1
|
Yu W, Chen Z, Li Y, Jiang S, Zhang L, Shao XM, Xiao D. In utero chronic intermittent nicotine aerosol exposure increases ischemic heart injury in adult offspring via programming of Angiotensin II receptor-derived TGFβ/ROS/Akt signaling pathway. Reprod Toxicol 2024; 128:108650. [PMID: 38945500 DOI: 10.1016/j.reprotox.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND In utero cigarette smoking/nicotine exposure during pregnancy significantly affects fetal development and increases the risk of cardiovascular disease late in life. However, the underlying molecular mechanisms remain largely unknown. We tested the hypothesis that fetal nicotine aerosol exposure reprograms ischemia-sensitive gene expressions, resulting in increased heart susceptibility to ischemic injury and cardiac dysfunction in adulthood. METHODS Pregnant rats were exposed to chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21. Experiments were performed on 6-month-old adult offspring. RESULTS CINA exposure increased ischemia-induced cardiac injury and cardiac dysfunction compared to the control group, which was associated with over- expression of angiotensin II receptor (ATR) protein in the left ventricle (LV) of adult offspring. Meanwhile, CINA exposure up-regulated cardiac TGF-β/SMADs family proteins in the LV. In addition, CINA exposure enhanced cardiac reactive oxygen species (ROS) production and increased the DNA methylation level. The levels of phosphorylated-Akt were upregulated but LC3B-II/I protein abundances were downregulated in the hearts isolated from the CINA-treated group. CONCLUSION Fetal nicotine aerosol exposure leads to cardiac dysfunction in response to ischemic stimulation in adulthood. Two molecular pathways are implicated. First, fetal CINA exposure elevates cardiac ATR levels, affecting the TGFβ-SMADs pathway. Second, heightened Angiotensin II/ATR signaling triggers ROS production, leading to DNA hypermethylation, p-Akt activation, and autophagy deficiency. These molecular shifts in cardiomyocytes result in the development of a heart ischemia-sensitive phenotype and subsequent dysfunction in adult offspring.
Collapse
Affiliation(s)
- Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zewen Chen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - DaLiao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
2
|
Huang C, Liu Z, Chen M, Zhang H, Mo R, Chen R, Liu Y, Wang S, Xue Q. Up-regulation of BRD4 contributes to gestational diabetes mellitus-induced cardiac hypertrophy in offspring by promoting mitochondria dysfunction in sex-independent manner. Biochem Pharmacol 2024; 226:116387. [PMID: 38944397 DOI: 10.1016/j.bcp.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Gestational diabetes mellitus (GDM) is associated with cardiovascular disease in postnatal life. The current study tested the hypothesis that GDM caused the cardiac hypertrophy in fetal (ED18.5), postnatal day 7 (PD7), postnatal day 21 (PD21) and postnatal day 90 (PD90) offspring by upregulation of BRD4 and mitochondrial dysfunction. Pregnant mice were divided into control and GDM groups. Hearts were isolated from ED18.5, PD7, PD21 and PD90. GDM increased the body weight (BW) and heart weight (HW) in ED18.5 and PD7, but not PD21 and PD90 offspring. However, HW/BW ratio was increased in all ages of GDM offspring compared to control group. Electron microscopy showed disorganized myofibrils, mitochondrial swelling, vacuolization, and cristae disorder in GDM offspring. GDM resulted in myocardial hypertrophy in offspring, which persisted from fetus to adult in a sex-independent manner. Echocardiography analysis revealed that GDM caused diastolic dysfunction, but had no effect on systolic function. Meanwhile, myocardial BRD4 was significantly upregulated in GDM offspring and BRD4 inhibition by JQ1 alleviated GDM-induced myocardial hypertrophy in offspring. Co-immunoprecipitation showed that BRD4 interacted with DRP1 and there was an increase of BRD4 and DRP1 interaction in GDM offspring. Furthermore, GDM caused the accumulation of damaged mitochondria in hearts from all ages of offspring, including mitochondrial fusion fission imbalance (upregulation of DRP1, and downregulation of MFN1, MFN2 and OPA1) and myocardial mitochondrial ROS accumulation, which was reversed by JQ1. These results suggested that the upregulation of BRD4 is involved in GDM-induced myocardial hypertrophy in the offspring through promoting mitochondrial damage in a gender-independent manner.
Collapse
Affiliation(s)
- Cailing Huang
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zimo Liu
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mei Chen
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Haichuan Zhang
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruyao Mo
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Renshan Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, Guangdong, China
| | - Yinghua Liu
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shixiang Wang
- Department of Cardiology, the third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Qin Xue
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Lee K, Vanin S, Nashed M, Sarikahya MH, Laviolette SR, Natale DRC, Hardy DB. Cannabidiol Exposure During Gestation Leads to Adverse Cardiac Outcomes Early in Postnatal Life in Male Rat Offspring. Cannabis Cannabinoid Res 2024; 9:781-796. [PMID: 38358335 DOI: 10.1089/can.2023.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction: Studies indicate that ∼7% of pregnant individuals in North America consume cannabis in pregnancy. Pre-clinical studies have established that maternal exposure to Δ9-tetrahydrocannabinol (THC; major psychoactive component in cannabis) leads to fetal growth restriction and impaired cardiac function in offspring. However, the effects of maternal exposure to cannabidiol (CBD; major non-euphoric constituent) on cardiac outcomes in offspring remain unknown. Therefore, our objective is to investigate the functional and underlying molecular impacts in the hearts of offspring exposed to CBD in pregnancy. Methods: Pregnant Wistar rats were exposed to either 3 or 30 mg/kg CBD or vehicle control i.p. daily from gestational day 6 to term. Echocardiography was used to assess cardiac function in male and female offspring at postnatal day (PND) 21. Furthermore, quantitative polymerase chain reaction (qPCR), immunoblotting, and bulk RNA-sequencing (RNA-seq) were performed on PND21 offspring hearts. Results: Despite no differences in the heart-to-body weight ratio, both doses of CBD led to reduced cardiac function exclusively in male offspring at 3 weeks of age. Underlying this, significant alterations in the expression of the endocannabinoid system (ECS; e.g., decreased cannabinoid receptor 2) were observed. In addition, bulk RNA-seq data demonstrated transcriptional pathways significantly enriched in mitochondrial function/metabolism as well as development. Conclusion: Collectively, we demonstrated for the first time that gestational exposure to CBD, a constituent perceived as safe, leads to early sex-specific postnatal cardiac deficits and alterations in the cardiac ECS in offspring.
Collapse
Affiliation(s)
- Kendrick Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sebastian Vanin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mina Nashed
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mohammed Halit Sarikahya
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David R C Natale
- Departments of Biomedical and Molecular Sciences and Obstetrics and Gynaecology, Queen's University, Kingston, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynecology, Children's Health Research Institute, Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Chen X, Sun X, Ge Y, Zhou X, Chen JF. Targeting adenosine A 2A receptors for early intervention of retinopathy of prematurity. Purinergic Signal 2024:10.1007/s11302-024-09986-x. [PMID: 38329708 DOI: 10.1007/s11302-024-09986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Retinopathy of prematurity (ROP) continues to pose a significant threat to the vision of numerous children worldwide, primarily owing to the increased survival rates of premature infants. The pathologies of ROP are mainly linked to impaired vascularization as a result of hyperoxia, leading to subsequent neovascularization. Existing treatments, including anti-vascular endothelial growth factor (VEGF) therapies, have thus far been limited to addressing pathological angiogenesis at advanced ROP stages, inevitably leading to adverse side effects. Intervention to promote physiological angiogenesis during the initial stages could hold the potential to prevent ROP. Adenosine A2A receptors (A2AR) have been identified in various ocular cell types, exhibiting distinct densities and functionally intricate connections with oxygen metabolism. In this review, we discuss experimental evidence that strongly underscores the pivotal role of A2AR in ROP. In particular, A2AR blockade may represent an effective treatment strategy, mitigating retinal vascular loss by reversing hyperoxia-mediated cellular proliferation inhibition and curtailing hypoxia-mediated neovascularization in oxygen-induced retinopathy (OIR). These effects stem from the interplay of endothelium, neuronal and glial cells, and novel molecular pathways (notably promoting TGF-β signaling) at the hyperoxia phase. We propose that pharmacological targeting of A2AR signaling may confer an early intervention for ROP with distinct therapeutic benefits and mechanisms than the anti-VEGF therapy.
Collapse
Affiliation(s)
- Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Ge
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xuzhao Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China.
| |
Collapse
|
5
|
Liu B, Xia L, Li Y, Jiang S, Yu W, Zhang L, Shao XM, Xu Z, Xiao D. Prenatal Nicotine Exposure Raises Male Blood Pressure via FTO-Mediated NOX2/ROS Signaling. Hypertension 2024; 81:240-251. [PMID: 37795601 PMCID: PMC10873091 DOI: 10.1161/hypertensionaha.123.21766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Cigarette smoking/nicotine exposure in pregnancy shows an increased risk of hypertension in offspring, but the mechanisms are unclear. This study tested the hypothesis that m6A RNA hypomethylation epigenetically regulates vascular NOX (NADPH oxidase) and reactive oxygen species production, contributing to the fetal programming of a hypertensive phenotype in nicotine-exposed offspring. METHODS Pregnant rats were exposed to episodic chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21, and experiments were performed in 6-month-old adult offspring. RESULTS Antenatal CINA exposure augmented Ang II (angiotensin II)-stimulated blood pressure response in male, but not female offspring. Moreover, CINA increased vascular NOX2 expression and superoxide production exclusively in male offspring. Inhibition of NOX2 with gp91ds-tat, both ex vivo and in vivo, mitigated the CINA-induced elevation in superoxide production and blood pressure response. Notably, CINA enhanced the expression of vascular m6A demethylase FTO (fat mass and obesity-associated protein), while reducing the total vascular m6A abundance and specific m6A methylation of the NOX2 gene. Additionally, ex vivo inhibition of FTO with FB23-2 attenuated CINA-induced increases in vascular NOX2 expression. In vitro experiments using human umbilical vein endothelial cells demonstrated that nicotine dose-dependently upregulated FTO and NOX2 protein abundance, which were reversed by treatment with the FTO inhibitor FB23-2 or FTO knockdown using siRNAs. CONCLUSIONS This study uncovers a new mechanism: m6A demethylase FTO-mediated epigenetic upregulation of vascular NOX2 signaling in CINA-induced hypertensive phenotype. This insight could lead to a therapeutic target for preventing and treating developmental hypertension programming.
Collapse
Affiliation(s)
- Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
- Perinatology Laboratory, Wuxi Maternity and Child Health Care Hospital, Women’s Hospital of Jiangnan University, Wuxi 214002, China
| | - Liang Xia
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
- Department of Surgical Intensive Care Unit, The First Affiliated hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA90095, USA
| | - Zhice Xu
- Perinatology Laboratory, Wuxi Maternity and Child Health Care Hospital, Women’s Hospital of Jiangnan University, Wuxi 214002, China
- Institute for Fetology, First Hospital of Soochow University, 708 Renmin Road, Suzhou 215006, China
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| |
Collapse
|
6
|
Qin J, Hu C, Cao X, Gao J, Chen Y, Yan M, Chen J. Development and validation of a nomogram model to predict primary graft dysfunction in patients after lung transplantation based on the clinical factors. Clin Transplant 2023; 37:e15039. [PMID: 37256785 DOI: 10.1111/ctr.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Primary graft dysfunction (PGD), a significant complication that can affect patients' prognosis and quality of life, develops within 72 h post lung transplantation (LTx). Early detection and prevention of PGD should be given special consideration. The purpose of this study was to create a clinical prediction model to forecast the occurrence of PGD. METHODS We collected information on 622 LTx patients from Wuxi People's Hospital from 2016 to 2020 and used the data to construct the prediction model. Information on 224 patients from 2021 to June 2022 was used for external validation. We used LASSO regression for variable screening. A nomogram was developed for model presentation. Distinctness, fit, and calibration were used to evaluate the performance of the model. RESULTS Subjects with respiratory failure, who received fresh frozen plasma, donor age, donor gender, donor mechanism of death, donor smoking, donor ventilator use time, and donor PaO 2/FiO 2 ratio were independent predictor variables for the occurrence of PGD. The area under the curve of the nomogram was .779. The Hosmer-Lemeshow test showed a good model fit (P = .158). The calibration curve of the nomogram is fairly close to the ideal diagonal. Moreover, the decision curve analysis revealed a positive net benefit of the model. External validation also confirmed the reliability of the model. CONCLUSIONS The nomogram of PGD based on clinical risk factors in postoperative LTx patients was established with high reliability. It provides clinicians and nurses with a new and effective tool for early prediction of PGD and early intervention.
Collapse
Affiliation(s)
- Jianan Qin
- School of Nursing, Fudan University, Shanghai, China
- Operation Department, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaodong Cao
- Department of Nursing, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Meiqiong Yan
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
8
|
Dorey ES, Headrick JP, Paravicini TM, Wlodek ME, Moritz KM, Reichelt ME. Periconceptional alcohol alters in vivo heart function in ageing female rat offspring: Possible involvement of oestrogen receptor signalling. Exp Physiol 2023; 108:772-784. [PMID: 36951040 PMCID: PMC10988452 DOI: 10.1113/ep090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the cardiovascular consequences of periconceptual ethanol on offspring throughout the lifespan? What is the main finding and its importance? It is shown for the first time that periconceptional alcohol has sex-specific effects on heart growth, with ageing female offspring exhibiting decreased cardiac output. Altered in vivo cardiac function in ageing female offspring may be linked to changes in cardiac oestrogen receptor expression. ABSTRACT Alcohol exposure throughout gestation is detrimental to cardiac development and function. Although many women decrease alcohol consumption once aware of a pregnancy, exposure prior to recognition is common. We, therefore, examined the effects of periconceptional alcohol exposure (PC:EtOH) on heart function, and explored mechanisms that may contribute. Female Sprague-Dawley rats received a liquid diet ±12.5% v/v ethanol from 4 days prior to mating until 4 days after mating (PC:EtOH). Cardiac function was assessed via echocardiography, and offspring were culled at multiple time points for assessment of morphometry, isolated heart and aortic ring function, protein and transcriptional changes. PC:EtOH-exposed embryonic day 20 fetuses (but not postnatal offspring) had larger hearts relative to body weight. Ex vivo analysis of hearts at 5-7 months old (mo) indicated no changes in coronary function or cardiac ischaemic tolerance, and apparently improved ventricular compliance in PC:EtOH females (compared to controls). At 12 mo, vascular responses in isolated aortic rings were unaltered by PC:EtOH, whilst echocardiography revealed reduced cardiac output in female but not male PC:EtOH offspring. At 19 mo, left ventricular transcript and protein for type 1 oestrogen receptor (ESR1), HSP90 transcript and plasma oestradiol levels were all elevated in female PC:EtOH exposed offspring. Summarising, PC:EtOH adversely impacts in vivo heart function in mature female offspring, associated with increased ventricular oestrogen-related genes. PC:EtOH may thus influence age-related heart dysfunction in females through modulation of oestrogen signalling.
Collapse
Affiliation(s)
- Emily S. Dorey
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - John P. Headrick
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Tamara M. Paravicini
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Mary E. Wlodek
- The Department of Obstetrics and GynaecologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Child Health Research CentreUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Melissa E. Reichelt
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
9
|
Molecular Background of Toxic-Substances-Induced Morphological Alterations in the Umbilical Cord Vessels and Fetal Red Blood Cells. Int J Mol Sci 2022; 23:ijms232314673. [PMID: 36499001 PMCID: PMC9736329 DOI: 10.3390/ijms232314673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The relationship between smoking and human health has been investigated mostly in adults, despite the fact that the chemicals originating from sustained maternal smoking disrupt the carefully orchestrated regulatory cascades in the developing fetus. In this study, we followed molecular alterations in the umbilical cord (UC) vessels and fetal red blood cells (RBCs), which faithfully reflect the in vivo status of the fetus. We showed evidence for the decreased level of DNA-PKcs-positive nuclei in samples with smoking origin, which is associated with the impaired DNA repair system. Furthermore, we pointed out the altered ratio of MMP-9 metalloproteinase and its endogenous inhibitor TIMP-1, which might be a possible explanation for the morphological abnormalities in the UC vessels. The presented in vivo dataset emphasizes the higher vulnerability of the veins, as the primary target for the toxic materials unfiltered by the placenta. All these events become amplified by the functionally impaired fetal RBC population via a crosstalk mechanism between the vessel endothelium and the circulating RBCs. In our ex vivo approach, we looked for the molecular explanation of metal-exposure-induced alterations, where expressions of the selected genes were upregulated in the control group, while samples with smoking origin showed a lack of response, indicative of prior long-term in utero exposure.
Collapse
|
10
|
Li Y, Zhang Y, Walayat A, Fu Y, Liu B, Zhang L, Xiao D. The Regulatory Role of H19/miR-181a/ATG5 Signaling in Perinatal Nicotine Exposure-Induced Development of Neonatal Brain Hypoxic-Ischemic Sensitive Phenotype. Int J Mol Sci 2022; 23:6885. [PMID: 35805891 PMCID: PMC9266802 DOI: 10.3390/ijms23136885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotine exposure either from maternal cigarette smoking or e-cigarette vaping is one of the most common risk factors for neurodevelopmental disease in offspring. Previous studies revealed that perinatal nicotine exposure programs a sensitive phenotype to neonatal hypoxic-ischemic encephalopathy (HIE) in postnatal life, yet the underlying mechanisms remain undetermined. The goal of the present study was to determine the regulatory role of H19/miR-181a/ATG5 signaling in perinatal nicotine exposure-induced development of neonatal brain hypoxic-ischemic sensitive phenotype. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. All experiments were conducted in offspring pups at postnatal day 9 (P9). Perinatal nicotine exposure significantly enhanced expression of miR-181a but attenuated autophagy-related protein 5 (ATG5) mRNA and protein levels in neonatal brains. Of interest, miR-181a mimicking administration in the absence of nicotine exposure also produced dose-dependent increased hypoxia/ischemia (H/I)-induced brain injury associated with a decreased ATG5 expression, closely resembling perinatal nicotine exposure-mediated effects. Locked nucleic acid (LNA)-miR-181a antisense reversed perinatal nicotine-mediated increase in H/I-induced brain injury and normalized aberrant ATG5 expression. In addition, nicotine exposure attenuated a long non-coding RNA (lncRNA) H19 expression level. Knockdown of H19 via siRNA increased the miR-181a level and enhanced H/I-induced neonatal brain injury. In conclusion, the present findings provide a novel mechanism that aberrant alteration of the H19/miR-181a/AGT5 axis plays a vital role in perinatal nicotine exposure-mediated ischemia-sensitive phenotype in offspring and suggests promising molecular targets for intervention and rescuing nicotine-induced adverse programming effects in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Y.L.); (Y.Z.); (A.W.); (Y.F.); (B.L.); (L.Z.)
| |
Collapse
|
11
|
Chavva H, Belcher AM, Brazeau DA, Rorabaugh BR. Prenatal Exposure to Methamphetamine Causes Vascular Dysfunction in Adult Male Rat Offspring. Front Cardiovasc Med 2022; 9:830983. [PMID: 35155639 PMCID: PMC8826446 DOI: 10.3389/fcvm.2022.830983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine use during pregnancy can have negative consequences on the offspring. However, most studies investigating the impact of prenatal exposure to methamphetamine have focused on behavioral and neurological outcomes. Relatively little is known regarding the impact of prenatal methamphetamine on the adult cardiovascular system. This study investigated the impact of chronic fetal exposure to methamphetamine on vascular function in adult offspring. Pregnant female rats received daily saline or methamphetamine (5 mg/kg) injections starting on gestational day 1 and continuing until the pups were born. Vascular function was assessed in 5 month old offspring. Prenatal methamphetamine significantly decreased both the efficacy and potency of acetylcholine-induced relaxation in isolated male (but not female) aortas when perivascular adipose tissue (PVAT) remained intact. However, prenatal methamphetamine had no impact on acetylcholine-induced relaxation when PVAT was removed. Nitroprusside-induced relaxation of the aorta was unaffected by prenatal methamphetamine. Angiotensin II-induced contractile responses were significantly potentiated in male (but not female) aortas regardless of the presence of PVAT. This effect was reversed by L-nitro arginine methyl ester (L-NAME). Serotonin- and phenylephrine-induced contraction were unaffected by prenatal methamphetamine. Prenatal methamphetamine had no impact on acetylcholine-induced relaxation of third order mesenteric arteries and no effect on basal blood pressure. These data provide evidence that prenatal exposure to methamphetamine sex-dependently alters vasomotor function in the vasculature and may increase the risk of developing vascular disorders later in adult life.
Collapse
Affiliation(s)
- Hasitha Chavva
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| | - Adam M Belcher
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| | - Daniel A Brazeau
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States.,Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, WV, United States
| | - Boyd R Rorabaugh
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States.,Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, WV, United States
| |
Collapse
|
12
|
Walayat A, Li Y, Zhang Y, Fu Y, Liu B, Shao XM, Zhang L, Xiao D. Fetal e-cigarette exposure programs a neonatal brain hypoxic-ischemic sensitive phenotype via altering DNA methylation patterns and autophagy signaling pathway. Am J Physiol Regul Integr Comp Physiol 2021; 321:R791-R801. [PMID: 34524928 PMCID: PMC8616627 DOI: 10.1152/ajpregu.00207.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Maternal e-cigarette (e-cig) exposure is a pressing perinatal health concern. Emerging evidence reveals its potential adverse impacts on brain development in offspring, yet the underlying mechanisms are poorly understood. The present study tested the hypothesis that fetal e-cig exposure induces an aberrant DNA methylation profile in the developing brain, leading to alteration of autophagic flux signaling and programming of a sensitive phenotype to neonatal hypoxic-ischemic encephalopathy (HIE). Pregnant rats were exposed to chronic intermittent e-cig aerosol. Neonates were examined at the age of 9 days old. Maternal e-cig exposure decreased the body weight and brain weight but enhanced the brain-to-body weight ratio in the neonates. E-cig exposure induced a gender-dependent increase in hypoxic-ischemia-induced brain injury in male neonates associated with enhanced reactive oxygen species (ROS) activity. It differentially altered DNA methyltransferase expression and enhanced both global DNA methylation levels and specific CpG methylation at the autophagy-related gene 5 (ATG5) promoter. In addition, maternal e-cig exposure caused downregulations of ATG5, microtubule-associated protein 1 light chain 3β, and sirtuin 1 expression in neonatal brains. Of importance, knockdown of ATG5 in neonatal pups exaggerated neonatal HIE. In conclusion, the present study reveals that maternal e-cig exposure downregulates autophagy-related gene expression via DNA hypermethylation, leading to programming of a hypoxic-ischemic sensitive phenotype in the neonatal brain.
Collapse
Affiliation(s)
- Andrew Walayat
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yong Li
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yanyan Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yingjie Fu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Bailin Liu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
13
|
Bo B, Li S, Zhou K, Wei J. The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Front Cell Dev Biol 2021; 9:664527. [PMID: 33937268 PMCID: PMC8083961 DOI: 10.3389/fcell.2021.664527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
During heart failure, the heart is unable to regenerate lost or damaged cardiomyocytes and is therefore unable to generate adequate cardiac output. Previous research has demonstrated that cardiac regeneration can be promoted by a hypoxia-related oxygen metabolic mechanism. Numerous studies have indicated that exercise plays a regulatory role in the activation of regeneration capacity in both healthy and injured adult cardiomyocytes. However, the role of oxygen metabolism in regulating exercise-induced cardiomyocyte regeneration is unclear. This review focuses on the alteration of the oxygen environment and metabolism in the myocardium induced by exercise, including the effects of mild hypoxia, changes in energy metabolism, enhanced elimination of reactive oxygen species, augmentation of antioxidative capacity, and regulation of the oxygen-related metabolic and molecular pathway in the heart. Deciphering the regulatory role of oxygen metabolism and related factors during and after exercise in cardiomyocyte regeneration will provide biological insight into endogenous cardiac repair mechanisms. Furthermore, this work provides strong evidence for exercise as a cost-effective intervention to improve cardiomyocyte regeneration and restore cardiac function in this patient population.
Collapse
Affiliation(s)
- Bing Bo
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Shuangshuang Li
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China
| | - Ke Zhou
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
14
|
Zahorán S, Szántó PR, Bódi N, Bagyánszki M, Maléth J, Hegyi P, Sári T, Hermesz E. Sustained Maternal Smoking Triggers Endothelial-Mediated Oxidative Stress in the Umbilical Cord Vessels, Resulting in Vascular Dysfunction. Antioxidants (Basel) 2021; 10:antiox10040583. [PMID: 33918732 PMCID: PMC8069726 DOI: 10.3390/antiox10040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) bioavailability is fundamental in the regulation of redox balance and functionality of the endothelium, especially in the case of the umbilical cord (UC), which has no innervation. The analysis of UC vessel-related complications could serve as a useful tool in the understanding of the pathophysiological mechanisms leading to neonatal cardiovascular disorders. Therefore, the aim of this study was to characterize the mechanisms that rule the severity of prenatal endothelial dysfunction, induced by the long-term effect of maternal smoking. Our analysis describes the initiation and the consequences of endothelial nitric oxide synthase (NOS3) deactivation, along with the up-regulation of possible compensatory pathways, using structural, molecular and biochemical approaches. This study was carried out on both the UC arteries and veins originated from neonates born to non-smoking and heavy-smoking mothers. The alterations stimulated by maternal smoking are vessel-specific and proportional to the level of exposure to harmful materials passed through the placenta. Typically, in the primarily exposed veins, an increased formation of reactive oxygen species and an up-regulation of the highly-efficient NOS2-NO producing pathway were detected. Despite all the extensive structural and functional damages, the ex vivo heat and cadmium ion-treated UC vein pieces still support the potential for stress response.
Collapse
Affiliation(s)
- Szabolcs Zahorán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (S.Z.); (P.R.S.)
| | - Péter R. Szántó
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (S.Z.); (P.R.S.)
| | - Nikolett Bódi
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (N.B.); (M.B.)
| | - Mária Bagyánszki
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (N.B.); (M.B.)
| | - József Maléth
- First Department of Medicine, University of Szeged, H-6701 Szeged, Hungary;
- HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, H-6701 Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, H-7601 Pécs, Hungary;
| | - Tamás Sári
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (S.Z.); (P.R.S.)
- Correspondence: ; Tel.: +36-(62)-544-887
| |
Collapse
|
15
|
Rorabaugh BR. Does Prenatal Exposure to CNS Stimulants Increase the Risk of Cardiovascular Disease in Adult Offspring? Front Cardiovasc Med 2021; 8:652634. [PMID: 33748200 PMCID: PMC7969998 DOI: 10.3389/fcvm.2021.652634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Prenatal exposure to an adverse uterine environment can have long lasting effects on adult offspring through DNA methylation, histone acetylation, and other epigenetic effects that alter gene expression and physiology. It is well-known that consumption of CNS stimulants such as caffeine, nicotine, amphetamines, and cocaine during pregnancy can adversely impact the offspring. However, most work in this area has focused on neurological and behavioral outcomes and has been limited to assessments in young offspring. The impact of prenatal exposure to these agents on the adult cardiovascular system has received relatively little attention. Evidence from both animal and human studies indicate that exposure to CNS stimulants during the gestational period can negatively impact the adult heart and vasculature, potentially leading to cardiovascular diseases later in life. This review discusses our current understanding of the impact of prenatal exposure to cocaine, methamphetamine, nicotine, and caffeine on the adult cardiovascular system.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Huntington, WV, United States
| |
Collapse
|
16
|
Tarran R, Barr RG, Benowitz NL, Bhatnagar A, Chu HW, Dalton P, Doerschuk CM, Drummond MB, Gold DR, Goniewicz ML, Gross ER, Hansel NN, Hopke PK, Kloner RA, Mikheev VB, Neczypor EW, Pinkerton KE, Postow L, Rahman I, Samet JM, Salathe M, Stoney CM, Tsao PS, Widome R, Xia T, Xiao D, Wold LE. E-Cigarettes and Cardiopulmonary Health. FUNCTION 2021; 2:zqab004. [PMID: 33748758 PMCID: PMC7948134 DOI: 10.1093/function/zqab004] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/06/2023] Open
Abstract
E-cigarettes have surged in popularity over the last few years, particularly among youth and young adults. These battery-powered devices aerosolize e-liquids, comprised of propylene glycol and vegetable glycerin, typically with nicotine, flavors, and stabilizers/humectants. Although the use of combustible cigarettes is associated with several adverse health effects including multiple pulmonary and cardiovascular diseases, the effects of e-cigarettes on both short- and long-term health have only begun to be investigated. Given the recent increase in the popularity of e-cigarettes, there is an urgent need for studies to address their potential adverse health effects, particularly as many researchers have suggested that e-cigarettes may pose less of a health risk than traditional combustible cigarettes and should be used as nicotine replacements. This report is prepared for clinicians, researchers, and other health care providers to provide the current state of knowledge on how e-cigarette use might affect cardiopulmonary health, along with research gaps to be addressed in future studies.
Collapse
Affiliation(s)
- Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Neal L Benowitz
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aruni Bhatnagar
- Department of Medicine, American Heart Association Tobacco Regulation Center University of Louisville, Louisville, KY, USA
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Pamela Dalton
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Claire M Doerschuk
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - M Bradley Drummond
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health and the Channing Division of Network Medicine, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nadia N Hansel
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Medicine, Cardiovascular Division, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Vladimir B Mikheev
- Individual and Population Health, Battelle Memorial Institute, Columbus, OH, USA
| | - Evan W Neczypor
- Biomedical Science Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Lisa Postow
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine M Stoney
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip S Tsao
- Division of Cardiovascular Medicine, VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Widome
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Tian Xia
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - DaLiao Xiao
- Department of Basic Sciences, Lawrence D Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Adverse effects of fetal exposure of electronic-cigarettes and high-fat diet on male neonatal hearts. Exp Mol Pathol 2020; 118:104573. [PMID: 33212125 PMCID: PMC8501912 DOI: 10.1016/j.yexmp.2020.104573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022]
Abstract
Epidemiological studies have shown an increased risk of cardiovascular diseases in children born to mothers who smoked during pregnancy. The cardiovascular risk in the offspring associated with in utero nicotine exposure is further exaggerated by maternal obesity. The consumption of electronic cigarettes (e-cigarettes) is alarmingly increasing among adolescents and young adults without the knowledge of their harmful health effects. There has also been a substantial increase in e-cigarette use by women of reproductive age. This study investigates the detrimental effects of gestational exposure of e-cigarette and a high-fat diet (HFD) on neonatal hearts. Time-mated pregnant mice were fed a HFD and exposed to saline or e-cigarette aerosol with 2.4% nicotine from embryonic day 4 (E4) to E20. We demonstrated that in utero exposure of e-cigarettes and HFD from E4 to E20 triggers cardiomyocyte (CM) apoptosis in the offspring at postnatal day1 (PND1), PND3, and PND14. Induction of CM apoptosis following gestational exposure of e-cigarettes and HFD was associated with inactivation of AMP-activated protein kinase (AMPK), increased cardiac oxidative stress coupled with perturbation of cardiac BAX/ BCL-2 ratio and activation of caspase 3 at PND 14. Electron microscopy further revealed that left ventricles of pups at PND14 after e-cigarette exposure exhibited apoptotic nuclei, convoluted nuclear membranes, myofibrillar derangement, and enlarged mitochondria occasionally showing signs of crystolysis, indicative of cardiomyopathy and cardiac dysfunction. Our results show profound adverse effects of prenatal exposure of e-cigarette plus HFD in neonatal hearts that may lead to long-term adverse cardiac consequences in the adult.
Collapse
|
18
|
Jian J, Zhang P, Li Y, Liu B, Zhang Y, Zhang L, Shao XM, Zhuang J, Xiao D. Reprogramming of miR-181a/DNA methylation patterns contribute to the maternal nicotine exposure-induced fetal programming of cardiac ischemia-sensitive phenotype in postnatal life. Theranostics 2020; 10:11820-11836. [PMID: 33052248 PMCID: PMC7546014 DOI: 10.7150/thno.48297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: E-cigarette and other novel electronic nicotine delivery systems (ENDS) have recently entered the market at a rapid pace. The community desperately needs answers about the health effects of ENDS. The present study tested the hypothesis that perinatal nicotine exposure (PNE) causes a gender-dependent increase in vulnerability of the heart to ischemia-reperfusion (I/R) injury and cardiac dysfunction in male rat offspring via reprogramming of the miRNA-181a (miR-181a)-mediated signaling pathway and that miR-181a antisense could rescue this phenotype. Methods: Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Cardiac function and molecular biological experiments were conducted in ~3- month-old offspring. Results: PNE enhanced I/R-induced cardiac dysfunction and infarction in adult male but not in female offspring, which was associated with miR-181a over-expression in left ventricle tissues. In addition, PNE enhanced offspring cardiac angiotensin receptor (ATR) expressions via specific CpG hypomethylation of AT1R/AT2R promoter. Furthermore, PNE attenuated cardiac lncRNA H19 levels, but up-regulated cardiac TGF-β/Smads family proteins and consequently up-regulated autophagy-related protein (Atg-5, beclin-1, LC3 II, p62) expression in the male offspring. Of importance, treatment with miR-181a antisense eliminated the PNE's effect on miR-181a expression/H19 levels and reversed PNE-mediated I/R-induced cardiac infarction and dysfunction in male offspring. Furthermore, miR-181a antisense also attenuated the effect of PNE on AT1R/AT2R/TGF-β/Smads/autophagy-related biomarkers in the male offspring. Conclusion: Our data suggest that PNE could induce a reprogramming of cardiac miR-181a expression/DNA methylation pattern, which epigenetically modulates ATR/TGF-β/autophagy signaling pathways, leading to gender-dependent development of ischemia-sensitive phenotype in postnatal life. Furthermore, miR-181a could severe as a potential therapeutic target for rescuing this phenotype.
Collapse
|
19
|
Chuang TD, Ansari A, Yu C, Sakurai R, Harb A, Liu J, Khorram O, Rehan VK. Mechanism underlying increased cardiac extracellular matrix deposition in perinatal nicotine-exposed offspring. Am J Physiol Heart Circ Physiol 2020; 319:H651-H660. [PMID: 32795172 DOI: 10.1152/ajpheart.00021.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although increased predisposition to cardiac fibrosis and cardiac dysfunction has been demonstrated in the perinatally nicotine-exposed heart, the underlying mechanisms remain unclear. With the use of a well-established rat model and cultured primary neonatal rat cardiac fibroblasts, the effect of perinatal nicotine exposure on offspring heart extracellular matrix deposition and the likely underlying mechanisms were investigated. Perinatal nicotine exposure resulted in increased collagen type I (COL1A1) and III (COL3A1) deposition along with a decrease in miR-29 family and an increase in long noncoding RNA myocardial infarction-associated transcript (MIAT) levels in offspring heart. Nicotine treatment of isolated primary neonatal rat cardiac fibroblasts suggested that these effects were mediated via nicotinic acetylcholine receptors including α7 and the induced collagens accumulation was reversed by a gain-of function of miR-29 family. Knockdown of MIAT resulted in increased miR-29 family and decreased COL1A1 and COL3A1 levels, suggesting nicotine-mediated MIAT induction as the underlying mechanism for nicotine-induced collagen deposition. Luciferase reporter assay and RNA immunoprecipitation studies showed an intense physical interaction between MIAT, miR-29 family, and argonaute 2, corroborating the mechanistic link between perinatal nicotine exposure and increased extracellular matrix deposition. Overall, perinatal nicotine exposure resulted in lower miR-29 family levels in offspring heart, while it elevated cardiac MIAT and collagen type I and III levels. These findings provide mechanistic basis for cardiac dysfunction in perinatal nicotine-exposed offspring and offer multiple novel potential therapeutic targets.NEW & NOTEWORTHY Using an established rat model and cultured primary neonatal cardiac fibroblasts, we show that nicotine mediated MIAT induction as the underlying mechanism for the excessive cardiac collagen deposition. These observations provide mechanistic basis for the increased predisposition to cardiac dysfunction following perinatal cigarette/nicotine exposure and offer novel potential therapeutic targets.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of and Obstetrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Aamir Ansari
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Celia Yu
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Reiko Sakurai
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Amir Harb
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Jie Liu
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Omid Khorram
- Department of and Obstetrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| |
Collapse
|
20
|
Ozekin YH, Isner T, Bates EA. Ion Channel Contributions to Morphological Development: Insights From the Role of Kir2.1 in Bone Development. Front Mol Neurosci 2020; 13:99. [PMID: 32581710 PMCID: PMC7296152 DOI: 10.3389/fnmol.2020.00099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
The role of ion channels in neurons and muscles has been well characterized. However, recent work has demonstrated both the presence and necessity of ion channels in diverse cell types for morphological development. For example, mutations that disrupt ion channels give rise to abnormal structural development in species of flies, frogs, fish, mice, and humans. Furthermore, medications and recreational drugs that target ion channels are associated with higher incidence of birth defects in humans. In this review we establish the effects of several teratogens on development including epilepsy treatment drugs (topiramate, valproate, ethosuximide, phenobarbital, phenytoin, and carbamazepine), nicotine, heat, and cannabinoids. We then propose potential links between these teratogenic agents and ion channels with mechanistic insights from model organisms. Finally, we talk about the role of a particular ion channel, Kir2.1, in the formation and development of bone as an example of how ion channels can be used to uncover important processes in morphogenesis. Because ion channels are common targets of many currently used medications, understanding how ion channels impact morphological development will be important for prevention of birth defects. It is becoming increasingly clear that ion channels have functional roles outside of tissues that have been classically considered excitable.
Collapse
Affiliation(s)
- Yunus H Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Trevor Isner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
21
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
22
|
|
23
|
Li Y, Song AM, Fu Y, Walayat A, Yang M, Jian J, Liu B, Xia L, Zhang L, Xiao D. Perinatal nicotine exposure alters Akt/GSK-3β/mTOR/autophagy signaling, leading to development of hypoxic-ischemic-sensitive phenotype in rat neonatal brain. Am J Physiol Regul Integr Comp Physiol 2019; 317:R803-R813. [PMID: 31553625 DOI: 10.1152/ajpregu.00218.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Maternal cigarette smoking is a major perinatal insult that contributes to an increased risk of cardiovascular and neurodevelopmental diseases in offspring. Our previous studies revealed that perinatal nicotine exposure reprograms a sensitive phenotype in neonatal hypoxic-ischemic encephalopathy (HIE), yet the underlying molecular mechanisms remain largely elusive. The present study tested the hypothesis that perinatal nicotine exposure impacts autophagy signaling in the developing brain, resulting in enhanced susceptibility to neonatal HIE. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Neonatal HIE was conducted in 9-day-old male rat pups. Protein kinase B/glycogen synthase kinase-3β/mammalian target of rapamycin (Akt/GSK-3β/mTOR) signaling and key autophagy markers were determined by Western blotting analysis. Rapamycin and MK2206 were administered via intracerebroventricular injection. Nicotine exposure significantly inhibited autophagy activities in neonatal brain tissues, characterized by an increased ratio of phosphoylated (p-) to total mTOR protein expression but reduced levels of autophagy-related 5, Beclin 1, and LC3βI/II. Treatment with mTOR inhibitor rapamycin effectively blocked nicotine-mediated autophagy deficiency and, more importantly, reversed the nicotine-induced increase in HI brain infarction. In addition, nicotine exposure significantly upregulated p-Akt and p-GSK-3β. Treatment with the Akt selective inhibitor MK2206 reversed the enhanced p-Akt and p-GSK-3β, restored basal autophagic flux, and abolished nicotine-mediated HI brain injury. These findings suggest that perinatal nicotine-mediated alteration of Akt/GSK-3β/mTOR signaling plays a key role in downregulation of autophagic flux, which contributes to the development of hypoxia/ischemia-sensitive phenotype in the neonatal brain.
Collapse
Affiliation(s)
- Yong Li
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Andrew M Song
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yingjie Fu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Andrew Walayat
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Meizi Yang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jie Jian
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Bailin Liu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Liang Xia
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
24
|
Chen Z, Gong L, Zhang P, Li Y, Liu B, Zhang L, Zhuang J, Xiao D. Epigenetic Down-Regulation of Sirt 1 via DNA Methylation and Oxidative Stress Signaling Contributes to the Gestational Diabetes Mellitus-Induced Fetal Programming of Heart Ischemia-Sensitive Phenotype in Late Life. Int J Biol Sci 2019; 15:1240-1251. [PMID: 31223283 PMCID: PMC6567811 DOI: 10.7150/ijbs.33044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: The incidence of gestational diabetes mellitus (GDM) is increasing worldwide. However, whether and how GDM exposure induces fetal programming of adult cardiac dysfunctional phenotype, especially the underlying epigenetic molecular mechanisms and theranostics remain unclear. To address this problem, we developed a late GDM rat model. Methods: Pregnant rats were made diabetic on day 12 of gestation by streptozotocin (STZ). Experiments were conducted in 6 weeks old offspring. Results: There were significant increases in ischemia-induced cardiac infarction and gender-dependent left ventricular (LV) dysfunction in male offspring in GDM group as compared to controls. Exposure to GDM enhanced ROS level and caused a global DNA methylation in offspring cardiomyocytes. GDM attenuated cardiac Sirt 1 protein and p-Akt/Akt levels, but enhanced autophagy-related proteins expression (Atg 5 and LC3 II/LC3 I) as compared to controls. Ex-vivo treatment of DNA methylation inhibitor, 5-Aza directly inhibited Dnmt3A and enhanced Sirt 1 protein expression in fetal hearts. Furthermore, treatment with antioxidant, N-acetyl-cysteine (NAC) in offspring reversed GDM-mediated DNA hypermethylation, Sirt1 repression and autophagy-related gene protein overexpression in the hearts, and rescued GDM-induced deterioration in heart ischemic injury and LV dysfunction. Conclusion: Our data indicated that exposure to GDM induced offspring cardiac oxidative stress and DNA hypermethylation, resulting in an epigenetic down-regulation of Sirt1 gene and aberrant development of heart ischemia-sensitive phenotype, which suggests that Sirt 1-mediated signaling is the potential therapeutic target for the heart ischemic disease in offspring.
Collapse
Affiliation(s)
- Zewen Chen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Gong
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Peng Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
25
|
Liu B, Hu X, Li Y, Ke J, Dasgupta C, Huang X, Walayat A, Zhang L, Xiao D. Epigenetic down-regulation of BK Ca channel by miR-181a contributes to the fetal and neonatal nicotine-mediated exaggerated coronary vascular tone in adult life. Int J Cardiol 2019; 281:82-89. [PMID: 30738609 DOI: 10.1016/j.ijcard.2019.01.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fetal origin of adult cardiovascular disease is one of the most pressing public concerns and economic problem in modern life. Maternal cigarette smoking/nicotine abuse increases the risk of cardiovascular disease in offspring. However, the underlying mechanisms and theranostics remain unclear. We hypothesized that fetal and neonatal nicotine exposure enhances microRNA-181a (miR-181a) which targets large-conductance Ca2+-activated K+ (BKCa) channels, resulting in increased coronary vascular tone in adult offspring. METHODS Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Experiments were conducted in adult (~6 month old) male offspring. RESULTS Nicotine enhanced pressure-induced coronary vascular tone, which was abrogated by BKCa channel blocker. Nicotine selectively attenuated coronary BKCa β1 but not α subunit expression. Functionally, nicotine suppressed BKCa current density and inhibited BKCa activator NS1619-induced coronary relaxations. Furthermore, activation of BKCa increased coronary flow and improved heart ischemia/reperfusion-induced infarction. Nicotine selectively enhanced miR-181a expression. MiR-181a mimic inhibited BKCa β1 expression/channel current and decreased NS1619-induced coronary relaxation. Antioxidant eliminated the difference of BKCa current density between the saline and nicotine-treated groups and partially restored NS1619-induced relaxation in nicotine group. MiR-181a antisense decreased vascular tone and eliminated the differences between nicotine exposed and control groups. CONCLUSION Fetal and neonatal nicotine exposure-mediated miR-181a overexpression plays an important role in nicotine-enhanced coronary vascular tone via epigenetic down-regulation of BKca channel mechanism, which provides a potentially novel therapeutic molecular target of miR-181a/BKca channels for the treatment of coronary heart ischemic disease.
Collapse
Affiliation(s)
- Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jun Ke
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xiaohui Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andrew Walayat
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
26
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
27
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
28
|
Folic acid protects against experimental prenatal nicotine – induced cardiac injury by decreasing inflammatory changes, serum TNF and COX - 2 expression. PATHOPHYSIOLOGY 2018; 25:151-156. [DOI: 10.1016/j.pathophys.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/24/2018] [Accepted: 04/01/2018] [Indexed: 01/23/2023] Open
|
29
|
Ravera S, Podestà M, Sabatini F, Fresia C, Columbaro M, Bruno S, Fulcheri E, Ramenghi LA, Frassoni F. Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Cell Mol Life Sci 2018; 75:889-903. [PMID: 28975370 PMCID: PMC11105169 DOI: 10.1007/s00018-017-2665-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.
Collapse
Affiliation(s)
- Silvia Ravera
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IRCCS Rizzoli Orthopedic Institute, 40136, Bologna, Italy
| | - Silvia Bruno
- Section of Human Anatomy, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Ezio Fulcheri
- Laboratory Medicine and Diagnostic Services, Division of Perinatal Pathology, Department of Translational Research, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | | | - Francesco Frassoni
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
30
|
Tetreault L, Palubiski LM, Kryshtalskyj M, Idler RK, Martin AR, Ganau M, Wilson JR, Kotter M, Fehlings MG. Significant Predictors of Outcome Following Surgery for the Treatment of Degenerative Cervical Myelopathy. Neurosurg Clin N Am 2018; 29:115-127.e35. [DOI: 10.1016/j.nec.2017.09.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Kiguti LRA, Borges CS, Mueller A, Silva KP, Polo CM, Rosa JL, Silva PV, Missassi G, Valencise L, Kempinas WG, Pupo AS. Gender-specific impairment of in vitro sinoatrial node chronotropic responses and of myocardial ischemia tolerance in rats exposed prenatally to betamethasone. Toxicol Appl Pharmacol 2017; 334:66-74. [PMID: 28887130 DOI: 10.1016/j.taap.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023]
Abstract
Excessive fetal glucocorticoid exposure has been linked to increased susceptibility to hypertension and cardiac diseases in the adult life, a process called fetal programming. The cardiac contribution to the hypertensive phenotype of glucocorticoid-programmed progeny is less known, therefore, we investigated in vitro cardiac functional parameters from rats exposed in utero to betamethasone. Pregnant Wistar rats received vehicle (VEH) or betamethasone (BET, 0.1mg/kg, i.m.) at gestational days 12, 13, 18 and 19. Male and female offspring were killed at post-natal day 30 and the right atrium (RA) was isolated to in vitro evaluation of drug-induced chronotropic responses. Additionally, whole hearts were retrograde-perfused in a Langendorff apparatus and infarct size in response to in vitro ischemia/reperfusion (I/R) protocol was evaluated. Male and female progeny from BET-exposed pregnant rats had reduced birth weight, a hallmark of fetal programming. Male BET-progeny had increased basal RA rate, impaired chronotropic responses to noradrenaline and adenosine, and increased myocardial damage to I/R. Though a 12-fold reduction in the negative chronotropic responses to adenosine, the effects of non-metabolisable adenosine receptor agonists 5'-(N-ethylcarboxamido)adenosine or 2-Chloro-adenosine were not different between VEH- and BET-exposed male rats. BET-exposed female offspring presented no cardiac dysfunction. Prenatal BET exposure engenders male-specific impairment of sinoatrial node function and on myocardial ischemia tolerance resulting, at least in part, from an increased adenosine metabolism in the heart. In light of the importance of adenosine in the cardiac physiology our results suggest a link between reduced adenosinergic signaling and the cardiac dysfunctions observed in glucocorticoid-induced fetal programming.
Collapse
Affiliation(s)
- L R A Kiguti
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil.
| | - C S Borges
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A Mueller
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil; Instituto de Ciências da Saúde, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - K P Silva
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - C M Polo
- Department of Physiology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - J L Rosa
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - P V Silva
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - G Missassi
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - L Valencise
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - W G Kempinas
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A S Pupo
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| |
Collapse
|
32
|
Ke J, Dong N, Wang L, Li Y, Dasgupta C, Zhang L, Xiao D. Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring. Oncotarget 2017; 8:76865-76880. [PMID: 29100355 PMCID: PMC5652749 DOI: 10.18632/oncotarget.20172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023] Open
Abstract
Background and purpose Maternal cigarette smoking increases the risk of cardiovascular disease in offspring. Recently, we have demonstrated that perinatal nicotine exposure alters heart development and increases heart susceptibility to ischemia/reperfusion (I/R) injury in rat offspring. The present study tested the hypothesis that DNA methylation plays a key role in the nicotine-induced development of heart ischemia-sensitive phenotype in offspring. Experimental approach Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. After birth, the postnatal offspring were treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza) or saline from postnatal day 3 to day 10. Experiments were conducted in 1 month old offspring. Key results Perinatal nicotine increased I/R-induced left ventricular (LV) injury, and decreased post-ischemic recovery of the LV function and coronary flow rate in both male and female offspring. Nicotine differentially increased DNMT3a expression and global DNA methylation levels in LV tissues. Treatment with 5-Aza inhibited nicotine-induced an increase in DNMT3a and global DNA methylation, and blocked the nicotine-induced increase in I/R injury and dysfunction in the heart. In addition, nicotine attenuated protein kinases Cε and large-conductance Ca(2+)-activated K(+) (BKca) channel β1 subunit protein abundances in the heart, which were reversed by 5-Aza treatment. Conclusions and implications The present findings provide novel evidence that the increased DNA methylation plays a causal role in nicotine-induced development of heart ischemic sensitive phenotype, and suggest a potential therapeutic target of DNA demethylation for the fetal programming of heart ischemic disease later in life.
Collapse
Affiliation(s)
- Jun Ke
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Traditional Chinese Medicine, People's Hospital of Shanghai Putuo District, Shanghai, China.,Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
33
|
Barra NG, Lisyansky M, Vanduzer TA, Raha S, Holloway AC, Hardy DB. Maternal nicotine exposure leads to decreased cardiac protein disulfide isomerase and impaired mitochondrial function in male rat offspring. J Appl Toxicol 2017; 37:1517-1526. [PMID: 28681937 DOI: 10.1002/jat.3503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022]
Abstract
Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer-term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine-exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase-2 levels were reduced by 32% in these offspring concomitant with a 26-49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase-4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Maria Lisyansky
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Taylor A Vanduzer
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Departments of Obstetrics and Gynecology, Children's Health Research Institute, Lawson, Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
34
|
Rorabaugh BR, Seeley SL, Stoops TS, D’Souza MS. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart. PLoS One 2017; 12:e0179129. [PMID: 28575091 PMCID: PMC5456396 DOI: 10.1371/journal.pone.0179129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.
Collapse
Affiliation(s)
- Boyd R. Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
- * E-mail:
| | - Sarah L. Seeley
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| | - Thorne S. Stoops
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| | - Manoranjan S. D’Souza
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| |
Collapse
|
35
|
Gopalakrishnan K, More AS, Hankins GD, Nanovskaya TN, Kumar S. Postnatal Cardiovascular Consequences in the Offspring of Pregnant Rats Exposed to Smoking and Smoking Cessation Pharmacotherapies. Reprod Sci 2017; 24:919-933. [PMID: 27733658 PMCID: PMC5933098 DOI: 10.1177/1933719116673199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Approximately 20% of pregnant women smoke despite intentions to quit. Smoking cessation drugs, such as nicotine replacement therapy (NRT) and bupropion, are recommended treatments. Adverse cardiovascular outcomes in offspring have raised concerns about NRT's safety during pregnancy. However, the effect of bupropion is unknown. Using a rat model, we determined whether NRT and bupropion interventions during pregnancy are safer than continued smoking on offspring's cardiovascular function. Male offspring of controls and dams exposed to cigarette smoke (1.6 packs/day, inhalation), nicotine (2 mg/kg/d subcutaneously), and bupropion (13 mg/kg twice daily orally) were assessed for fetoplacental weight, cardiac function, blood pressure, and vascular reactivity. Fetoplacental weights were decreased and spontaneous beating and intracellular calcium in neonatal cardiomyocytes were increased in smoking, nicotine, and bupropion offspring; however, these effects were more accentuated in smoking followed by nicotine and bupropion offspring. Increased heart rate and decreased cardiac output, stroke volume, and left ventricular percent posterior wall thickening were observed in smoking, nicotine, and bupropion offspring. The left ventricular mass was reduced in smoking and nicotine but not in bupropion offspring. Blood pressure was higher with decreased endothelium-dependent relaxation and exaggerated vascular contraction to angiotensin II in smoking and nicotine offspring, with more pronounced dysfunctions in smoking than nicotine offspring. Maternal bupropion did not impact offspring's blood pressure, endothelium-dependent relaxation, and vascular contraction. In conclusion, maternal nicotine intervention adversely affects offspring's cardiovascular outcomes, albeit less severely than continued smoking. However, bupropion causes cardiac derangement in offspring but does not adversely affect blood pressure and vascular function.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Amar S. More
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gary D. Hankins
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Tatiana N. Nanovskaya
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sathish Kumar
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
36
|
Inhibition of Gata4 and Tbx5 by Nicotine-Mediated DNA Methylation in Myocardial Differentiation. Stem Cell Reports 2017; 8:290-304. [PMID: 28111280 PMCID: PMC5312513 DOI: 10.1016/j.stemcr.2016.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022] Open
Abstract
Maternal nicotine exposure causes alteration of gene expression and cardiovascular programming. The discovery of nicotine-medicated regulation in cardiogenesis is of major importance for the study of cardiac defects. The present study investigated the effect of nicotine on cardiac gene expression and epigenetic regulation during myocardial differentiation. Persistent nicotine exposure selectively inhibited expression of two cardiac genes, Tbx5 and Gata4, by promoter DNA hypermethylation. The nicotine-induced suppression on cardiac differentiation was restored by general nicotinic acetylcholine receptor inhibition. Consistent results of Tbx5 and Gata4 gene suppression and cardiac function impairment with decreased left ventricular ejection fraction were obtained from in vivo studies in offspring. Our results present a direct repressive effect of nicotine on myocardial differentiation by regulating cardiac gene suppression via promoter DNA hypermethylation, contributing to the etiology of smoking-associated cardiac defects. Nicotine downregulates Tbx5 and Gata4 during in vitro and in vivo cardiogenesis Nicotine causes diminished cardiac differentiation and impaired cardiac function Nicotine causes Tbx5 and Gata4 gene suppression via promoter DNA hypermethylation nAChR antagonist restores nicotine-induced gene suppression and DNA methylation
Collapse
|
37
|
Wang L, Ke J, Li Y, Ma Q, Dasgupta C, Huang X, Zhang L, Xiao D. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats. Int J Biol Sci 2017; 13:76-84. [PMID: 28123348 PMCID: PMC5264263 DOI: 10.7150/ijbs.17278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/27/2016] [Indexed: 01/19/2023] Open
Abstract
Maternal tobacco use in pregnancy increases the risk of neurodevelopmental disorders and neurobehavioral deficits in postnatal life. The present study tested the hypothesis that perinatal nicotine exposure exacerbated brain vulnerability to hypoxic-ischemic (HI) injury in neonatal rats through up-regulation of miR-210 expression in the developing brain. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Experiments of HI brain injury were performed in 10-day-old pups. Perinatal nicotine treatment significantly decreased neonatal body and brain weights, but increased the brain to body weight ratio. Perinatal nicotine exposure caused a significant increase in HI brain infarct size in the neonates. In addition, nicotine enhanced miR-210 expression and significantly attenuated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase isoform B (TrkB) protein abundance in the brain. Of importance, intracerebroventricular administration of a miR-210 inhibitor (miR-210-LNA) significantly decreased HI-induced brain infarct size and reversed the nicotine-increased vulnerability to brain HI injury in the neonate. Furthermore, miR-210-LNA treatment also reversed nicotine-mediated down-regulation of BDNF and TrkB protein expression in the neonatal brains. These findings provide novel evidence that the increased miR-210 plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the brain. It represents a potential novel therapeutic approach for treatment of brain hypoxic-ischemic encephalopathy in the neonate-induced by fetal stress.
Collapse
Affiliation(s)
- Lei Wang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.; Department of Traditional Chinese Medicine, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Jun Ke
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.; Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Qinyi Ma
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
38
|
Jalili C, Salahshoor MR, Moradi MT, Ahookhash M, Taghadosi M, Sohrabi M. Expression Changes of Apoptotic Genes in Tissues from Mice Exposed to Nicotine. Asian Pac J Cancer Prev 2017; 18:239-244. [PMID: 28240526 PMCID: PMC5563107 DOI: 10.22034/apjcp.2017.18.1.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: Smoking is the leading preventable cause of various diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Nicotine, one of the major toxic components of tobacco, contributes to the pathogenesis of different diseases. Methods: Given the controversy about nicotine toxicity, the present study was conducted to determine apoptotic effects of nicotine on the heart, kidney, lung and liver of male mice. Real-time PCR was performed to identify mRNA expression changes in apoptotic-related genes between nicotine treated and control mice. Result: In the heart and lung, nicotine caused significant decrease in P53, Bax and Caspase-3 mRNA expression levels compared to the control group. However, in the kidney and liver, the result was significant increase in Bax, Caspase-2, Caspase-3 and a significant decrease in P53 mRNA expression (p<0.01). DNA fragmentation assays indicated no fragmentation in the heart and lung, but in the kidney and liver of nicotine treated mice, isolated DNA was fragmented. Conclusion: Our study provided insight into the molecular mechanisms of nicotine anti-apoptotic effects on the heart and lung as well as pro-apoptotic effects on kidney and liver via a P53-independent pathway.
Collapse
Affiliation(s)
- Cyrus Jalili
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | | | | | | | |
Collapse
|
39
|
Zhang P, Lv J, Li Y, Zhang L, Xiao D. Neonatal Lipopolysaccharide Exposure Gender-Dependently Increases Heart Susceptibility to Ischemia/Reperfusion Injury in Male Rats. Int J Med Sci 2017; 14:1163-1172. [PMID: 29104471 PMCID: PMC5666548 DOI: 10.7150/ijms.20285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Adverse stress exposure during the early neonatal period has been shown to cause aberrant development, resulting in an increased risk of adult disease. We tested the hypothesis that neonatal exposure to lipopolysaccharide (LPS) does not alter heart function at rest condition but causes heart dysfunction under stress stimulation later in life. Methods: Saline control or LPS were administered to neonatal rats via intraperitoneal injection. Experiments were conducted in 6 week-old male and female rats. Isolated hearts were perfused in a Langendorff preparation. Results: Neonatal LPS exposure exhibited no effects on the body weight of the developing rats, but induced decreases in the left ventricle (LV) to the body weight ratio in male rats. Neonatal LPS exposure showed no effects on the baseline heart function determined by in vivo and ex vivo experiments, but caused decreases in the post-ischemic recovery of the LV function in male but not female rats. Neonatal LPS-mediated LV dysfunction was associated with an increase in myocardial infarct size and the LDH release in the male rats. Conclusion: The present study provides novel evidence that neonatal immune challenges could induce gender-dependent long-term effects on cardiac development and heart function, which reinforces the notion that adverse stress exposure during the early neonatal period can aggravate heart functions and the development of a heart ischemia-sensitive phenotype later in life.
Collapse
Affiliation(s)
- Peng Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juanxiu Lv
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
40
|
Sarmah S, Chism GW, Vaughan MA, Muralidharan P, Marrs JA, Marrs KA. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses. Zebrafish 2016; 13:293-304. [PMID: 26829498 PMCID: PMC5911693 DOI: 10.1089/zeb.2015.1107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Grady W Chism
- Department of Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Martin A Vaughan
- Department of Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Jim A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Kathleen A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| |
Collapse
|
41
|
Yu F, Zheng A, Qian J, Li Y, Wu L, Yang J, Gao X. Prenatal nicotine exposure results in the myocardial fibrosis in the adult male offspring rats. ACTA ACUST UNITED AC 2016; 68:445-50. [PMID: 27436000 DOI: 10.1016/j.etp.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/07/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
Our previous study showed that prenatal nicotine exposure could increase the heart rate of adult male offspring rats, but little is known about the mechanism. The aim of this study was to investigate the mechanism. Nicotine was subcutaneously administered to pregnant rats at a dose of 1.5mgkg(-1) from the gestational days 3-21; the control group received the same volume of saline by the same route. The offsprings' heart weight, ejection function, ultrastructure, and blood hormones were determined. The present study exhibited that prenatal nicotine exposure significantly decreased the offsprings' heart and body weight at gestational day 21 and at day 15 after birth, but had no effect on the heart and body weight at 90 days after birth. The hearts were fibrosed in the nicotine exposed male offsprings, and the heart ejection functions of the nicotine male offsprings at 90 days after birth were decreased, including SV, FS and EF. In addition, prenatal nicotine exposure significantly increased the offspring's blood adrenaline and norepinephrine levels. These data suggest that the increased heart rate caused by prenatal nicotine exposure may be a result of myocardial fibrosis, which leads to heart function decreases, and these data imply a myocardial fibrosis risk of prenatal nicotine exposure.
Collapse
Affiliation(s)
- Feng Yu
- School of Medicine and Nursing sciences, Huzhou University, Huzhou, China.
| | - Aiqiang Zheng
- Department of Cardiology, Changxing People's Hospital, China
| | - Jin Qian
- School of Medicine and Nursing sciences, Huzhou University, Huzhou, China
| | - Yuexia Li
- School of Medicine and Nursing sciences, Huzhou University, Huzhou, China
| | - Lei Wu
- Centers for Disease Control and Prevention of Suzhou Industrial Park, Suzhou 215021, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xiren Gao
- School of Medicine and Nursing sciences, Huzhou University, Huzhou, China
| |
Collapse
|
42
|
Tetreault L, Wilson JR, Kotter MRN, Nouri A, Côté P, Kopjar B, Arnold PM, Fehlings MG. Predicting the minimum clinically important difference in patients undergoing surgery for the treatment of degenerative cervical myelopathy. Neurosurg Focus 2016; 40:E14. [DOI: 10.3171/2016.3.focus1665] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE
The minimum clinically important difference (MCID) is defined as the minimum change in a measurement that a patient would identify as beneficial. Before undergoing surgery, patients are likely to inquire about the ultimate goals of the operation and of their chances of experiencing meaningful improvements. The objective of this study was to define significant predictors of achieving an MCID on the modified Japanese Orthopaedic Association (mJOA) scale at 2 years following surgery for the treatment of degenerative cervical myelopathy (DCM).
METHODS
Seven hundred fifty-seven patients were prospectively enrolled in either the AOSpine North America or International study at 26 global sites. Fourteen patients had a perfect preoperative mJOA score of 18 and were excluded from this analysis (n = 743). Data were collected for each participating subject, including demographic information, symptomatology, medical history, causative pathology, and functional impairment. Univariate log-binominal regression analyses were conducted to evaluate the association between preoperative clinical factors and achieving an MCID on the mJOA scale. Modified Poisson regression using robust error variances was used to create the final multivariate model and compute the relative risk for each predictor.
RESULTS
The sample consisted of 463 men (62.31%) and 280 women (37.69%), with an average age of 56.48 ± 11.85 years. At 2 years following surgery, patients exhibited a mean change in functional status of 2.71 ± 2.89 points on the mJOA scale. Of the 687 patients with available follow-up data, 481 (70.01%) exhibited meaningful gains on the mJOA scale, whereas 206 (29.98%) failed to achieve an MCID. Based on univariate analysis, significant predictors of achieving the MCID on the mJOA scale were younger age; female sex; shorter duration of symptoms; nonsmoking status; a lower comorbidity score and absence of cardiovascular disease; and absence of upgoing plantar responses, lower-limb spasticity, and broad-based unstable gait. The final model included age (relative risk [RR] 0.924, p < 0.0001), smoking status (RR 0.837, p = 0.0043), broad-based unstable gait (RR 0.869, p = 0.0036), and duration of symptoms (RR 0.943, p = 0.0003).
CONCLUSIONS
In this large multinational prospective cohort, 70% of patients treated surgically for DCM exhibited a meaningful functional gain on the mJOA scale. The key predictors of achieving an MCID on the mJOA scale were younger age, shorter duration of symptoms, nonsmoking status, and lack of significant gait impairment.
Collapse
Affiliation(s)
- Lindsay Tetreault
- 1Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto
| | - Jefferson R. Wilson
- 1Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto
| | - Mark R. N. Kotter
- 1Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto
| | - Aria Nouri
- 1Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto
| | - Pierre Côté
- 2University of Ontario Institute of Technology, Faculty of Health Sciences, Oshawa, Ontario, Canada
| | - Branko Kopjar
- 3Department of Health Services, School of Public Health, University of Washington, Seattle, Washington; and
| | - Paul M. Arnold
- 4Department of Neurosurgery, University of Kansas, Kansas City, Kansas
| | - Michael G. Fehlings
- 1Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto
| |
Collapse
|
43
|
Xiao D, Wang L, Huang X, Li Y, Dasgupta C, Zhang L. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring. PLoS One 2016; 11:e0150557. [PMID: 26918336 PMCID: PMC4769226 DOI: 10.1371/journal.pone.0150557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/15/2016] [Indexed: 01/19/2023] Open
Abstract
Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS) in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC) in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε) protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β) protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lei Wang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Traditional Chinese Medicine, Shanghai Putuo District People’s Hospital, Shanghai, PR China
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
44
|
Rorabaugh BR, Seeley SL, Bui AD, Sprague L, D'Souza MS. Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts. Am J Physiol Heart Circ Physiol 2015; 310:H516-23. [PMID: 26683901 DOI: 10.1152/ajpheart.00642.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
Abstract
Methamphetamine is one of the most common illicit drugs abused during pregnancy. The neurological effects of prenatal methamphetamine are well known. However, few studies have investigated the potential effects of prenatal methamphetamine on adult cardiovascular function. Previous work demonstrated that prenatal cocaine exposure increases sensitivity of the adult heart to ischemic injury. Methamphetamine and cocaine have different mechanisms of action, but both drugs exert their effects by increasing dopaminergic and adrenergic receptor stimulation. Thus the goal of this study was to determine whether prenatal methamphetamine also worsens ischemic injury in the adult heart. Pregnant rats were injected with methamphetamine (5 mg·kg(-1)·day(-1)) or saline throughout pregnancy. When pups reached 8 wk of age, their hearts were subjected to ischemia and reperfusion by means of a Langendorff isolated heart system. Prenatal methamphetamine had no significant effect on infarct size, preischemic contractile function, or postischemic recovery of contractile function in male hearts. However, methamphetamine-treated female hearts exhibited significantly larger infarcts and significantly elevated end-diastolic pressure during recovery from ischemia. Methamphetamine significantly reduced protein kinase Cε expression and Akt phosphorylation in female hearts but had no effect on these cardioprotective proteins in male hearts. These data indicate that prenatal methamphetamine differentially affects male and female sensitivity to myocardial ischemic injury and alters cardioprotective signaling proteins in the adult heart.
Collapse
Affiliation(s)
| | - Sarah L Seeley
- Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio
| | - Albert D Bui
- Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio
| | - Lisanne Sprague
- Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio
| | | |
Collapse
|
45
|
Porteous MK, Diamond JM, Christie JD. Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant 2015; 20:506-14. [PMID: 26262465 PMCID: PMC4624097 DOI: 10.1097/mot.0000000000000232] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In 2005, the International Society for Heart and Lung Transplantation published a standardized definition of primary graft dysfunction (PGD), facilitating new knowledge on this form of acute lung injury that occurs within 72 h of lung transplantation. PGD continues to be associated with significant morbidity and mortality. This article will summarize the current literature on the epidemiology of PGD, pathogenesis, risk factors, and preventive and treatment strategies. RECENT FINDINGS Since 2011, several manuscripts have been published that provide insight into the clinical risk factors and pathogenesis of PGD. In addition, several transplant centers have explored preventive and treatment strategies for PGD, including the use of extracorporeal strategies. More recently, results from several trials assessing the role of extracorporeal lung perfusion may allow for much-needed expansion of the donor pool, without raising PGD rates. SUMMARY This article will highlight the current state of the science regarding PGD, focusing on recent advances, and set a framework for future preventive and treatment strategies.
Collapse
Affiliation(s)
- Mary K Porteous
- aDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA bCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
46
|
Xue Q, Chen P, Li X, Zhang G, Patterson AJ, Luo J. Maternal High-Fat Diet Causes a Sex-Dependent Increase in AGTR2 Expression and Cardiac Dysfunction in Adult Male Rat Offspring1. Biol Reprod 2015; 93:49. [DOI: 10.1095/biolreprod.115.129916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
|
47
|
Xiao D, Huang X, Li Y, Dasgupta C, Wang L, Zhang L. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring. Biol Reprod 2015. [PMID: 26224008 DOI: 10.1095/biolreprod.115.132381] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lei Wang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
48
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
49
|
Suter MA, Mastrobattista J, Sachs M, Aagaard K. Is there evidence for potential harm of electronic cigarette use in pregnancy? ACTA ACUST UNITED AC 2014; 103:186-95. [PMID: 25366492 DOI: 10.1002/bdra.23333] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Use of electronic cigarettes (e-cigarettes) and other nicotine containing products is increasing among women of reproductive age. The short- and long-term effects of these products on both mother and fetus are unknown. METHODS Because e-cigarettes are nicotine delivery systems, we sought to conduct a comprehensive review of the effects of nicotine on the fetus. RESULTS In utero nicotine exposure in animal models is associated with adverse effects for the offspring lung, cardiovascular system and brain. In the lung, this included reduced surface area, weight, and volume, as well as emphysema-like lesions. In adulthood, exposed offspring demonstrate elevated blood pressure and increased perivascular adipose tissue. In the brain, exposure alters offspring serotonergic, dopaminergic, and norepinephrine networks, which in turn are associated with behavioral and cognitive impairments. We also review current data on the lack of efficacy of nicotine replacement therapy in pregnant women, and highlight different nicotine containing products such as snuff, snus, and hookah. CONCLUSION We conclude that no amount of nicotine is known to be safe during pregnancy, and studies specifically addressing this risk are crucial and an imminent public health issue.
Collapse
Affiliation(s)
- Melissa A Suter
- Baylor College of Medicine, Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Houston, Texas
| | | | | | | |
Collapse
|
50
|
Xiao D, Dasgupta C, Li Y, Huang X, Zhang L. Perinatal nicotine exposure increases angiotensin II receptor-mediated vascular contractility in adult offspring. PLoS One 2014; 9:e108161. [PMID: 25265052 PMCID: PMC4179262 DOI: 10.1371/journal.pone.0108161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022] Open
Abstract
Previous studies have reported that perinatal nicotine exposure causes development of hypertensive phenotype in adult offspring. Aims The present study was to determine whether perinatal nicotine exposure causes an epigenetic programming of vascular Angiotensin II receptors (ATRs) and their-mediated signaling pathway leading to heightened vascular contraction in adult offspring. Main methods Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. The experiments were conducted at 5 months of age of male offspring. Key Findings Nicotine treatment enhanced Angitension II (Ang II)-induced vasoconstriction and 20-kDa myosin light chain phosphorylation (MLC20-P) levels. In addition, the ratio of Ang II-induced tension/MLC-P was also significantly increased in nicotine-treated group compared with the saline group. Nicotine-mediated enhanced constrictions were not directly dependent on the changes of [Ca2+]i concentrations but dependent on Ca2+ sensitivity. Perinatal nicotine treatment significantly enhanced vascular ATR type 1a (AT1aR) but not AT1bR mRNA levels in adult rat offspring, which was associated with selective decreases in DNA methylation at AT1aR promoter. Contrast to the effect on AT1aR, nicotine decreased the mRNA levels of vascular AT2R gene, which was associated with selective increases in DNA methylation at AT2R promoter. Significance Our results indicated that perinatal nicotine exposure caused an epigenetic programming of vascular ATRs and their-mediated signaling pathways, and suggested that differential regulation of AT1R/AT2R gene expression through DNA methylation mechanism may be involved in nicotine-induced heightened vasoconstriction and development of hypertensive phenotype in adulthood.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- * E-mail:
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|