affiliation(s)
- Laura M Best
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christian S Hendershot
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey; Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Matthew D McPhee
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neel Muzumdar
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Renee Logan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Community and Family Medicine, University of Toronto, Toronto, Ontario, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Xu H, Owens MM, Farncombe T, Noseworthy M, MacKillop J. Molecular brain differences and cannabis involvement: A systematic review of positron emission tomography studies. J Psychiatr Res 2023; 162:44-56. [PMID: 37088043 DOI: 10.1016/j.jpsychires.2023.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND An increasing number of studies have used positron emission tomography (PET) to investigate molecular neurobiological differences in individuals who use cannabis. This study aimed to systematically review PET imaging research in individuals who use cannabis or have cannabis use disorder (CUD). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria, a comprehensive systematic review was undertaken using the PubMed, Scopus, PsycINFO and Web of Science databases. RESULTS In total, 20 studies were identified and grouped into three themes: (1) studies of the dopamine system primarily found that cannabis use was associated with abnormal striatal dopamine synthesis capacity, which was in turn correlated with clinical symptoms; (2) studies of the endocannabinoid system found that cannabis use and CUD are associated with lower cannabinoid receptor type 1 availability and global reductions in fatty acid amide hydrolase binding; (3) studies of brain metabolism found that individuals who use cannabis exhibit lower normalized glucose metabolism in both cortical and subcortical brain regions, and reduced cerebral blood flow in the lateral prefrontal cortex during experimental tasks. Heterogeneity across studies prevented meta-analysis. CONCLUSION Existing PET imaging research reveals substantive molecular differences in cannabis users in the dopamine and endocannabinoid systems, and in global brain metabolism, although the heterogeneity of designs and approaches is very high, and whether these differences are causal versus consequential is largely unclear.
Collapse
Affiliation(s)
- Hui Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Max M Owens
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Troy Farncombe
- Department of Radiology, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - Michael Noseworthy
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada; Michael G. DeGroote Centre for Medicinal Cannabis Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada.
| |
Collapse
|
7
|
Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci 2023; 17:1137957. [PMID: 37009000 PMCID: PMC10061032 DOI: 10.3389/fnbeh.2023.1137957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-"endocannabinoidome", consists of the endogenous ligands, eCBs, their canonical and non-canonical receptor subtypes, and their synthesizing and metabolizing enzymes. This system modulates a wide range of body functions and acts as a retrograde signaling system within the central nervous system (CNS) by inhibition of classical transmitters, and plays a vital modulatory function on dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different behavioral processes and contributes to different brain disorders-including Parkinson's disease, schizophrenia, and drug addiction. After synthesis in the neuronal cytosol, dopamine is packaged into synaptic vesicles until released by extracellular signals. Calcium dependent neuronal activation results in the vesicular release of dopamine and interacts with different neurotransmitter systems. The ECS, among others, is involved in the regulation of dopamine release and the interaction occurs either through direct or indirect mechanisms. The cross-talk between the ECS and the dopaminergic system has important influence in various dopamine-related neurobiological and pathologic conditions and investigating this interaction might help identify therapeutic targets and options in disorders of the CNS associated with dopamine dysregulation.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ana Canseco-Alba
- Direction de Investigacion, Instituto Nacional de Neurologia y Neurocircirugia “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Asth L, Cruz LC, Soyombo N, Rigo P, Moreira FA. Effects of β -caryophyllene, A Dietary Cannabinoid, in Animal Models of Drug Addiction. Curr Neuropharmacol 2023; 21:213-218. [PMID: 36173065 PMCID: PMC10190141 DOI: 10.2174/1570159x20666220927115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND β-caryophyllene (BCP) is a natural bicyclic sesquiterpene found in Cannabis and other plants. BCP is currently used as a food additive, although pharmacological studies suggest its potential therapeutic application for the treatment of certain brain disorders. The mechanisms of action of BCP remain uncertain, possibly including full agonism at the cannabinoid CB2 receptor (CB2R). OBJECTIVE The study aims to investigate BCP's potential as a new drug for the treatment of substance use disorders by reviewing preclinical studies with animal models. RESULTS BCP has been investigated in behavioral paradigms, including drug self-administration, conditioned place preference, and intracranial self-stimulation; the drugs tested were cocaine, nicotine, alcohol, and methamphetamine. Remarkably, BCP prevented or reversed behavioral changes resulting from drug exposure. As expected, the mechanism of action entails CB2R activation, although this is unlikely to constitute the only molecular target to explain such effects. Another potential target is the peroxisome proliferator-activated receptor. CONCLUSION Preclinical studies have reported promising results with BCP in animal models of substance use disorders. Further research, including studies in humans, are warranted to establish its therapeutic potential and its mechanisms of action.
Collapse
Affiliation(s)
- Laila Asth
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cardoso Cruz
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicholas Soyombo
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Rigo
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Neutral CB1 Receptor Antagonists as Pharmacotherapies for Substance Use Disorders: Rationale, Evidence, and Challenge. Cells 2022; 11:cells11203262. [PMID: 36291128 PMCID: PMC9600259 DOI: 10.3390/cells11203262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant’s side effects may be related to its inverse agonist profile. In this article, we first review rimonabant’s research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.
Collapse
|
10
|
Paulus V, Billieux J, Benyamina A, Karila L. Cannabidiol in the context of substance use disorder treatment: A systematic review. Addict Behav 2022; 132:107360. [PMID: 35580370 DOI: 10.1016/j.addbeh.2022.107360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cannabidiol (CBD) is a phytocannabinoid found in the Cannabis plant. CBD has received significant medical attention in relation to its anticonvulsant, anxiolytic, and antipsychotic characteristics. An increasing number of studies focusing on the anti-addictive properties of CBD have recently been published. In this systematic review, we aim to offer a comprehensive overview of animal and human studies regarding the impact of CBD on substance use disorders (SUDs). METHODS A systematic search was performed on the PubMed database in February 2021. We included all articles assessing the effects of CBD on substance use disorders. RESULTS The current systematic review suggests that CBD might offer promising therapeutic potential for the treatment of SUD, based on available animal and human studies. Animal studies showed a positive impact of CBD in the context of alcohol, opioids, and methamphetamine use (e.g., diminishing of drug-seeking behaviors). The results for cocaine use were mixed among reviewed studies, and CBD was not found to have an effect in animal studies on cannabis use. No animal study was identified that focused on the impact of CBD on nicotine use. Human studies showed a positive impact of CBD in the context of nicotine, cannabis, and opioid use (e.g., frequency and quantity of consumption). In contrast, CBD was not found to have an effect in human studies on cocaine or alcohol use. No human study was identified that investigated the impact of CBD on methamphetamine use. CONCLUSIONS CBD might offer promising therapeutic potential for the treatment of SUD, especially for nicotine, cannabis, and opioid use disorders, based on available human studies. The available research evidence is, however, sparse and more research on humans is needed.
Collapse
Affiliation(s)
- Victoria Paulus
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France; Faculty of Medicine, AP-HP, Sorbonne Université, Paris, France
| | - Joël Billieux
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Amine Benyamina
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France
| | - Laurent Karila
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
11
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
12
|
Junaid MSA, Tijani AO, Puri A, Banga AK. In vitro percutaneous absorption studies of cannabidiol using human skin: Exploring the effect of drug concentration, chemical enhancers, and essential oils. Int J Pharm 2022; 616:121540. [PMID: 35124116 DOI: 10.1016/j.ijpharm.2022.121540] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Cannabidiol, a non-psychoactive constituent of cannabis, has garnered much attention after United States Food and Drug Administration approved Epidiolex® for oral use. Although therapeutic effect of cannabidiol after systemic absorption has been investigated extensively, its therapeutic potential in treating skin disorders after local delivery still needs further exploration. Our study has investigated the effect of cannabidiol concentration, chemical enhancers, and essential oils on percutaneous absorption of cannabidiol. In vitro permeation tests were conducted on human skin. The 24 h study results suggest no significant difference in amount of drug absorbed into skin, between 5% (242.41 ± 12.17 µg/cm2) and 10% (232.79 ± 20.82 cm2) cannabidiol solutions. However, 1% delivered (23.02 ± 4.74 µg/cm2) significantly lower amount of drug into skin than 5% and 10%. Transcutol and isopropyl myristate did not enhance delivery of cannabidiol. However, oleic acid was found to be useful as chemical enhancer. Oleic acid (43.07 ± 10.11 µg/cm2) had significantly higher cannabidiol delivery into skin than the group without oleic acid (10.98 ± 3.40 µg/cm2) after a 4 h in vitro permeation study. Essential oils at concentrations tested had lower total cannabidiol delivery when compared to control. This study's findings will help guide future research on the pharmacological effect of percutaneously delivered cannabidiol on inflammatory skin disorders.
Collapse
Affiliation(s)
- Mohammad Shajid Ashraf Junaid
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
13
|
Caiana RRA, Santos CS, de Oliveira RN, Freitas JCR. Scientific and Technological Prospecting of 1H-1,2,3-Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The use of 1H-1,2,3-triazoles has become an important scaffold for applications in different technological sectors. Therefore, we sought to carry out a technological monitoring to understand the international scenario involving 1H-1,2,3-triazoles from the patents filed, in addition to evaluating the relationship between the growth in the number of patents and the improvement of strategies for obtaining of these compounds via a metal-catalyzed azide-alkyne cycloaddition reaction. Technological monitoring was performed with the support of the PatentInspiration® platform, using the keywords "1,2,3-triazol", "1,2,3-triazole", and "1,2,3-triazolyl". A total of 960 registered patents were found, most for the years 2014 and 2019. The main filers were prestigious multinational companies such as Syngenta, Merck, Sandoz, Pfizer, and Bayer. The United States, China, Japan, and Germany lead patent registrations, mainly addressing innovations in chemistry and metallurgy, human needs, and new technologies. These results help to understand the state of innovation for this topic, pointing out the characteristics of the main discoveries concerning 1H-1,2,3-triazole derivatives.
Collapse
Affiliation(s)
| | - Cosme Silva Santos
- Department of Chemistry, Federal Rural University of Pernambuco, 52171-900, Recife-PE, Brazil
| | | | | |
Collapse
|
14
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
15
|
He XH, Galaj E, Bi GH, He Y, Hempel B, Wang YL, Gardner EL, Xi ZX. β-caryophyllene, an FDA-Approved Food Additive, Inhibits Methamphetamine-Taking and Methamphetamine-Seeking Behaviors Possibly via CB2 and Non-CB2 Receptor Mechanisms. Front Pharmacol 2021; 12:722476. [PMID: 34566647 PMCID: PMC8458938 DOI: 10.3389/fphar.2021.722476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023] Open
Abstract
Recent research indicates that brain cannabinoid CB2 receptors are involved in drug reward and addiction. However, it is unclear whether β-caryophyllene (BCP), a natural product with a CB2 receptor agonist profile, has therapeutic effects on methamphetamine (METH) abuse and dependence. In this study, we used animal models of self-administration, electrical brain-stimulation reward (BSR) and in vivo microdialysis to explore the effects of BCP on METH-taking and METH-seeking behavior. We found that systemic administration of BCP dose-dependently inhibited METH self-administration under both fixed-ratio and progressive-ratio reinforcement schedules in rats, indicating that BCP reduces METH reward, METH intake, and incentive motivation to seek and take METH. The attenuating effects of BCP were partially blocked by AM 630, a selective CB2 receptor antagonist. Genetic deletion of CB2 receptors in CB2-knockout (CB2-KO) mice also blocked low dose BCP-induced reduction in METH self-administration, suggesting possible involvement of a CB2 receptor mechanism. However, at high doses, BCP produced a reduction in METH self-administration in CB2-KO mice in a manner similar as in WT mice, suggesting that non-CB2 receptor mechanisms underlie high dose BCP-produced effects. In addition, BCP dose-dependently attenuated METH-enhanced electrical BSR and inhibited METH-primed and cue-induced reinstatement of drug-seeking in rats. In vivo microdialysis assays indicated that BCP alone did not produce a significant reduction in extracellular dopamine (DA) in the nucleus accumbens (NAc), while BCP pretreatment significantly reduced METH-induced increases in extracellular NAc DA in a dose-dependent manner, suggesting a DA-dependent mechanism involved in BCP action. Together, the present findings suggest that BCP might be a promising therapeutic candidate for the treatment of METH use disorder.
Collapse
Affiliation(s)
- Xiang-Hu He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Hubei, China
| | - Ewa Galaj
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Yi He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Briana Hempel
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Hubei, China
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
16
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
17
|
Miranzadeh Mahabadi H, Bhatti H, Laprairie RB, Taghibiglou C. Cannabinoid receptors distribution in mouse cortical plasma membrane compartments. Mol Brain 2021; 14:89. [PMID: 34099009 PMCID: PMC8183067 DOI: 10.1186/s13041-021-00801-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
The type 1 and type 2 cannabinoid receptors (CB1 and CB2 receptors) are class A G protein-coupled receptors (GPCRs) that are activated by endogenous lipids called endocannabinoids to modulate neuronal excitability and synaptic transmission in neurons throughout the central nervous system (CNS), and inflammatory processes throughout the body. CB1 receptor is one of the most abundant GPCRs in the CNS and is involved in many physiological and pathophysiological processes, including mood, appetite, and nociception. CB2 receptor is primarily found on immunomodulatory cells of both the CNS and the peripheral immune system. In this study, we isolated lipid raft and non-lipid raft fractions of plasma membrane (PM) from mouse cortical tissue by using cold non-ionic detergent and sucrose gradient centrifugation to study the localization of CB1 receptor and CB2 receptor. Lipid raft and non-lipid raft fractions were confirmed by flotillin-1, caveolin-1 and transferrin receptor as their protein biomarkers. Both CB1 receptor and CB2 receptor were found in non-raft compartments that is inconsistent with previous findings in cultured cell lines. This study demonstrates compartmentalization of both CB1 receptor and CB2 receptor in cortical tissue and warrants further investigation of CB1 receptor and CB2 receptor compartmental distribution in various brain regions and cell types.
Collapse
Affiliation(s)
- Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada
| | - Haseeb Bhatti
- Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room 3B36, Saskatoon, SK, S7N 5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room 3B36, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
18
|
Tijani AO, Thakur D, Mishra D, Frempong D, Chukwunyere UI, Puri A. Delivering therapeutic cannabinoids via skin: Current state and future perspectives. J Control Release 2021; 334:427-451. [PMID: 33964365 DOI: 10.1016/j.jconrel.2021.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Adequate evidence exists in the literature indicating a relatively positive shift with regards to the legal acceptance of cannabis and cannabis-derived products for medicinal purposes in some countries. Concomitantly, scientists are showing renewed interest in cannabis-related research work. Over the years, clinical and preclinical studies have demonstrated the therapeutic significance of cannabinoids for diverse indications. Additionally, efforts are being made to develop cannabis-related products into acceptable prescription products. FDA authorization for the commercial use of four cannabinoid-derived products, available as oral dosage forms is a significant progress already. However, there are certain drawbacks associated with the conventional delivery forms of cannabinoids. These include low oral bioavailability due to hepatic degradation, gastric instability, poor water solubility, and the side effects experienced upon the use of high doses of psychotropic cannabinoids associated with heightened plasma concentrations of the drug. These are however, limitable with the aid of transcutaneous drug delivery. Emerging topical and transdermal strategies could be exploited for the successful development of highly effective delivery systems for cannabinoids. This review discusses the feasibility of delivering therapeutic cannabinoids via skin and provides a comprehensive account of the supporting research studies that have been reported in the literature till date.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Divya Thakur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Dhruv Mishra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Umeh I Chukwunyere
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
19
|
Khan N, Laudermilk L, Ware J, Rosa T, Mathews K, Gay E, Amato G, Maitra R. Peripherally Selective CB1 Receptor Antagonist Improves Symptoms of Metabolic Syndrome in Mice. ACS Pharmacol Transl Sci 2021; 4:757-764. [PMID: 33860199 DOI: 10.1021/acsptsci.0c00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a complex disorder that stems from the additive effects of multiple underlying causes such as obesity, insulin resistance, and chronic low-grade inflammation. The endocannabinoid system plays a central role in appetite regulation, energy balance, lipid metabolism, insulin sensitivity, and β-cell function. The type 1 cannabinoid receptor (CB1R) antagonist SR141716A (rimonabant) showed promising antiobesity effects, but its use was discontinued due to adverse psychiatric events in some users. These adverse effects are due to antagonism of CB1R in the central nervous system (CNS). As such, CNS-sparing CB1R antagonists are presently being developed for various indications. In this study, we report that a recently described compound, 3-{1-[8-(2-chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]piperidin-4-yl}-1-[6-(difluoromethoxy)pyridin-3-yl]urea (RTI1092769), a pyrazole based weak inverse agonist/antagonist of CB1 with very limited brain exposure, improves MetS related complications. Treatment with RTI1092769 inhibited weight gain and improved glucose utilization in obese mice maintained on a high fat diet. Hepatic triglyceride content and steatosis significantly improved with treatment. These phenotypes were supported by improvement in several biomarkers associated with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). These results reinforce the idea that CB1 antagonists with limited brain exposure should be pursued for MetS and other important indications.
Collapse
Affiliation(s)
- Nayaab Khan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Lucas Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Jalen Ware
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Taylor Rosa
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Kelly Mathews
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Elaine Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - George Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
20
|
Abstract
Cannabis use disorder (CUD) is an underappreciated risk of using cannabis that affects ~10% of the 193 million cannabis users worldwide. The individual and public health burdens are less than those of other forms of drug use, but CUD accounts for a substantial proportion of persons seeking treatment for drug use disorders owing to the high global prevalence of cannabis use. Cognitive behavioural therapy, motivational enhancement therapy and contingency management can substantially reduce cannabis use and cannabis-related problems, but enduring abstinence is not a common outcome. No pharmacotherapies have been approved for cannabis use or CUD, although a number of drug classes (such as cannabinoid agonists) have shown promise and require more rigorous evaluation. Treatment of cannabis use and CUD is often complicated by comorbid mental health and other substance use disorders. The legalization of non-medical cannabis use in some high-income countries may increase the prevalence of CUD by making more potent cannabis products more readily available at a lower price. States that legalize medical and non-medical cannabis use should inform users about the risks of CUD and provide information on how to obtain assistance if they develop cannabis-related mental and/or physical health problems.
Collapse
|
21
|
Everett TJ, Gomez DM, Hamilton LR, Oleson EB. Endocannabinoid modulation of dopamine release during reward seeking, interval timing, and avoidance. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110031. [PMID: 32663486 DOI: 10.1016/j.pnpbp.2020.110031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 01/02/2023]
Abstract
Endocannabinoids (eCBs) are neuromodulators that influence a wide range of neural systems and behaviors. In the current review, we describe our recent research showing how eCBs, particularly 2-arachidonoylglycerol (2-AG), concurrently shape mesolimbic dopamine (DA) release and associated behavior. We will restrict our discussion by emphasizing three distinct behaviors: reward seeking, interval timing, and active avoidance. During reward seeking we find that 2-AG is necessary to observe cue-evoked DA release events that are thought to represent the value of a rewarding outcome. We then describe data showing that 2-AG modulates unique patterns of DA release and behavior observed under conditions of periodic reinforcement. These data are discussed within the context of interval timing and adjunctive behavior. eCB modulation of DA release is also implicated in defensive behavior, including the avoidance of harm. As in reward seeking, our data suggest that the concentration of DA that is evoked by a warning signal can represent the value of an avoidance outcome. And, disrupting eCB signaling concomitantly reduces the concentration of the avoidance value signal and active avoidance. Disruptions in reward seeking, interval timing, and defensive behavior are commonly observed in a variety of movement disorders (e.g., Parkinson's and Huntington's disease) and disorders of motivation (e.g., addiction). We believe our data on eCB-DA interactions have implications for the development of novel pharmacotherapies to treat these disorders. Thus, we conclude by discussing how eCB pharmacology might be harnessed to treat disorders of movement and motivation.
Collapse
Affiliation(s)
| | - Devan M Gomez
- Psychology Department, University of Colorado Denver, USA; Department of Biomedical Sciences, Marquette University, USA
| | | | - Erik B Oleson
- Psychology Department, University of Colorado Denver, USA; Integrative Biology Department, University of Colorado Denver, USA.
| |
Collapse
|
22
|
Hanachi R, Ben Said R, Allal H, Rahali S, Alkhalifah MAM, Alresheedi F, Tangour B, Hochlaf M. Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists. NEW J CHEM 2021. [DOI: 10.1039/d1nj02261j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We performed a structural study followed by theoretical analysis of the chemical descriptors and biological activity of a series of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 (CB1) receptor antagonists.
Collapse
Affiliation(s)
- Riadh Hanachi
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - Hamza Allal
- Department of Technology, Faculty of Technology, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000 Skikda, Algeria
- Research Unit of Environmental Chemistry and Molecular Structural (CHEMS), University of Constantine-1, 25000, Constantine, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
- Research Unit of Modelization on Fundamental Sciences and Didactics. Universitéde Tunis El Manar, Tunis 2092, Tunisia
| | | | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Bahoueddine Tangour
- Research Unit of Modelization on Fundamental Sciences and Didactics. Universitéde Tunis El Manar, Tunis 2092, Tunisia
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France
| |
Collapse
|
23
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
24
|
Miladinovic T, Manwell LA, Raaphorst E, Malecki SL, Rana SA, Mallet PE. Effects of chronic nicotine exposure on Δ 9-tetrahydrocannabinol-induced locomotor activity and neural activation in male and female adolescent and adult rats. Pharmacol Biochem Behav 2020; 194:172931. [PMID: 32353393 DOI: 10.1016/j.pbb.2020.172931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE High rates of comorbid tobacco and cannabis use in adolescents and young adults may be related to functional interactions between the nicotinic cholinergic and cannabinoid systems in the brain during development. This study examined the effects of chronic exposure to nicotine (the psychoactive component in tobacco) on acute exposure to delta-9-tetrahydrocannabinol (THC) (the psychoactive component of cannabis). METHODS Male and female adolescent and adult Sprague-Dawley rats (N = 112) were injected daily with nicotine (1 mg/kg, i.p.) or vehicle for 14 days, followed by a 14-day drug-free period. On test day, rats were injected with THC (5 mg/kg, i.p.) or vehicle, locomotor activity was recorded for 2 h, and brains harvested for c-Fos immunoreactivity (IR). RESULTS Locomotor activity and c-Fos IR changes induced by THC challenge were altered by nicotine pre-exposure and modified by age and sex. THC-induced suppression of locomotor activity was attenuated by nicotine pre-exposure in adult but not adolescent males. THC-induced suppression of locomotor activity was potentiated by nicotine pre-exposure in female adolescents, with no effects of THC or nicotine observed in female adults. THC increased c-Fos IR in the caudate, nucleus accumbens, stria terminalis, septum, amygdala, hypothalamus, and thalamus. Nicotine pre-exposure potentiated this effect in all regions. Several brain regions showed age and sex differences in c-Fos IR such that expression was greater in adults than adolescents and in females than males. CONCLUSIONS Chronic nicotine pre-exposure produces lasting effects on cannabinoid-mediated signalling in the brain and on behaviour that are mediated by age and sex. FUNDING SUPPORT NSERC.
Collapse
Affiliation(s)
- T Miladinovic
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - L A Manwell
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada.
| | - E Raaphorst
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - S L Malecki
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - S A Rana
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - P E Mallet
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| |
Collapse
|
25
|
Cifani C, Avagliano C, Micioni Di Bonaventura E, Giusepponi ME, De Caro C, Cristiano C, La Rana G, Botticelli L, Romano A, Calignano A, Gaetani S, Micioni Di Bonaventura MV, Russo R. Modulation of Pain Sensitivity by Chronic Consumption of Highly Palatable Food Followed by Abstinence: Emerging Role of Fatty Acid Amide Hydrolase. Front Pharmacol 2020; 11:266. [PMID: 32231568 PMCID: PMC7086305 DOI: 10.3389/fphar.2020.00266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
There is a strong relationship between palatable diet and pain sensitivity, and the cannabinoid and opioid systems might play an important role in this correlation. The palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on human food with high sugar, salt, and fat content. In this study, we investigated whether long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the cannabinergic system in this modification. Male Sprague–Dawley rats were divided into two groups: one fed with standard chow only (CO) and the other with extended access (EA) to a CAF diet. Hot plate and tail flick tests were used to evaluate pain sensitivity. At the end of a 40-day CAF exposure, EA rats showed a significant increase in the pain threshold compared to CO rats, finding probably due to up-regulation of CB1 and mu-opioid receptors. Instead, during abstinence from palatable foods, EA animals showed a significant increase in pain sensibility, which was ameliorated by repeated treatment with a fatty acid amide hydrolase inhibitor, PF-3845 (10 mg/kg, intraperitoneally), every other day for 28 days. Ex vivo analysis of the brains of these rats clearly showed that this effect was mediated by mu-opioid receptors, which were up-regulated following repeated treatment of PF-3845. Our data add to the knowledge about changes in pain perception in obese subjects, revealing a key role of CB1 and mu-opioid receptors and their possible pharmacological crosstalk and reinforcing the need to consider this modulation in planning effective pain management for obese patients.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carmen Avagliano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | | | | | - Carmen De Caro
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonio Calignano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Roberto Russo
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
26
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
27
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
28
|
Cannabinoid CB 1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin 2019; 40:365-373. [PMID: 29967454 DOI: 10.1038/s41401-018-0059-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.
Collapse
|
29
|
Sloan ME, Grant CW, Gowin JL, Ramchandani VA, Le Foll B. Endocannabinoid signaling in psychiatric disorders: a review of positron emission tomography studies. Acta Pharmacol Sin 2019; 40:342-350. [PMID: 30166624 PMCID: PMC6460371 DOI: 10.1038/s41401-018-0081-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
Endocannabinoid signaling is implicated in an array of psychopathologies ranging from anxiety to psychosis and addiction. In recent years, radiotracers targeting the endocannabinoid system have been used in positron emission tomography (PET) studies to determine whether individuals with psychiatric disorders display altered endocannabinoid signaling. We comprehensively reviewed PET studies examining differences in endocannabinoid signaling between individuals with psychiatric illness and healthy controls. Published studies evaluated individuals with five psychiatric disorders: cannabis use disorder, alcohol use disorder, schizophrenia, post-traumatic stress disorder, and eating disorders. Most studies employed radiotracers targeting cannabinoid receptor 1 (CB1). Cannabis users consistently demonstrated decreased CB1 binding compared to controls, with normalization following short periods of abstinence. Findings in those with alcohol use disorder and schizophrenia were less consistent, with some studies demonstrating increased CB1 binding and others demonstrating decreased CB1 binding. Evidence of aberrant CB1 binding was also found in individuals with anorexia nervosa and post-traumatic stress disorder, but limited data have been published to date. Thus, existing evidence suggests that alterations in endocannabinoid signaling are present in a range of psychiatric disorders. Although recent efforts have largely focused on evaluating CB1 binding, the synthesis of new radiotracers targeting enzymes involved in endocannabinoid degradation, such as fatty acid amide hydrolase, will allow for other facets of endocannabinoid signaling to be evaluated in future studies.
Collapse
Affiliation(s)
- Matthew E Sloan
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Caroline W Grant
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Joshua L Gowin
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5S 2S1, Canada.
- Addiction Medicine Service, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada.
- Departments of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2S1, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada.
| |
Collapse
|
30
|
Trigo JM, Le Foll B. Nicotine Self-Administration as Paradigm for Medication Discovery for Smoking Cessation: Recent Findings in Medications Targeting the Cholinergic System. Methods Mol Biol 2019; 2011:165-193. [PMID: 31273700 DOI: 10.1007/978-1-4939-9554-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tobacco kills every year approximately six million people as a direct result of direct use, and it is still considered one of the most excruciating threats for human health worldwide. The low successful rates of the currently available pharmacotherapies to assist in quitting tobacco use suggest there is a need for more effective treatments.The intravenous self-administration (IVSA) paradigm is considered the gold standard to study voluntary drug intake in animal models, including nicotine. The IVSA paradigm has been used to identify key mechanisms involved in the addictive properties of nicotine in both rodents and nonhuman primates. In this chapter we describe how the IVSA paradigm has served to further investigate the role of nicotinic acetylcholine receptors (nAChRs) in the reinforcing properties of nicotine. Notably, this review will cover recent advances (i.e., research carried out during the past decade) using the IVSA paradigm, with a focus on the status of research on current smoking cessation medications (such as varenicline and bupropion) and of other nAChR ligands.The combination of the IVSA paradigm with pharmacological and genetic tools (e.g., knockout animals) has greatly contributed to our understanding of the role of specific subtype nAChRs in nicotine reinforcement processes. We also discuss some of the limitations of the IVSA paradigm so these can be taken into consideration when interpreting and designing new studies.
Collapse
Affiliation(s)
- Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Addictions Division, CAMH, Toronto, ON, Canada.
| |
Collapse
|
31
|
Quintero Garzola GC. Review: brain neurobiology of gambling disorder based on rodent models. Neuropsychiatr Dis Treat 2019; 15:1751-1770. [PMID: 31308669 PMCID: PMC6612953 DOI: 10.2147/ndt.s192746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Different literature reviews of gambling disorder (GD) neurobiology have been focused on human studies, others have focused on rodents, and others combined human and rodent studies. The main question of this review was: which are the main neurotransmitters systems and brain structures relevant for GD based on recent rodent studies? This work aims to review the experimental findings regarding the rodent´s neurobiology of GD. A search in the Pub Med database was set (October 2012-October 2017) and 162 references were obtained. After screening, 121 references were excluded, and only 41 references remained from the initial output. More, other 25 references were added to complement (introduction section, neuroanatomical descriptions) the principal part of the work. At the end, a total of 66 references remained for the review. The main conclusions are: 1) according to studies that used noninvasive methods for drug administration, some of the neurotransmitters and receptors involved in behaviors related to GD are: muscarinic, N-methyl-D-aspartate (NMDA), cannabinoid receptor 1 (CB1), cannabinoid receptor 2 (CB2), dopamine 2 receptor (D2), dopamine 3 receptor (D3), and dopamine 4 receptor (D4); 2) moreover, there are other neurotransmitters and receptors involved in GD based on studies that use invasive methods of drug administration (eg, brain microinjection); example of these are: serotonin 1A receptor (5-HT1A), noradrenaline receptors, gamma-aminobutyric acid receptor A (GABAA), and gamma-aminobutyric acid receptor B (GABAB); 3) different brain structures are relevant to behaviors linked to GD, like: amygdala (including basolateral amygdala (BLA)), anterior cingulate cortex (ACC), hippocampus, infralimbic area, insular cortex (anterior and rostral agranular), nucleus accumbens (NAc), olfactory tubercle (island of Calleja), orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), prefrontal cortex (PFC) - subcortical network, striatum (ventral) and the subthalamic nucleus (STN); and 4) the search for GD treatments should consider this diversity of receptor/neurotransmitter systems and brain areas.
Collapse
|
32
|
Heinbockel T, Csoka AB. Epigenetic Effects of Drugs of Abuse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102098. [PMID: 30257440 PMCID: PMC6210395 DOI: 10.3390/ijerph15102098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/22/2023]
Abstract
Drug addiction affects a large extent of young people and disadvantaged populations. Drugs of abuse impede brain circuits or affect the functionality of brain circuits and interfere with bodily functions. Cannabinoids (Δ9-tetrahydrocannabinol) form key constituents of marijuana derived from the cannabis plant. Marijuana is a frequently used illegal drug in the USA. Here, we review the effects of cannabinoids at the epigenetic level and the potential role of these epigenetic effects in health and disease. Epigenetics is the study of alterations in gene expression that are transmitted across generations and take place without an alteration in DNA sequence, but are due to modulation of chromatin associated factors by environmental effects. Epigenetics is now known to offer an extra mechanism of control over transcription and how genes are expressed. Insights from research at the genetic and epigenetic level potentially provide venues that allow the translation of the biology of abused drugs to new means of how to treat marijuana substance use disorder or other addictions using pharmacotherapeutic tools.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA.
| |
Collapse
|
33
|
Filbey FM, Gohel S, Prashad S, Biswal BB. Differential associations of combined vs. isolated cannabis and nicotine on brain resting state networks. Brain Struct Funct 2018; 223:3317-3326. [PMID: 29882015 PMCID: PMC6286234 DOI: 10.1007/s00429-018-1690-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/26/2018] [Indexed: 01/30/2023]
Abstract
Concomitant cannabis and nicotine use is more prevalent than cannabis use alone; however, to date, most of the literature has focused on associations of isolated cannabis and nicotine use limiting the generalizability of existing research. To determine differential associations of concomitant use of cannabis and nicotine, isolated cannabis use and isolated nicotine use on brain network connectivity, we examined systems-level neural functioning via independent components analysis (ICA) on resting state networks (RSNs) in cannabis users (CAN, n = 53), nicotine users (NIC, n = 28), concomitant nicotine and cannabis users (NIC + CAN, n = 26), and non-users (CTRL, n = 30). Our results indicated that the CTRL group and NIC + CAN users had the greatest functional connectivity relative to CAN users and NIC users in 12 RSNs: anterior default mode network (DMN), posterior DMN, left frontal parietal network, lingual gyrus, salience network, right frontal parietal network, higher visual network, insular cortex, cuneus/precuneus, posterior cingulate gyrus/middle temporal gyrus, dorsal attention network, and basal ganglia network. Post hoc tests showed no significant differences between (1) CTRL and NIC + CAN and (2) NIC and CAN users. These findings of differential associations of isolated vs. combined nicotine and cannabis use demonstrate an interaction between cannabis and nicotine use on RSNs. These unique and combined mechanisms through which cannabis and nicotine influence cortical network functional connectivity are important to consider when evaluating the neurobiological pathways associated with cannabis and nicotine use.
Collapse
Affiliation(s)
- Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
| | - Suril Gohel
- Department of Health Informatics, School of Health Professions, Rutgers University, Newark, NJ, USA
| | - Shikha Prashad
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
34
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
35
|
Moore CF, Schlain GS, Mancino S, Sabino V, Cottone P. A behavioral and pharmacological characterization of palatable diet alternation in mice. Pharmacol Biochem Behav 2017; 163:1-8. [PMID: 29097161 PMCID: PMC5911178 DOI: 10.1016/j.pbb.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 12/28/2022]
Abstract
Obesity and eating disorders are widespread in Western societies. Both the increased availability of highly palatable foods and dieting are major risk factors contributing to the epidemic of disorders of feeding. The purpose of this study was to characterize an animal model of maladaptive feeding induced by intermittent access to a palatable diet alternation in mice. In this study, mice were either continuously provided with standard chow food (Chow/Chow), or provided with standard chow for 2days and a high-sucrose, palatable food for 1day (Chow/Palatable). Following stability of intake within the cycling paradigm, we then investigated the effects of several pharmacological treatments on excessive eating of palatable food: naltrexone, an opioid receptor antagonist, SR141716A, a cannabinoid-1 receptor antagonist/inverse agonist, and BD-1063, a sigma-1 receptor antagonist. Over successive cycles, Chow/Palatable mice showed an escalation of palatable food intake within the first hour of renewed access to palatable diet and displayed hypophagia upon its removal. Naltrexone, SR141716A, and BD-1063 all reduced overconsumption of palatable food during this first hour. Here we provide evidence of strong face and convergent validity in a palatable diet alternation model in mice, confirming multiple shared underlying mechanisms of pathological eating across species, and thus making it a useful therapeutic development tool.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, USA
| | - Gabrielle S Schlain
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Samantha Mancino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
36
|
Khaleghzadeh-Ahangar H, Haghparast A. Intra-accumbal Cannabinoid Agonist Attenuated Reinstatement but not Extinction Period of Morphine-Induced Conditioned Place Preference; Evidence for Different Characteristics of Extinction Period and Reinstatement. Neurochem Res 2017; 42:3321-3330. [DOI: 10.1007/s11064-017-2374-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
37
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice. Pharmacol Biochem Behav 2017; 156:16-23. [DOI: 10.1016/j.pbb.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022]
|
39
|
Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Romero-Parra J, Chung H, Tapia RA, Faúndez M, Morales-Verdejo C, Lorca M, Lagos CF, Di Marzo V, David Pessoa-Mahana C, Mella J. Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur J Pharm Sci 2017; 101:1-10. [PMID: 28137469 DOI: 10.1016/j.ejps.2017.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.
Collapse
Affiliation(s)
- Javier Romero-Parra
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Hery Chung
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Ricardo A Tapia
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, 702843, Santiago, Chile
| | - Mario Faúndez
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Cesar Morales-Verdejo
- Universidad Bernardo OHiggins, Laboratorio de Bionanotecnología, General Gana 1702, Santiago, Chile
| | - Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Casilla 5030, Chile
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Lira 85, 5th Floor, Santiago Centro 8330074, Santiago, Chile; Facultad de Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia 7510157, Santiago, Chile
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Napoli, Italy
| | - C David Pessoa-Mahana
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Casilla 5030, Chile.
| |
Collapse
|
41
|
Iyer MR, Cinar R, Katz A, Gao M, Erdelyi K, Jourdan T, Coffey NJ, Pacher P, Kunos G. Design, Synthesis, and Biological Evaluation of Novel, Non-Brain-Penetrant, Hybrid Cannabinoid CB 1R Inverse Agonist/Inducible Nitric Oxide Synthase (iNOS) Inhibitors for the Treatment of Liver Fibrosis. J Med Chem 2017; 60:1126-1141. [PMID: 28085283 DOI: 10.1021/acs.jmedchem.6b01504] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the design, synthesis, and structure-activity relationships of novel dual-target compounds with antagonist/inverse agonist activity at cannabinoid receptor type 1 (CB1R) and inhibitory effect on inducible nitric oxide synthase (iNOS). A series of 3,4-diarylpyrazolinecarboximidamides were synthesized and evaluated in CB1 receptor (CB1R) binding assays and iNOS activity assays. The novel compounds, designed to have limited brain penetrance, elicited potent in vitro CB1R antagonist activities and iNOS inhibitory activities. Some key compounds displayed high CB1R binding affinities. Compound 7 demonstrated potent in vivo pharmacological activities such as reduction of food intake mediated by the antagonism of the CB1Rs and antifibrotic effect in the animal models of fibrosis mediated by iNOS inhibition and CB1R antagonism.
Collapse
Affiliation(s)
- Malliga R Iyer
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Resat Cinar
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Alexis Katz
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Michael Gao
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Katalin Erdelyi
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Tony Jourdan
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Pal Pacher
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - George Kunos
- Laboratory of Physiologic Studies, and ‡Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
42
|
Gueye AB, Trigo JM, Vemuri KV, Makriyannis A, Le Foll B. Effects of various cannabinoid ligands on choice behaviour in a rat model of gambling. Behav Pharmacol 2016; 27:258-69. [PMID: 26905189 PMCID: PMC4803149 DOI: 10.1097/fbp.0000000000000222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is estimated that 0.6-1% of the population in the USA and Canada fulfil the Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5) criteria for gambling disorders (GD). To date, there are no approved pharmacological treatments for GD. The rat gambling task (rGT) is a recently developed rodent analogue of the Iowa gambling task in which rats are trained to associate four response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. Similar to healthy human volunteers, most rats adopt the optimal strategies (optimal group). However, a subset of animals show preference for the disadvantageous options (suboptimal group), mimicking the choice pattern of patients with GD. Here, we explored for the first time the effects of various cannabinoid ligands (WIN 55,212-2, AM 4113, AM 630 and URB 597) on the rGT. Administration of the cannabinoid agonist CB1/CB2 WIN 55,212-2 improved choice strategy and increased choice latency in the suboptimal group, but only increased perseverative behaviour, when punished, in the optimal group. Blockade of CB1 or CB2 receptors or inhibition of fatty-acid amide hydrolase did not affect rGT performance. These results suggest that stimulation of cannabinoid receptors could affect gambling choice behaviours differentially in some subgroups of subjects.
Collapse
Affiliation(s)
- Aliou B Gueye
- aTranslational Addiction Research Laboratory bAlcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments cCampbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Departments of dFamily and Community Medicine ePharmacology fDepartment of Psychiatry, Division of Brain and Therapeutics gInstitute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada hDepartment of Pharmaceutical Sciences and Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
43
|
Henningfield JE, Smith TT, Kleykamp BA, Fant RV, Donny EC. Nicotine self-administration research: the legacy of Steven R. Goldberg and implications for regulation, health policy, and research. Psychopharmacology (Berl) 2016; 233:3829-3848. [PMID: 27766371 PMCID: PMC5588156 DOI: 10.1007/s00213-016-4441-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND RATIONALE Steven R. Goldberg was a pioneering behavioral pharmacologist whose intravenous drug self-administration studies advanced the understanding of conditioned stimuli and schedules of reinforcement as determinants of pattern and persistence of drug-seeking behavior, and in particular, the importance of nicotine in tobacco use. His passing in 2014 led to invitations to contribute articles to psychopharmacology dedicated to his work. OBJECTIVES The objectives of this review are to summarize and put into historical perspective Goldberg's contributions to elucidate the reinforcing effects of nicotine and to summarize the implications of his research for medication development, tobacco regulation, and potential tobacco control policy options. This includes a review of intravenous nicotine self-administration research from the 1960s to 2016. RESULTS Goldberg's application of behavioral pharmacology methods to investigate nicotine reinforcement and the influence of schedule of reinforcement and conditioned stimuli on nicotine administration contributed to the conclusions of the US National Institute on Drug Abuse, and the Surgeon General, that nicotine met the criteria as a dependence-producing drug and cigarette smoking as a prototypic drug dependency or "addiction." Equally important, this work has been systematically extended to other species and applied to address a range of factors relevant to tobacco use, medication development, regulation, and public health policy. CONCLUSIONS Steven R. Goldberg was a pioneering scientist whose systematic application of the science of behavioral pharmacology advanced the understanding of tobacco and nicotine use and contributed to the scientific foundation for tobacco product regulation and potential public health tobacco control policy development.
Collapse
Affiliation(s)
- Jack E Henningfield
- Pinney Associates, 4800 Montgomery Lane, Suite 400, Bethesda, MD, 20814, USA.
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tracy T Smith
- University of Pittsburgh Cancer Institute, 4120 Sennott Square, 210 S. Bouquet Street, Pittsburgh, PA, 15260, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 4120 Sennott Square, 210 S. Bouquet Street, Pittsburgh, PA, 15260, USA
| | - Bethea A Kleykamp
- Pinney Associates, 4800 Montgomery Lane, Suite 400, Bethesda, MD, 20814, USA
| | - Reginald V Fant
- Pinney Associates, 4800 Montgomery Lane, Suite 400, Bethesda, MD, 20814, USA
| | - Eric C Donny
- Department of Psychology, University of Pittsburgh, 210 S. Bouquet Street, Pittsburgh, PA, 15260, USA
| |
Collapse
|
44
|
Hu B, Kuang ZK, Feng SY, Wang D, He SB, Kong DX. Three-Dimensional Biologically Relevant Spectrum (BRS-3D): Shape Similarity Profile Based on PDB Ligands as Molecular Descriptors. Molecules 2016; 21:E1554. [PMID: 27869685 PMCID: PMC6273508 DOI: 10.3390/molecules21111554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023] Open
Abstract
The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.
Collapse
Affiliation(s)
- Ben Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zheng-Kun Kuang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shi-Yu Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Song-Bing He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - De-Xin Kong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
46
|
Ofogh SN, Rezayof A, Sardari M, Ghasemzadeh Z. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol. Pharmacol Biochem Behav 2016; 148:92-8. [DOI: 10.1016/j.pbb.2016.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/01/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022]
|
47
|
Romero-Parra J, Mella-Raipán J, Palmieri V, Allarà M, Torres MJ, Pessoa-Mahana H, Iturriaga-Vásquez P, Escobar R, Faúndez M, Di Marzo V, Pessoa-Mahana CD. Synthesis, binding assays, cytotoxic activity and docking studies of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur J Med Chem 2016; 124:17-35. [PMID: 27560280 DOI: 10.1016/j.ejmech.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/17/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
Herein we report the design, synthesis, bioinformatic and biological studies of benzimidazole and benzothiophene derivatives as new cannabinoid receptor ligands. To test the hypothesis that the lack of a hydrogen bond interaction between benzimidazole and benzothiophene derivatives with Lys192 reduces their affinity for CB1 receptors (as we previously reported) and leads to CB2 selectivity, most of the tested compounds do not exhibit hydrogen bond acceptors. All compounds displayed mostly CB2 selectivity, although this was more pronounced in the benzimidazoles derivatives. Furthermore, docking assays revealed a ∏-cation interaction with Lys109 which could play a key role for the CB2 selectivity index. The series displayed low toxicity on five different cell lines. Derivative 8f presented the best binding profile (Ki = 0.08 μM), high selectivity index (KiCB1/KiCB2) and a low citoxicity. Interestingly, in cell viability experiments, using HL-60 cells (expressing exclusively CB2 receptors), all synthesised compounds were shown to be cytotoxic, suggesting that a CB2 agonist response may be involved.
Collapse
Affiliation(s)
- Javier Romero-Parra
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Jaime Mella-Raipán
- Institute of Chemistry and Biochemistry, Universidad de Valparaíso, Gran Bretaña, 1111, Valparaíso, Chile
| | - Vittoria Palmieri
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - Maria Jose Torres
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Hernán Pessoa-Mahana
- Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Sergio Livingstone, 1007, Santiago, Chile
| | | | - Rossy Escobar
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Mario Faúndez
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - C David Pessoa-Mahana
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
48
|
Gueye AB, Pryslawsky Y, Trigo JM, Poulia N, Delis F, Antoniou K, Loureiro M, Laviolette SR, Vemuri K, Makriyannis A, Le Foll B. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability. Int J Neuropsychopharmacol 2016; 19:pyw068. [PMID: 27493155 PMCID: PMC5203757 DOI: 10.1093/ijnp/pyw068] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/31/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. METHODS Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). RESULTS AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. CONCLUSION Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bernard Le Foll
- Translational Addiction Research Laboratory (Dr Gueye, Mr Pryslawsky, Dr Trigo, and Dr Le Foll), Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments (Dr Le Foll), and Campbell Family Mental Health Research Institute (Dr Le Foll), Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Department of Pharmacology, and Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece (Ms Poulia and Drs Delis and Antoniou); Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada (Drs Loureiro and Laviolette); Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA (Drs Vemuri and Makriyannis).
| |
Collapse
|
49
|
Schuster RM, Mermelstein RJ, Hedeker D. Ecological momentary assessment of working memory under conditions of simultaneous marijuana and tobacco use. Addiction 2016; 111:1466-76. [PMID: 26857917 PMCID: PMC4940223 DOI: 10.1111/add.13342] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The neuropsychological correlates of simultaneous marijuana and tobacco use are largely unknown, which is surprising as both substances have similar neural substrates and have opposing influences on working memory (WM). This study examined the effects of marijuana alone, tobacco alone and simultaneous marijuana and tobacco use on WM. DESIGN Primary aims were tested using a within-subject design, controlling for multiple subject- and momentary-level confounds via ecological momentary assessment (EMA). SETTING Data collection occurred in the Chicago, USA area in participants' natural environments. PARTICIPANTS Participants were 287 community young adults from a larger natural history study, oversampled for ever smoking, all of whom event-recorded at least one substance use occasion during the study week. MEASUREMENTS Momentary tobacco, marijuana and alcohol use were recorded during multiple EMA across 1 week of data capture. WM was assessed at the end of each EMA assessment. Contextual variables that may influence WM were recorded via EMA. FINDINGS There were main effects for marijuana and tobacco: WM was poorer with marijuana [odds ratio (OR) = 0.91, 95% confidence interval (CI) = 0.84-0.99] and better with tobacco (OR = 1.11, 95% CI = 1.04-1.18). These effects were not qualified by an interaction (OR = 1.03, 95% CI = 0.84-1.26). Alcohol also reduced WM (OR = 0.87, 95% CI = 0.79-0.95), and the tobacco × alcohol interaction was significant (OR = 0.81, 95% CI = 0.66-0.99), indicating that the facilitative effect of tobacco disappeared with concurrent alcohol use. CONCLUSIONS Relative to when individuals did not use these substances, working memory decreased with acute marijuana and alcohol use and increased with acute tobacco use. However, the putative effect of marijuana on working memory and the facilitative effect of tobacco on working memory were no longer present when used simultaneously with tobacco and alcohol, respectively. Data suggest that tobacco use may compensate for working memory decrements from marijuana among young adults and highlight the importance of investigating further the negative impact of alcohol use on cognition.
Collapse
Affiliation(s)
- Randi Melissa Schuster
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Robin J. Mermelstein
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois,Institute for Health Research and Policy, Chicago, Illinois
| | - Donald Hedeker
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Abouchedid R, Ho JH, Hudson S, Dines A, Archer JRH, Wood DM, Dargan PI. Acute Toxicity Associated with Use of 5F-Derivations of Synthetic Cannabinoid Receptor Agonists with Analytical Confirmation. J Med Toxicol 2016; 12:396-401. [PMID: 27456262 DOI: 10.1007/s13181-016-0571-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Synthetic Cannabinoid Receptor Agonists (SCRAs) are the largest group of new psychoactive substances reported to the European Warning System and the United Nations Office on Drugs and Crime to date. The heterogeneous nature and speed of diversification of these compounds make it challenging to accurately characterise and predict harms of these compounds in pre-clinical studies, ahead of their appearance. CASE REPORT We report the case of a 19-year-old female who purchased three products from a headshop: two new psychoactive substances (sachets of "cannabis tea" and "mushroom tea") as well as two LSD blotters. After the "cannabis tea" was smoked and the two LSD blotters and "mushroom tea" were ingested, the patient became tachycardic (HR 128), developed seizures, agitation, visual hallucinations as well as suspected serotonergic toxicity (sustained ankle clonus 20-30 beats) 1-2 hours after use. She was treated with 1 mg of intravenous midazolam. Symptoms/signs resolved within 13 hours. No further supportive care was required. Plasma, blood, and urine samples confirmed the presence of two SCRAs: 5FAKB-48 and 5F-PB-22. The patient also reported therapeutic use of both fluoxetine and citalopram for depression. DISCUSSION To the best of our knowledge, this is the first case report of non-fatal intoxication with 5F-AKB-48 with analytical confirmation and exposure times. It also highlights the difficulties in understanding the pattern of toxicity of certain SCRAs in the context of psychotropic medications/co-morbid mental illness.
Collapse
Affiliation(s)
- Rachelle Abouchedid
- Department of Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK.
- Emergency Department, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK.
| | - James H Ho
- Department of Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
- Emergency Department, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
| | | | - Alison Dines
- Department of Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
| | - John R H Archer
- Department of Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David M Wood
- Department of Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul I Dargan
- Department of Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|