1
|
Guo S, Tong Y, Li T, Yang K, Gao W, Peng F, Zou X. Endoplasmic Reticulum Stress-Mediated Cell Death in Renal Fibrosis. Biomolecules 2024; 14:919. [PMID: 39199307 PMCID: PMC11352060 DOI: 10.3390/biom14080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (S.G.); (Y.T.); (T.L.); (K.Y.); (W.G.); (F.P.)
| |
Collapse
|
2
|
Matthews J, Herat L, Schlaich MP, Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int J Mol Sci 2023; 24:14243. [PMID: 37762542 PMCID: PMC10532235 DOI: 10.3390/ijms241814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
Collapse
Affiliation(s)
- Jennifer Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Lakshini Herat
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Markus P. Schlaich
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Medicine, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| |
Collapse
|
3
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Hirata T, Ohara H, Kojima N, Koretsune H, Hasegawa Y, Inatani S, Takahashi T. Renoprotective Effect of TP0472993, a Novel and Selective 20-Hydroxyeicosatetraenoic Acid Synthesis Inhibitor, in Mouse Models of Renal Fibrosis. J Pharmacol Exp Ther 2023; 386:56-69. [PMID: 37142440 DOI: 10.1124/jpet.122.001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Kidney fibrosis is considered the essential pathophysiological process for the progression of chronic kidney disease (CKD) toward renal failure. 20-Hydroxyeicosatetraenoic acid (20-HETE) has crucial roles in modulating the vascular response in the kidney and the progression of albuminuria. However, the roles of 20-HETE in kidney fibrosis are largely unexplored. In the current research, we hypothesized that if 20-HETE has important roles in the progression of kidney fibrosis, 20-HETE synthesis inhibitors might be effective against kidney fibrosis. To verify our hypothesis, this study investigated the effect of a novel and selective 20-HETE synthesis inhibitor, TP0472993, on the development of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice. Chronic treatment with TP0472993 at doses of 0.3 and 3 mg/kg twice a day attenuated the degree of kidney fibrosis in the folic acid nephropathy and the unilateral ureteral obstruction (UUO) mice, as demonstrated by reductions in Masson's trichrome staining and the renal collagen content. In addition, TP0472993 reduced renal inflammation, as demonstrated by markedly reducing interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) levels in the renal tissue. Chronic treatment with TP0472993 also reduced the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) in the kidney of UUO mice. Our observations indicate that inhibition of 20-HETE production with TP0472993 suppresses the kidney fibrosis progression via a reduction in the ERK1/2 and STAT3 signaling pathway, suggesting that 20-HETE synthesis inhibitors might be a novel treatment option against CKD. SIGNIFICANCE STATEMENT: In this study, we demonstrate that the pharmacological blockade of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis using TP0472993 suppresses the progression of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice, indicating that 20-HETE might have key roles in the pathogenesis of kidney fibrosis. TP0472993 has the potential to be a novel therapeutic approach against chronic kidney disease.
Collapse
Affiliation(s)
- Takashi Hirata
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hiroki Ohara
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Naoki Kojima
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hiroko Koretsune
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yoshitaka Hasegawa
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Shoko Inatani
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Teisuke Takahashi
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
5
|
Ma Y, Lin C, Cai X, Hu S, Zhu X, Lv F, Yang W, Ji L. Baseline eGFR, albuminuria and renal outcomes in patients with SGLT2 inhibitor treatment: an updated meta-analysis. Acta Diabetol 2023; 60:435-445. [PMID: 36609865 DOI: 10.1007/s00592-022-02022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
AIMS To elucidate the association between baseline renal characteristics and the disparities in renal outcomes among patients with SGLT2i treatment. METHODS Pubmed, Medline, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov were searched from inception to November 2022. Event-driven randomized controlled trials of SGLT2i with reports of renal outcomes were included. Sensitivity analyses of prespecified eGFR and UACR subgroups were conducted. RESULTS Generally, compared with placebo, the use of SGLT2i was associated with improved renal prognosis (HR = 0.64, 95%CI 0.59-0.70). The magnitude of risk reductions in composite renal outcomes between SGLT2i versus placebo was comparable among different eGFR stratifications (normal renal function: HR = 0.49, 95%CI 0.31-0.79; mild renal impairment: HR = 0.57, 95%CI 0.48-0.68; moderate renal impairment: HR = 0.70, 95%CI 0.63-0.78; severe renal impairment: HR = 0.72, 95%CI 0.62-0.84; P for subgroup difference = 0.09). However, renal benefits seemd to be more prominent in normal to mildly increased albuminuria stratum (HR = 0.51, 95%CI 0.39-0.66) and severely increased albuminuria stratum (HR = 0.57, 95%CI 0.47-0.68), when compared with moderately increased albuminuria stratum (HR = 0.79, 95%CI 0.65-0.96; P for subgroup difference = 0.01). CONCLUSIONS Generally, the use of SGLT2i was consistently associated with decreased risk of renal events in all prespecified eGFR and albuminuria spectrums, even in patients with substantial renal impairment. The renal benefits of SGLT2i seemed to be independent of baseline eGFR, while the risk reduction in renal events was more profound among patients with mildly increased albuminuria or severely increased albuminuria.
Collapse
Affiliation(s)
- Yunke Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xingyun Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
6
|
Kuang Z, Hou N, Kan C, Han F, Qiu H, Sun X. The protective effects of SGLT-2 inhibitors, GLP-1 receptor agonists, and RAAS blockers against renal injury in patients with type 2 diabetes. Int Urol Nephrol 2023; 55:617-629. [PMID: 36036316 DOI: 10.1007/s11255-022-03355-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
Abstract
Diabetic kidney disease is one of the most severe complications of type 2 diabetes mellitus. Patients with diabetic kidney disease have a worse prognosis in terms of mortality and morbidity, compared with patients who have diabetes alone. Strict control of blood pressure and blood glucose is the primary method for prevention of initial kidney damage and delaying further progression of existing damage. Other management approaches include the use of exogenous drugs that can effectively protect the kidneys from diabetes, such as sodium-glucose transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and renin-angiotensin-aldosterone system blockers. These drugs may protect against kidney injury through various molecular mechanisms. This review focuses on renal impairment in patients with type 2 diabetes; it discusses the direct and indirect effects of sodium-glucose transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and renin-angiotensin-aldosterone system blockers on diabetic kidney disease. Finally, it discusses the effects of combination treatment with two or three types of drugs in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Zengguang Kuang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
7
|
Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep 2023; 75:44-68. [PMID: 36534320 DOI: 10.1007/s43440-022-00442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter inhibitors (SGLT2i) are a new class of anti-diabetic drugs that have beneficial cardiovascular and renal effects. These drugs decrease proximal tubular glucose reabsorption and decrease blood glucose levels as a main anti-diabetic action. Furthermore, SGLT2i decreases glomerular hyperfiltration by a tubuloglomerular feedback mechanism. However, the renal benefits of these agents are independent of glucose-lowering and hemodynamic factors, and SGLT2i also impacts the kidney structure including kidney fibrosis. Renal fibrosis is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), and amelioration of renal fibrosis is of utmost importance to reduce the progression of CKD. Recent studies have shown that SGLT2i impact many cellular processes including inflammation, hypoxia, oxidative stress, metabolic functions, and renin-angiotensin system (RAS) which all are related with kidney fibrosis. Indeed, most but not all studies showed that renal fibrosis was ameliorated by SGLT2i through the reduction of inflammation, hypoxia, oxidative stress, and RAS activation. In addition, less known effects on SGLT2i on klotho expression, capillary rarefaction, signal transducer and activator of transcription signaling and peptidylprolyl cis/trans isomerase (Pin1) levels may partly explain the anti-fibrotic effects of SGLT2i in kidneys. It is important to remember that some studies have not shown any beneficial effects of SGLT2i on kidney fibrosis. Given this background, in the current review, we have summarized the studies and pathophysiologic aspects of SGL2 inhibition on renal fibrosis in various CKD models and tried to explain the potential reasons for contrasting findings.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Cornejo MA, Jardines E, Nishiyama A, Nakano D, Ortiz RM. Simultaneous SGLT2 inhibition and caloric restriction improves insulin resistance and kidney function in OLETF rats. Mol Cell Endocrinol 2023; 560:111811. [PMID: 36397615 DOI: 10.1016/j.mce.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022]
Abstract
SGLT2 inhibitors (SGLT2i) are emerging as a novel therapy for type 2 diabetes due to their effective hypoglycemic and potential cardio- and nephroprotective effects, while caloric restriction (CR) is a common behavioral modification to improve adiposity and insulin resistance. Therefore, both interventions simultaneously may potentially further improve metabolic syndrome by enhancing carbohydrate metabolism. To test this hypothesis, cohorts of 10-week old, male Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were treated with SGLT2i (10 mg luseoglifozin/kg/day x 4 wks) (OLETF only) and/or 30% CR (2 wks at 12 weeks of age). CR maintained body mass in both strains while SGLT2i alone did not have any effect on body mass. Simultaneous treatments decreased SBP in OLETF vs SGLT2i alone, decreased insulin resistance index (IRI), and increased creatinine clearance vs OLETF ad lib. Conversely, CR decreased albuminuria independent of SGLT2i. In conclusion, SGLT2i treatment by itself did not elicit significant improvements in insulin resistance, kidney function or blood pressure. However, when combined with CR, these changes where more profound than with CR alone without inducing chronic hypoglycemia.
Collapse
Affiliation(s)
- Manuel A Cornejo
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - Eira Jardines
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
9
|
Wang Y, Mao X, Shi S, Xu X, Lv J, Zhang B, Wu H, Song Q. SGLT2 inhibitors in the treatment of type 2 cardiorenal syndrome: Focus on renal tubules. FRONTIERS IN NEPHROLOGY 2023; 2:1109321. [PMID: 37674989 PMCID: PMC10479647 DOI: 10.3389/fneph.2022.1109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/22/2022] [Indexed: 09/08/2023]
Abstract
The pathogenesis of type 2 cardiorenal syndrome (CRS) is mostly associated with reduced cardiac output, increased central venous pressure (CVP), activation of the renin-angiotensin-aldosterone system (RAAS), inflammation, and oxidative stress. As a drug to treat diabetes, sodium-glucose transporter 2 inhibitor (SGLT2i) has been gradually found to have a protective effect on the heart and kidney and has a certain therapeutic effect on CRS. In the process of chronic heart failure (CHF) leading to chronic renal insufficiency, the renal tubular system, as the main functional part of the kidney, is the first to be damaged, but this damage can be reversed. In this review, we focus on the protective mechanisms of SGLT2i targeting renal tubular in the treatment of CRS, including natriuresis and diuresis to relieve renal congestion, attenuate renal tubular fibrosis, improve energy metabolism of renal tubular, and slow tubular inflammation and oxidative stress. This may have beneficial effects on the treatment of CRS and is a direction for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqiao Song
- Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Sun X, Wang G. Renal outcomes with sodium-glucose cotransporters 2 inhibitors. Front Endocrinol (Lausanne) 2022; 13:1063341. [PMID: 36531469 PMCID: PMC9752889 DOI: 10.3389/fendo.2022.1063341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of diabetes. Therefore, delaying and preventing the progression of DN becomes an important goal in the clinical treatment of type 2 diabetes mellitus. Recent studies confirm that sodium-glucose cotransporters 2 inhibitors (SGLT2is) have been regarded as effective glucose-lowering drugs with renal protective effect. In this review, we summarize in detail the present knowledge of the effects of SGLT2is on renal outcomes by analyzing the experimental data in preclinical study, the effects of SGLT2is on estimated glomerular flitration rates (eGFRs) and urinary albumin-creatinine ratios (UACRs) from clinical trials and observational studies, and renal events (such as renal death or renal failure requiring renal replacement therapy) in some large prospective cardiovaslucar outcomes trials. The underlying mechanisms for renoprotective activity of SGLT2is have been demondtrated in multiple diabetic and nondiabetic animal models including kidney-specific effects and secondary kidney effects related to amelioration in blood glucose and blood pressure. In conclusion, these promising results show that SGLT2is act beneficially in terms of the kidney for diabetic patients.
Collapse
Affiliation(s)
| | - Guohong Wang
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Williams JM, Murphy SR, Wu W, Border JJ, Fan F, Roman RJ. Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy superimposed with hypertension. GeroScience 2022; 44:2845-2861. [PMID: 35767209 PMCID: PMC9768063 DOI: 10.1007/s11357-022-00610-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Diabetes, hypertension, and aging are major contributors to cardiovascular and chronic kidney disease (CKD). Sodium/glucose cotransporter 2 (SGLT2) inhibitors have become a preferred treatment for type II diabetic patients since they have cardiorenal protective effects. However, most elderly diabetic patients also have hypertension, and the effects of SGLT2 inhibitors have not been studied in hypertensive diabetic patients or animal models. The present study examined if controlling hyperglycemia with empagliflozin, or given in combination with lisinopril, slows the progression of renal injury in hypertensive diabetic rats. Studies were performed using hypertensive streptozotocin-induced type 1 diabetic Dahl salt-sensitive (STZ-SS) rats and in deoxycorticosterone-salt hypertensive type 2 diabetic nephropathy (T2DN) rats. Administration of empagliflozin alone or in combination with lisinopril reduced blood glucose, proteinuria, glomerular injury, and renal fibrosis in STZ-SS rats without altering renal blood flow (RBF) or glomerular filtration rate (GFR). Blood pressure and renal hypertrophy were also reduced in rats treated with empagliflozin and lisinopril. Administration of empagliflozin alone or in combination with lisinopril lowered blood glucose, glomerulosclerosis, and renal fibrosis but had no effect on blood pressure, kidney weight, or proteinuria in hypertensive T2DN rats. RBF was not altered in any of the treatment groups, and GFR was elevated in empagliflozin-treated hypertensive T2DN rats. These results indicate that empagliflozin is highly effective in controlling blood glucose levels and slows the progression of renal injury in both hypertensive type 1 and type 2 diabetic rats, especially when given in combination with lisinopril to lower blood pressure.
Collapse
Affiliation(s)
- Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenjie Wu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jane J Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
12
|
Iida T, Hosojima M, Kabasawa H, Yamamoto-Kabasawa K, Goto S, Tanaka T, Kitamura N, Nakada M, Itoh S, Ogasawara S, Kaseda R, Suzuki Y, Narita I, Saito A. Urinary A- and C-megalin predict progression of diabetic kidney disease: an exploratory retrospective cohort study. J Diabetes Complications 2022; 36:108312. [PMID: 36228564 DOI: 10.1016/j.jdiacomp.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
AIMS Megalin, a proximal tubular endocytosis receptor, is excreted in urine in two forms: ectodomain (A-megalin) and full-length (C-megalin). We explored whether urinary megalin levels can be used as independent prognostic biomarkers in the progression of diabetic kidney disease (DKD). METHODS The associations between baseline urinary A-megalin/creatinine (Cr) and/or C-megalin/Cr levels and the subsequent estimated glomerular filtration rate (eGFR) slope were analyzed using a generalized estimating equation. Patients were categorized into higher or lower groups based on the optimal cutoff values, obtained from a receiver operating characteristic curve, of the two forms of urinary megalin. RESULTS We retrospectively analyzed 188 patients with type 2 diabetes. The eGFR slopes of the higher A-megalin/Cr and higher C-megalin/Cr groups were - 0.904 and -0.749 ml/min/1.73 m2/year steeper than those of the lower groups, respectively. Moreover, the eGFR slope was -1.888 ml/min/1.73 m2/year steeper in the group with both higher A- and higher C-megalin/Cr than in the other group. These results remained significant when adjusted for known urinary biomarkers (albumin, α1-microglobulin, β2-microglobulin, and N-acetyl-β-d-glucosaminidase). CONCLUSIONS Urinary A- and C-megalin/Cr levels are likely to be prognostic biomarkers in the progression of DKD independent of other urinary biomarkers.
Collapse
Affiliation(s)
- Tomomichi Iida
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan; Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan.
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Keiko Yamamoto-Kabasawa
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Sawako Goto
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Takahiro Tanaka
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8520, Japan
| | - Nobutaka Kitamura
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8520, Japan
| | - Mitsutaka Nakada
- Diagnostics Research Department, Life Innovation Research Institute, DENKA Innovation Center, Denka Co., Ltd., 3-5-1 Asahimachi, Machida, Tokyo 194-8560, Japan
| | - Shino Itoh
- Diagnostics Research Department, Life Innovation Research Institute, DENKA Innovation Center, Denka Co., Ltd., 3-5-1 Asahimachi, Machida, Tokyo 194-8560, Japan
| | - Shinya Ogasawara
- Diagnostics Research Department, Life Innovation Research Institute, DENKA Innovation Center, Denka Co., Ltd., 3-5-1 Asahimachi, Machida, Tokyo 194-8560, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Yoshiki Suzuki
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan.
| |
Collapse
|
13
|
Lytvyn Y, Kimura K, Peter N, Lai V, Tse J, Cham L, Perkins BA, Soleymanlou N, Cherney DZ. Renal and Vascular Effects of Combined SGLT2 and Angiotensin-Converting Enzyme Inhibition. Circulation 2022; 146:450-462. [PMID: 35862082 PMCID: PMC9354594 DOI: 10.1161/circulationaha.122.059150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The cardiorenal effects of sodium-glucose cotransporter 2 inhibition (empagliflozin 25 mg QD) combined with angiotensin-converting enzyme inhibition (ramipril 10 mg QD) were assessed in this mechanistic study in patients with type 1 diabetes with potential renal hyperfiltration. METHODS Thirty patients (out of 31 randomized) completed this double-blind, placebo-controlled, crossover trial. Recruitment was stopped early because of an unexpectedly low proportion of patients with hyperfiltration. Measurements were obtained after each of the 6 treatment phases over 19 weeks: (1) baseline without treatment, (2) 4-week run-in with ramipril treatment alone, (3) 4-week combined empagliflozin-ramipril treatment, (4) a 4-week washout, (5) 4-week combined placebo-ramipril treatment, and (6) 1-week follow-up. The primary end point was glomerular filtration rate (GFR) after combination treatment with empagliflozin-ramipril compared with placebo-ramipril. GFR was corrected for ramipril treatment alone before randomization. At the end of study phase, the following outcomes were measured under clamped euglycemia (4 to 6 mmol/L): inulin (GFR) and para-aminohippurate (effective renal plasma flow) clearances, tubular sodium handling, ambulatory blood pressure, arterial stiffness, heart rate variability, noninvasive cardiac output monitoring, plasma and urine biochemistry, markers of the renin-angiotensin-aldosterone system, and oxidative stress. RESULTS Combination treatment with empagliflozin-ramipril resulted in an 8 mL/min/1.73 m2 lower GFR compared with placebo-ramipril treatment (P=0.0061) without significant changes to effective renal plasma flow. GFR decrease was accompanied by a 21.3 mL/min lower absolute proximal fluid reabsorption rate (P=0.0092), a 3.1 mmol/min lower absolute proximal sodium reabsorption rate (P=0.0056), and a 194 ng/mmol creatinine lower urinary 8-isoprostane level (P=0.0084) relative to placebo-ramipril combination treatment. Sodium-glucose cotransporter 2 inhibitor/angiotensin-converting enzyme inhibitor combination treatment resulted in additive blood pressure-lowering effects (clinic systolic blood pressure lower by 4 mm Hg [P=0.0112]; diastolic blood pressure lower by 3 mm Hg [P=0.0032]) in conjunction with a 94.5 dynes × sex/cm5 lower total peripheral resistance (P=0.0368). There were no significant changes observed to ambulatory blood pressure, arterial stiffness, heart rate variability, or cardiac output with the addition of empagliflozin. CONCLUSIONS Adding sodium-glucose cotransporter 2 inhibitor treatment to angiotensin-converting enzyme inhibitor resulted in an expected GFR dip, suppression of oxidative stress markers, additive declines in blood pressure and total peripheral resistance. These changes are consistent with a protective physiologic profile characterized by the lowering of intraglomerular pressure and related cardiorenal risk when adding a sodium-glucose cotransporter 2 inhibitor to conservative therapy. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT02632747.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital (Y.L., V.L., J.T., L.C., D.Z.I.C.),Temerty Faculty of Medicine (Y.L.)
| | - Karen Kimura
- Boehringer Ingelheim Canada Ltd/Ltée, Burlington (K.K.)
| | | | - Vesta Lai
- Department of Medicine, Division of Nephrology, Toronto General Hospital (Y.L., V.L., J.T., L.C., D.Z.I.C.)
| | - Josephine Tse
- Department of Medicine, Division of Nephrology, Toronto General Hospital (Y.L., V.L., J.T., L.C., D.Z.I.C.)
| | - Leslie Cham
- Department of Medicine, Division of Nephrology, Toronto General Hospital (Y.L., V.L., J.T., L.C., D.Z.I.C.)
| | - Bruce A. Perkins
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Canada (B.A.P.)
| | | | - David Z.I. Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital (Y.L., V.L., J.T., L.C., D.Z.I.C.)
| |
Collapse
|
14
|
Sato S, Takayanagi K, Shimizu T, Kanozawa K, Iwashita T, Hasegawa H. Correlation between albuminuria and interstitial injury marker reductions associated with SGLT2 inhibitor treatment in diabetic patients with renal dysfunction. Eur J Med Res 2022; 27:140. [PMID: 35933386 PMCID: PMC9356509 DOI: 10.1186/s40001-022-00737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background We investigated the effects of sodium–glucose cotransporter 2 inhibitor (SGLT2i) administration focusing on its involvement in tubulo-interstitial disorders in diabetic kidney. Methods Enrolled patients with diabetic kidney disease received a mean dose of 52.3 mg of an SGLT2i (ipragliflozin) daily. Blood and urine were sampled at 0, 1, and 12 months (M). Results Non-renal-dysfunction patients (NRD: baseline eGFR ≥ 60 mL/min/1.73 m2, n = 12) and renal-dysfunction patients (RD: baseline eGFR < 60 mL/min/1.73 m2, n = 9) were analyzed separately. The median urine albumin-to-Cr ratio (ACR) was significantly decreased at 1 M in both groups (NRD: 163.1 at 0 M vs 118.5 mg/g Cr at 1 M, RD: 325.2 at 0 M vs 136.0 mg/g Cr at 1 M). In the RD, but not the NRD group, reduction of urine monocyte chemotactic protein-1 (MCP-1) by SGLT2i showed a significant difference between high-responders (HR: − 25.7 ± 11.4%) and low-responders (LR: 59.2 ± 17.0%), defined by ACR reduction at 1 M. Univariate analysis showed a significant correlation between the reduction of ACR and MCP-1 (R = 0.683, p = 0.042) in RD. Conclusion SGLT2i exerted an anti-albuminuric effect regardless of the presence/absence of renal dysfunction. However, the anti-albuminuric effect of SGLT2i in patients with renal dysfunction appears more closely associated with amelioration of tubulo-interstitial disorders compared to patients without renal dysfunction.
Collapse
Affiliation(s)
- Saeko Sato
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoeshi, Saitama, 350-8550, Japan
| | - Kaori Takayanagi
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoeshi, Saitama, 350-8550, Japan.,Ishikawa Kinenkai Kawagoe Ekimae Clinic, 16-23, Wakitahoncho, Kawagoeshi, Saitama, 350-1123, Japan
| | - Taisuke Shimizu
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoeshi, Saitama, 350-8550, Japan
| | - Koichi Kanozawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoeshi, Saitama, 350-8550, Japan
| | - Takatsugu Iwashita
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoeshi, Saitama, 350-8550, Japan
| | - Hajime Hasegawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoeshi, Saitama, 350-8550, Japan.
| |
Collapse
|
15
|
Liu H, Sridhar VS, Perkins BA, Rosenstock J, Cherney DZI. SGLT2 Inhibition in Type 1 Diabetes with Diabetic Kidney Disease: Potential Cardiorenal Benefits Can Outweigh Preventable Risk of Diabetic Ketoacidosis. Curr Diab Rep 2022; 22:317-332. [PMID: 35633439 DOI: 10.1007/s11892-022-01471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize existing research investigating the use of sodium glucose cotransporter-2 (SGLT2) inhibitors in patients with type 1 diabetes mellitus (T1DM) while highlighting potential strategies to mitigate the risk of diabetic ketoacidosis (DKA). RECENT FINDINGS SGLT2 inhibitors have been studied in patients with T1DM in phase 3 clinical trials such as the inTandem, DEPICT, and EASE trials, which demonstrated consistent reductions in HbA1c. Secondary analyses of these trials have also reported potential kidney protective effects that are independent of improved glycemic control. However, trials in patients with type 2 diabetes mellitus (T2DM) have found an increased risk of DKA with SGLT2 inhibitors, a serious concern in patients with T1DM. SGLT2 inhibitors provide cardiovascular benefits and kidney protection in patients with T2DM and are a promising therapeutic option for patients with T1DM due to overlapping pathophysiological mechanisms. However, SGLT2 inhibitors increase the risk of DKA, and there is currently a lack of research investigating the beneficial effects of SGLT2 inhibitors in patients with T1DM. Preventative measure for DKA would have to be implemented and the risks would need to be carefully balanced with the benefits offered by SGLT2 inhibitors. Additional research will also be required to determine the kidney protective effects of SGLT2 inhibitors in patients with T1DM and diabetic kidney disease and to quantify the risk of DKA after the implementation of preventative measures, proper patient education, and ketone monitoring.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Vikas S Sridhar
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julio Rosenstock
- Dallas Diabetes Research Center at Medical City, Dallas, TX, USA
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital, 585 University Ave, Toronto, ON, 8N-845M5G 2N2, Canada.
| |
Collapse
|
16
|
Li N, Zhou H. Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy. Curr Pharm Des 2022; 28:2131-2139. [PMID: 35718973 DOI: 10.2174/1381612828666220617153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Liu X, Du H, Sun Y, Shao L. Role of abnormal energy metabolism in the progression of chronic kidney disease and drug intervention. Ren Fail 2022; 44:790-805. [PMID: 35535500 PMCID: PMC9103584 DOI: 10.1080/0886022x.2022.2072743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is a severe clinical syndrome with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal kidney function and energy metabolism disorders are increasingly recognized as an important player in CKD. Energy metabolism disorders are characterized by ATP deficits and reactive oxygen species increase. Oxygen and mitochondria are essential for ATP production, hypoxia and mitochondrial dysfunction both affect the energy production process. Renin-angiotensin and adenine signaling pathway also play important regulatory roles in energy metabolism. In addition, disturbance of energy metabolism is a key factor in the development of hereditary nephropathy such as autosomal dominant polycystic kidney disease. Currently, drugs with clinically clear renal function protection, such as Angiotensin II Type 1 receptor blockers and fenofibrate, have been proven to improve energy metabolism disorders. The sodium-glucose co-transporter inhibitors 2 that can mediate glucose metabolism disorders not only delay the progress of diabetic nephropathy, but also have significant protective effects in non-diabetic nephropathy. Hypoxia-inducible factor enhances ATP production to the kidney by improving renal oxygen supply and increasing glycolysis, and the mitochondria targeted peptides (SS-31) plays a protective role by stabilizing the mitochondrial inner membrane. Moreover, several drugs are being studied and are predicted to have potential renal protective properties. We propose that the regulation of energy metabolism represents a promising strategy to delay the progression of CKD.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Huasheng Du
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Gronda E, Lopaschuk GD, Arduini A, Santoro A, Benincasa G, Palazzuoli A, Gabrielli D, Napoli C. Mechanisms of action of SGLT2 inhibitors and their beneficial effects on the cardiorenal axis. Can J Physiol Pharmacol 2022; 100:93-106. [PMID: 35112597 DOI: 10.1139/cjpp-2021-0399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Large clinical studies conducted with sodium-glucose co-transporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes and heart failure with reduced ejection fraction have demonstrated their ability to achieve both cardiac and kidney benefits. Although there is huge evidence on SGLT2i-mediated clinical benefits both in diabetic and non-diabetic patients, the pathophysiological mechanisms underlying their efficacy are still poorly understood. Some favorable mechanisms are likely due to the prompt glycosuric action which is associated with natriuretic effects leading to hemodynamic benefits as well as a reduction in glomerular hyperfiltration and renin-angiotensin-aldosterone system activation. In addition to the renal mechanisms, SGLT2i may play a relevant role in cardiorenal axis protection by improving the cardiomyocyte metabolism, by exerting anti-fibrotic and anti-inflammatory actions, and by increasing cardioprotective adipokine expression. New studies will be needed to better understand the specific molecular mechanisms that mediate the SGLT2i favorable effects in patients suffering diabetes. Our aim is to first discuss about the molecular mechanisms underlying the cardiovascular benefits of SGLT2i in each of the main organs involved in the cardiorenal axis. Furthermore, we update on the most recent clinical trials evaluating the beneficial effects of SGLT2i in treatment of both diabetic and non-diabetic patients suffering heart failure.
Collapse
Affiliation(s)
- Edoardo Gronda
- Dipartimento di Medicina e Specialità Mediche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico di Milano UOC di Nefrologia, Dialisi e Trapianto Renale dell'adulto, Milan, Italy
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland
| | - Antonio Santoro
- Nephrology Unit, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistic Units, Azienda Ospedaliera Universitaria and Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Medical Sciences, Le Scotte Hospital University of Siena, Italy
| | - Domenico Gabrielli
- Division of Cardiology, San Camillo Hospital, Rome, Italy and Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO)
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Azienda Ospedaliera Universitaria and Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
19
|
Wang S, Jiao F, Border JJ, Fang X, Crumpler RF, Liu Y, Zhang H, Jefferson J, Guo Y, Elliott PS, Thomas KN, Strong LB, Urvina AH, Zheng B, Rijal A, Smith SV, Yu H, Roman RJ, Fan F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am J Physiol Heart Circ Physiol 2022; 322:H246-H259. [PMID: 34951541 PMCID: PMC8759958 DOI: 10.1152/ajpheart.00438.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane J Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Reece F Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Parker S Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Luke B Strong
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Austin H Urvina
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Arjun Rijal
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stanley V Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
20
|
Kojima N. [Challenges in drug discovery research and the effects of SGLT2 inhibitor against diabetic kidney disease]. Nihon Yakurigaku Zasshi 2022; 157:249-253. [PMID: 35781455 DOI: 10.1254/fpj.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease is an important diabetic complication as a causative disease for the progression of dialysis. However, the current therapeutic option has not been fully satisfied for completely suppressing the progression of renal injury. One of the reasons is that the model animals are limited that exhibit progressive renal injury similar to those of patients such as advanced urinary protein excretion, glomerular sclerosis, renal interstitial fibrosis and decreased glomerular filtration rate. And also, this is one of the important factors that pathophysiology of diabetic kidney disease has not yet been fully clarified. SGLT2 inhibitors are medicines that promote the excretion of glucose into the urine by suppressing the reabsorption of glucose from the renal proximal tubule and induce a blood glucose lowering effect. In order to verify the effect of SGLT2 inhibitors on diabetic complications, we examined the effects of luseogliflozin using two kinds of animal models expressing the progressive renal injury including the advanced features of diabetic kidney disease similar to patients. Luseogliflozin and combination therapy with ACE inhibitor prevented the progression of renal injury in these animal models, and the result suggests that treatment with SGLT2 inhibitors could be a candidate of therapeutic option for diabetic kidney disease.
Collapse
Affiliation(s)
- Naoki Kojima
- Pharmacology 2, Discovery research laboratories, Research headquarters, Taisho Pharmaceutical Co., Ltd
| |
Collapse
|
21
|
Brown AK, Nichols A, Coley CA, Ekperikpe US, McPherson KC, Shields CA, Poudel B, Cornelius DC, Williams JM. Treatment With Lisinopril Prevents the Early Progression of Glomerular Injury in Obese Dahl Salt-Sensitive Rats Independent of Lowering Arterial Pressure. Front Physiol 2021; 12:765305. [PMID: 34975523 PMCID: PMC8719629 DOI: 10.3389/fphys.2021.765305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently, we reported that obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats develop glomerular injury and progressive proteinuria prior to puberty. Moreover, this early progression of proteinuria was associated with elevations in GFR. Therefore, the current study examined whether treatment with lisinopril to reduce GFR slows the early progression of proteinuria in SSLepRmutant rats prior to puberty. Experiments were performed on 4-week-old SS and SSLepRmutant rats that were either treated with vehicle or lisinopril (20 mg/kg/day, drinking water) for 4 weeks. We did not observe any differences in MAP between SS and SSLepRmutant rats treated with vehicle (148 ± 5 vs. 163 ± 6 mmHg, respectively). Interestingly, chronic treatment with lisinopril markedly reduced MAP in SS rats (111 ± 3 mmHg) but had no effect on MAP in SSLepRmutant rats (155 ± 4 mmHg). Treatment with lisinopril significantly reduced proteinuria in SS and SSLepRmutant rats compared to their vehicle counterparts (19 ± 5 and 258 ± 34 vs. 71 ± 12 and 498 ± 66 mg/day, respectively). Additionally, nephrin excretion was significantly elevated in SSLepRmutant rats versus SS rats, and lisinopril reduced nephrin excretion in both strains. GFR was significantly elevated in SSLepRmutant rats compared to SS rats, and lisinopril treatment reduced GFR in SSLepRmutant rats by 30%. The kidneys from SSLepRmutant rats displayed glomerular injury with increased mesangial expansion and renal inflammation versus SS rats. Chronic treatment with lisinopril significantly decreased glomerular injury and renal inflammation in the SSLepRmutant rats. Overall, these data indicate that inhibiting renal hyperfiltration associated with obesity is beneficial in slowing the early development of glomerular injury and renal inflammation.
Collapse
Affiliation(s)
- Andrea K. Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alyssa Nichols
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chantell A. Coley
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ubong S. Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kasi C. McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Corbin A. Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Denise C. Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jan M. Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
22
|
Abstract
Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic medications. They prevent glucose reabsorption in the proximal convoluted tubule to decrease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved in the inflammatory response, fibrogenesis, and regulation of numerous intracellular signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and fibrogenesis and improved the function of damaged organ in animal studies, observational studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial biogenesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases and dissects the underlying molecular mechanisms in detail. This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases using the results of latest observational studies, clinical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechanisms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
23
|
Kim H, Lee S, Lee H, Yim HW, Cho J, Yoon K, Kim H. Blood glucose levels and bodyweight change after dapagliflozin administration. J Diabetes Investig 2021; 12:1594-1602. [PMID: 33522718 PMCID: PMC8409884 DOI: 10.1111/jdi.13516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 12/05/2022] Open
Abstract
AIMS/INTRODUCTION Increased blood glucose or increased weight is often observed in patients who are prescribed sodium-glucose cotransporter 2 inhibitors (SGLT2i). The aim of this study was to determine in advance which patients, among those prescribed a SGLT2i, would be likely to have improved or worsened blood glucose levels and gain or loss of weight through the use of real-world data-based prescriptions. MATERIALS AND METHODS After 3 months of dapagliflozin prescription, patients were divided into four groups: H(+)W(+) for improved glucose and weight loss; H(+)W(-) for improved blood glucose and weight gain; H(-)W(+) for worsened glucose and weight loss; and H(-)W(-) for worsened glucose and weight gain. RESULTS The proportion of patients in the H(+)W(+) group was 53.5% (325/608 patients), H(+)W(-) was 19.7% (120/608), H(-)W(+) was 26.8% (114/608) and H(-)W(-) was 8.1% (49/608). The odds of proceeding to H(+)W(-) compared with H(+)W(+), which served as the reference, were 144% in baseline hemoglobin A1c (HbA1c) 7.0-8.0%, 233% in baseline HbA1c 8.0-9.0% and 359% in baseline HbA1c ≥ 9.0% (odds ratio 3.59, P < 0.05) compared with the reference. The odds of proceeding to H(-)W(+) were 29, 13 and 8%, respectively (all P < 0.05), and to H(-)W(-) were 17, 15 and 8%, respectively (all P < 0.05), compared with the reference. The results were expected to vary individually, because changes in blood glucose and bodyweight are more affected by diet and exercise than by drugs. CONCLUSIONS When first prescribing dapagliflozin, a physician should be aware of the weight gain rather than glucose change if the baseline HbA1c is high, and might concentrate on weight-related lifestyle training, such as diet and exercise.
Collapse
Affiliation(s)
- Hyunah Kim
- College of PharmacySookmyung Women’s UniversitySeoulKorea
| | - Seung‐Hwan Lee
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
- Department of Medical InformaticsCollege of MedicineThe Catholic University of KoreaSeoulKorea
| | - Hyunyong Lee
- Clinical Research Coordinating CenterCatholic Medical CenterThe Catholic University of KoreaSeoulKorea
| | - Hyeon Woo Yim
- Department of Preventive MedicineCollege of MedicineThe Catholic University of KoreaSeoulKorea
| | - Jae‐Hyoung Cho
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
- Department of Medical InformaticsCollege of MedicineThe Catholic University of KoreaSeoulKorea
| | - Kun‐Ho Yoon
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
- Department of Medical InformaticsCollege of MedicineThe Catholic University of KoreaSeoulKorea
| | - Hun‐Sung Kim
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
- Department of Medical InformaticsCollege of MedicineThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
24
|
Zhang A, Nakano D, Kittikulsuth W, Yamashita Y, Nishiyama A. Luseogliflozin, a SGLT2 Inhibitor, Does Not Affect Glucose Uptake Kinetics in Renal Proximal Tubules of Live Mice. Int J Mol Sci 2021; 22:ijms22158169. [PMID: 34360935 PMCID: PMC8347119 DOI: 10.3390/ijms22158169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Proximal tubules (PTs) take up most of the glucose in the glomerular filtrate and return it to peritubular capillary blood. Sodium-glucose cotransporter 2 (SGLT2) at the apical membrane takes up glucose into the cell. Glucose then flows across the cells and is transported to the interstitium via glucose transporter 2 (GLUT2) at the basolateral membrane. However, glucose transport under SGLT2 inhibition remains poorly understood. In this study, we evaluated the dynamics of a fluorescent glucose analog, 2-NBDG, in the PTs of live mice treated with or without the SGLT2 inhibitor, luseogliflozin. We employed real-time multiphoton microscopy, in which insulin enhanced 2-NBDG uptake in skeletal muscle. Influx and efflux of 2-NBDG in PT cells were compared under hypo-, normo-, and hyperglycemic conditions. Luseogliflozin did not exert significant effects on glucose influx parameters under any level of blood glucose. Our results suggest that blood glucose level per se does not alter glucose influx or efflux kinetics in PTs. In conclusion, neither SGLT2 inhibition nor blood glucose level affect glucose uptake kinetics in PTs. The former was because of glucose influx through basolateral GLUT2, which is an established bidirectional transporter.
Collapse
|
25
|
Spires DR, Palygin O, Levchenko V, Isaeva E, Klemens CA, Khedr S, Nikolaienko O, Kriegel A, Cheng X, Yeo JY, Joe B, Staruschenko A. Sexual dimorphism in the progression of type 2 diabetic kidney disease in T2DN rats. Physiol Genomics 2021; 53:223-234. [PMID: 33870721 PMCID: PMC8285576 DOI: 10.1152/physiolgenomics.00009.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors. This study aimed to define sexual dimorphism and renal function in a nonobese type 2 diabetes model with the spontaneous development of advanced diabetic nephropathy (T2DN rats). T2DN rats at 12- and over 48-wk old were used to define disease progression and kidney injury development. We found impaired glucose tolerance and glomerular hyperfiltration in T2DN rats to compare with nondiabetic Wistar control. The T2DN rat displays a significant sexual dimorphism in insulin resistance, plasma cholesterol, renal and glomerular injury, urinary nephrin shedding, and albumin handling. Our results indicate that both male and female T2DN rats developed nonobese type 2 DKD phenotype, where the females had significant protection from the development of severe forms of DKD. Our findings provide further evidence for the T2DN rat strain's effectiveness for studying the multiple facets of DKD.
Collapse
Affiliation(s)
- Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xi Cheng
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Ji-Youn Yeo
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Takeda K, Ono H, Ishikawa K, Ohno T, Kumagai J, Ochiai H, Matumoto A, Yokoh H, Maezawa Y, Yokote K. Central administration of sodium-glucose cotransporter-2 inhibitors increases food intake involving adenosine monophosphate-activated protein kinase phosphorylation in the lateral hypothalamus in healthy rats. BMJ Open Diabetes Res Care 2021; 9:9/1/e002104. [PMID: 33879516 PMCID: PMC8061802 DOI: 10.1136/bmjdrc-2020-002104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Sodium glucose cotransporter-2 (SGLT2) inhibitors are widely used for diabetes treatment. Although SGLT2 inhibitors have been clinically observed to increase food intake, roles or even the presence of SGLT2 in the central nervous system (CNS) has not been established. We aimed to elucidate potential functions of SGLT2 in the CNS, and the effects of CNS-targeted SGLT2 inhibitors on food intake. RESEARCH DESIGN AND METHODS We administered three kinds of SGLT2 inhibitors, tofogliflozin, dapagliflozin, and empagliflozin, into the lateral ventricle (LV) in rats and evaluated their effects on food intake. We also evaluated the effects of tofogliflozin administration in the third (3V) and fourth ventricle (4V). Intraperitoneal administration of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist known to suppress food intake, was combined with central tofogliflozin to elucidate whether GLP-1 signaling antagonizes the effect of central SGLT2 inhibitors on food intake. To elucidate potential molecular mechanisms mediating changes in feeding, hypothalamic areas associated with food intake regulation were harvested and analyzed after intracerebroventricular administration (ICV) of tofogliflozin. RESULTS Bolus ICV injection of tofogliflozin induced a robust increase in food intake starting at 1.5 hours postinjection, and lasting for 5 days. No effect was observed when the same dose of tofogliflozin was administered intraperitoneally. ICV dapagliflozin and empagliflozin significantly enhanced food intake, although the strength of these effects varied among drugs. Food intake was most markedly enhanced when tofogliflozin was infused into the LV. Fewer or no effects were observed with infusion into the 3V or 4V, respectively. Systemic administration of liraglutide suppressed the effect of ICV tofogliflozin on food intake. ICV tofogliflozin increased phosphorylation of AMPK and c-fos expression in the lateral hypothalamus. CONCLUSIONS SGLT2 inhibitors in the CNS increase food intake. SGLT2 activity in the CNS may regulate food intake through AMPK phosphorylation in the lateral hypothalamic area.
Collapse
Affiliation(s)
- Kenji Takeda
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiraku Ono
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ko Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiro Ohno
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jin Kumagai
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidetoshi Ochiai
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ai Matumoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidetaka Yokoh
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
27
|
Miyata KN, Zhang SL, Chan JS. The Rationale and Evidence for SGLT2 Inhibitors as a Treatment for Nondiabetic Glomerular Disease. GLOMERULAR DISEASES 2021; 1:21-33. [PMID: 36751486 PMCID: PMC9677741 DOI: 10.1159/000513659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023]
Abstract
Background Recent studies show that sodium-glucose cotransporter 2 inhibitors (SGLT2i), originally approved for glycemic control in patients with type 2 diabetes, also exert renoprotective effects independently from effects on dysglycemia. Moreover, recent work indicates that SGLT2i treatment may be effective in patients with nondiabetic chronic kidney disease, including primary and secondary glomerular diseases. Summary SGLT2i lower blood glucose by blocking glucose resorption in the early renal proximal tubule through the glucose transporter, SGLT2, leading to enhanced urinary glucose excretion. Recent studies indicate that SGLT2i may have pleiotropic effects on cells other than proximal tubular cells. SGLT2i reduce the glomerular workload by decreasing the intraglomerular pressure, thus ameliorating hyperfiltration, if present, and may also decrease systemic blood pressure. SGLT2i may also act directly on endothelial cells, possibly via modulating the effects of adhesion molecules and reducing inflammatory cytokines and reactive oxygen species. SGLT2i may have direct anti-inflammatory and antifibrotic effects on renal tubules. Some reports suggest direct protective effects on podocytes and mesangial cells as well. Here, we provide a review of the potential mechanisms of renoprotection, therapeutic utility, and potential side effects of SGLT2i in patients with nondiabetic glomerular diseases, based on data from studies carried out in cells, experimental animals, and humans. Key Messages SGLT2i may be a promising addition to the glomerular disease treatment armamentarium. However, it is unclear at what point of the natural history of specific glomerular diseases (whether this is immune or nonimmune mediated) SGLT2i can be beneficial. Additionally, further studies are needed to assess the long-term efficacy and safety of SGLT2i in patients with nondiabetic glomerular diseases.
Collapse
Affiliation(s)
- Kana N. Miyata
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada,Division of Nephrology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Shao-Ling Zhang
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada
| | - John S.D. Chan
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada,*John S.D. Chan, Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Tour Viger-Pavillon R, 900 Saint Denis Street, Montreal, QC H2X 0A9 (Canada),
| |
Collapse
|
28
|
Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ, Fan F. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol 2021; 320:H549-H562. [PMID: 33306445 PMCID: PMC8082790 DOI: 10.1152/ajpheart.00726.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-β, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin β1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zongbo Chen
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Sembach FE, Østergaard MV, Vrang N, Feldt-Rasmussen B, Fosgerau K, Jelsing J, Fink LN. Rodent models of diabetic kidney disease: human translatability and preclinical validity. Drug Discov Today 2021; 26:200-217. [DOI: 10.1016/j.drudis.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
|
30
|
Hecking M, Sharif A, Eller K, Jenssen T. Management of post-transplant diabetes: immunosuppression, early prevention, and novel antidiabetics. Transpl Int 2021; 34:27-48. [PMID: 33135259 PMCID: PMC7839745 DOI: 10.1111/tri.13783] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Post-transplant diabetes mellitus (PTDM) shows a relationship with risk factors including obesity and tacrolimus-based immunosuppression, which decreases pancreatic insulin secretion. Several of the sodium-glucose-linked transporter 2 inhibitors (SGLT2is) and glucagon-like peptide 1 receptor agonists (GLP1-RAs) dramatically improve outcomes of individuals with type 2 diabetes with and without chronic kidney disease, which is, as heart failure and atherosclerotic cardiovascular disease, differentially affected by both drug classes (presumably). Here, we discuss SGLT2is and GLP1-RAs in context with other PTDM management strategies, including modification of immunosuppression, active lifestyle intervention, and early postoperative insulin administration. We also review recent studies with SGLT2is in PTDM, reporting their safety and antihyperglycemic efficacy, which is moderate to low, depending on kidney function. Finally, we reference retrospective case reports with GLP1-RAs that have not brought forth major concerns, likely indicating that GLP1-RAs are ideal for PTDM patients suffering from obesity. Although our article encompasses PTDM after solid organ transplantation in general, data from kidney transplant recipients constitute the largest proportion. The PTDM research community still requires data that treating and preventing PTDM will improve clinical conditions beyond hyperglycemia. We therefore suggest that it is time to collaborate, in testing novel antidiabetics among patients of all transplant disciplines.
Collapse
Affiliation(s)
- Manfred Hecking
- Department of Internal Medicine IIIClinical Division of Nephrology & DialysisMedical University of ViennaViennaAustria
| | - Adnan Sharif
- Department of Nephrology and TransplantationQueen Elizabeth HospitalBirminghamUK
| | - Kathrin Eller
- Clinical Division of NephrologyMedical University of GrazGrazAustria
| | - Trond Jenssen
- Department of Organ TransplantationOslo University HospitalRikshospitaletOsloNorway
| |
Collapse
|
31
|
Hirata T, Smith SV, Takahashi T, Miyata N, Roman RJ. Increased Levels of Renal Lysophosphatidic Acid in Rodent Models with Renal Disease. J Pharmacol Exp Ther 2020; 376:240-249. [PMID: 33277348 DOI: 10.1124/jpet.120.000353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that has been implicated in the pathophysiology of kidney disease. However, few studies have attempted to measure changes in the levels of various LPA species in the kidney after the development of renal disease. The present study measured the renal LPA levels during the development of kidney disease in rat models of hypertension, diabetes, and obstructive nephropathy using liquid chromatography/mass spectrometry/mass spectrometry. LPA levels (sum of 16:0, 18:0, 18:1, 18:2, and 20:4 LPA) were higher in the renal cortex of hypertensive Dahl salt-sensitive (Dahl S) rats fed a high-salt diet than those in normotensive rats fed a low-salt diet (296.6 ± 22.9 vs. 196.3 ± 8.5 nmol/g protein). LPA levels were elevated in the outer medulla of the kidney of streptozotocin-induced type 1 diabetic Dahl S rats compared with control rats (624.6 ± 129.5 vs. 318.8 ± 17.1 nmol/g protein). LPA levels were also higher in the renal cortex of 18-month-old, type 2 diabetic nephropathy (T2DN) rats with more severe renal injury than in 6-month-old T2DN rats (184.9 ± 20.9 vs. 116.9 ± 6.0 nmol/g protein). LPA levels also paralleled the progression of renal fibrosis in the renal cortex of Sprague-Dawley rats after unilateral ureteral obstruction (UUO). Administration of an LPA receptor antagonist, Ki16425, reduced the degree of renal fibrosis in UUO rats. These results suggest that the production of renal LPA increases during the development of renal injury and contributes to renal fibrosis. SIGNIFICANCE STATEMENT: The present study reveals that the lysophosphatidic acid (LPA) levels increase in the kidney in rat models of hypertension, diabetes, and obstructive nephropathy, and administration of an LPA receptor antagonist attenuates renal fibrosis. Therapeutic approaches that target the formation or actions of renal LPA might be renoprotective and have therapeutic potential.
Collapse
Affiliation(s)
- Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Stanley V Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Teisuke Takahashi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Noriyuki Miyata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
32
|
Demarchi A, Somaschini A, Cornara S, Androulakis E. Peripheral Artery Disease in Diabetes Mellitus: Focus on Novel Treatment Options. Curr Pharm Des 2020; 26:5953-5968. [PMID: 33243109 DOI: 10.2174/1389201021666201126143217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) and peripheral artery disease (PAD) are two clinical entities closely associated. They share many pathophysiological pathways such as inflammation, endothelial dysfunction, oxidative stress and pro-coagulative unbalance. Emerging data focusing on agents targeting these pathways may be promising. Moreover, due to the increased cardiovascular risk, there is a growing interest in cardiovascular and "pleiotropic" effects of novel glucose lowering drugs. This review summarizes the main clinical features of PAD in patients, the diagnostic process and current medical/interventional approaches, ranging from "classical treatment" to novel agents.
Collapse
Affiliation(s)
| | - Alberto Somaschini
- Adult Intensive Care Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | | | - Emmanuel Androulakis
- Adult Intensive Care Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
33
|
SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Future Med Chem 2020; 12:1961-1990. [DOI: 10.4155/fmc-2020-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetes is a chronic progressive metabolic disease caused by insulin deficiency or insulin resistance. In spite of the availability of several antihyperglycaemics, there is a need for the development of safer antidiabetic drugs due to their undesirable effects. Sodium-glucose cotransporter-2 inhibitors are a class of antidiabetics, which hinder the reabsorption of glucose in the kidneys, causing excretion of glucose via urine. Sodium-glucose cotransporter-2 inhibitors are a well-tolerated class with no significant adverse effects and are found to be favorable in certain conditions, which may be rudimentary to cardiovascular and renal diseases. The current advancements in their design and development, their mechanism of action, structure–activity relationship, synthesis and in silico development along with their auxiliary roles have been extensively reviewed.
Collapse
|
34
|
Matsuba I, Kawata T, Iemitsu K, Asakura T, Amemiya H, Ishikawa M, Ito S, Kaneshiro M, Kanamori A, Kubota A, Shinoda K, Takai M, Takuma T, Takihata M, Takeda H, Tanaka K, Matsuzawa Y, Machimura H, Minagawa F, Minami N, Mokubo A, Miyakawa M, Terauchi Y, Tanaka Y. Effects of ipragliflozin on the development and progression of kidney disease in patients with type 2 diabetes: An analysis from a multicenter prospective intervention study. J Diabetes Investig 2020; 11:1248-1257. [PMID: 32149469 PMCID: PMC7477528 DOI: 10.1111/jdi.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. METHODS This was an investigator-initiated multicenter prospective intervention study in which ipragliflozin (50 mg) was administered once daily, and glycemic control, estimated glomerular filtration rate (eGFR) and adverse events were evaluated until 104 weeks after starting research. RESULTS There were 407 patients analyzed. In the eGFR ≥90 group and eGFR ≥60 to <90 group, eGFR had significantly decreased compared with baseline at all time points from 4 to 104 weeks. There were significant increases in the eGFR ≥45 to <60 groups compared with baseline at 36 weeks (2.3 ± 1.0) and 52 weeks (2.6 ± 1.2). Comparison between the eGFR <60, urine albumin-to-creatinine ratio >300 group and the eGFR <60, urine albumin-to-creatinine ratio <300 group showed a greater reduction in eGFR in the former (-5.4 ± 2.4 vs 3.3 ± 1.1) at 12 weeks and was maintained to 104 weeks. In any group, eGFR did not significantly decrease until 104 weeks compared with 4 weeks. The urine albumin-to-creatinine ratio after 52 weeks and after 104 weeks was significantly decreased compared with baseline in the eGFR ≥90 group. CONCLUSIONS Ipragliflozin lowers eGFR and corrects hyperfiltration in patients with high eGFR (eGFR ≥60). In patients with low eGFR (eGFR ≥30 to <60), ipragliflozin has the possibility of increasing eGFR and exerting a renoprotective effect.
Collapse
Affiliation(s)
- Ikuro Matsuba
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Takehiro Kawata
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Kotaro Iemitsu
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Taro Asakura
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Hikaru Amemiya
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Masashi Ishikawa
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Syogo Ito
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Mizuki Kaneshiro
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Akira Kanamori
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Akira Kubota
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Kazuaki Shinoda
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Masahiko Takai
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Tetsuo Takuma
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Masahiro Takihata
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Hiroshi Takeda
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Keiji Tanaka
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Yoko Matsuzawa
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Hideo Machimura
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Fuyuki Minagawa
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Nobuaki Minami
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Atsuko Mokubo
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Masaaki Miyakawa
- The Study Group of the Diabetes CommitteeKanagawa Physicians AssociationYokohamaJapan
| | - Yasuo Terauchi
- Department of Endocrinology and MetabolismYokohama City UniversityYokohamaJapan
| | - Yasushi Tanaka
- Division of Metabolism and EndocrinologyDepartment of Internal MedicineSt. Marianna University School of MedicineKawasakiJapan
| |
Collapse
|
35
|
Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol 2020; 133-134:106779. [PMID: 32814163 DOI: 10.1016/j.vph.2020.106779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a very common macrovascular complication in type 2 diabetes mellitus, and cardiovascular disease is the primary cause of death in diabetes patients. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are a newly identified class of drugs targeting the renal proximal tubules to increase glucose excretion. Large-scale clinical trials have confirmed the cardiovascular protective effects of SGLT inhibitors in patients with diabetes diagnosed with or at a higher risk of atherosclerotic cardiovascular disease. In addition to its direct effect on glycemic control, the function of SGLT-2i in the alleviation of volume load, renal protection, and reduction of inflammation plays an essential role in its therapeutic effect on atherosclerosis. SGLT-2i are known to decrease the levels of inflammatory factors in circulation and in arteries in situ, inhibit foam cell formation and macrophage infiltration, and sustain plaque stability, ultimately blocking the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yingxiu Kang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Fenfen Zhan
- Department of Endocrinology and Metabolism, Sanmen Hospital of Traditional Chinese Medicine, Sanmen, 287 Xinxing Rd, Zhejiang 317100, PR China
| | - Minzhi He
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Xiaoxiao Song
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| |
Collapse
|
36
|
Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, Paul IA, Rajkowska G, Shaffery JP, Mosley TH, Hu X, Liu R, Wang Y, Yu H, Roman RJ, Fan F. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. GeroScience 2020; 42:1387-1410. [PMID: 32696219 DOI: 10.1007/s11357-020-00233-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a leading risk factor for aging-related dementia; however, the underlying mechanisms are not well understood. The present study, utilizing a non-obese T2DN diabetic model, demonstrates that the myogenic response of the middle cerebral artery (MCA) and parenchymal arteriole (PA) and autoregulation of cerebral blood flow (CBF) in the surface and deep cortex were impaired at both young and old ages. The impaired CBF autoregulation was more severe in old than young DM rats, and in the deep than the surface cortex. The myogenic tone of the MCA was enhanced at perfusion pressure in the range of 40-100 mmHg in young DM rats but was reduced at 140-180 mmHg in old DM rats. No change of the myogenic tone of the PA was observed in young DM rats, whereas it was significantly reduced at 30-60 mmHg in old DM rats. Old DM rats had enhanced blood-brain barrier (BBB) leakage and neurodegeneration, reduced vascular density, tight junction, and pericyte coverage on cerebral capillaries in the CA3 region in the hippocampus. Additionally, DM rats displayed impaired functional hyperemia and spatial learning and short- and long-term memory at both young and old ages. Old DM rats had impaired non-spatial short-term memory. These results revealed that impaired CBF autoregulation and enhanced BBB leakage plays an essential role in the pathogenesis of age- and diabetes-related dementia. These findings will lay the foundations for the discovery of anti-diabetic therapies targeting restoring CBF autoregulation to prevent the onset and progression of dementia in elderly DM.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.,Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Thomas H Mosley
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xinlin Hu
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
37
|
Yamazaki D, Konishi Y, Morikawa T, Kobara H, Masaki T, Hitomi H, Osafune K, Nakano D, Kittikulsuth W, Nishiyama A. Failure to confirm a sodium-glucose cotransporter 2 inhibitor-induced hematopoietic effect in non-diabetic rats with renal anemia. J Diabetes Investig 2020; 11:834-843. [PMID: 31880858 PMCID: PMC7378420 DOI: 10.1111/jdi.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 01/04/2023] Open
Abstract
AIMS/INTRODUCTION Clinical studies have shown that treatment with inhibitors of sodium-glucose cotransporter 2 (SGLT2) significantly increases the hematocrit in patients with type 2 diabetes. To investigate whether SGLT2 inhibitors directly promote erythropoietin production independently on blood glucose reduction, the hematopoietic effect of the specific SGLT2 inhibitor, luseogliflozin, was examined in non-diabetic rats with renal anemia. MATERIALS AND METHODS Renal anemia was induced by treatment with adenine (200 or 600 mg/kg/day, orally for 10 days) in non-diabetic Wistar-Kyoto or Wistar rats, respectively. Luseogliflozin (10 mg/kg bodyweight) or vehicle (0.5% carboxymethyl cellulose) was then administered for 6 weeks. The hematocrit and the hemoglobin (Hb), blood urea nitrogen, plasma creatinine, and plasma erythropoietin levels were monitored. RESULTS Treatment with adenine decreased the hematocrit and the Hb level, which were associated with increases in the blood urea nitrogen and plasma creatinine levels. In Wistar-Kyoto rats treated with 200 mg/kg/day adenine, administration of luseogliflozin induced glycosuria, but did not change the blood urea nitrogen, plasma creatinine levels, hematocrit, Hb or plasma erythropoietin levels. Similarly, luseogliflozin treatment failed to change the hematocrit or the Hb levels in Wistar rats with renal anemia induced by 600 mg/kg/day of adenine. Plasma erythropoietin concentrations were also not different between luseogliflozin- and vehicle-treated rats. Similarly, in human erythropoietin-producing cells derived from pluripotent stem cells, luseogliflozin treatment did not change the erythropoietin level in the medium. CONCLUSIONS These data suggest that SGLT2 inhibitor fails to exert hematopoietic effects in non-diabetic conditions.
Collapse
Affiliation(s)
- Daisuke Yamazaki
- Department of PharmacologyFaculty of MedicineKagawa UniversityKagawaJapan
- Division of Nephrology and HypertensionOsaka City General HospitalOsakaJapan
| | - Yoshio Konishi
- Division of Nephrology and HypertensionOsaka City General HospitalOsakaJapan
| | - Takashi Morikawa
- Division of Nephrology and HypertensionOsaka City General HospitalOsakaJapan
| | - Hideki Kobara
- Department of Gastroenterology and NeurologyFaculty of MedicineKagawa UniversityKagawaJapan
| | - Tsutomu Masaki
- Department of Gastroenterology and NeurologyFaculty of MedicineKagawa UniversityKagawaJapan
| | - Hirofumhi Hitomi
- Department of iPS Stem Cell Regenerative MedicineKansai Medical UniversityOsakaJapan
| | - Kenji Osafune
- Department of Cell Growth and DifferentiationCenter for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | - Daisuke Nakano
- Department of PharmacologyFaculty of MedicineKagawa UniversityKagawaJapan
| | | | - Akira Nishiyama
- Department of PharmacologyFaculty of MedicineKagawa UniversityKagawaJapan
| |
Collapse
|
38
|
Sano R, Shinozaki Y, Ohta T. Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 2020; 11:770-782. [PMID: 32196987 PMCID: PMC7378437 DOI: 10.1111/jdi.13255] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose is the most abundant monosaccharide, and an essential source of energy for most living cells. Glucose transport across the cell membrane is mediated by two types of transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium-glucose cotransporters (SGLTs; gene name: solute carrier 5A). Each transporter has its own substrate specificity, distribution, and regulatory mechanisms. Recently, SGLT1 and SGLT2 have attracted much attention as therapeutic targets for various diseases. This review addresses the basal and functional properties of glucose transporters and SGLTs, and describes the pharmaceutical potential of SGLT1 and SGLT2.
Collapse
Affiliation(s)
- Ryuhei Sano
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Yuichi Shinozaki
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional AnatomyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
39
|
Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction. GeroScience 2020; 42:547-561. [PMID: 32166556 DOI: 10.1007/s11357-020-00179-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Individuals with diabetes are more susceptible to cerebral vascular aging. However, the underlying mechanisms are not well elucidated. The present study examined whether the myogenic response of the middle cerebral artery (MCA) is impaired in diabetic rats due to high glucose (HG)-induced cerebral vascular smooth muscle cell (CVSMC) dysfunction, and whether this is associated with ATP depletion and changes in mitochondrial dynamics and membrane potential. The diameters of the MCA of diabetic rats increased to 135.3 ± 11.3% when perfusion pressure was increased from 40 to 180 mmHg, while it fell to 85.1 ± 3.1% in non-diabetic controls. The production of ROS and mitochondrial-derived superoxide were enhanced in cerebral arteries of diabetic rats. Levels of mitochondrial superoxide were significantly elevated in HG-treated primary CVSMCs, which was associated with decreased ATP production, mitochondrial respiration, and membrane potential. The expression of OPA1 was reduced, and MFF was elevated in HG-treated CVSMCs in association with fragmented mitochondria. Moreover, HG-treated CVSMCs displayed lower contractile and proliferation capabilities. These results demonstrate that imbalanced mitochondrial dynamics (increased fission and decreased fusion) and membrane depolarization contribute to ATP depletion in HG-treated CVSMCs, which promotes CVSMC dysfunction and may play an essential role in exacerbating the impaired myogenic response in the cerebral circulation in diabetes and accelerating vascular aging.
Collapse
|
40
|
Hodrea J, Balogh DB, Hosszu A, Lenart L, Besztercei B, Koszegi S, Sparding N, Genovese F, Wagner LJ, Szabo AJ, Fekete A. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am J Physiol Renal Physiol 2020; 318:F1017-F1029. [PMID: 32116017 PMCID: PMC7242633 DOI: 10.1152/ajprenal.00021.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease is a worldwide epidemic, and therapies are incomplete. Clinical data suggest that improved renal outcomes by Na+-glucose cotransporter 2 inhibitor (SGLT2i) are partly beyond their antihyperglycemic effects; however, the mechanisms are still elusive. Here, we investigated the effect of the SGLT2i dapagliflozin (DAPA) in the prevention of elevated O-GlcNAcylation and tubular hypoxia as contributors of renal fibrosis. Type 1 diabetes was induced by streptozotocin in adult male Wistar rats. After the onset of diabetes, rats were treated for 6 wk with DAPA or DAPA combined with losartan (LOS). The effect of hyperglycemia was tested in HK-2 cells kept under normal or high glucose conditions. To test the effect of hypoxia, cells were kept in 1% O2 for 2 h. Cells were treated with DAPA or DAPA combined with LOS. DAPA slowed the loss of renal function, mitigated renal tubular injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), and reduced tubulointerstitial fibrosis. DAPA diminished high glucose-induced protein O-GlcNAcylation and moderated the tubular response to hypoxia through the hypoxia-inducible factor pathway. DAPA alone was as effective as combined treatment with LOS in all outcome parameters. These data highlight the role of ameliorated O-GlcNAcylation and diminished tubular hypoxia as important benefits of SGLT2i treatment. Our results support the link between glucose toxicity, tubular hypoxia, and fibrosis, a vicious trio that could be targeted by SGLT2i in kidney diseases of other origins as well.
Collapse
Affiliation(s)
- Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dora B Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Besztercei
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nadja Sparding
- Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| | | | - Laszlo J Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Haider K, Pathak A, Rohilla A, Haider MR, Ahmad K, Yar MS. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. Eur J Med Chem 2019; 184:111773. [DOI: 10.1016/j.ejmech.2019.111773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
|
42
|
Ninčević V, Omanović Kolarić T, Roguljić H, Kizivat T, Smolić M, Bilić Ćurčić I. Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. Int J Mol Sci 2019; 20:ijms20235831. [PMID: 31757028 PMCID: PMC6928920 DOI: 10.3390/ijms20235831] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most perilous side effects of diabetes mellitus type 1 and type 2 (T1DM and T2DM).). It is known that sodium/glucose cotransporter 2 inhibitors (SGLT 2i) and glucagone like peptide-1 receptor agonists (GLP-1 RAs) have renoprotective effects, but the molecular mechanisms are still unknown. In clinical trials GLP-1 analogs exerted important impact on renal composite outcomes, primarily on macroalbuminuria, possibly through suppression of inflammation-related pathways, however enhancement of natriuresis and diuresis is also one of possible mechanisms of nephroprotection. Dapagliflozin, canagliflozin, and empagliflozin are SGLT2i drugs, useful in reducing hyperglycemia and in their potential renoprotective mechanisms, which include blood pressure control, body weight loss, intraglomerular pressure reduction, and a decrease in urinary proximal tubular injury biomarkers. In this review we have discussed the potential synergistic and/or additive effects of GLP 1 RA and SGLT2 inhibitors on the primary onset and progression of kidney disease, and the potential implications on current guidelines of diabetes type 2 management.
Collapse
Affiliation(s)
- Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Hrvoje Roguljić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department for Cardiovascular Disease, University Hospital Osijek, 4, 31000 Osijek, Croatia
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department for Nuclear Medicine and Oncology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek; J. Huttlera 4, 31000 Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ines Bilić Ćurčić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
43
|
Takakura S, Takasu T. Acute and Direct Effects of Sodium-Glucose Cotransporter 2 Inhibition on Glomerular Filtration Rate in Spontaneously Diabetic Torii Fatty Rats. Biol Pharm Bull 2019; 42:1707-1712. [PMID: 31582658 DOI: 10.1248/bpb.b19-00351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent clinical studies indicate that sodium-glucose cotransporter 2 (SGLT2) inhibitors exhibit a renoprotective effect. While studies at the single nephron level suggest that direct effects of SGLT2 inhibitors on renal hemodynamics may be a possible mechanism underlying their renoprotective effect, few studies have focused on such direct effects at the whole-kidney level. In the present study, we investigated the acute and direct effect of SGLT2 inhibition on creatinine clearance, an index of whole-kidney glomerular filtration rate (GFR), in a rat model of type 2 diabetes. Twelve to fifteen-week-old male Spontaneously Diabetic Torii (SDT) fatty rats and Sprague-Dawley rats were used as diabetic animals and non-diabetic controls, respectively. Under general anesthesia, baseline urine samples were collected from the left and right ureters for 1 h. The selective SGLT2 inhibitor ipragliflozin or vehicle was subsequently administered intravenously and post-drug urine was collected for 1 h. Baseline and post-drug blood samples were collected immediately before baseline urine collection and immediately after post-drug urine collection, respectively. Plasma glucose, urine volume, urinary glucose and albumin excretion were measured, and creatinine clearance was calculated. Blood pressure and heart rate were monitored continuously throughout the experiment. A single intravenous injection of ipragliflozin increased both urine output and glucose excretion, but reduced creatinine clearance without affecting systemic blood pressure. These results suggest that SGLT2 inhibition directly reduced whole-kidney GFR, most likely due to a reduction in intraglomerular pressure, by altering local renal hemodynamics, which may contribute to the renoprotective effects demonstrated in clinical studies.
Collapse
|
44
|
Barutta F, Bernardi S, Gargiulo G, Durazzo M, Gruden G. SGLT2 inhibition to address the unmet needs in diabetic nephropathy. Diabetes Metab Res Rev 2019; 35:e3171. [PMID: 30997935 PMCID: PMC6849789 DOI: 10.1002/dmrr.3171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
Current treatment of diabetic nephropathy is effective; however, substantial gaps in care still remain and new therapies are urgently needed to reduce the global burden of the complication. Desirable properties of an "ideal" new drug should include primary prevention of microalbuminuria, additive/synergistic anti-proteinuric effect in combination therapy with renin angiotensin system blockers, reduction of chronic kidney disease progression to lower the risk of end-stage renal disease, and cardiovascular protection. Growing evidence suggests that sodium-glucose cotransporter 2 inhibitors (SGLT2i) may fulfil many of these criteria and represent novel tools to cover the unmet needs in diabetic nephropathy care. However, the underlying mechanisms of SGLT2i renal benefits are still poorly understood and promising results from cardiovascular outcome trials with SGLT2i need confirmation in dedicated renal outcome trials.
Collapse
Affiliation(s)
| | - Sara Bernardi
- Department of Medical SciencesUniversity of TurinTurinItaly
| | | | | | | |
Collapse
|
45
|
Palygin O, Spires D, Levchenko V, Bohovyk R, Fedoriuk M, Klemens CA, Sykes O, Bukowy JD, Cowley AW, Lazar J, Ilatovskaya DV, Staruschenko A. Progression of diabetic kidney disease in T2DN rats. Am J Physiol Renal Physiol 2019; 317:F1450-F1461. [PMID: 31566426 DOI: 10.1152/ajprenal.00246.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading pathological causes of decreased renal function and progression to end-stage kidney failure. To explore and characterize age-related changes in DKD and associated glomerular damage, we used a rat model of type 2 diabetic nephropathy (T2DN) at 12 wk and older than 48 wk. We compared their disease progression with control nondiabetic Wistar and diabetic Goto-Kakizaki (GK) rats. During the early stages of DKD, T2DN and GK animals revealed significant increases in blood glucose and kidney-to-body weight ratio. Both diabetic groups had significantly altered renin-angiotensin-aldosterone system function. Thereafter, during the later stages of disease progression, T2DN rats demonstrated a remarkable increase in renal damage compared with GK and Wistar rats, as indicated by renal hypertrophy, polyuria accompanied by a decrease in urine osmolarity, high cholesterol, a significant prevalence of medullary protein casts, and severe forms of glomerular injury. Urinary nephrin shedding indicated loss of the glomerular slit diaphragm, which also correlates with the dramatic elevation in albuminuria and loss of podocin staining in aged T2DN rats. Furthermore, we used scanning ion microscopy topographical analyses to detect and quantify the pathological remodeling in podocyte foot projections of isolated glomeruli from T2DN animals. In summary, T2DN rats developed renal and physiological abnormalities similar to clinical observations in human patients with DKD, including progressive glomerular damage and a significant decrease in renin-angiotensin-aldosterone system plasma levels, indicating these rats are an excellent model for studying the progression of renal damage in type 2 DKD.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Denisha Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ruslan Bohovyk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mykhailo Fedoriuk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olga Sykes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John D Bukowy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Yaribeygi H, Butler AE, Barreto GE, Sahebkar A. Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. J Cell Physiol 2019; 234:2436-2446. [DOI: 10.1002/jcp.27278] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/26/2018] [Indexed: 08/30/2023]
Abstract
AbstractMany vascular complications are related to exposure of tissues to elevated levels of glucose, a condition that promotes oxidative stress. The primary goal of antidiabetic medication is for normalization of blood glucose. However, antidiabetic medications may have antioxidant effects that go beyond their hypoglycemic influences. Therefore, antidiabetic drugs may be doubly beneficial in preventing diabetic complications. Vascular dysfunction due to uncontrolled diabetes is a serious complication of the disease and one which has a severe impact on quality of life. Readjustment of the oxidative balance in subjects with diabetes, and the positive effects thereof is a topic of intense interest at present. In the current review, we highlight the antioxidant effects of antidiabetic medications which may prevent or delay the onset of vascular dysfunction.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - George E. Barreto
- Departamento de Nutrición y Bioquímica Facultad de Ciencias Pontificia Universidad Javeriana Bogotá D.C. Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
47
|
Spires D, Manis AD, Staruschenko A. Ion channels and transporters in diabetic kidney disease. CURRENT TOPICS IN MEMBRANES 2019; 83:353-396. [PMID: 31196609 PMCID: PMC6815098 DOI: 10.1016/bs.ctm.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 and 2 diabetes mellitus are major medical epidemics affecting millions of patients worldwide. Diabetes mellitus is the leading cause of diabetic kidney disease (DKD), which is the most common cause of end-stage renal disease (ESRD). DKD is associated with significant changes in renal hemodynamics and electrolyte transport. Alterations in renal ion transport triggered by pathophysiological conditions in diabetes can exacerbate hypertension, accelerate renal injury, and are integral to the development of DKD. Renal ion transporters and electrolyte homeostasis play a fundamental role in functional changes and injury to the kidney during DKD. With the large number of ion transporters involved in DKD, understanding the roles of individual transporters as well as the complex cascades through which they interact is essential in the development of effective treatments for patients suffering from this disease. This chapter aims to gather current knowledge of the major renal ion transporters with altered expression and activity under diabetic conditions, and provide a comprehensive overview of their interactions and collective functions in DKD.
Collapse
Affiliation(s)
- Denisha Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States.
| |
Collapse
|
48
|
Tanaka S, Sugiura Y, Saito H, Sugahara M, Higashijima Y, Yamaguchi J, Inagi R, Suematsu M, Nangaku M, Tanaka T. Sodium–glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int 2018; 94:912-925. [DOI: 10.1016/j.kint.2018.04.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
|
49
|
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018; 20:2617-2626. [PMID: 29923295 DOI: 10.1111/dom.13441] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
AIM To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. METHODS Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16 weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30 mg/kg/d) by oral gavage for 4 weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. RESULTS The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. CONCLUSION Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - La-Ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
50
|
Muroya Y, He X, Fan L, Wang S, Xu R, Fan F, Roman RJ. Enhanced renal ischemia-reperfusion injury in aging and diabetes. Am J Physiol Renal Physiol 2018; 315:F1843-F1854. [PMID: 30207168 DOI: 10.1152/ajprenal.00184.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence and severity of acute kidney injury is increased in patients with diabetes and with aging. However, the mechanisms involved have not been clearly established. The present study examined the effects of aging and diabetes on the severity of renal ischemia-reperfusion (IR) injury in Sprague-Dawley (SD) and type 2 diabetic (T2DN) rats. T2DN rats develop diabetes at 3 mo of age and progressive proteinuria and diabetic nephropathy as they age from 6 to 18 mo. Plasma creatinine levels after bilateral IR were significantly higher (3.4 ± 0.1 mg/dl) in 18-mo-old elderly T2DN rats than in middle-aged (12 mo) T2DN rats with less severe diabetic nephropathy or young (3 mo) and elderly (18 mo) control SD rats (1.5 ± 0.2, 1.8 ± 0.1, and 1.7 ± 0.1 mg/dl, respectively). Elderly T2DN rats exhibited a greater fall in medullary blood flow 2 h following renal IR and a more severe and prolonged decline in glomerular filtration rate than middle-aged T2DN and young or elderly SD rats. The basal expression of the adhesion molecules ICAM-1 and E-selectin and the number of infiltrating immune cells was higher in the kidney of elderly T2DN than age-matched SD rats or young and middle-aged T2DN rats before renal IR. These results indicate that elderly T2DN rats with diabetic nephropathy are more susceptible to renal IR injury than diabetic animals with mild injury or age-matched control animals. This is associated with increased expression of ICAM-1, E-selectin and immune cell infiltration, renal medullary vasocongestion, and more prolonged renal medullary ischemia.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Faculty of Medicine, Tohoku Medical and Pharmaceutical University , Sendai , Japan.,Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xiaochen He
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Rui Xu
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|