1
|
Liu Z, Zhang Z, Tang R, Liu J, Yang Y. Epicatechin and β-Glucan from Whole Highland Barley Grain Synergistic Benefit on Attenuating Hyperglycemia via Improving Hepatic Glucose Metabolism in Diabetic C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20458-20469. [PMID: 39230615 DOI: 10.1021/acs.jafc.4c04791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Our previous study proved that epicatechin (EC) and β-glucan (BG) from whole-grain highland barley synergistically modulate glucose metabolism in insulin-resistant HepG2 cells. However, the main target and the mechanism underlying the modulation of glucose metabolism in vivo remain largely unknown. In this study, cell transfection assay and microscale thermophoresis analysis revealed that EC and BG could directly bind to the insulin receptor (IR) and mammalian receptor for rapamycin (mTOR), respectively. Molecular dynamic analysis indicated that the key amino acids of binding sites were Asp, Met, Val, Lys, Ser, and Tys. EC supplementation upregulated the IRS-1/PI3K/Akt pathway, while BG upregulated the mTOR/Akt pathway. Notably, supplementation with EC + BG significantly increased Akt and glucose transporter type 4 (GLUT4) protein expressions, while decreasing glycogen synthase kinase 3β (GSK-3β) expression in liver cells as compared to the individual effects of EC and BG, indicating their synergistic effect on improving hepatic glucose uptake and glycogen synthesis. Consistently, supplementation with EC + BG significantly decreased blood glucose levels and improved oral glucose tolerance compared to EC and BG. Therefore, combined supplementation with EC and BG may bind to corresponding receptors, targeting synergistic activation of Akt expression, leading to the improvement of hepatic glucose metabolism and thereby ameliorating hyperglycemia in vivo.
Collapse
Affiliation(s)
- Zehua Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Zhaowan Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Ruoxin Tang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jianshen Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yijie Yang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Moerings BGJ, Mes JJ, van Bergenhenegouwen J, Govers C, van Dijk M, Witkamp RF, van Norren K, Abbring S. Dietary Intake of Yeast-Derived β-Glucan and Rice-Derived Arabinoxylan Induces Dose-Dependent Innate Immune Priming in Mice. Mol Nutr Food Res 2024; 68:e2300829. [PMID: 38682734 DOI: 10.1002/mnfr.202300829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Beta-glucans and arabinoxylans are known for their immunostimulatory properties. However, in vivo these have been documented almost exclusively following parenteral administration, underemphasizing oral intake. C57BL/6 mice are fed either a control diet or a diet supplemented with yeast-derived whole β-glucan particle (yWGP) or with rice-derived arabinoxylan (rice bran-1) at a concentration of 1%, 2.5%, or 5% weight/weight (w/w) for 2 weeks. Thereafter, cells from blood, bone marrow, and spleen are collected for ex vivo stimulation with various microbial stimuli. Dietary intake of yWGP for 2 weeks at concentrations of 1% and 2.5% w/w increases ex vivo cytokine production in mouse blood and bone marrow, whereas 5% w/w yWGP shows no effect. In the spleen, cytokine production remains unaffected by yWGP. At a concentration of 1% w/w, rice bran-1 increases ex vivo cytokine production by whole blood, but 2.5% and 5% w/w cause inhibitory effects in bone marrow and spleen. This study demonstrates that dietary yWGP and rice bran-1 induce immune priming in mouse blood and bone marrow, with the strongest effects observed at 1% w/w. Future human trials should substantiate the efficacy of dietary β-glucans and arabinoxylans to bolster host immunity, focusing on dose optimization.
Collapse
Affiliation(s)
- Bart G J Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | | | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | | | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| |
Collapse
|
3
|
Ribeiro DM, Leclercqc CC, Charton SAB, Costa MM, Carvalho DFP, Sergeant K, Cocco E, Renaut J, Freire JPB, Prates JAM, de Almeida AM. The impact of dietary Laminaria digitata and alginate lyase supplementation on the weaned piglet liver: A comprehensive proteomics and metabolomics approach. J Proteomics 2024; 293:105063. [PMID: 38151157 DOI: 10.1016/j.jprot.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Celine C Leclercqc
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - Daniela F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
4
|
Case S, O'Brien T, Ledwith AE, Chen S, Horneck Johnston CJH, Hackett EE, O'Sullivan M, Charles-Messance H, Dempsey E, Yadav S, Wilson J, Corr SC, Nagar S, Sheedy FJ. β-glucans from Agaricus bisporus mushroom products drive Trained Immunity. Front Nutr 2024; 11:1346706. [PMID: 38425482 PMCID: PMC10902450 DOI: 10.3389/fnut.2024.1346706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Macrofungi, such as edible mushrooms, have been used as a valuable medical resource for millennia as a result of their antibacterial and immuno-modulatory components. Mushrooms contain dietary fibers known as β-glucans, a class of polysaccharides previously linked to the induction of Trained Immunity. However, little is known about the ability of mushroom-derived β-glucans to induce Trained Immunity. Methods & results Using various powdered forms of the white button mushroom (Agaricus bisporus), we found that mouse macrophages pre-treated with whole mushroom powder (WMP) displayed enhanced responses to restimulation with TLR ligands, being particularly sensitive to Toll-like receptor (TLR)-2 stimulation using synthetic lipopeptides. This trained response was modest compared to training observed with yeast-derived β-glucans and correlated with the amount of available β-glucans in the WMP. Enriching for β-glucans content using either a simulated in-vitro digestion or chemical fractionation retained and boosted the trained response with WMP, respectively. Importantly, both WMP and digested-WMP preparations retained β-glucans as identified by nuclear magnetic resonance analysis and both displayed the capacity to train human monocytes and enhanced responses to restimulation. To determine if dietary incorporation of mushroom products can lead to Trained Immunity in myeloid cells in vivo, mice were given a regimen of WMP by oral gavage prior to sacrifice. Flow cytometric analysis of bone-marrow progenitors indicated alterations in hematopoietic stem and progenitor cells population dynamics, with shift toward myeloid-committed multi-potent progenitor cells. Mature bone marrow-derived macrophages derived from these mice displayed enhanced responses to restimulation, again particularly sensitive to TLR2. Discussion Taken together, these data demonstrate that β-glucans from common macrofungi can train innate immune cells and could point to novel ways of delivering bio-available β-glucans for education of the innate immune system.
Collapse
Affiliation(s)
- Sarah Case
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Tara O'Brien
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Anna E. Ledwith
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Shilong Chen
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | | | - Emer E. Hackett
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | | | - Elaine Dempsey
- School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | | | | | - Sinead C. Corr
- School of Genetics and Microbiology, Trinity College, Dublin, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shipra Nagar
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
5
|
Moerings BG, Abbring S, Tomassen MM, Schols HA, Witkamp RF, van Norren K, Govers C, van Bergenhenegouwen J, Mes JJ. Rice-derived arabinoxylan fibers are particle size-dependent inducers of trained immunity in a human macrophage-intestinal epithelial cell co-culture model. Curr Res Food Sci 2023; 8:100666. [PMID: 38179220 PMCID: PMC10765302 DOI: 10.1016/j.crfs.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Arabinoxylans have been identified for a wide range of purported health-promoting applications, primarily attributed to its immunomodulatory effects. Previously, we have reported the ability of arabinoxylans to induce non-specific memory in innate immune cells, commonly referred to as "trained innate immunity". In the present study, we investigated the effect of particle size on innate immune training and resilience in primary human macrophages as well as in a more physiologically relevant macrophage-intestinal epithelial cell co-culture model. We demonstrated that smaller (>45 & < 90 μm) compared to larger (>90 μm) particle size fractions of rice bran-derived arabinoxylan preparations have a higher enhancing effect on training and resilience in both models. Smaller particle size fractions elevated TNF-α production in primary macrophages and enhanced Dectin-1 receptor activation in reporter cell lines compared to larger particles. Responses were arabinoxylan source specific as only the rice-derived arabinoxylans showed these immune-supportive effects. This particle size-dependent induction of trained immunity was confirmed in the established co-culture model. These findings demonstrate the influence of particle size on the immunomodulatory potential of arabinoxylans, provide further insight into the structure-activity relationship, and offer new opportunities to optimize the immune-enhancing effects of these dietary fibers.
Collapse
Affiliation(s)
- Bart G.J. Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Monic M.M. Tomassen
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
Anaya EU, Amin AE, Wester MJ, Danielson ME, Michel KS, Neumann AK. Dectin-1 multimerization and signaling depends on fungal β-glucan structure and exposure. Biophys J 2023; 122:3749-3767. [PMID: 37515324 PMCID: PMC10541497 DOI: 10.1016/j.bpj.2023.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Dectin-1A is a C-type lectin innate immunoreceptor that recognizes β-(1,3;1,6)-glucan, a structural component of Candida species cell walls. β-Glucans can adopt solution structures ranging from random coil to insoluble fiber due to tertiary (helical) and quaternary structure. Fungal β-glucans of medium and high molecular weight are highly structured, but low molecular weight glucan is much less structured. Despite similar affinity for Dectin-1, the ability of glucans to induce Dectin-1A-mediated signaling correlates with degree of structure. Glucan denaturation experiments showed that glucan structure determines agonistic potential, but not receptor binding affinity. We explored the impact of glucan structure on molecular aggregation of Dectin-1A. Stimulation with glucan signaling decreased Dectin-1A diffusion coefficient. Fluorescence measurements provided direct evidence of ligation-induced Dectin-1A aggregation, which positively correlated with increasing glucan structure content. In contrast, Dectin-1A is predominantly in a low aggregation state in resting cells. Molecular aggregates formed during interaction with highly structured, agonistic glucans did not exceed relatively small (<15 nm) clusters of a few engaged receptors. Finally, we observed increased molecular aggregation of Dectin-1A at fungal particle contact sites in a manner that positively correlated with the degree of exposed glucan on the particle surface. These results indicate that Dectin-1A senses the solution conformation of β-glucans through their varying ability to drive receptor dimer/oligomer formation and activation of membrane proximal signaling events.
Collapse
Affiliation(s)
- Eduardo U Anaya
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico
| | - Akram Etemadi Amin
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico; Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
| | | | | | - Aaron K Neumann
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
7
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
8
|
Soares NMM, Bastos TS, Kaelle GCB, de Souza RBMDS, de Oliveira SG, Félix AP. Digestibility and Palatability of the Diet and Intestinal Functionality of Dogs Fed a Blend of Yeast Cell Wall and Oregano Essential Oil. Animals (Basel) 2023; 13:2527. [PMID: 37570335 PMCID: PMC10416873 DOI: 10.3390/ani13152527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Feed additives, such as prebiotics and essential oils, are used in pet foods and can affect digestibility, palatability, and intestinal functionality of dogs. The combined effects of yeast cell wall and oregano essential oil on apparent total tract digestibility (ATTD) and palatability of diet, intestinal fermentation products, and fecal microbiota in dogs were analyzed. Eighteen adult dogs were fed for 20 days with three dry extruded diets for adult dogs: control (without the additive), a diet containing 1.5 kg/ton of yeast cell wall and oregano essential oil (1.5YCO), and a diet containing 3.0 kg/ton of yeast cell wall and oregano essential oil (3.0YCO). The inclusion of both levels of YCO reduced the intake ratio. The addition of 3.0YCO reduced the ATTD of dry matter, compared to the control group (p < 0.05). There were greater putrescine and cadaverine concentrations and lower histamine and ammonia (p < 0.05) in the feces of dogs fed 3.0YCO. In addition, fecal odor of dogs fed YCO was less fetid than the control group (p < 0.05). There was greater fecal bacterial diversity in dogs fed with both dietary concentrations of YCO evaluated (p < 0.05). Dogs fed 1.5YCO and 3.0YCO showed higher relative abundance of Blautia and Faecalibacterium and lower abundance of Streptococcus (p < 0.05) in the feces, in comparison to the control group. Given the modulation of microorganisms considered beneficial and the lower fecal concentrations of histamine, phenols, and ammonia, the YCO blend resulted in indicators of improvement of intestinal functionality in dogs.
Collapse
Affiliation(s)
- Nayara Mota Miranda Soares
- Department of Animal Science, Federal University of Paraná, R. dos Funcionários, 1540, Curitiba 80035-050, Brazil; (T.S.B.); (G.C.B.K.); (R.B.M.d.S.d.S.); (S.G.d.O.); (A.P.F.)
| | | | | | | | | | | |
Collapse
|
9
|
Yuan H, Guo C, Liu L, Zhao L, Zhang Y, Yin T, He H, Gou J, Pan B, Tang X. Progress and prospects of polysaccharide-based nanocarriers for oral delivery of proteins/peptides. Carbohydr Polym 2023; 312:120838. [PMID: 37059563 DOI: 10.1016/j.carbpol.2023.120838] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
The oral route has long been recognized as the most preferred route for drug delivery as it offers high patient compliance and requires minimal expertise. Unlike small molecule drugs, the harsh environment of the gastrointestinal tract and low permeability across the intestinal epithelium make oral delivery extremely ineffective for macromolecules. Accordingly, delivery systems that are rationally constructed with suitable materials to overcome barriers to oral delivery are exceptionally promising. Among the most ideal materials are polysaccharides. Depending on the interaction between polysaccharides and proteins, the thermodynamic loading and release of proteins in the aqueous phase can be realized. Specific polysaccharides (dextran, chitosan, alginate, cellulose, etc.) endow systems with functional properties, including muco-adhesiveness, pH-responsiveness, and prevention of enzymatic degradation. Furthermore, multiple groups in polysaccharides can be modified, which gives them a variety of properties and enables them to suit specific needs. This review provides an overview of different types of polysaccharide-based nanocarriers based on different kinds of interaction forces and the influencing factors in the construction of polysaccharide-based nanocarriers. Strategies of polysaccharide-based nanocarriers to improve the bioavailability of orally administered proteins/peptides were described. Additionally, current restrictions and future trends of polysaccharide-based nanocarriers for oral delivery of proteins/peptides were also covered.
Collapse
Affiliation(s)
- Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bochen Pan
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
10
|
Wang G, Li Z, Tian M, Cui X, Ma J, Liu S, Ye C, Yuan L, Qudus MS, Afaq U, Wu K, Liu X, Zhu C. β-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses 2023; 15:v15051204. [PMID: 37243289 DOI: 10.3390/v15051204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Many studies have shown that β-glucan induces a trained immune phenotype in innate immune cells to defend against bacterial and fungal infections. The specific mechanism involves cellular metabolism and epigenetic reprogramming. However, it is unclear whether β-glucan plays a role in antiviral infection. Therefore, this study investigated the role of trained immunity induced by Candida albicans and β-glucan in antiviral innate immunity. It showed that C. albicans and β-glucan promoted the expression of interferon-β (IFN-β) and interleukin-6 (IL-6) in mouse macrophages triggered by viral infection. In addition, β-glucan pretreatment attenuated the pathological damage induced by the virus in mouse lungs and promoted the expression of IFN-β. Mechanistically, β-glucan could promote the phosphorylation and ubiquitination of TANK Binding Kinase 1 (TBK1), a key protein of the innate immune pathway. These results suggest that β-glucan can promote innate antiviral immunity, and this bioactive material may be a potential therapeutic target for antiviral treatment.
Collapse
Affiliation(s)
- Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun'e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Yuan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai 200135, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
11
|
Deng R, Wang F, Wang L, Xiong L, Shen X, Song H. Advances in Plant Polysaccharides as Antiaging Agents: Effects and Signaling Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7175-7191. [PMID: 37155561 DOI: 10.1021/acs.jafc.3c00493] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aging refers to the gradual physiological changes that occur in an organism after reaching adulthood, resulting in senescence and a decline in biological functions, ultimately leading to death. Epidemiological evidence shows that aging is a driving factor in the developing of various diseases, including cardiovascular diseases, neurodegenerative diseases, immune system disorders, cancer, and chronic low-grade inflammation. Natural plant polysaccharides have emerged as crucial food components in delaying the aging process. Therefore, it is essential to continuously investigate plant polysaccharides as potential sources of new pharmaceuticals for aging. Modern pharmacological research indicates that plant polysaccharides can exert antiaging effects by scavenging free radicals, increasing telomerase activity, regulating apoptosis, enhancing immunity, inhibiting glycosylation, improving mitochondrial dysfunction regulating gene expression, activating autophagy, and modulating gut microbiota. Moreover, the antiaging activity of plant polysaccharides is mediated by one or more signaling pathways, including IIS, mTOR, Nrf2, NF-κB, Sirtuin, p53, MAPK, and UPR signaling pathways. This review summarizes the antiaging properties of plant polysaccharides and signaling pathways participating in the polysaccharide-regulating aging process. Finally, we discuss the structure-activity relationships of antiaging polysaccharides.
Collapse
Affiliation(s)
- Rou Deng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
12
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
13
|
Woeste MR, Shrestha R, Geller AE, Li S, Montoya-Durango D, Ding C, Hu X, Li H, Puckett A, Mitchell RA, Hayat T, Tan M, Li Y, McMasters KM, Martin RCG, Yan J. Irreversible electroporation augments β-glucan induced trained innate immunity for the treatment of pancreatic ductal adenocarcinoma. J Immunother Cancer 2023; 11:e006221. [PMID: 37072351 PMCID: PMC10124260 DOI: 10.1136/jitc-2022-006221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a challenging diagnosis that is yet to benefit from the advancements in immuno-oncologic treatments. Irreversible electroporation (IRE), a non-thermal method of tumor ablation, is used in treatment of select patients with locally-advanced unresectable PC and has potentiated the effect of certain immunotherapies. Yeast-derived particulate β-glucan induces trained innate immunity and successfully reduces murine PC tumor burden. This study tests the hypothesis that IRE may augment β-glucan induced trained immunity in the treatment of PC. METHODS β-Glucan-trained pancreatic myeloid cells were evaluated ex vivo for trained responses and antitumor function after exposure to ablated and unablated tumor-conditioned media. β-Glucan and IRE combination therapy was tested in an orthotopic murine PC model in wild-type and Rag-/- mice. Tumor immune phenotypes were assessed by flow cytometry. Effect of oral β-glucan in the murine pancreas was evaluated and used in combination with IRE to treat PC. The peripheral blood of patients with PC taking oral β-glucan after IRE was evaluated by mass cytometry. RESULTS IRE-ablated tumor cells elicited a potent trained response ex vivo and augmented antitumor functionality. In vivo, β-glucan in combination with IRE reduced local and distant tumor burden prolonging survival in a murine orthotopic PC model. This combination augmented immune cell infiltration to the PC tumor microenvironment and potentiated the trained response from tumor-infiltrating myeloid cells. The antitumor effect of this dual therapy occurred independent of the adaptive immune response. Further, orally administered β-glucan was identified as an alternative route to induce trained immunity in the murine pancreas and prolonged PC survival in combination with IRE. β-Glucan in vitro treatment also induced trained immunity in peripheral blood monocytes obtained from patients with treatment-naïve PC. Finally, orally administered β-glucan was found to significantly alter the innate cell landscape within the peripheral blood of five patients with stage III locally-advanced PC who had undergone IRE. CONCLUSIONS These data highlight a relevant and novel application of trained immunity within the setting of surgical ablation that may stand to benefit patients with PC.
Collapse
Affiliation(s)
- Matthew R Woeste
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Anne E Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shu Li
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Diego Montoya-Durango
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hong Li
- Functional Immunomics Core, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Aaron Puckett
- Functional Immunomics Core, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Traci Hayat
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Min Tan
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yan Li
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kelly M McMasters
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert C G Martin
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
14
|
Kozarski M, Klaus A, van Griensven L, Jakovljevic D, Todorovic N, Wan-Mohtar WAAQI, Vunduk J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Madel MB, Halper J, Ibáñez L, Claire L, Rouleau M, Boutin A, Mahler A, Pontier-Bres R, Ciucci T, Topi M, Hue C, Amiaud J, Iborra S, Sancho D, Heymann D, Garchon HJ, Czerucka D, Apparailly F, Duroux-Richard I, Wakkach A, Blin-Wakkach C. Specific targeting of inflammatory osteoclastogenesis by the probiotic yeast S. boulardii CNCM I-745 reduces bone loss in osteoporosis. eLife 2023; 12:e82037. [PMID: 36848406 PMCID: PMC9977286 DOI: 10.7554/elife.82037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Julia Halper
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU UniversityValenciaSpain
| | | | - Matthieu Rouleau
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Antoine Boutin
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Adrien Mahler
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Rodolphe Pontier-Bres
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Majlinda Topi
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Christophe Hue
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
| | | | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT. School of Medicine, Universidad Complutense de MadridMadridSpain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’OuestSaint HerblainFrance
| | - Henri-Jean Garchon
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
- Genetics Division, Ambroise Paré Hospital, AP-HPBoulogne-BillancourtFrance
| | - Dorota Czerucka
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | | | | | - Abdelilah Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Claudine Blin-Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| |
Collapse
|
16
|
Walachowski S, Breyne K, Secher T, Cougoule C, Guzylack-Piriou L, Meyer E, Foucras G, Tabouret G. Oral supplementation with yeast β-glucans improves the resolution of Escherichia coli-associated inflammatory responses independently of monocyte/macrophage immune training. Front Immunol 2022; 13:1086413. [PMID: 36605196 PMCID: PMC9809295 DOI: 10.3389/fimmu.2022.1086413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Confronted with the emerging threat of antimicrobial resistance, the development of alternative strategies to limit the use of antibiotics or potentiate their effect through synergy with the immune system is urgently needed. Many natural or synthetic biological response modifiers have been investigated in this context. Among them, β-glucans, a type of soluble or insoluble polysaccharide composed of a linear or branched string of glucose molecules produced by various cereals, bacteria, algae, and inferior (yeast) and superior fungi (mushrooms) have garnered interest in the scientific community, with not less than 10,000 publications over the last two decades. Various biological activities of β-glucans have been reported, such as anticancer, antidiabetic and immune-modulating effects. In vitro, yeast β-glucans are known to markedly increase cytokine secretion of monocytes/macrophages during a secondary challenge, a phenomenon called immune training. Methods Here, we orally delivered β-glucans derived from the yeast S. cerevisiae to mice that were further challenged with Escherichia coli. Results β-glucan supplementation protected the mice from E. coli intraperitoneal and intra-mammary infections, as shown by a lower bacterial burden and greatly diminished tissue damage. Surprisingly, this was not associated with an increased local immune response. In addition, granulocyte recruitment was transient and limited, as well as local cytokine secretion, arguing for faster resolution of the inflammatory response. Furthermore, ex-vivo evaluation of monocytes/macrophages isolated or differentiated from β-glucan-supplemented mice showed these cells to lack a trained response versus those from control mice. Conclusion In conclusion, dietary β-glucans can improve the outcome of Escherichia coli infections and dampen tissue damages associated to excessive inflammatory response. The mechanisms associated with such protection are not necessarily linked to immune system hyper-activation or immune training.
Collapse
Affiliation(s)
- Sarah Walachowski
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, ENVT, Institut National de la Recherche Agronomique et Environnement (INRAE), Toulouse, France
| | - Koen Breyne
- Molecular Neurogenetics Unit, Neurology and Radiology Department, Massachusetts General Hospital - Harvard Medical School, Charlestown, MA, United States
| | - Thomas Secher
- INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France,Faculté de Médecine Université de Tours, Tours, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Laurence Guzylack-Piriou
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, ENVT, Institut National de la Recherche Agronomique et Environnement (INRAE), Toulouse, France
| | - Evelyne Meyer
- Ghent, Belgium Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Gilles Foucras
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, ENVT, Institut National de la Recherche Agronomique et Environnement (INRAE), Toulouse, France
| | - Guillaume Tabouret
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, ENVT, Institut National de la Recherche Agronomique et Environnement (INRAE), Toulouse, France,*Correspondence: Guillaume Tabouret,
| |
Collapse
|
17
|
Han X, Luo R, Ye N, Hu Y, Fu C, Gao R, Fu S, Gao F. Research progress on natural β-glucan in intestinal diseases. Int J Biol Macromol 2022; 219:1244-1260. [PMID: 36063888 DOI: 10.1016/j.ijbiomac.2022.08.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022]
Abstract
β-Glucan, an essential natural polysaccharide widely distributed in cereals and microorganisms, exhibits extensive biological activities, including immunoregulation, anti-inflammatory, antioxidant, antitumor properties, and flora regulation. Recently, increasing evidence has shown that β-glucan has activities that may be useful for treating intestinal diseases, such as inflammatory bowel disease (IBD), and colorectal cancer. The advantages of β-glucan, which include its multiple roles, safety, abundant sources, good encapsulation capacity, economic development costs, and clinical evidence, indicate that β-glucan is a promising polysaccharide that could be developed as a health product or medicine for the treatment of intestinal disease. Unfortunately, few reports have summarized the progress of studies investigating natural β-glucan in intestinal diseases. This review comprehensively summarizes the structure-activity relationship of β-glucan, its pharmacological mechanism in IBD and colorectal cancer, its absorption and transportation mechanisms, and its application in food, medicine, and drug delivery, which will be beneficial to further understand the role of β-glucan in intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ru Gao
- Department of Nursing, Chengdu Wenjiang People's Hospital, Chengdu, Sichuan 611100, China.
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
18
|
A lymphatic route for a hyperbranched heteroglycan from Radix Astragali to trigger immune responses after oral dosing. Carbohydr Polym 2022; 292:119653. [DOI: 10.1016/j.carbpol.2022.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
|
19
|
Wang M, Yu F. Research Progress on the Anticancer Activities and Mechanisms of Polysaccharides From Ganoderma. Front Pharmacol 2022; 13:891171. [PMID: 35865946 PMCID: PMC9294232 DOI: 10.3389/fphar.2022.891171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer ranks as a primary reason for death worldwide. Conventional anticancer therapies can cause severe side effects, and thus natural products may be promising drug candidates for cancer therapy. Accumulating evidence has verified the prominent anticancer properties of Ganoderma polysaccharides, suggesting that Ganoderma polysaccharides may be effective chemopreventive agents of natural origin. Based on their abilities to prevent cancer development by regulating the DNA damage response, cancer cell proliferation, apoptosis, host immunity, gut microbiota and therapeutic sensitivity, there has been increasing interest in elucidating the clinical implication of Ganoderma polysaccharides in cancer therapy. In this review, we summarize recent findings pertaining to the roles of bioactive polysaccharides from Ganoderma in cancer pathogenesis, discuss the multifarious mechanisms involved and propose future directions for research. A more sophisticated understanding of the anticancer benefits of Ganoderma polysaccharides will be helpful for improving current treatments and developing novel therapeutic interventions for human malignancies.
Collapse
|
20
|
Song Y, Shin H, Sianipar HGJ, Park JY, Lee M, Hah J, Park HS, Lee HJ, Lee S, Kang H. Oral administration of Euglena gracilis paramylon ameliorates chemotherapy-induced leukocytopenia and gut dysbiosis in mice. Int J Biol Macromol 2022; 211:47-56. [PMID: 35490767 DOI: 10.1016/j.ijbiomac.2022.04.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022]
Abstract
Euglena gracilis (EUG) is a food supplement rich in beta-glucans, which are stored in the form of granules called paramylon. We determined whether EUG improved chemotherapy-induced leukocytopenia and dysbiosis. Mice were orally administered EUG prior to gemcitabine treatment. Analyses of the blood cell count, leukocyte population in the spleen, granulocyte/macrophage-colony-stimulating factor (GM-CSF) production by splenocytes, and fecal microbiome were conducted. The recovery of total leukocytes, neutrophils, and monocytes was accelerated after a single gemcitabine treatment. A more rapid lymphocyte recovery rate was observed after four gemcitabine treatments. No difference was observed in the percentage of T, B, or myeloid cells or in the expression of Dectin-1 in the spleens of the gemcitabine and EUG/gemcitabine groups. The EUG/gemcitabine group showed an enhanced GM-CSF production by lipopolysaccharides-stimulated splenocytes. Next-generation sequencing revealed that gemcitabine-induced dysbiosis was alleviated. This study demonstrated that EUG-derived beta-glucans could act as a biological response modifier as well as prebiotics for ameliorating chemotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hocheol Shin
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Ji Yun Park
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Migi Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Jihye Hah
- Graduate School of East-West Medicine, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyun Jeong Lee
- Department of Herbology, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
21
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
22
|
Wu Z, Zhang Y, Nie G, Liu J, Mei H, He Z, Dou P, Wang K. Tracking the gastrointestinal digestive and metabolic behaviour of Dendrobium officinale polysaccharides by fluorescent labelling. Food Funct 2022; 13:7274-7286. [PMID: 35726749 DOI: 10.1039/d2fo01506d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Dendrobium officinale polysaccharide (DOP), a typical acetylated glucomannan, has been widely applied in functional foods owing to its excellent bioactivity. However, the insufficiency of studies on in vivo process severely limits the further utilization of DOP. The aim of this study was to systematically investigate the gastrointestinal digestive behaviour of DOP after oral administration by labelling it with two fluorescein aminopyrene-1,3,6-trisulfonic acids, trisodium salt (APTS) and cyanine 7.5 (Cy7.5). Combining the results of NIR imaging and HPGPC, we found that DOP was poorly absorbed directly in the prototype form; instead, DOP moved with the intestinal contents to the distal part of the intestine, where Bacteroides aggregated for a prolonged time and was metabolized to oligosaccharide-like substances. In contrast, the digestive degradation of DOP in pseudo-sterile mice with a targeted clearance of Bacteroides significantly weakened, which provided the basis and direction for the subsequent search for more specific metabolic pathways of DOP in vivo.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Pengfei Dou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
23
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
24
|
Shi P, Zhao T, Wang W, Peng F, Wang T, Jia Y, Zou L, Wang P, Yang S, Fan Y, Zong J, Qu X, Wang S. Protective effect of homogeneous polysaccharides of Wuguchong (HPW) on intestinal mucositis induced by 5-fluorouracil in mice. Nutr Metab (Lond) 2022; 19:36. [PMID: 35585561 PMCID: PMC9118848 DOI: 10.1186/s12986-022-00669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hospitalized patients, drug side effects usually trigger intestinal mucositis (IM), which in turn damages intestinal absorption and reduces the efficacy of treatment. It has been discovered that natural polysaccharides can relieve IM. In this study, we extracted and purified homogenous polysaccharides of Wuguchong (HPW), a traditional Chinese medicine, and explored the protective effect of HPW on 5-fluorouracil (5-FU)-induced IM. METHODS AND RESULTS First, we identified the physical and chemical properties of the extracted homogeneous polysaccharides. The molecular weight of HPW was 616 kDa, and it was composed of 14 monosaccharides. Then, a model of small IM induced by 5-FU (50 mg/kg) was established in mice to explore the effect and mechanism of HPW. The results showed that HPW effectively increased histological indicators such as villus height, crypt depth and goblet cell count. Moreover, HPW relieved intestinal barrier indicators such as D-Lac and diamine oxidase (DAO). Subsequently, western blotting was used to measure the expression of Claudin-1, Occludin, proliferating cell nuclear antigen, and inflammatory proteins such as NF-κB (P65), tumour necrosis factor-α (TNF-α), and COX-2. The results also indicated that HPW could reduce inflammation and protect the barrier at the molecular level. Finally, we investigated the influence of HPW on the levels of short-chain fatty acids, a metabolite of intestinal flora, in the faeces of mice. CONCLUSIONS HPW, which is a bioactive polysaccharide derived from insects, has protective effects on the intestinal mucosa, can relieve intestinal inflammation caused by drug side effects, and deserves further development and research.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Tianqi Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Wendong Wang
- Department of Orthopaedics, The Second People's Hospital of Dalian, 29 Hongji Street, Dalian, China
| | - Fangli Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Yong Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,Dalian Runxi Technology Development Co., Ltd, 3 Jinxia Street, Dalian, China
| | - Peng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Simengge Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Yue Fan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| | - Xueling Qu
- Pelvic Floor Repair Centre, The Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China. .,Pelvic Floor Repair Centre, Dalian Women and Children Medical Centre (Group), No. 1 Road of Sports New Town, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| |
Collapse
|
25
|
Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr Polym 2022; 282:119110. [DOI: 10.1016/j.carbpol.2022.119110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
26
|
Hu M, Zhang P, Wang R, Zhou M, Pang N, Cui X, Ge X, Liu X, Huang XF, Yu Y. Three Different Types of β-Glucans Enhance Cognition: The Role of the Gut-Brain Axis. Front Nutr 2022; 9:848930. [PMID: 35308288 PMCID: PMC8927932 DOI: 10.3389/fnut.2022.848930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Dietary fiber is fermented in the lower gastrointestinal tract, potentially impacting the microbial ecosystem and thus may improve elements of cognition and brain function via the gut-brain axis. β-glucans, soluble dietary fiber, have different macrostructures and may exhibit different effects on the gut-brain axis. This study aimed to compare the effects of β-glucans from mushroom, curdlan and oats bran, representing β-(1,3)/(1,6)-glucan, β-(1,3)-glucan or β-(1,3)/(1,4)-glucan, on cognition and the gut-brain axis. Methods C57BL/6J mice were fed with either control diet or diets supplemented with β-glucans from mushroom, curdlan and oats bran for 15 weeks. The cognitive functions were evaluated by using the temporal order memory and Y-maze tests. The parameters of the gut-brain axis were examined, including the synaptic proteins and ultrastructure and microglia status in the hippocampus and prefrontal cortex (PFC), as well as colonic immune response and mucus thickness and gut microbiota profiles. Results All three supplementations with β-glucans enhanced the temporal order recognition memory. Brain-derived neurotrophic factor (BDNF) and the post-synaptic protein 95 (PSD95) increased in the PFC. Furthermore, mushroom β-glucan significantly increased the post-synaptic thickness of synaptic ultrastructure in the PFC whilst the other two β-glucans had no significant effect. Three β-glucan supplementations decreased the microglia number in the PFC and hippocampus, and affected complement C3 and cytokines expression differentially. In the colon, every β-glucan supplementation increased the number of CD206 positive cells and promoted the expression of IL-10 and reduced IL-6 and TNF-α expression. The correlation analysis highlights that degree of cognitive behavior improved by β-glucan supplementations was significantly associated with microglia status in the hippocampus and PFC and the number of colonic M2 macrophages. In addition, only β-glucan from oat bran altered gut microbiota and enhanced intestinal mucus. Conclusions We firstly demonstrated long-term supplementation of β-glucans enhanced recognition memory. Comparing the effects of β-glucans on the gut-brain axis, we found that β-glucans with different molecular structures exhibit differentia actions on synapses, inflammation in the brain and gut, and gut microbiota. This study may shed light on how to select appropriate β-glucans as supplementation for the prevention of cognitive deficit or improving immune function clinically.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ruiqi Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Xiaoying Cui
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yinghua Yu ;
| |
Collapse
|
27
|
Xie Y, Li J, Qin H, Wang Q, Chen Z, Liu C, Zheng L, Wang J. Paramylon from Euglena gracilis Prevents Lipopolysaccharide-Induced Acute Liver Injury. Front Immunol 2022; 12:797096. [PMID: 35126359 PMCID: PMC8812190 DOI: 10.3389/fimmu.2021.797096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury (ALI) is a life-threatening syndrome with high mortality and lacks effective therapies. Rodents under LPS (lipopolysaccharide)/D-Gal (D-galactosamine) stress mimic ALI by presenting dramatically increased inflammation and cell death in the liver. Euglena gracilis, functioning like dietary fiber, is commonly used as a paramylon (Pa)-rich nutritional supplement that has various biological effects such as regulating immune system, anti-obesity, and anti-tumor. Here, we found that Pa or sonicated and alkalized paramylon (SA-Pa) alleviated the LPS/D-Gal-induced hepatic histopathological abnormalities in mice. Compared with Pa, SA-Pa had lower molecular weights/sizes and showed better efficacy in alleviating injury-induced hepatic functions, as well as the transcriptional levels of inflammatory cytokines. Moreover, SA-Pa treatment promoted M2 macrophage activation that enhanced the anti-inflammatory function in the liver, and downregulated STAT3 target genes, such as Fos, Jun, and Socs3 upon the injury. Meanwhile, SA-Pa treatment also alleviated apoptosis and necroptosis caused by the injury. Our results demonstrated that SA-Pa efficiently protected the liver from LPS/D-Gal-induced ALI by alleviating inflammation and cell death.
Collapse
Affiliation(s)
- Yunhao Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
29
|
Kruppa MD, Lowman DW, Ensley HE, Ma Z, Graves B, Kintner J, Hall JV, Ozment TR, Williams DL. Isolation, Physicochemical Characterization, Labeling, and Biological Evaluation of Mannans and Glucans. Methods Mol Biol 2022; 2542:323-360. [PMID: 36008676 DOI: 10.1007/978-1-0716-2549-1_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell wall contains mannans and glucans that are recognized by the host immune system. In this chapter, we will describe the methods to isolate mannans and glucans from the C. albicans cell wall. In addition, we describe how to determine purity, molecular size, and structure of the mannans and glucans. We also detail how to prepare the carbohydrates for in vitro, ex vivo, or in vivo use by describing endotoxin removal (depyrogenation), derivatization, and labeling and evaluation of bioactivity.
Collapse
Affiliation(s)
- Michael D Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Douglas W Lowman
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Harry E Ensley
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zuchao Ma
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Bridget Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jennifer Kintner
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jennifer V Hall
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Tammy R Ozment
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - David L Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
30
|
Stothers CL, Burelbach KR, Owen AM, Patil NK, McBride MA, Bohannon JK, Luan L, Hernandez A, Patil TK, Williams DL, Sherwood ER. β-Glucan Induces Distinct and Protective Innate Immune Memory in Differentiated Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2785-2798. [PMID: 34740960 PMCID: PMC8612974 DOI: 10.4049/jimmunol.2100107] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. β-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that β-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using β-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. β-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic β-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that β-glucan induces enhanced protection from infection by driving trained immunity in macrophages.
Collapse
Affiliation(s)
- Cody L Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN;
| | - Katherine R Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Margaret A McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Julia K Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Tazeen K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - David L Williams
- Center for Inflammation, Infectious Disease and Immunity, Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Edward R Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| |
Collapse
|
31
|
Potential Roles of Modified Pectin Targeting Galectin-3 against Severe Acute Respiratory Syndrome Coronavirus-2. J 2021. [DOI: 10.3390/j4040056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modified pectin (MP) is a bioactive complex polysaccharide that is broken down into smaller fragments of units and used as an oral dietary supplement for cell proliferation. MP is safe and non-toxic with promising therapeutic properties with regard to targeting galectin-3 (GAL-3) toward the prevention and inhibition of viral infections through the modulation of the immune response and anti-inflammatory cytokine effects. This effect of MP as a GAL-3 antagonism, which has shown benefits in preclinical and clinical models, may be of relevance to the progression of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in coronavirus disease 2019 patients. The outbreak of emerging infectious diseases continues to pose a threat to human health. Further to the circulation of multiple variants of SARS-CoV-2, an effective and alternative therapeutic approach to combat it has become pertinent. The use of MP as a GAL-3 inhibitor could serve as an antiviral agent blocking against the SARS-CoV-2-binding spike protein. This review highlights the potential effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated function concerning a SARS-CoV-2 infection.
Collapse
|
32
|
Abstract
Even with strict implementation of preventive measures, surgical site infections (SSIs) remain among the most prevalent health care-associated infections. New strategies to prevent SSIs would thus have a huge impact, also in light of increasing global rates of antimicrobial drug resistance. Considering the indispensable role of innate immune cells in host defense in surgical wounds, enhancing their function may represent a potential strategy for prevention of SSIs. Trained immunity is characterized by metabolic, epigenetic, and functional reprogramming of innate immune cells. These functional changes take place at multiple levels, namely, at the level of bone marrow precursors, circulating innate immune cells, and resident tissue macrophages. Experimental studies have shown that induction of trained immunity can protect against various infections. Increasing evidence suggests that it may also lower the risk and severity of SSIs. This may occur through several different mechanisms. First, trained immunity enhances local host defense against soft tissue infections, including those caused by Staphylococcus aureus, the most common cause of SSIs. Second, training effects on nonimmune cells such as fibroblasts have been shown to improve wound repair. Third, trained immunity may prevent or reverse the postoperative immunoparalysis that contributes to risk of infections following surgery. There are multiple approaches to inducing trained immunity, such as vaccination with the bacillus Calmette-Guérin (BCG) tuberculosis vaccine, topical administration of β-glucan, or treatment with the Toll-like receptor 7 agonist imiquimod. Clinical-experimental studies should establish if and how induction of trained immunity can best help prevent SSIs and what patient groups would most benefit.
Collapse
|
33
|
Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14090838. [PMID: 34577538 PMCID: PMC8469811 DOI: 10.3390/ph14090838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
The interaction of positively charged polymers (polycations) with a biological membrane is considered to be the cause of the frequently observed toxicity of these macromolecules. If it is possible to obtain polymers with a predominantly negative effect on bacterial and fungal cells, such systems would have great potential in the treatment of infectious diseases, especially now when reports indicate the growing risk of fungal co-infections in COVID-19 patients. We describe in this article cationic derivatives of natural beta-glucan polymers obtained by reacting the polysaccharide isolated from Saccharomyces boulardii (SB) and Cetraria islandica (CI) with glycidyl trimethyl ammonium chloride (GTMAC). Two synthesis strategies were applied to optimize the product yield. Fungal diseases particularly affect low-income countries, hence the emphasis on the simplicity of the synthesis of such drugs so they can be produced without outside help. The three structures obtained showed selective anti-mycotic properties (against, i.e., Scopulariopsis brevicaulis, Aspergillus brasiliensis, and Fusarium solani), and their toxicity established using fibroblast 3T3-L1 cell line was negligible in a wide range of concentrations. For one of the polymers (SB derivative), using in vivo model of Aspergillus brasiliensis infection in Galleria mellonella insect model, we confirmed the promising results obtained in the preliminary study.
Collapse
|
34
|
Bezerra LS, Magnani M, Pimentel TC, Freire FMDS, da Silva TAF, Ramalho RC, Alves AF, de Brito Alves JL, de Medeiros IA, Veras RC. Carboxymethyl-glucan from Saccharomyces cerevisiae reduces blood pressure and improves baroreflex sensitivity in spontaneously hypertensive rats. Food Funct 2021; 12:8552-8560. [PMID: 34337642 DOI: 10.1039/d1fo01079d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxymethyl-glucan (CMG) is a derivative of β-d-glucan extracted from Sacharomyces cerevisae. This polymer presents improved physicochemical properties and shows health benefits, such as immunomodulation, antioxidant, anti-inflammatory, anti-tumor, and antiplatelet activities, and improved vascular function. However, studies concerning the effect of administration of CMG on the cardiovascular parameters, mainly in the field of hypertension, are scarce. This study aimed to investigate the effect of administration of CMG in spontaneously hypertensive rats (SHR) and normotensive rats (WKY) models. Normotensive and hypertensive animals received CMG at doses of 20 mg kg-1 and 60 mg kg-1 for four weeks. Then, weight gain, lipid profile, renal function, blood pressure, cardiac hypertrophy, baroreflex sensitivity, and sympathetic tone were evaluated. Oral administration of CMG influenced weight gain and cholesterol levels, and significantly reduced urea in the hypertensive animals. It decreased blood pressure levels and cardiac hypertrophy, improved baroreflex response, and reduced the influence of sympathetic tone. The results demonstrate the antihypertensive effect of CMG through improvement in baroreflex sensitivity via sympathetic tone modulation.
Collapse
Affiliation(s)
- Lorena Soares Bezerra
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil. and Department of Food Engineering, Federal University of Paraíba (UFPB), Brazil
| | | | | | | | | | - Adriano Francisco Alves
- Department of Physiology and Pathology, Laboratory of Pathology, Health Sciences Center, UFPB, Brazil
| | - José Luiz de Brito Alves
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Isac Almeida de Medeiros
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, UFPB, Brazil
| | - Robson Cavalcante Veras
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil. and Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Brazil
| |
Collapse
|
35
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
36
|
Xiao Z, Deng Q, Zhou W, Zhang Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol Ther 2021; 229:107921. [PMID: 34174277 DOI: 10.1016/j.pharmthera.2021.107921] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Lycium barbarum is widely used as a functional food and medicinal herb to promote health and longevity in China and in some other Asian countries. In modern pharmacological and chemical studies, the most valuable and well-researched component of L. barbarum is a group of unique water-soluble glycoconjugates that are collectively termed Lycium barbarum polysaccharides (LBPs). Numerous modern pharmacological studies have revealed that LBPs possess antiaging, antidiabetic, antifibrotic, neuroprotective, and immunomodulation properties, while the immunomodulatory effect is primary and is involved in other activities. However, due to their structural heterogeneity and lack of chromophores, it has long been unclear how LBPs work on the immune system. A few studies have recently provided some insights into the proposed mode of action of LBPs, such as structure-activity relationships, receptor recognition, and gut microbiota modulation of LBPs. This review provides a comprehensive overview of the immunoregulating properties of LBPs and their related mechanisms of action.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Deng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| |
Collapse
|
37
|
Moerings BGJ, de Graaff P, Furber M, Witkamp RF, Debets R, Mes JJ, van Bergenhenegouwen J, Govers C. Continuous Exposure to Non-Soluble β-Glucans Induces Trained Immunity in M-CSF-Differentiated Macrophages. Front Immunol 2021; 12:672796. [PMID: 34149707 PMCID: PMC8208035 DOI: 10.3389/fimmu.2021.672796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Beta-glucans enable functional reprogramming of innate immune cells, a process defined as "trained immunity", which results in enhanced host responsiveness against primary (training) and/or secondary infections (resilience). Trained immunity holds great promise for promoting immune responses in groups that are at risk (e.g. elderly and patients). In this study, we modified an existing in vitro model for trained immunity by actively inducing monocyte-to-macrophage differentiation using M-CSF and applying continuous exposure. This model reflects mucosal exposure to β-glucans and was used to study the training effects of a variety of soluble or non-soluble β-glucans derived from different sources including oat, mushrooms and yeast. In addition, trained immunity effects were related to pattern recognition receptor usage, to which end, we analyzed β-glucan-mediated Dectin-1 activation. We demonstrated that β-glucans, with different sources and solubilities, induced training and/or resilience effects. Notably, trained immunity significantly correlated with Dectin-1 receptor activation, yet Dectin-1 receptor activation did not perform as a sole predictor for β-glucan-mediated trained immunity. The model, as validated in this study, adds on to the existing in vitro model by specifically investigating macrophage responses and can be applied to select non-digestible dietary polysaccharides and other components for their potential to induce trained immunity.
Collapse
Affiliation(s)
- Bart G J Moerings
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Nutritional Biology Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Priscilla de Graaff
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | | | - Renger F Witkamp
- Nutritional Biology Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Coen Govers
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
38
|
Parker JA, Boles C, Buerger AN, Fung ES, Maier A. Derivation of an occupational exposure limit for β-glucans. Regul Toxicol Pharmacol 2021; 123:104959. [PMID: 34019963 DOI: 10.1016/j.yrtph.2021.104959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
β-Glucans are abundant bacterial, yeast, and fungal cell wall polysaccharides that have been shown to activate the immune system. Establishment of an occupational exposure limit (OEL) for β-glucan exposure is critical to the protection of worker health, as these exposures have been linked to immunosuppressive and inflammatory reactions and possibly the development of respiratory diseases. Detectable concentrations of β-glucans have been identified in common occupational inhalation exposure scenarios, such as in the agricultural and waste management sectors. However, no published exposure benchmarks for inhalation of β-glucans are available for workers or the general population. Thus, a health-based OEL for inhalation exposure of workers to β-glucans was derived based on consideration of human and non-human effect data for this class of compounds and contemporary risk assessment methods. The weight of the evidence indicated that the available data in humans showed significant methodological limitations, such as lack of a representative study size, appropriate control population, and clear dose-response relationship. Thus, an OEL of 150 ng/m3 was derived for β-glucans based on the most relevant nonclinical study. This OEL provides an input to the occupational risk assessment process, allows for comparisons to worker exposure, and can guide risk management and exposure control decisions.
Collapse
|
39
|
Bergandi L, Apprato G, Silvagno F. Vitamin D and Beta-Glucans Synergically Stimulate Human Macrophage Activity. Int J Mol Sci 2021; 22:ijms22094869. [PMID: 34064458 PMCID: PMC8124691 DOI: 10.3390/ijms22094869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023] Open
Abstract
Vitamin D and beta-glucans are both immunostimulants. Vitamin D exerts its beneficial effects on many components of the immune system. In macrophages, the hormone modulates both phagocytic activity and cytokine production; therefore, it plays an important role in mediating the innate immune response to infection. The immunomodulatory properties of beta-glucans are attributed to the ability of these fungal cell wall polysaccharides to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes and macrophages. The intracellular signaling pathways activated by beta-glucans lead to enhanced phagocytosis and cytokine response. In this study we investigated the possible potentiation of immunomodulatory properties of the combined treatment with vitamin D and beta-glucans. The effects of 100 nM 1,25-dihydroxyvitamin D3 or 100 µg/mL beta-glucans were evaluated in human macrophages in terms of cytokine production, intracellular vesicle acidification and changes in energy metabolism, three hallmarks of macrophage antimicrobial activation. We found that all the analyzed parameters were enhanced by the co-treatment compared to the response to single molecules. The results of this study support the validity of a novel therapeutic approach that could boost the immune response, taking advantage of the synergy between two natural compounds.
Collapse
|
40
|
Venardou B, O'Doherty JV, Vigors S, O'Shea CJ, Burton EJ, Ryan MT, Sweeney T. Effects of dietary supplementation with a laminarin-rich extract on the growth performance and gastrointestinal health in broilers. Poult Sci 2021; 100:101179. [PMID: 34098504 PMCID: PMC8187820 DOI: 10.1016/j.psj.2021.101179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
Restriction in antimicrobial use in broiler chicken production is driving the exploration of alternative feed additives that will support growth through the promotion of gastrointestinal health and development. The objective of this study was to determine the effects of dietary inclusion of laminarin on growth performance, the expression of nutrient transporters, markers of inflammation and intestinal integrity in the small intestine and composition of the caecal microbiota in broiler chickens. Two-hundred-and-forty day-old male Ross 308 broiler chicks (40.64 (3.43 SD) g) were randomly assigned to: (T1) basal diet (control); (T2) basal diet + 150 ppm laminarin; (T3) basal diet + 300 ppm laminarin (5 bird/pen; 16 pens/treatment). The basal diet was supplemented with a laminarin-rich Laminaria spp. extract (65% laminarin) to achieve the two laminarin inclusion levels (150 and 300 ppm). Chick weights and feed intake was recorded weekly. After 35 days of supplementation, one bird per pen from the control and best performing (300 ppm) laminarin groups were euthanized. Duodenal, jejunal and ileal tissues were collected for gene expression analysis. Caecal digesta was collected for microbiota analysis (high-throughput sequencing and QPCR). Dietary supplementation with 300 ppm laminarin increased both final body weight (2033 vs. 1906 ± 30.4, P < 0.05) and average daily gain (62.3 vs. 58.2 ± 0.95, P < 0.05) compared to the control group and average daily feed intake (114.1 vs. 106.0 and 104.5 ± 1.77, P < 0.05) compared to all other groups. Laminarin supplementation at 300 ppm increased the relative and absolute abundance of Bifidobacterium (P < 0.05) in the caecum. Laminarin supplementation increased the expression of interleukin 17A (IL17A) in the duodenum, claudin 1 (CLDN1) and toll-like receptor 2 (TLR2) in the jejunum and IL17A, CLDN1 and SLC15A1/peptide transporter 1 (SLC15A1/PepT1) in the ileum (P < 0.05). In conclusion, supplementation with laminarin is a promising dietary strategy to enhance growth performance and 300 ppm was the optimal inclusion level with which to promote a beneficial profile of the gastrointestinal microbiota in broiler chickens.
Collapse
Affiliation(s)
- B Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - J V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - S Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - C J O'Shea
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - E J Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, United Kingdom
| | - M T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - T Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
41
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
42
|
Rahman S, Davids M, van Hamersveld PHP, Welting O, Rahaoui H, Schuren F, Meijer SL, van den Wijngaard RM, Hakvoort TBM, de Jonge WJ, Heinsbroek SEM. Dietary Curdlan Enhances Bifidobacteria and Reduces Intestinal Inflammation in Mice. Nutrients 2021; 13:1305. [PMID: 33920960 PMCID: PMC8071228 DOI: 10.3390/nu13041305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
β-glucan consumption is known for its beneficial health effects, but the mode of action is unclear. While humans and mice lack the required enzymes to digest β-glucans, certain intestinal microbes can digest β-glucans, triggering gut microbial changes. Curdlan, a particulate β-glucan isolated from Alcaligenes faecalis, is used as a food additive. In this study we determined the effect of curdlan intake in mice on the intestinal microbiota and dextran sodium sulfate (DSS)-induced intestinal inflammation. The effect of curdlan on the human intestinal microbiota was assessed using i-screen, an assay for studying anaerobic microbial interactions. Mice received oral gavage with vehicle or curdlan for 14 days followed by DSS for 7 days. The curdlan-fed group showed reduced weight loss and colonic inflammation compared to the vehicle-fed group. Curdlan intake did not induce general microbiota community changes, although a specific Bifidobacterium, closely related to Bifidobacterium choerinum, was observed to be 10- to 100-fold more prevalent in the curdlan-fed group under control and colitis conditions, respectively. When tested in i-screen, curdlan induced a global change in the microbial composition of the healthy intestinal microbiota from a human. Overall, these results suggest that dietary curdlan induces microbiota changes that could reduce intestinal inflammation.
Collapse
Affiliation(s)
- Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Mark Davids
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Patricia H. P. van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Hakim Rahaoui
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (H.R.); (F.S.)
| | - Frank Schuren
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (H.R.); (F.S.)
| | - Sybren L. Meijer
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - René M. van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Theodorus B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
- Department of Surgery, University of Bonn, 53113 Bonn, Germany
| | - Sigrid E. M. Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| |
Collapse
|
43
|
Effect of Supplementing Seaweed Extracts to Pigs until d35 Post-Weaning on Performance and Aspects of Intestinal Health. Mar Drugs 2021; 19:md19040183. [PMID: 33810463 PMCID: PMC8066862 DOI: 10.3390/md19040183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to examine the effects of feeding laminarin (LAM) and fucoidan (FUC) enriched seaweed extracts up to d35 post-weaning on measures of animal performance, intestinal microbial and transcriptome profiles. 75 pigs were assigned to one of three groups: (1) basal diet; (2) basal diet + 250 ppm fucoidan; (3) basal diet + 300 ppm laminarin with 7 replicates per treatment group. Measures of performance were collected weekly and animals sacrificed on d35 post-weaning for the sampling of gastrointestinal tissue and digesta. Animal performance was similar between the basal group and the groups supplemented with FUC and LAM (P > 0.05). Pigs fed the basal diet had higher alpha diversity compared to both the LAM and FUC supplemented pigs (P < 0.05). Supplementation with LAM and FUC increased the production of butyric acid compared to basal fed pigs (P < 0.05). At genus level pigs fed the LAM supplemented diet had the greatest abundance of Faecalbacterium, Roseburia and the lowest Campylobacter of the three experimental treatments (P< 0.05). While neither extract had beneficial effects on animal performance, LAM supplementation had a positive influence on intestinal health through alterations in the gastrointestinal microbiome and increased butyrate production.
Collapse
|
44
|
Zhang B, Liu M, Liu G, Li D, Zhou B. Oral absorption mechanism of the polysaccharides from Gastrodia elata Blume base on fluorescence labeling. Food Res Int 2021; 144:110342. [PMID: 34053538 DOI: 10.1016/j.foodres.2021.110342] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
The mechanisms of action of polysaccharides in vivo have been widely elucidated. However, the systematic research of its absorption and transport mechanisms remains unclear. Herein, we extracted a polysaccharide fraction (GEP) from Gastrodia elata by water extraction and alcohol precipitation and aimed to reveal its oral absorption processes through animal models and Caco-2 cells monolayer models. Our research data showed that GEP-Cy5.5 could be absorbed through the small intestine and the main absorption intestinal segment was the ileum (the absorption rate constant [Ka]: (3.64 ± 0.70) × 10-4 cm/s; the effective apparent permeability [Papp value]: (4.88 ± 1.02) × 10-5 cm/s). The ligated intestinal loops also revealed that GEP-Cy5.5 could pass through the villi of the small intestine and the mucosal barrier into the submucosa. Furthermore, GEP-Cy5.5 was readily absorbed into the blood through the gastrointestinal tract, then distributed in the liver and the kidney. The Papp value of in vitro transport study was (1.29 ± 0.08) × 10-6 cm/s, which was a time-dependent process. Notably, GEP-Cy5.5 was transported through the endocytosis process mediated by clathrin and macropinocytosis. The underlying absorptive mechanisms of GEP in vivo and in vitro were clarified, which provided the guidance for clinical medicine administration and could deepen the biological understanding of oral polysaccharides.
Collapse
Affiliation(s)
- Baiyu Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Mengmeng Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
45
|
Differential Induction Pattern Towards Classically Activated Macrophages in Response to an Immunomodulatory Extract from Pleurotus ostreatus Mycelium. J Fungi (Basel) 2021; 7:jof7030206. [PMID: 33799778 PMCID: PMC8000819 DOI: 10.3390/jof7030206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
Pleurotus ostreatus mushroom preparations have been investigated because of their ability to modulate the immune function. However, there is still no consensus regarding the activation and polarizing effect on macrophages by Pleurotus-derived bioproducts. This study examined the immune-activating effect of a mycelium-derived P. ostreatus aqueous extract (HW-Pm) on macrophage functions, by means of the determination of nitric oxide (NO) production, the mRNA expression of inducible nitric oxide synthase (iNOS), Arginase-1 and FIZZ and the cytokine levels. The phagocytic activity and the activation of NF-κB in U937 reporter cells were also investigated. No cytotoxicity was observed in macrophages treated with HW-Pm (IC50 > 1024 μg/mL) by the resazurin test. HW-Pm induced high levels of NO production and iNOS expression in macrophages. In contrast, HW-Pm did not induce Arginase-1 and FIZZ mRNA expressions. The mushroom extract increased TNF-α and IL-6 production and the phagocytic function in murine macrophages. It also stimulated the activation of the NF-κB promoter. The P. ostreatus mycelium extract has a potential application as a natural immune-enhancing agent, by targeting macrophage activation towards the classically activated subset and stimulating macrophage-mediated innate immune responses.
Collapse
|
46
|
Morales D, Shetty SA, López-Plaza B, Gómez-Candela C, Smidt H, Marín FR, Soler-Rivas C. Modulation of human intestinal microbiota in a clinical trial by consumption of a β-D-glucan-enriched extract obtained from Lentinula edodes. Eur J Nutr 2021; 60:3249-3265. [PMID: 33580297 DOI: 10.1007/s00394-021-02504-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to evaluate the hypocholesterolemic, immune- and microbiota-modulatory effect of a mushroom extract in hypercholesterolemic subjects. METHODS A randomized, controlled, double-blind, and parallel clinical trial was carried out with subjects from 18 to 65 years old (n = 52) with untreated mild hypercholesterolemia. Volunteers consumed a β-D-glucan-enriched (BGE) mixture (10.4 g/day) obtained from shiitake mushrooms (Lentinula edodes) ensuring a 3.5 g/day of fungal β-D-glucans or a placebo incorporated in three different commercial creams. RESULTS This mixture showed hypocholesterolemic activities in vitro and in animal studies. After eight weeks intervention, no significant differences in lipid- or cholesterol-related parameters were found compared to placebo subjects as well as before and after the BGE mixture administration. No inflammatory or immunomodulatory responses were noticed and no changes in IL-1β, IL-6, TNF-α or oxLDL were recorded. However, consumption of the BGE mixture was safe and managed to achieve the dietary fibre intake recommended as cardiovascular protective diet. Moreover, the BGE mixture modulated the colonic microbiota differently compared to placebo. Microbial community composition varied from before to after the intervention with several genera being positively or negatively correlated with some biomarkers related to cholesterol metabolism. CONCLUSION These results suggested a relation between cholesterol metabolism, microbiota and BGE administration. Nevertheless, the precise significance of this differential modulation was not fully elucidated and requires further studies.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bricia López-Plaza
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Carmen Gómez-Candela
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Francisco Ramón Marín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
47
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
48
|
Angulo M, Reyes-Becerril M, Angulo C. Yarrowia lipolytica N6-glucan protects goat leukocytes against Escherichia coli by enhancing phagocytosis and immune signaling pathway genes. Microb Pathog 2021; 150:104735. [PMID: 33453314 DOI: 10.1016/j.micpath.2021.104735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Immunostimulant and protective effects of Yarrowia lipolytica glucans against important pathogens, such as Escherichia coli, have not been investigated in goats and other ruminants. This study aimed to characterize Y. lipolytica N6-glucan (Yl-glucan) and its possible role in immunological signaling pathway activation and immunoprotection against E. coli in goat leukocytes. Characterization analyses showed that Y. lipolytica content had a mix of β and α-D-glucans, molecular weight of 3301.53 kDa and low solubility after the heat treatment. The stimulation of goat leukocytes with Yl-glucan induced protection against E. coli challenge. Remarkably, Yl-glucan and E. coli interaction increased gene expression of dectin-1 and TLR-2 receptors, signaling pathway Syk/NFκB, and cytokines, such as TNF-α and IL-10. As a consequence of signaling activation, phagocytosis, and nitric oxide production enhanced killing of pathogens. Altogether, Y. lipolytica-glucan demonstrated to possess an immunoprotective potential against E. coli through innate immune response modulation in goat leukocytes.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico.
| |
Collapse
|
49
|
De Marco Castro E, Calder PC, Roche HM. β-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions. Mol Nutr Food Res 2021; 65:e1901071. [PMID: 32223047 PMCID: PMC7816268 DOI: 10.1002/mnfr.201901071] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/28/2020] [Indexed: 12/16/2022]
Abstract
The innate immune system responds in a rapid and non-specific manner against immunologic threats; inflammation is part of this response. This is followed by a slower but targeted and specific response termed the adaptive or acquired immune response. There is emerging evidence that dietary components, including yeast-derived β-glucans, can aid host defense against pathogens by modulating inflammatory and antimicrobial activity of neutrophils and macrophages. Innate immune training refers to a newly recognized phenomenon wherein compounds may "train" innate immune cells, such that monocyte and macrophage precursor biology is altered to mount a more effective immunological response. Although various human studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between β-glucan supplementation and human immune function. This review offers an up-to-date report on yeast-derived β-glucans as immunomodulators, including a brief overview of the current paradigm regarding the interaction of β-glucans with the immune system. The recent pre-clinical work that has partly decrypted mode of action and the newest evidence from human trials are also reviewed. According to pre-clinical studies, β-1,3/1,6-glucan derived from baker's yeast may offer increased immuno-surveillance, although the human evidence is weaker than that gained from pre-clinical studies.
Collapse
Affiliation(s)
- Elena De Marco Castro
- Nutrigenomics Research GroupSchool of Public Health, Physiotherapy, and Sports ScienceConway Institute, and Institute of Food and HealthUniversity College DublinDublin 4D04 V1W8Ireland
- Diabetes Complications Research CentreConway InstituteUniversity College DublinDublin 4D04 V1W8Ireland
| | - Philip C. Calder
- Faculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Helen M. Roche
- Nutrigenomics Research GroupSchool of Public Health, Physiotherapy, and Sports ScienceConway Institute, and Institute of Food and HealthUniversity College DublinDublin 4D04 V1W8Ireland
- Diabetes Complications Research CentreConway InstituteUniversity College DublinDublin 4D04 V1W8Ireland
- Institute for Global Food SecurityQueens University BelfastBelfastNorthern IrelandBT9 5DLUK
| |
Collapse
|
50
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|