1
|
Santos EXD, Britto-Júnior J, Ribeiro JV, Junior GQ, Lima AT, Moraes MO, Moraes MEA, Antunes E, Schenka A, De Nucci G. Endothelium-derived 6-nitrodopamine is the major mechanism by which nitric oxide relaxes the rabbit isolated aorta. Front Pharmacol 2024; 15:1507802. [PMID: 39640490 PMCID: PMC11619277 DOI: 10.3389/fphar.2024.1507802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
6-Nitrodopamine (6-ND) is the predominant catecholamine released from isolated vascular tissues in both mammals and reptiles, with its release being significantly reduced by the NO synthesis inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME). The vasorelaxation induced by 6-ND is unaffected by either L-NAME or the soluble guanylate cyclase (sGC) inhibitor, ODQ, indicating an alternative mechanism of action. The vasorelaxant effect appears to be mediated through selective antagonism of dopamine D2 receptors rather than traditional nitric oxide (NO)-mediated pathways. This study examined the basal release of 6-ND, dopamine, noradrenaline, and adrenaline from the rabbit thoracic aorta by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Additionally, the effects of 6-ND and the dopamine receptor antagonist L741,626 on relaxation responses and electric-field stimulation (EFS)-induced contractions in aortic rings were assessed. Nitric oxide pathway inhibitors, including L-NAME, ODQ, and methylene blue, were utilized to assess the involvement of this pathway in 6-ND-induced vasorelaxation. Concentration-response curves for norepinephrine, epinephrine, and dopamine were generated in the presence and absence of 6-ND and L-741,626. The rabbit isolated aorta presented the basal release of endothelium-derived dopamine and 6-ND. Furthermore, 6-nitrodopamine and L-741,626 induced concentration-dependent relaxations in endothelin-1 pre-contracted aortic rings. The relaxations were reduced by the mechanical removal of the endothelium but unaffected by pre-treatment with L-NAME, ODQ, or methylene blue. Pre-incubation with 6-ND significantly reduced dopamine-induced contractions, while noradrenaline- and adrenaline-induced contractions remained unchanged. The findings demonstrated that endothelium-derived 6-ND is the most potent endogenous relaxant of the rabbit isolated aorta, and the mechanism is independent of the NO pathway and involved the blockade of dopamine D2 receptors.
Collapse
Affiliation(s)
- Eric Xavier Dos Santos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Victor Ribeiro
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Gilberto Quirino Junior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Manoel Odorico Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Maria Elisabete A. Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Schenka
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty São Leopoldo Mandic, Campinas, São Paulo, Brazil
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
2
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
3
|
Ike KGO, Lamers SJC, Kaim S, de Boer SF, Buwalda B, Billeter JC, Kas MJH. The human neuropsychiatric risk gene Drd2 is necessary for social functioning across evolutionary distant species. Mol Psychiatry 2024; 29:518-528. [PMID: 38114631 PMCID: PMC11116113 DOI: 10.1038/s41380-023-02345-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The Drd2 gene, encoding the dopamine D2 receptor (D2R), was recently indicated as a potential target in the etiology of lowered sociability (i.e., social withdrawal), a symptom of several neuropsychiatric disorders such as Schizophrenia and Major Depression. Many animal species show social withdrawal in response to stimuli, including the vinegar fly Drosophila melanogaster and mice, which also share most human disease-related genes. Here we will test for causality between Drd2 and sociability and for its evolutionary conserved function in these two distant species, as well as assess its mechanism as a potential therapeutic target. During behavioral observations in groups of freely interacting D. melanogaster, Drd2 homologue mutant showed decreased social interactions and locomotor activity. After confirming Drd2's social effects in flies, conditional transgenic mice lacking Drd2 in dopaminergic cells (autoreceptor KO) or in serotonergic cells (heteroreceptor KO) were studied in semi-natural environments, where they could freely interact. Autoreceptor KOs showed increased sociability, but reduced activity, while no overall effect of Drd2 deletion was observed in heteroreceptor KOs. To determine acute effects of D2R signaling on sociability, we also showed that a direct intervention with the D2R agonist Sumanirole decreased sociability in wild type mice, while the antagonist showed no effects. Using a computational ethological approach, this study demonstrates that Drd2 regulates sociability across evolutionary distant species, and that activation of the mammalian D2R autoreceptor, in particular, is necessary for social functioning.
Collapse
Affiliation(s)
- Kevin G O Ike
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sanne J C Lamers
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Soumya Kaim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Bauke Buwalda
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Zatz R, De Nucci G. Endothelium-Derived Dopamine and 6-Nitrodopamine in the Cardiovascular System. Physiology (Bethesda) 2024; 39:44-59. [PMID: 37874898 PMCID: PMC11283902 DOI: 10.1152/physiol.00020.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
The review deals with the release of endothelium-derived dopamine and 6-nitrodopamine (6-ND) and its effects on isolated vascular tissues and isolated hearts. Basal release of both dopamine and 6-ND is present in human isolated umbilical cord vessels, human popliteal vessels, nonhuman primate vessels, and reptilia aortas. The 6-ND basal release was significantly reduced when the tissues were treated with Nω-nitro-l-arginine methyl ester and virtually abolished when the endothelium was mechanically removed. 6-Nitrodopamine is a potent vasodilator, and the mechanism of action responsible for this effect is the antagonism of dopamine D2-like receptors. As a vasodilator, 6-ND constitutes a novel mechanism by which nitric oxide modulates vascular tone. The basal release of 6-ND was substantially decreased in endothelial nitric oxide synthase knockout (eNOS-/-) mice and not altered in neuronal nitric oxide synthase knockout (nNOS-/-) mice, indicating a nonneurogenic source for 6-ND in the heart. Indeed, in rat isolated right atrium, the release of 6-ND was not affected when the atria were treated with tetrodotoxin. In the rat isolated right atrium, 6-ND is the most potent endogenous positive chronotropic agent, and in Langendorff's heart preparation, it is the most potent endogenous positive inotropic agent. The positive chronotropic and inotropic effects of 6-ND are antagonized by β1-adrenoceptor antagonists at concentrations that do not affect the effects induced by noradrenaline, adrenaline, and dopamine, indicating that blockade of the 6-ND receptor is the major modulator of heart chronotropism and inotropism. The review proposes that endothelium-derived catecholamines may constitute a major mechanism for control of vascular tone and heart functions, in contrast to the overrated role attributed to the autonomic nervous system.
Collapse
Affiliation(s)
- Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, São Leopoldo Mandic, Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, Metropolitan University of Santos, Santos, São Paulo, Brazil
| |
Collapse
|
5
|
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi 3 heterotrimers. Cell Commun Signal 2023; 21:279. [PMID: 37817242 PMCID: PMC10566112 DOI: 10.1186/s12964-023-01307-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gβ and Gγ subunits and the effects of different Gβγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gβ and Gγ subunits. METHODS Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gβ1 or Gβ2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gβ and Gγ subunits. Heterotrimers containing Gβ2 showed slightly lower membrane localization compared to those containing Gβ1, but certain combinations, such as Gαi3β2γ8 and Gαi3β2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gβ1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gβ and Gγ subunits in G-protein signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
6
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
7
|
Kearney PJ, Bolden NC, Kahuno E, Conklin TL, Martin GE, Lubec G, Melikian HE. Presynaptic Gq-coupled receptors drive biphasic dopamine transporter trafficking that modulates dopamine clearance and motor function. J Biol Chem 2023; 299:102900. [PMID: 36640864 PMCID: PMC9943899 DOI: 10.1016/j.jbc.2023.102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular dopamine (DA) levels are constrained by the presynaptic DA transporter (DAT), a major psychostimulant target. Despite its necessity for DA neurotransmission, DAT regulation in situ is poorly understood, and it is unknown whether regulated DAT trafficking impacts dopaminergic signaling and/or behaviors. Leveraging chemogenetics and conditional gene silencing, we found that activating presynaptic Gq-coupled receptors, either hM3Dq or mGlu5, drove rapid biphasic DAT membrane trafficking in ex vivo striatal slices, with region-specific differences between ventral and dorsal striata. DAT insertion required D2 DA autoreceptors and intact retromer, whereas DAT retrieval required PKC activation and Rit2. Ex vivo voltammetric studies revealed that DAT trafficking impacts DA clearance. Furthermore, dopaminergic mGlu5 silencing elevated DAT surface expression and abolished motor learning, which was rescued by inhibiting DAT with a subthreshold CE-158 dose. We discovered that presynaptic DAT trafficking is complex, multimodal, and region specific, and for the first time, we identified cell autonomous mechanisms that govern presynaptic DAT tone. Importantly, the findings are consistent with a role for regulated DAT trafficking in DA clearance and motor function.
Collapse
Affiliation(s)
- Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Tucker L. Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gilles E. Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,For correspondence: Haley E. Melikian
| |
Collapse
|
8
|
Myslivecek J. Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors. Life (Basel) 2022; 12:life12050606. [PMID: 35629274 PMCID: PMC9147915 DOI: 10.3390/life12050606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D1-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation by the D2-like receptor family. Some dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α2-ARs and 5-HT receptors. Unfortunately, these compounds are often considered subtype(s) specific. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be an effect of other—or the co-effect of multiple receptors. However, there are enough molecules with adequate specificity. In this review, we want to give an overview of the most common off-targets for established dopamine receptor ligands. To give an overall picture, we included a discussion on subtype selectivity. Molecules used as antipsychotic drugs are reviewed too. Therefore, we will summarize reported affinities and give an outline of molecules sufficiently specific for one or more subtypes (i.e., for subfamily), the presence of DR, α2-ARs, and 5-HT receptors in CNS areas, which could help avoid ambiguous results.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| |
Collapse
|
9
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
10
|
Salaberry NL, Mendoza J. The circadian clock in the mouse habenula is set by catecholamines. Cell Tissue Res 2021; 387:261-274. [PMID: 34816282 DOI: 10.1007/s00441-021-03557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are those variations in behavioral and molecular processes of organisms that follow roughly 24 h cycles in the absence of any external cue. The hypothalamic suprachiasmatic nucleus (SCN) harbors the principal brain pacemaker driving circadian rhythms. The epithalamic habenula (Hb) contains a self-sustained circadian clock functionally coupled to the SCN. Anatomically, the Hb projects to the midbrain dopamine (DA) and serotonin (5-HT) systems, and it receives inputs from the forebrain, midbrain, and brainstem. The SCN is set by internal signals such as 5-HT or melatonin from the raphe nuclei and pineal gland, respectively. However, how the Hb clock is set by internal cues is not well characterized. Hence, in the present study, we determined whether DA, noradrenaline (NA), 5-HT, and the neuropeptides orexin (ORX) and vasopressin influence the Hb circadian clock. Using PER2::Luciferase transgenic mice, we found that the amplitude of the PER2 protein circadian oscillations from Hb explants was strongly affected by DA and NA. Importantly, these effects were dose-and region (rostral vs. caudal) dependent for NA, with a main effect in the caudal part of the Hb. Furthermore, ORX also induced a significant change in the amplitude of PER2 protein oscillations in the caudal Hb. In conclusion, catecholaminergic (DA, NA) and ORXergic transmission impacts the clock properties of the Hb clock likely contributing to the circadian regulation of motivated behaviors. Accordingly, pathological conditions that lead in alterations of catecholamine or ORX activity (drug intake, compulsive feeding) might affect the Hb clock and conduct to circadian disturbances.
Collapse
Affiliation(s)
- Nora L Salaberry
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France.
| |
Collapse
|
11
|
Nawaratne V, McLaughlin SP, Mayer FP, Gichi Z, Mastriano A, Carvelli L. Prolonged Amphetamine Exposures Increase the Endogenous Human Dopamine Receptors 2 at the Cellular Membrane in Cells Lacking the Dopamine Transporter. Front Cell Neurosci 2021; 15:681539. [PMID: 34512264 PMCID: PMC8427050 DOI: 10.3389/fncel.2021.681539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
The dopamine 2 receptors (D2R) are G-protein coupled receptors expressed both in pre- and post-synaptic terminals that play an important role in mediating the physiological and behavioral effects of amphetamine (Amph). Previous studies have indicated that the effects of Amph at the D2R mainly rely on the ability of Amph to robustly increase extracellular dopamine through the dopamine transporter (DAT). This implies that the effects of Amph on D2R require the neurotransmitter dopamine. However, because of its lipophilic nature, Amph can cross the cellular membrane and thus potentially affect D2R expression independently of dopamine and DAT, e.g., in post-synaptic terminals. Here we used an in vitro system to study whether Amph affects total expression, cellular distribution, and function of the human D2R (hD2R), endogenously expressed in HEK293 cells. By performing Western blot experiments, we found that prolonged treatments with 1 or 50 μM Amph cause a significant decrease of the endogenous hD2R in cells transfected with human DAT (hDAT). On the other hand, in cells lacking expression of DAT, quantification of the hD2R-mediated changes in cAMP, biotinylation assays, Western blots and imaging experiments demonstrated an increase of hD2R at the cellular membrane after 15-h treatments with Amph. Moreover, imaging data suggested that barbadin, a specific inhibitor of the βarrestin-βadaptin interaction, blocked the Amph-induced increase of hD2R. Taken together our data suggest that prolonged exposures to Amph decrease or increase the endogenous hD2R at the cellular membrane in HEK293 cells expressing or lacking hDAT, respectively. Considering that this drug is often consumed for prolonged periods, during which tolerance develops, our data suggest that even in absence of DAT or dopamine, Amph can still alter D2R distribution and function.
Collapse
Affiliation(s)
- Vindhya Nawaratne
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Sean P. McLaughlin
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Felix P. Mayer
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Zayna Gichi
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Alyssa Mastriano
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Lucia Carvelli
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
12
|
Zou R, Wang X, Li S, Chan HCS, Vogel H, Yuan S. The role of metal ions in G protein‐coupled receptor signalling and drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongfeng Zou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
| | - Xueying Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Shu Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - H. C. Stephen Chan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Horst Vogel
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
| |
Collapse
|
13
|
Huang X, Roet KCD, Zhang L, Brault A, Berg AP, Jefferson AB, Klug-McLeod J, Leach KL, Vincent F, Yang H, Coyle AJ, Jones LH, Frost D, Wiskow O, Chen K, Maeda R, Grantham A, Dornon MK, Klim JR, Siekmann MT, Zhao D, Lee S, Eggan K, Woolf CJ. Human amyotrophic lateral sclerosis excitability phenotype screen: Target discovery and validation. Cell Rep 2021; 35:109224. [PMID: 34107252 PMCID: PMC8209673 DOI: 10.1016/j.celrep.2021.109224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/14/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders. Motor neuron hyperexcitability is observed in both ALS patients and their iPSC-derived neurons. Combining a high-content live imaging excitability phenotypic assay, high-throughput screening against a cross-annotated chemogenomic library, and bioinformatic enrichment analysis, Huang et al. identify targets modulating the hyperexcitability of ALS patient-derived motor neurons in an unbiased manner.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kasper C D Roet
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Liying Zhang
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Amy Brault
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Anne B Jefferson
- Pfizer Centers for Therapeutic Innovation (CTI), San Francisco, CA 94080, USA
| | | | - Karen L Leach
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | | | - Hongying Yang
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Anthony J Coyle
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rie Maeda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alyssa Grantham
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary K Dornon
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marco T Siekmann
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dongyi Zhao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Microwave-assisted synthesis of (3,5-disubstituted isoxazole)-linked benzimidazolone derivatives: DFT calculations and biological activities. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02764-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Weissenrieder JS, Reed JL, Moldovan G, Johnson MT, Trebak M, Neighbors JD, Mailman RB, Hohl RJ. Antipsychotic drugs elicit cytotoxicity in glioblastoma multiforme in a calcium-dependent, non-D 2 receptor-dependent, manner. Pharmacol Res Perspect 2021; 9:e00689. [PMID: 34003586 PMCID: PMC8130568 DOI: 10.1002/prp2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Dopamine D2 -like receptor antagonists have been suggested as being potential anticancer therapeutics with specific utility for central nervous system cancers due to their ability to cross the blood-brain barrier. Despite a plethora of data reporting anticancer effects for D2 R antagonists in cell or animal studies, the ligand concentrations or doses required to achieve such effects greatly exceed the levels known to cause high degrees of occupancy of the D2 receptor. To resolve this conundrum, we interrogated a panel of glioblastoma multiforme (GBM) cell lines using D2 antagonists of varying chemotype. We studied the cytotoxic effects of these compounds, and also ascertained the expression of D2 receptors (D2 R) on these cells. Although several chemotypes of D2 R antagonists, including phenothiazines and phenylbutylpiperidines, were effective against GBM cell line cultures, the highly selective antagonist remoxipride had no anticancer activity at biologically relevant concentrations. Moreover the D2 R antagonist-induced cytotoxicity in monolayer cultures was independent of whether the cells expressed D2 R. Instead, cytotoxicity was associated with a rapid, high-magnitude calcium flux into the cytoplasm and mitochondria, which then induced depolarization and apoptosis. Blocking this flux protected the GBM cell lines U87MG, U251MG, and A172. Together, these data suggest that the cytotoxicity of these D2 R antagonists involves calcium signaling mechanisms, not D2 R antagonism. Repurposing of existing drugs should focus on the former, not latter, mechanism.
Collapse
Affiliation(s)
- Jillian S. Weissenrieder
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - Jessie L. Reed
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - George‐Lucian Moldovan
- Penn State Cancer InstituteHersheyPAUSA
- Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Martin T. Johnson
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Mohamed Trebak
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Jeffrey D. Neighbors
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | | | - Raymond J. Hohl
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| |
Collapse
|
16
|
Britto-Júnior J, Coelho-Silva WC, Murari GF, Serpellone Nash CE, Mónica FZ, Antunes E, De Nucci G. 6-Nitrodopamine is released by human umbilical cord vessels and modulates vascular reactivity. Life Sci 2021; 276:119425. [PMID: 33781827 DOI: 10.1016/j.lfs.2021.119425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
AIMS Human umbilical cord vessels (HUCV) release dopamine and nitric oxide (NO). This study aims to verify whether HUCV release nitrocatecholamines such as 6-nitrodopamine (6-ND). MAIN METHODS Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify 6-ND release from HUCV rings incubated in Krebs-Henseileit's solution. Vascular reactivity of HUCV rings was tested (with and without endothelium integrity) by suspension of the rings in an organ bath under isometric tension and application of 6-ND and other known mediators. KEY FINDINGS LC-MS/MS revealed a basal release of 6-ND from endothelium intact from both human umbilical artery (HUA) and vein (HUV). The endothelium intact release was inhibited by the pre-treatment with NO synthesis inhibitor L-NAME (100 μM). In contrast to dopamine, noradrenaline and adrenaline, 6-ND did not contract HUCV, even in presence of L-NAME or ODQ. 6-ND (10 μM) produced a rightward shift of the concentration-response curves to dopamine (pA2: 5.96 in HUA and 5.72 in HUV). Contractions induced by noradrenaline and adrenaline were not affected by pre-incubation with 6-ND (10 μM). In U-46619 (10 nM) pre-contracted endothelium intact tissues, 6-ND and the dopamine D2-receptor antagonist haloperidol induced concentration-dependent relaxations of HUA and HUV. Incubation with the dopamine D1-receptor antagonist SCH-23390 (10 nM) abolished relaxation induced by fenoldopam but did not affect those induced by 6-ND. SIGNIFICANCE 6-ND is released by HUCV and acts as a selective dopamine D2-receptor antagonist in this tissue. This represents a novel mechanism by which NO may modulate vascular reactivity independently of cGMP production.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil.
| | - Weverton C Coelho-Silva
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Guilherme Figueiredo Murari
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Charles Elliot Serpellone Nash
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Campinas, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil; Faculty of Medical Sciences, Universidade do Brasil, Fernandópolis, São Paulo, Brazil
| |
Collapse
|
17
|
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain 2021; 144:2074-2091. [PMID: 33730155 DOI: 10.1093/brain/awab119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Shinnosuke Shiono
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
18
|
Crans RAJ, Ciruela F. Dopaminergic-cholinergic imbalance in movement disorders: a role for the novel striatal dopamine D 2- muscarinic acetylcholine M 1 receptor heteromer. Neural Regen Res 2021; 16:1406-1408. [PMID: 33318429 PMCID: PMC8284294 DOI: 10.4103/1673-5374.300988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- René A. J Crans
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium; Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Szűcs E, Ducza E, Büki A, Kekesi G, Benyhe S, Horvath G. Characterization of dopamine D2 receptor binding, expression and signaling in different brain regions of control and schizophrenia-model Wisket rats. Brain Res 2020; 1748:147074. [DOI: 10.1016/j.brainres.2020.147074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
|
20
|
Raffaelli FM, Resch J, Oelkrug R, Iwen KA, Mittag J. Dopamine receptor D1- and D2-agonists do not spark brown adipose tissue thermogenesis in mice. Sci Rep 2020; 10:20203. [PMID: 33214601 PMCID: PMC7677542 DOI: 10.1038/s41598-020-77143-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Brown adipose tissue (BAT) thermogenesis is considered a potential target for treatment of obesity and diabetes. In vitro data suggest dopamine receptor signaling as a promising approach; however, the biological relevance of dopamine receptors in the direct activation of BAT thermogenesis in vivo remains unclear. We investigated BAT thermogenesis in vivo in mice using peripheral administration of D1-agonist SKF38393 or D2-agonist Sumanirole, infrared thermography, and in-depth molecular analyses of potential target tissues; and ex vivo in BAT explants to identify direct effects on key thermogenic markers. Acute in vivo treatment with the D1- or D2-agonist caused a short spike or brief decrease in BAT temperature, respectively. However, repeated daily administration did not induce lasting effects on BAT thermogenesis. Likewise, neither agonist directly affected Ucp1 or Dio2 mRNA expression in BAT explants. Taken together, the investigated agonists do not seem to exert lasting and physiologically relevant effects on BAT thermogenesis after peripheral administration, demonstrating that D1- and D2-receptors in iBAT are unlikely to constitute targets for obesity treatment via BAT activation.
Collapse
Affiliation(s)
- Francesca-Maria Raffaelli
- Department of Molecular Endocrinology, Institute for Endocrinology and Diabetes, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Julia Resch
- Department of Molecular Endocrinology, Institute for Endocrinology and Diabetes, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Rebecca Oelkrug
- Department of Molecular Endocrinology, Institute for Endocrinology and Diabetes, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - K Alexander Iwen
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Jens Mittag
- Department of Molecular Endocrinology, Institute for Endocrinology and Diabetes, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
21
|
Conde Rojas I, Acosta-García J, Caballero-Florán RN, Jijón-Lorenzo R, Recillas-Morales S, Avalos-Fuentes JA, Paz-Bermúdez F, Leyva-Gómez G, Cortés H, Florán B. Dopamine D4 receptor modulates inhibitory transmission in pallido-pallidal terminals and regulates motor behavior. Eur J Neurosci 2020; 52:4563-4585. [PMID: 33098606 DOI: 10.1111/ejn.15020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022]
Abstract
Two major groups of terminals release GABA within the Globus pallidus; one group is constituted by projections from striatal neurons, while endings of the intranuclear collaterals form the other one. Each neurons' population expresses different subtypes of dopamine D2-like receptors: D2 R subtype is expressed by encephalin-positive MSNs, while pallidal neurons express the D4 R subtype. The D2 R modulates the firing rate of striatal neurons and GABA release at their projection areas, while the D4 R regulates Globus pallidus neurons excitability and GABA release at their projection areas. However, it is unknown if these receptors control GABA release at pallido-pallidal collaterals and regulate motor behavior. Here, we present neurochemical evidence of protein content and binding of D4 R in pallidal synaptosomes, control of [3 H] GABA release in pallidal slices of rat, electrophysiological evidence of the presence of D4 R on pallidal recurrent collaterals in mouse slices, and turning behavior induced by D4 R antagonist microinjected in amphetamine challenged rats. As in projection areas of pallidal neurons, GABAergic transmission in pallido-pallidal recurrent synapses is under modulation of D4 R, while the D2 R subtype, as known, modulates striato-pallidal projections. Also, as in projection areas, D4 R contributes to control the motor activity differently than D2 R. This study could help to understand the organization of intra-pallidal circuitry.
Collapse
Affiliation(s)
- Israel Conde Rojas
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | | | | | - Rafael Jijón-Lorenzo
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Sergio Recillas-Morales
- Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Benjamín Florán
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| |
Collapse
|
22
|
Kaushik P, Ali M, Tabassum H, Parvez S. Post-ischemic administration of dopamine D2 receptor agonist reduces cell death by activating mitochondrial pathway following ischemic stroke. Life Sci 2020; 261:118349. [PMID: 32853654 DOI: 10.1016/j.lfs.2020.118349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Abstract
AIMS Cerebral ischemic stroke leads to mitochondrial alterations which are key factors for initiation of various cascades resulting in neuronal damage. Dopamine D2 receptor (D2R) agonist, Sumanirole (SUM) has been reported to possess anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the role of SUM in ischemic stroke (IS) has not been studied yet. The aim of the present study was to investigate the neuroprotective efficiency of SUM against ischemic injury and its possible effect on mitochondrial restorative mechanisms. MATERIALS AND METHODS Transient middle cerebral artery occlusion (tMCAO) was performed in Wistar rats for 90 min occlusion and 22.5 h reperfusion to mimic ischemic stroke. Post- treatment with Sumanirole (0.1 mg/kg and 1 mg/kg; s.c.) was done at 1 h, 6 h, 12 hand 18 h after surgery. In addition, neurobehavioral analysis, mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometric analysis, mitochondrial complexes analysis, infarct size evaluation and histological analysis were performed. KEY FINDINGS Sumanirole restored behavioural alterations as measured by rotarod performance, grip strength, adhesive tape removal analysis and neurological deficits. In addition, it also refurbished mitochondrial dysfunction by decreasing mitochondrial reactive oxygen species production, elevating mitochondrial membrane potential and by protecting the activity of mitochondrial complexes along with histological alterations. As a result, infarct sizes were markedly reduced in tMCAO surgery animals. SIGNIFICANCE Findings from the study provide evidence that SUM promotes neuronal survival in in vivo model of IS through mitochondria mediated neuroprotective features.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
23
|
Crans RAJ, Wouters E, Valle-León M, Taura J, Massari CM, Fernández-Dueñas V, Stove CP, Ciruela F. Striatal Dopamine D 2-Muscarinic Acetylcholine M 1 Receptor-Receptor Interaction in a Model of Movement Disorders. Front Pharmacol 2020; 11:194. [PMID: 32231561 PMCID: PMC7083216 DOI: 10.3389/fphar.2020.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor control deficits, which is associated with the loss of striatal dopaminergic neurons from the substantia nigra. In parallel to dopaminergic denervation, there is an increase of acetylcholine within the striatum, resulting in a striatal dopaminergic–cholinergic neurotransmission imbalance. Currently, available PD pharmacotherapy (e.g., prodopaminergic drugs) does not reinstate the altered dopaminergic–cholinergic balance. In addition, it can eventually elicit cholinergic-related adverse effects. Here, we investigated the interplay between dopaminergic and cholinergic systems by assessing the physical and functional interaction of dopamine D2 and muscarinic acetylcholine M1 receptors (D2R and M1R, respectively), both expressed at striatopallidal medium spiny neurons. First, we provided evidence for the existence of D2R–M1R complexes via biochemical (i.e., co-immunoprecipitation) and biophysical (i.e., BRET1 and NanoBiT®) assays, performed in transiently transfected HEK293T cells. Subsequently, a D2R–M1R co-distribution in the mouse striatum was observed through double-immunofluorescence staining and AlphaLISA® immunoassay. Finally, we evaluated the functional interplay between both receptors via behavioral studies, by implementing the classical acute reserpine pharmacological animal model of experimental parkinsonism. Reserpinized mice were administered with a D2R-selective agonist (sumanirole) and/or an M1R-selective antagonist (VU0255035), and alterations in PD-related behavioral tasks (i.e., locomotor activity) were evaluated. Importantly, VU0255035 (10 mg/kg) potentiated the antiparkinsonian-like effects (i.e., increased locomotor activity and decreased catalepsy) of an ineffective sumanirole dose (3 mg/kg). Altogether, our data suggest the existence of putative striatal D2R/M1R heteromers, which might be a relevant target to manage PD motor impairments with fewer adverse effects.
Collapse
Affiliation(s)
- René A J Crans
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium.,Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Marta Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Caio M Massari
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Programa de Poìs-graduação em Bioquiìmica, Centro de Ciencias Bioloìgicas, Universidade Federal de Santa Catarina, Florianoìpolis, Brazil
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Mostarda S, Gür Maz T, Piccinno A, Cerra B, Banoglu E. Optimisation by Design of Experiment of Benzimidazol-2-One Synthesis under Flow Conditions. Molecules 2019; 24:molecules24132447. [PMID: 31277341 PMCID: PMC6651037 DOI: 10.3390/molecules24132447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
A novel flow-based approach for the preparation of benzimidazol-2-one (1) scaffold by the 1,1′-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of o-phenylenediamine (2) is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of N-(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program.
Collapse
Affiliation(s)
- Serena Mostarda
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
- Current affiliation: Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Tugçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Ankara, Turkey
| | - Alessandro Piccinno
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Ankara, Turkey.
| |
Collapse
|
25
|
Briones-Lizardi LJ, Cortés H, Avalos-Fuentes JA, Paz-Bermúdez FJ, Aceves J, Erlij D, Florán B. Presynaptic control of [3H]-glutamate release by dopamine receptor subtypes in the rat substantia nigra. Central role of D1 and D3 receptors. Neuroscience 2019; 406:563-579. [DOI: 10.1016/j.neuroscience.2019.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
|
26
|
Daba Feyissa D, Sialana FJ, Keimpema E, Kalaba P, Paunkov A, Engidawork E, Höger H, Lubec G, Korz V. Dopamine type 1- and 2-like signaling in the modulation of spatial reference learning and memory. Behav Brain Res 2019; 362:173-180. [DOI: 10.1016/j.bbr.2019.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
|
27
|
Larson TA, Winkler MC, Stafford J, Levis SC, O’Neill CE, Bachtell RK. Role of dopamine D 2-like receptors and their modulation by adenosine receptor stimulation in the reinstatement of methamphetamine seeking. Psychopharmacology (Berl) 2019; 236:1207-1218. [PMID: 30470862 PMCID: PMC6533169 DOI: 10.1007/s00213-018-5126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVE Previous work has demonstrated that dopamine and adenosine receptors are involved in drug-seeking behaviors, yet the pharmacological interactions between these receptors in methamphetamine (MA) seeking are not well characterized. The present studies examined the role of the dopamine D2-like receptors in MA seeking and identified the interactive effects of adenosine receptor stimulation. METHODS Adult male Sprague-Dawley rats were trained to lever press for MA in daily 2-h self-administration sessions on a fixed-ratio 1 schedule for 10 consecutive days. After 1 day of abstinence, lever pressing was extinguished in six daily extinction sessions. Treatments were administered systemically prior to a 2-h reinstatement test session. RESULTS An increase in MA seeking was observed following the administration of the dopamine D2-like agonist, quinpirole, or the D3 receptor agonist, 7-OH-DPAT. Stimulation of D2 or D4 receptors was ineffective at inducing MA seeking. Quinpirole-induced MA seeking was inhibited by D3 receptor antagonism (SB-77011A or PG01037), an adenosine A1 agonist, CPA, and an adenosine A2A agonist, CGS 21680. MA seeking induced by a MA priming injection or D3 receptor stimulation was inhibited by a pretreatment with the adenosine A1 agonist, CPA, but not the adenosine A2A agonist, CGS 21680. CONCLUSIONS These results demonstrate the sufficiency of dopamine D3 receptors to reinstate MA seeking that is inhibited when combined with adenosine A1 receptor stimulation.
Collapse
|
28
|
Elmabruk A, Das B, Yedlapudi D, Xu L, Antonio T, Reith MEA, Dutta AK. Design, Synthesis, and Pharmacological Characterization of Carbazole Based Dopamine Agonists as Potential Symptomatic and Neuroprotective Therapeutic Agents for Parkinson's Disease. ACS Chem Neurosci 2019; 10:396-411. [PMID: 30301349 DOI: 10.1021/acschemneuro.8b00291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have developed a series of carbazole-derived compounds based on our hybrid D2/D3 agonist template to design multifunctional compounds for the symptomatic and disease-modifying treatment of Parkinson's disease (PD). The lead molecules (-)-11b (D-636), (-)-15a (D-653), and (-)-15c (D-656) exhibited high affinity for both D2 and D3 receptors and in GTPγS functional assay, the compounds showed potent agonist activity at both D2 and D3 receptors (EC50 (GTPγS); D2 = 48.7 nM, D3 = 0.96 nM for 11b, D2 = 0.87 nM, D3 = 0.23 nM for 15a and D2 = 2.29 nM, D3 = 0.22 nM for 15c). In an animal model of PD, the test compounds exhibited potent in vivo activity in reversing hypolocomotion in reserpinized rats with a long duration of action compared to the reference drug ropinirole. In a cellular antioxidant assay, compounds (-)-11b, (-)-15a, and (-)-15c exhibited potent activity in reducing oxidative stress induced by neurotoxin 6-hydroxydopamine (6-OHDA). Also, in a cell-based PD neuroprotection model, these lead compounds significantly increased cell survival from toxicity of 6-OHDA, thereby producing a neuroprotective effect. Additionally, compounds (-)-11b and (-)-15a inhibited aggregation and reduced toxicity of recombinant alpha synuclein protein in a cell based in vitro assay. These observations suggest that the lead carbazole-based dopamine agonists may be promising multifunctional molecules for a viable symptomatic and disease-modifying therapy of PD and should be further investigated.
Collapse
Affiliation(s)
- Asma Elmabruk
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Deepthi Yedlapudi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department of Psychiatry, New York University, New York, New York 10016, United States
| | - Maarten E. A. Reith
- Department of Psychiatry, New York University, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
29
|
Bonifazi A, Yano H, Guerrero AM, Kumar V, Hoffman AF, Lupica CR, Shi L, Newman AH. Novel and Potent Dopamine D 2 Receptor Go-Protein Biased Agonists. ACS Pharmacol Transl Sci 2019; 2:52-65. [PMID: 30775693 PMCID: PMC6371206 DOI: 10.1021/acsptsci.8b00060] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/18/2022]
Abstract
![]()
The
discovery of functionally biased and physiologically beneficial
ligands directed toward G-protein coupled receptors (GPCRs) has provided
the impetus to design dopamine D2 receptor (D2R) targeted molecules that may be therapeutically advantageous for
the treatment of certain neuropsychiatric or basal ganglia related
disorders. Here we describe the synthesis of a novel series of D2R agonists linking the D2R unbiased agonist sumanirole
with privileged secondary molecular fragments. The resulting ligands
demonstrate improved D2R affinity and selectivity over
sumanirole. Extensive in vitro functional studies
and bias factor analysis led to the identification of a novel class
of highly potent Go-protein biased full D2R agonists with
more than 10-fold and 1000-fold bias selectivity toward activation
of specific G-protein subtypes and β-arrestin, respectively.
Intracellular electrophysiological recordings from midbrain dopamine
neurons demonstrated that Go-protein selective agonists can elicit
prolonged ligand-induced GIRK activity via D2Rs, which
may be beneficial in the treatment of dyskinesias associated with
dopamine system dysfunction.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Adrian M Guerrero
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vivek Kumar
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
30
|
Niewiarowska-Sendo A, Kozik A, Guevara-Lora I. Influence of bradykinin B2 receptor and dopamine D2 receptor on the oxidative stress, inflammatory response, and apoptotic process in human endothelial cells. PLoS One 2018; 13:e0206443. [PMID: 30427893 PMCID: PMC6241119 DOI: 10.1371/journal.pone.0206443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/13/2018] [Indexed: 01/11/2023] Open
Abstract
Endothelial dysfunction is a hallmark of a wide range of cardiovascular diseases and is often linked to oxidative stress and inflammation. Our earlier study reported the formation of a functional heterodimer between bradykinin receptor 2 (B2R) and dopamine receptor 2 (D2R) that may modulate cell responses, dependent on intracellular signaling. Here, for the first time, we showed a cooperative effect of these receptors on the modulation of processes involved in oxidative stress, inflammation, and apoptosis in endothelial cells. Sumanirole, a specific D2R agonist, was shown to diminish the excessive production of reactive oxygen species induced by bradykinin, a proinflammatory B2R-activating peptide. This effect was accompanied by modified activities of antioxidant enzymes and increased phosphorylation of endothelial nitric oxide synthase, leading to enhance NO production. In turn, endothelial cell co-stimulation with B2R and D2R agonists inhibited the release of interleukin-6 and endothelin-1 and modulated the expression of apoptosis markers, such as Bcl-2, Bcl-xL, Bax, and caspase 3/7 activity. All these observations argue that the D2R agonist counteracts the pro-oxidative, pro-inflammatory, and pro-apoptotic effects induced through B2R, finally markedly improving endothelial functions.
Collapse
Affiliation(s)
- Anna Niewiarowska-Sendo
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
- * E-mail:
| |
Collapse
|
31
|
Montgomery D, Campbell A, Sullivan HJ, Wu C. Molecular dynamics simulation of biased agonists at the dopamine D2 receptor suggests the mechanism of receptor functional selectivity. J Biomol Struct Dyn 2018; 37:3206-3225. [PMID: 30124143 DOI: 10.1080/07391102.2018.1513378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson's disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein-ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Montgomery
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Alexandra Campbell
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Holli-Joi Sullivan
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Chun Wu
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| |
Collapse
|
32
|
Marino RA, Levy R. Differential effects of D1 and D2 dopamine agonists on memory, motivation, learning and response time in non-human primates. Eur J Neurosci 2018; 49:199-214. [PMID: 30326151 DOI: 10.1111/ejn.14208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
Abstract
Dopamine (DA) plays a critical role in cognition, motivation and information processing. DA action has been shown to both improve and/or impair cognition across different receptor types, species, subjects and tasks. This complex relationship has been described as an inverted U-shaped function and may be due to the differential effects of DA receptor activation in the striatum and prefrontal cortex. We have investigated the effects of selective DA agonists on cognitive performance in healthy monkeys using a touch screen running tasks from the CAmbridge Neuropsychological Test Automated Battery (CANTAB). One of two DA agonist drugs or placebo was administered prior to each daily CANTAB session: Dihydrexidine hydrochloride (selective D1 agonist, 0.4-0.9 mg/kg), or sumanirole maleate (selective D2 agonist 0.05-0.3 mg/kg). Three CANTAB tasks were tested: (a) "self-ordered sequential search task" which tested spatial working memory, (b) "reversal learning task," which tested association learning, cognitive flexibility and attention and (c) "visually guided reaching task," which tested reaction time and accuracy. At high dosages, the D2 agonist improved spatial working memory performance, while impairing reversal learning and slowing reach response latency. No consistent cognitive effects were observed with the D1 agonist across the dosages tested. A significant decrease in trial completion rate was observed at the higher dosages of both the D1 and D2 agonists which were consistent with decreased motivation. These results are consistent with task-specific effects of a D2 agonist as well as dose specific insensitivities of a D1 agonist on cognitive and motor behaviors in a healthy monkey.
Collapse
Affiliation(s)
- Robert A Marino
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | - Ron Levy
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Real JI, Simões AP, Cunha RA, Ferreira SG, Rial D. Adenosine A 2A receptors modulate the dopamine D 2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex. Eur J Neurosci 2018; 47:1127-1134. [PMID: 29570875 DOI: 10.1111/ejn.13912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/20/2023]
Abstract
Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D1 - and D2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A2A receptors (A2A R) also control PFC-related responses and A2A R antagonists are potential anti-psychotic drugs. As tight antagonistic A2A R-D2 R and synergistic A2A R-D1 R interactions occur in other brain regions, we now investigated the crosstalk between A2A R and D1 /D2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D2 R-like antagonist sulpiride but not by the D1 R antagonist SCH23390 and was mimicked by the D2 R agonist sumanirole, but not by the agonists of either D4 R (A-412997) or D3 R (PD128907). Dopamine inhibition was prevented by the A2A R antagonist, SCH58261, and attenuated in A2A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A2A R and D2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A2A R-D2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A2A R antagonists.
Collapse
Affiliation(s)
- Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| |
Collapse
|
34
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018. [DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Taura J, Valle-León M, Sahlholm K, Watanabe M, Van Craenenbroeck K, Fernández-Dueñas V, Ferré S, Ciruela F. Behavioral control by striatal adenosine A 2A -dopamine D 2 receptor heteromers. GENES BRAIN AND BEHAVIOR 2017; 17:e12432. [PMID: 29053217 DOI: 10.1111/gbb.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/30/2017] [Accepted: 10/14/2017] [Indexed: 01/13/2023]
Abstract
G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2A R) and dopamine D2 receptors (D2 R) predominantly form A2A R-D2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2A R and D2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D2 R-deficient mouse with the same genetic background (CD-1) than the A2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A2A R and D2 R knock-out mice, with and without the concomitant administration of either the D2 R agonist sumanirole or the A2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D2 R signaling. Similarly, a significant dependence on A2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2A R-D2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- J Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - M Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - K Sahlholm
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - M Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - K Van Craenenbroeck
- Laboratory of GPCR Expression and Signal Transduction, Ghent University, Ghent, Belgium
| | - V Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - S Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - F Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Interaction Between the Trace Amine-Associated Receptor 1 and the Dopamine D 2 Receptor Controls Cocaine's Neurochemical Actions. Sci Rep 2017; 7:13901. [PMID: 29066851 PMCID: PMC5655641 DOI: 10.1038/s41598-017-14472-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that the trace amine-associated receptor 1 (TAAR1) plays a pivotal role in the regulation of dopamine (DA) transmission and cocaine’s actions. However, the underlying mechanisms through which TAAR1 activation mediates these effects have not yet been elucidated. Here, we used fast-scan cyclic voltammetry to measure DA dynamics and explore such mechanisms. We show, first, that the full TAAR1 agonist, RO5256390, dose-dependently blocked cocaine-induced inhibition of DA clearance in slices of the nucleus accumbens. Second, subthreshold inhibition of PKA or PKC phosphorylation did not prevent TAAR1 suppression of cocaine effects whereas subeffective doses of the DA D2 receptor antagonist, L-741,626, rescued cocaine’s ability to produce changes in DA uptake in the presence of full TAAR1 activation, thus indicating that TAAR1 modulation of cocaine effects requires simultaneous DA D2 receptor activation. Predictably, inhibition of glycogen synthase kinase-3 (GSK-3), which results from activation of D2/TAAR1 heterodimers, fully reproduced the inhibitory effects of TAAR1 activation on cocaine-induced changes in DA transmission. Collectively, the present observations reveal that the ability of TAAR1 to regulate cocaine effects is linked to cooperative interactions with D2 autoreceptors and associated downstream molecular targets converging on GSK-3 and suggest a new mechanism to disrupt cocaine neurochemical actions.
Collapse
|
37
|
Bezu M, Maliković J, Kristofova M, Engidawork E, Höger H, Lubec G, Korz V. Spatial Working Memory in Male Rats: Pre-Experience and Task Dependent Roles of Dopamine D1- and D2-Like Receptors. Front Behav Neurosci 2017; 11:196. [PMID: 29081740 PMCID: PMC5645514 DOI: 10.3389/fnbeh.2017.00196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
The dopaminergic system is known to be involved in working memory processed by several brain regions like prefrontal cortex (PFC), hippocampus, striatum. In an earlier study we could show that Levodopa but not Modafinil enhanced working memory in a T-maze only during the early phase of training (day 3), whereas the later phase remained unaffected. Rats treated with a higher dose performed better than low dose treated rats. Here we could more specifically segregate the contributions of dopamine type 1- and 2- like receptors (D1R; D2R) to the training state dependent modulation of spatial working memory by intracerebroventricular (ICV) application of a D1R-like (SKF81297) and D2R-like agonist (Sumanirole) and antagonist (SCH23390, Remoxipride) at a low and high dose through 3 days of training. The D1R-like-agonist at both doses enhanced working memory at day 1 but only in the low dose treated rats enhancement persists over training compared to control rats. Rats treated with a high dose of a D1R-like-antagonist show persistent enhancement of working memory over training, whereas in low dose treated rats no statistical difference at any time point could be determined compared to controls. The D2R-like-agonist at both doses does not show an effect at any time point when compared to control animals, whereas the D2R-like antagonist at a low dose enhanced working memory at day 2. For the most effective D1R-like agonist, we repeated the experiments in a water maze working memory task, to test for task dependent differences in working memory modulations. Treated rats at both doses did not differ as compared to controls, but the temporal behavioral performance of all groups was different compared to T-maze trained rats. The results are in line with the view that spatial working memory is optimized within a limited range of dopaminergic transmission, however suggest that these ranges vary during spatial training.
Collapse
Affiliation(s)
- Mekite Bezu
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jovana Maliković
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Ephrem Engidawork
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Department of Biomedicine, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Volker Korz
- Brain Research Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Altiti AS, Cheng KF, He M, Al-Abed Y. β-Hydroxy-tetrahydroquinolines from Quinolines Using Chloroborane: Synthesis of the Peptidomimetic FISLE-412. Chemistry 2017; 23:10738-10743. [PMID: 28639294 PMCID: PMC6003427 DOI: 10.1002/chem.201701944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Indexed: 01/11/2023]
Abstract
A new synthetic protocol provides a simple and direct method to generate functionalized β-hydroxy-tetrahydroquinolines (THQs). Hydroboration of quinolines using chloroboranes followed by oxidation with NaBO3 ⋅H2 O led to the formation of functionalized β-hydroxy THQs. High regio- and diastereoselectivities were observed in α and γ substituted quinolines and the trans diastereomer of the β-hydroxy-THQ was the major isostere. This new protocol was utilized to build the novel antibody-targeted lupus peptidomimetic, FISLE-412.
Collapse
Affiliation(s)
- Ahmad S. Altiti
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Commuinty Drive, Manhasset, New York 11030, United States
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Commuinty Drive, Manhasset, New York 11030, United States
| | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Commuinty Drive, Manhasset, New York 11030, United States
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Commuinty Drive, Manhasset, New York 11030, United States
| |
Collapse
|
39
|
Niewiarowska-Sendo A, Polit A, Piwowar M, Tworzydło M, Kozik A, Guevara-Lora I. Bradykinin B2 and dopamine D2 receptors form a functional dimer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1855-1866. [PMID: 28757212 DOI: 10.1016/j.bbamcr.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
In recent years a wide range of studies have shown that G protein-coupled receptors modulate a variety of cell functions through the formation of dimers. For instance, there is growing evidence for the dimerization of bradykinin or dopamine receptors, both as homodimers and heterodimers. A discovery of direct interactions of angiotensin II receptors with bradykinin 2 receptor (B2R) or dopamine D2 (D2R) receptor has led to a hypothesis on a potential dimerization between two latter receptors. In this study, we have demonstrated a constitutive colocalization of receptors on the membranes of HEK293 cells transiently transfected with plasmid vectors encoding B2R and D2R, fused with fluorescent proteins. The receptor colocalization was significantly enhanced by specific agonists of B2R or D2R after 5min following the addition, whereas simultaneous stimulation with these agonists did not influence the B2R/D2R colocalization level. In addition, B2R-D2R heterodimerization was confirmed with FLIM-FRET technique. The most characteristic signaling pathways for B2R and D2R, dependent on intracellular Ca2+ and cAMP concentration, respectively, were analyzed in cells presenting similar endogenous expression of B2R and D2R. Significant changes in receptors' signaling were observed after simultaneous stimulation with agonists, suggesting transformations in proteins' conformation after dimerization. The evidence of B2R-D2R dimerization may open new perspectives in the modulation of diverse cellular functions which depend on their activation.
Collapse
Affiliation(s)
- Anna Niewiarowska-Sendo
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Monika Piwowar
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University in Krakow, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Poland.
| |
Collapse
|
40
|
Moritz AE, Free RB, Sibley DR. Advances and challenges in the search for D 2 and D 3 dopamine receptor-selective compounds. Cell Signal 2017; 41:75-81. [PMID: 28716664 DOI: 10.1016/j.cellsig.2017.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022]
Abstract
Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.
Collapse
Affiliation(s)
- Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States.
| |
Collapse
|
41
|
Das B, Kandegedara A, Xu L, Antonio T, Stemmler T, Reith MEA, Dutta AK. A Novel Iron(II) Preferring Dopamine Agonist Chelator as Potential Symptomatic and Neuroprotective Therapeutic Agent for Parkinson's Disease. ACS Chem Neurosci 2017; 8:723-730. [PMID: 28106982 DOI: 10.1021/acschemneuro.6b00356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, and development of disease-modifying treatment is still an unmet medical need. Considering the implication of free iron(II) in PD, we report here the design and characterization of a novel hybrid iron chelator, (-)-12 (D-607) as a multitarget-directed ligand against PD. Binding and functional assays at dopamine D2/D3 receptors indicate potent agonist activity of (-)-12. The molecule displayed an efficient preferential iron(II) chelation properties along with potent in vivo activity in a reserpinized PD animal model. The compound also rescued PC12 cells from toxicity induced by iron delivered intracellularly in a dose-dependent manner. However, Fe3+ selective dopamine agonist 1 and a well-known antiparkinsonian drug pramipexole produced little to no neuroprotection effect under the same experimental condition. These observations strongly suggest that (-)-12 should be a promising multifunctional lead molecule for a viable symptomatic and disease modifying therapy of PD.
Collapse
Affiliation(s)
- Banibrata Das
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Ashoka Kandegedara
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Liping Xu
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department
of Psychiatry, New York University, New York, New York 10016, United States
| | - Timothy Stemmler
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Maarten E. A. Reith
- Department
of Psychiatry, New York University, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
42
|
Bonifazi A, Yano H, Ellenberger MP, Muller L, Kumar V, Zou MF, Cai NS, Guerrero AM, Woods AS, Shi L, Newman AH. Novel Bivalent Ligands Based on the Sumanirole Pharmacophore Reveal Dopamine D 2 Receptor (D 2R) Biased Agonism. J Med Chem 2017; 60:2890-2907. [PMID: 28300398 DOI: 10.1021/acs.jmedchem.6b01875] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of bivalent ligands has attracted interest as a way to potentially improve the selectivity and/or affinity for a specific receptor subtype. The ability to bind two distinct receptor binding sites simultaneously can allow the selective activation of specific G-protein dependent or β-arrestin-mediated cascade pathways. Herein, we developed an extended SAR study using sumanirole (1) as the primary pharmacophore. We found that substitutions in the N-1- and/or N-5-positions, physiochemical properties of those substituents, and secondary aromatic pharmacophores can enhance agonist efficacy for the cAMP inhibition mediated by Gi/o-proteins, while reducing or suppressing potency and efficacy toward β-arrestin recruitment. Compound 19 was identified as a new lead for its selective D2 G-protein biased agonism with an EC50 in the subnanomolar range. Structure-activity correlations were observed between substitutions in positions N-1 and/or N-5 of 1 and the capacity of the new bivalent compounds to selectively activate G-proteins versus β-arrestin recruitment in D2R-BRET functional assays.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Michael P Ellenberger
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Ludovic Muller
- Structural Biology Unit, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vivek Kumar
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Mu-Fa Zou
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Ning Sheng Cai
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Adrian M Guerrero
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amina S Woods
- Structural Biology Unit, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
43
|
Novel multifunctional dopamine D 2/D 3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties. Bioorg Med Chem 2016; 24:5088-5102. [PMID: 27591013 DOI: 10.1016/j.bmc.2016.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
Our ongoing drug development endeavor to design compounds for symptomatic and neuroprotective treatment of Parkinson's disease (PD) led us to carry out a structure activity relationship study based on dopamine agonists pramipexole and 5-OHDPAT. Our goal was to incorporate structural elements in these agonists in a way to preserve their agonist activity while producing inhibitory activity against aggregation of α-synuclein protein. In our design we appended various catechol and related phenol derivatives to the parent agonists via different linker lengths. Structural optimization led to development of several potent agonists among which (-)-8a, (-)-14 and (-)-20 exhibited potent neuroprotective properties in a cellular PD model involving neurotoxin 6-OHDA. The lead compounds (-)-8a and (-)-14 were able to modulate aggregation of α-synuclein protein efficiently. Finally, in an in vivo PD animal model, compound (-)-8a exhibited efficacious anti-parkinsonian effect.
Collapse
|
44
|
Shelton K, Bogyo K, Schick T, Ettenberg A. Pharmacological modulation of lateral habenular dopamine D2 receptors alters the anxiogenic response to cocaine in a runway model of drug self-administration. Behav Brain Res 2016; 310:42-50. [PMID: 27155504 DOI: 10.1016/j.bbr.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/01/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Cocaine has long been known to produce an initial "high" followed by an aversive/anxiogenic "crash". While much is known about the neurobiology of cocaine's positive/rewarding effects, the mechanisms that give rise to the drug's negative/anxiogenic actions remain unclear. Recent research has implicated the lateral habenula (LHb) in the encoding of aversive events including the anxiogenic response to cocaine. Of particular interest in this regard are the reciprocal connections between the LHb and the ventral tegmental area (VTA). VTA-DA neurons innervate different subsets of LHb cells that in turn feedback upon and modulate VTA neuronal activity. Here we examined the impact of D2 receptor activation and inhibition on the anxiogenic response to cocaine using a runway model of self-administration that is sensitive to the dual and opposing effects of the drug. Male rats ran a straight alley for IV cocaine (1.0mg/kg) following bilateral intra-LHb infusions of the D2 receptor antagonist, cis-flupenthixol (0, 7.5 or 15μg/side) or the D2 agonist, sumanirole (0, 5 or 10μg/side). Vehicle-pretreated controls developed approach-avoidance conflict behaviors about goal-box entry reflective of the dual positive and negative effects of cocaine. These behaviors were significantly diminished during LHb-D2 receptor antagonism and increased by the LHb D2 receptor agonist. These results demonstrate that activity at the D2 receptor in the lateral habenula serves to modulate the anxiogenic response to cocaine.
Collapse
Affiliation(s)
- Kerisa Shelton
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States
| | - Kelsie Bogyo
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States
| | - Tinisha Schick
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States.
| |
Collapse
|
45
|
Zou MF, Keck TM, Kumar V, Donthamsetti P, Michino M, Burzynski C, Schweppe C, Bonifazi A, Free RB, Sibley DR, Janowsky A, Shi L, Javitch JA, Newman AH. Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity. J Med Chem 2016; 59:2973-88. [PMID: 27035329 PMCID: PMC4915350 DOI: 10.1021/acs.jmedchem.5b01612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [(3)H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [(3)H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy.
Collapse
Affiliation(s)
| | | | | | - Prashant Donthamsetti
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons , New York, New York 10027, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | | | | | | | | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , 5625 Fishers Lane, Room 4S-04, Bethesda, Maryland 20892-9405, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , 5625 Fishers Lane, Room 4S-04, Bethesda, Maryland 20892-9405, United States
| | - Aaron Janowsky
- Research & Development Service, Veterans Affairs Portland Health Care System , Portland, Oregon 97239, United States.,Department of Psychiatry and Behavioral Neuroscience, School of Medicine and Methamphetamine Abuse Research Center, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Lei Shi
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Medical College of Cornell University , New York, New York 10065, United States
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons , New York, New York 10027, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | |
Collapse
|
46
|
Dopamine receptor agonists modulate voluntary alcohol intake independently of individual levels of alcohol intake in rats. Psychopharmacology (Berl) 2016; 233:2715-25. [PMID: 27236784 PMCID: PMC4917576 DOI: 10.1007/s00213-016-4330-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 02/03/2023]
Abstract
RATIONALE Individual susceptibility to alcohol use disorder has been related to functional changes in dopaminergic neurotransmission. OBJECTIVES The aim of the current work was to assess the effects of selective dopamine D1 and D2 receptor agonists and antagonists on alcohol consumption in rats that differ in individual levels of alcohol intake. METHODS The effects of the dopamine D1 receptor agonist SKF 82958, the dopamine D1 receptor antagonist SCH 23390, the dopamine D2 receptor agonist sumanirole and the dopamine D2 receptor antagonist L741,626 on alcohol consumption and preference were assessed at different time points after treatment in subgroups of low and high alcohol drinking rats (LD and HD) using an intermittent alcohol access paradigm. RESULTS SKF 82958 decreased alcohol intake and alcohol preference throughout the 24-h session. Sumanirole decreased alcohol intake during the first 2 h, but increased alcohol intake during the remainder of the session. The effects of SKF 82958 and sumanirole on alcohol intake and alcohol preference were comparable in LD and HD. By contrast, the dopamine receptor antagonists SCH 23390 and L741,626 did not alter alcohol consumption in either group at any time point. CONCLUSIONS These data indicate that stimulation of dopamine D1 receptors reduces alcohol intake, but that endogenous dopamine does not play a primary role in alcohol consumption. Moreover, the difference in alcohol consumption between LD and HD does not involve altered dopamine signaling.
Collapse
|
47
|
Das B, Vedachalam S, Luo D, Antonio T, Reith MEA, Dutta AK. Development of a Highly Potent D2/D3 Agonist and a Partial Agonist from Structure-Activity Relationship Study of N(6)-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Implication in the Treatment of Parkinson's Disease. J Med Chem 2015; 58:9179-95. [PMID: 26555041 PMCID: PMC6250127 DOI: 10.1021/acs.jmedchem.5b01031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our structure-activity relationship studies with N(6)-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives led to development of a lead compound (-)-21a which exhibited very high affinity (Ki, D2 = 16.4 nM, D3 = 1.15 nM) and full agonist activity (EC50 (GTPγS); D2 = 3.23 and D3 = 1.41 nM) at both D2 and D3 receptors. A partial agonist molecule (-)-34 (EC50 (GTPγS); D2 = 21.6 (Emax = 27%) and D3 = 10.9 nM) was also identified. In a Parkinson's disease (PD) animal model, (-)-21a was highly efficacious in reversing hypolocomotion in reserpinized rats with a long duration of action, indicating its potential as an anti-PD drug. Compound (-)-34 was also able to elevate locomotor activity in the above PD animal model significantly, implying its potential application in PD therapy. Furthermore, (-)-21a was shown to be neuroprotective in protecting neuronal PC12 from toxicity of 6-OHDA. This report, therefore, underpins the notion that a multifunctional drug like (-)-21a might have the potential not only to ameliorate motor dysfunction in PD patients but also to modify disease progression by protecting DA neurons from progressive degeneration.
Collapse
Affiliation(s)
- Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Seenuvasan Vedachalam
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department of Psychiatry, New York University, New York, New York 10016, United States
| | - Maarten E. A. Reith
- Department of Psychiatry, New York University, New York, New York 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
48
|
Kassel S, Schwed JS, Stark H. Dopamine D3 receptor agonists as pharmacological tools. Eur Neuropsychopharmacol 2015; 25:1480-99. [PMID: 25498414 DOI: 10.1016/j.euroneuro.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/23/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Dysregulation of the dopaminergic innervation in the central nervous system plays a key role in different neurological disorders like Parkinson´s disease, restless legs syndrome, schizophrenia etc. Although dopamine D3 receptors have been recognized as an important target in these diseases, their full pharmacological properties need further investigations. With focus on dopamine D3 receptor full agonists, this review has divided the ergoline and non-ergoline ligands in dissimilar chemical subclasses describing their pharmacodynamic properties on different related receptors, on species differences and their functional properties on different signaling mechanism. This is combined with a short description of structure-activity relationships for each class. Therefore, this overview should support the rational choice for the optimal compound selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies.
Collapse
Affiliation(s)
- S Kassel
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - J S Schwed
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Stark
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
49
|
Abstract
The neurotransmitter dopamine (DA) regulates various physiological and psychological functions, such as movement, motivation, behavior, and learning. DA exerts its function through DA receptors and a series of studies have reported the role of DAergic receptors in preventing DAergic neuronal degeneration. Here, we studied the DA receptor-mediated neuroprotective effect of the D2-like receptor agonists against 6-hydroxydopamine (6-OHDA)-induced DAergic neurodegeneration. D2-like receptor agonists were administered in the substantia nigra in vivo and to primary cultured neurons. Treatment of 6-OHDA decreased tyrosine hydroxylase (TH) and paraplegin (mitochondrial regulation protein) immunoreactivity, whereas pretreatment with quinpirole (a full D2-like receptor agonist) preserved TH and paraplegin reactivity. This led us to test which DA receptors were necessary for the neuroprotective effect and whether paraplegin can be regulated by D2 or D3 receptor agonists. Pretreatment with the D2 receptor selective agonist, sumanirole, did not preserve TH and paraplegin reactivity from 6-OHDA. However, the D3 receptor agonist, pramipexole, protected TH reactivity and restored paraplegin expression to the control level in the presence of 6-OHDA. Interestingly, pretreatment with the D3 receptor antagonist GR103691 reduced TH and paraplegin expression levels. These results suggest that the D3 receptor agonist may protect DA neurons from the effect of 6-OHDA through the modulation of the mitochondrial regulation protein paraplegin.
Collapse
|
50
|
Nemoto T, Hayashi M, Xu D, Hamajima A, Hamada Y. Enantioselective synthesis of (R)-Sumanirole using organocatalytic asymmetric aziridination of an α,β-unsaturated aldehyde. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|