1
|
Bulthuis NE, McGowan JC, Ladner LR, LaGamma CT, Lim SC, Shubeck CX, Brachman RA, Sydnor E, Pavlova IP, Seo DO, Drew MR, Denny CA. GluN2B on Adult-Born Granule Cells Modulates (R,S)-Ketamine's Rapid-Acting Effects in Mice. Int J Neuropsychopharmacol 2024; 27:pyae036. [PMID: 39240140 PMCID: PMC11461768 DOI: 10.1093/ijnp/pyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. (R,S)-ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the GluN2B subunit of the NMDA receptor on interneurons in the medial prefrontal cortex, no study to our knowledge has investigated the influence of GluN2B-expressing adult-born granule cells. METHODS Here, we examined whether (R,S)-ketamine's efficacy depends on adult-born hippocampal neurons using a genetic strategy to selectively ablate the GluN2B subunit of the NMDA receptor from Nestin+ cells in male and female mice, tested across an array of standard behavioral assays. RESULTS We report that in male mice, GluN2B expression on 6-week-old adult-born neurons is necessary for (R,S)-ketamine's effects on behavioral despair in the forced swim test and on hyponeophagia in the novelty suppressed feeding paradigm, as well on fear behavior following contextual fear conditioning. In female mice, GluN2B expression is necessary for effects on hyponeophagia in novelty suppressed feeding. These effects were not replicated when ablating GluN2B from 2-week-old adult-born neurons. We also find that ablating neurogenesis increases fear expression in contextual fear conditioning, which is buffered by (R,S)-ketamine administration. CONCLUSIONS In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing GluN2B partially modulate (R,S)-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of (R,S)-ketamine.
Collapse
Affiliation(s)
- Nicholas E Bulthuis
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Liliana R Ladner
- Department of Neuroscience, Barnard College, New York, New York, USA
| | - Christina T LaGamma
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Sean C Lim
- Medical Science Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | | | - Rebecca A Brachman
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
| | - Ezra Sydnor
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Ina P Pavlova
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Dong-oh Seo
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Michael R Drew
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| |
Collapse
|
2
|
Hagarty DP, Dawoud A, Brea Guerrero A, Phillips K, Strong CE, Jennings SD, Crawford M, Martinez K, Csernecky O, Saland SK, Kabbaj M. Exploring ketamine's reinforcement, cue-induced reinstatement, and nucleus accumbens cFos activation in male and female long evans rats. Neuropharmacology 2024; 255:110008. [PMID: 38797243 DOI: 10.1016/j.neuropharm.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.
Collapse
Affiliation(s)
- Devin P Hagarty
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Adam Dawoud
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alfonso Brea Guerrero
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kaynas Phillips
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Caroline E Strong
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Sarah Dollie Jennings
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Michelle Crawford
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Katherine Martinez
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Olivia Csernecky
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Samantha K Saland
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
3
|
Looschen K, Khatri SN, Maulik M, Salisbury C, Carman AF, Corriveau K, Smith C, Manetti D, Romanelli MN, Arias HR, Gipson CD, Mitra S. Novel psychoplastogen DM506 reduces cue-induced heroin-seeking and inhibits tonic GABA currents in the Prelimbic Cortex. Neurochem Int 2024; 178:105785. [PMID: 38838988 DOI: 10.1016/j.neuint.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Opioid use disorder is a major public health crisis that is manifested by persistent drug-seeking behavior and high relapse frequency. Most of the available treatments rely on targeting opioid receptors using small molecules that do not provide sustained symptom alleviation. Psychoplastogens are a novel class of non-opioid drugs that produce rapid and sustained effects on neuronal plasticity, intended to produce therapeutic benefits. Ibogalogs are synthetic derivatives of iboga alkaloids that lack hallucinogenic or adverse side effects. In the current study, we examine the therapeutic potential of DM506, a novel ibogalog lacking any cardiotoxic or hallucinogenic effects, in cue-induced seeking behavior following heroin self-administration. At a single systemic dose of 40 mg/kg, DM506 significantly decreased cue-induced seeking in both male and female rats at abstinence day 1 (AD1) following heroin self-administration. Upon re-testing for cue-induced seeking at AD14, we found that males receiving DM506 continued to show decreased cue-induced seeking, an effect not observed in females. Since there is evidence of psychedelics influencing tonic GABA currents, and opioid and psychoplastogen-mediated neuroadaptations in the medial prefrontal cortex (PrL) underlying its functional effects, we performed patch-clamp recordings on PrL slices of drug-naïve rats with an acute application or chronic incubation with DM506. Tonic GABA current was decreased in slices incubated with DM506 for 2 h. qPCR analysis did not reveal any differences in the mRNA levels of GABAA receptor α and δ subunits at AD14 in heroin and saline self-administered animals that received vehicle or DM506 at AD1. Overall, our data indicate that DM506 attenuates cue-induced heroin seeking and inhibits tonic GABA current in the prelimbic cortex.
Collapse
Affiliation(s)
- Kassandra Looschen
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shailesh Narayan Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Malabika Maulik
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Colin Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Alaina F Carman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Katilyn Corriveau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Colton Smith
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, USA; Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tahlequah, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA; Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, USA.
| |
Collapse
|
4
|
Flintoff JM, Alexander S, Kesby JP, Burne TH. The dynamic strategy shifting task: Optimisation of an operant task for assessing cognitive flexibility in rats. Front Psychiatry 2024; 15:1303728. [PMID: 39006823 PMCID: PMC11240049 DOI: 10.3389/fpsyt.2024.1303728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Although schizophrenia is associated with a broad range of symptoms including hallucinations, delusions, and reduced motivation, measures of cognitive dysfunction, including cognitive flexibility and executive function, are the strongest predictors of functional outcomes. Antipsychotic medications are useful for reducing psychotic symptoms, but they are ineffective at improving cognitive deficits. Despite extensive investment by industry, the transition from preclinical to clinical trials has not been successful for developing precognitive medications for individuals with schizophrenia. Here, we describe the optimisation of a novel dynamic strategy shifting task (DSST) using standard operant chambers to investigate the optimal stimuli required to limit the extensive training times required in previous tasks. Methods We determined that optimal learning by male and female Sprague Dawley rats for the flexibility task incorporated dynamic strategy shifts between spatial rules, such as following a visual cue or responding at one location, and non-spatial rules, such as responding to a central visual or auditory cue. A minimum of 6 correct consecutive responses were required to make a within-session change in the behavioural strategies. As a proof of concept, we trained and tested 84 Sprague Dawley rats on the DSST, and then assessed their cognitive flexibility using a within-subject design after an acute dose of ketamine (0, 3, 10 mg/kg). Rats made fewer premature and more perseverant responses to initiate a trial following ketamine. The effects of ketamine on trials to criterion was dependent on the rule. Results Ketamine induced a significant improvement on the reversal of a non-spatial visual discrimination rule. There was no significant effect of ketamine on the spatial visual or response discrimination rules. Discussion The DSST is a novel assay for studying distinct forms of cognitive flexibility and offers a rapid and adaptable means of assessing the ability to shift between increasingly challenging rule conditions. The DSST has potential utility in advancing our understanding of cognitive processes and the underlying neurobiological mechanisms related to flexibility in neuropsychiatric and neurological conditions where executive dysfunctions occur.>.
Collapse
Affiliation(s)
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - James Paul Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Thomas Henry Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| |
Collapse
|
5
|
Pargätzi G, Bergadano A, Spadavecchia C, Theurillat R, Thormann W, Levionnois OL. Stereoselective Pharmacokinetics of Ketamine Administered at a Low Dose in Awake Dogs. Animals (Basel) 2024; 14:1012. [PMID: 38612251 PMCID: PMC11011119 DOI: 10.3390/ani14071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The present study aimed to examine the stereoselective pharmacokinetics of racemic ketamine in dogs at low doses. The secondary aims were to identify associated behavioural effects and propose a ketamine infusion rate. The study was conducted on nine intact male beagles, with each dog undergoing two treatments (BOL and INF). For treatment BOL, an intravenous bolus of 1 mg/kg was administered over 2 min. The treatment INF involved an initial bolus of 0.5 mg/kg given over 1 min, followed by an infusion at 0.01 mg/kg/min for 1 h. Blood samples were collected for pharmacokinetic analysis. The median R/S enantiomer ratio of ketamine remained close to 1 throughout the study. Levels of S-norketamine were significantly higher than those of R-norketamine across all time points. Based on the collected data, the infusion rate predicted to achieve a steady-state racemic ketamine plasma concentration of 150 ng/mL was 0.028 mg/kg/min. Higher scores for behavioural effects were observed within the first five minutes following bolus administration. The most common behaviours observed were disorientation, head movements and staring eyes. Furthermore, employing ROC curve analysis, a racemic ketamine plasma concentration of 102 ng/mL was defined as the cut-off value, correlating with the occurrence of undesirable behavioural patterns.
Collapse
Affiliation(s)
- Gwenda Pargätzi
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Clinic for Small Animals, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Alessandra Bergadano
- Section of Occupational Safety, Health Protection and Environmental Safety, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Claudia Spadavecchia
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Regula Theurillat
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Wolfgang Thormann
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Olivier L. Levionnois
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Spark DL, Ma S, Nowell CJ, Langmead CJ, Stewart GD, Nithianantharajah J. Sex-Dependent Attentional Impairments in a Subchronic Ketamine Mouse Model for Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:229-239. [PMID: 38298794 PMCID: PMC10829638 DOI: 10.1016/j.bpsgos.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 02/02/2024] Open
Abstract
Background The development of more effective treatments for schizophrenia targeting cognitive and negative symptoms has been limited, partly due to a disconnect between rodent models and human illness. Ketamine administration is widely used to model symptoms of schizophrenia in both humans and rodents. In mice, subchronic ketamine treatment reproduces key dopamine and glutamate dysfunction; however, it is unclear how this translates into behavioral changes reflecting positive, negative, and cognitive symptoms. Methods In male and female mice treated with either subchronic ketamine or saline, we assessed spontaneous and amphetamine-induced locomotor activity to measure behaviors relevant to positive symptoms, and used a touchscreen-based progressive ratio task of motivation and the rodent continuous performance test of attention to capture specific negative and cognitive symptoms, respectively. To explore neuronal changes underlying the behavioral effects of subchronic ketamine treatment, we quantified expression of the immediate early gene product, c-Fos, in key corticostriatal regions using immunofluorescence. Results We showed that spontaneous locomotor activity was unchanged in male and female subchronic ketamine-treated animals, and amphetamine-induced locomotor response was reduced. Subchronic ketamine treatment did not alter motivation in either male or female mice. In contrast, we identified a sex-specific effect of subchronic ketamine on attentional processing wherein female mice performed worse than control mice due to increased nonselective responding. Finally, we showed that subchronic ketamine treatment increased c-Fos expression in prefrontal cortical and striatal regions, consistent with a mechanism of widespread disinhibition of neuronal activity. Conclusions Our results highlight that the subchronic ketamine mouse model reproduces a subset of behavioral symptoms that are relevant for schizophrenia.
Collapse
Affiliation(s)
- Daisy L. Spark
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sherie Ma
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron J. Nowell
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Gregory D. Stewart
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Hilal F, Jeanblanc J, Naassila M. [Interest and mechanisms of action of ketamine in alcohol addiction- A review of clinical and preclinical studies]. Biol Aujourdhui 2023; 217:161-182. [PMID: 38018944 DOI: 10.1051/jbio/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 11/30/2023]
Abstract
Alcohol Use Disorder (AUD) is a psychiatric condition characterized by chronic and excessive drinking despite negative consequences on overall health and social or occupational functioning. There are currently limited treatment options available for AUD, and the effects size and the response rates to these treatments are often low to moderate. The World Health Organization has identified the development of medications to treat AUD as one of its 24 priorities. This past decade was marked by a renewed interest in psychedelic use in psychiatry. At the centre of this renaissance, ketamine, an atypical psychedelic already used in the treatment of major depression, is an NMDA receptor antagonist that exists as a racemic compound made of two enantiomers, S-ketamine, and R-ketamine. Each form can be metabolized into different metabolites, some of which having antidepressant properties. In this article, we review both clinical and preclinical studies on ketamine and its metabolites in the treatment of AUD. Preclinical as well as clinical studies have revealed that ketamine is effective in reducing withdrawal symptoms and alcohol craving. Convergent data showed that antidepressant properties of ketamine largely contribute to the decreased likelihood of alcohol relapse, especially in patients undergoing ketamine-assisted psychotherapies. Its effectiveness is believed to be linked with its ability to regulate the glutamatergic pathway, enhance neuroplasticity, rewire brain resting state network functional connectivity and decrease depressive-like states. However, it remains to further investigate (i) why strong differences exist between male and female responses in preclinical studies and (ii) the respective roles of each of the metabolites in the ketamine effects in both genders. Interestingly, current studies are also focusing on ketamine addiction and the comorbidity between alcohol addiction and depression occurring more frequently in females.
Collapse
Affiliation(s)
- Fahd Hilal
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Jérôme Jeanblanc
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Mickaël Naassila
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| |
Collapse
|
8
|
Gobira PH, LaMar J, Marques J, Sartim A, Silveira K, Santos L, Wegener G, Guimaraes FS, Mackie K, Lu HC, Joca S. CB1 Receptor Silencing Attenuates Ketamine-Induced Hyperlocomotion Without Compromising Its Antidepressant-Like Effects. Cannabis Cannabinoid Res 2023; 8:768-778. [PMID: 36067014 PMCID: PMC10771879 DOI: 10.1089/can.2022.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Collapse
Affiliation(s)
- Pedro Henrique Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jade Marques
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariandra Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kennia Silveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luana Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | | | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Ballók B, Schranc Á, Tóth I, Somogyi P, Tolnai J, Peták F, Fodor GH. Comparison of the respiratory effects of commonly utilized general anaesthesia regimes in male Sprague-Dawley rats. Front Physiol 2023; 14:1249127. [PMID: 37791348 PMCID: PMC10544940 DOI: 10.3389/fphys.2023.1249127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Respiratory parameters in experimental animals are often characterised under general anaesthesia. However, anaesthesia regimes may alter the functional and mechanical properties of the respiratory system. While most anaesthesia regimes have been shown to affect the respiratory system, the effects of general anaesthesia protocols commonly used in animal models on lung function have not been systematically compared. Methods: The present study comprised 40 male Sprague-Dawley rats divided into five groups (N = 8 in each) according to anaesthesia regime applied: intravenous (iv) Na-pentobarbital, intraperitoneal (ip) ketamine-xylazine, iv propofol-fentanyl, inhaled sevoflurane, and ip urethane. All drugs were administered at commonly used doses. End-expiratory lung volume (EELV), airway resistance (Raw) and tissue mechanics were measured in addition to arterial blood gas parameters during mechanical ventilation while maintaining positive end-expiratory pressure (PEEP) values of 0, 3, and 6 cm H2O. Respiratory mechanics were also measured during iv methacholine (MCh) challenges to assess bronchial responsiveness. Results: While PEEP influenced baseline respiratory mechanics, EELV and blood gas parameters (p < 0.001), no between-group differences were observed (p > 0.10). Conversely, significantly lower doses of MCh were required to achieve the same elevation in Raw under ketamine-xylazine anaesthesia compared to the other groups. Conclusion: In the most frequent rodent model of respiratory disorders, no differences in baseline respiratory mechanics or function were observed between commonly used anaesthesia regimes. Bronchial hyperresponsiveness in response to ketamine-xylazine anaesthesia should be considered when designing experiments using this regime. The findings of the present study indicate commonly used anaesthetic regimes allow fair comparison of respiratory mechanics in experimental animals undergoing any of the examined anaesthesia protocols.
Collapse
Affiliation(s)
- Bence Ballók
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Álmos Schranc
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ibolya Tóth
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Somogyi
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - József Tolnai
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely H. Fodor
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
11
|
Liu T, Zhang X, Li A, Liu T, Yang X, Zhang H, Lei Y, Yang Q, Dong H. Effects of intra-operative administration of subanesthetic s-ketamine on emergence from sevoflurane anesthesia: a randomized double-blind placebo-controlled study. BMC Anesthesiol 2023; 23:221. [PMID: 37353750 PMCID: PMC10288804 DOI: 10.1186/s12871-023-02170-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Ketamine is administered in the perioperative period for its benefits in analgesia, anti-agitation and anti-depression when administered at a small dose. However, it is not clear whether the intra-operative administration of ketamine would affect emergence under sevoflurane anesthesia. To investigate this effect, we designed this trial. METHODS In this randomized, double-blind, placebo-controlled study, we enrolled 44 female patients aged 18-60 who were scheduled to elective laparoscopic gynecological surgeries. All patients were randomly assigned to saline or s-ketamine group. In s-ketamine group, patients received 0.125 mg/kg s-ketamine 30 min after the start of surgery. In saline group, patients were administered the same volume of saline. Sevoflurane and remifentanil were used to maintain general anesthesia. The primary outcome was emergence time. We also assessed postoperative agitation, cognitive function, and delirium. In addition, we collected and analyzed prefrontal electroencephalogram (EEG) during and after general anesthesia. RESULTS There were no significant differences in emergence time between s-ketamine group and saline group (10.80 ± 3.77 min vs. 10.00 ± 2.78 min, P = 0.457). Neither postoperative agitation (4 [3, 4] vs. 4 [3, 4], P = 0.835) nor cognitive function (25.84 ± 2.69 vs. 25.55 ± 2.19, P = 0.412) differed between groups. No postoperative delirium was observed in either group. Subanesthetic s-ketamine resulted in active EEG with decreased power of slow (-0.35 ± 1.13 dB vs. -1.63 ± 1.03 dB, P = 0.003), delta (-0.22 ± 1.11 dB vs. -1.32 ± 1.09 dB, P = 0.011) and alpha (-0.31 ± 0.71 dB vs. -1.71 ± 1.34 dB, P = 0.0003) waves and increased power of beta-gamma bands (-0.30 ± 0.89 dB vs. 4.20 ± 2.08 dB, P < 0.0001) during sevoflurane anesthesia, as well as an increased alpha peak frequency (-0.16 ± 0.48 Hz vs. 0.31 ± 0.73 Hz, P = 0.026). EEG patterns did not differ during the recovery period after emergence between groups. CONCLUSION Ketamine administered during sevoflurane anesthesia had no apparent influence on emergence time in young and middle-aged female patients undergoing laparoscopic surgery. Subanesthetic s-ketamine induced an active prefrontal EEG pattern during sevoflurane anesthesia but did not raise neurological side effects after surgery. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2100046479 (date: 16/05/2021).
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Tingting Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Xue Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Huanhuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanling Lei
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
12
|
Tóth A, Sviatkó K, Détári L, Hajnik T. Ketamine affects homeostatic sleep regulation in the absence of the circadian sleep-regulating component in freely moving rats. Pharmacol Biochem Behav 2023; 225:173556. [PMID: 37087059 DOI: 10.1016/j.pbb.2023.173556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pharmacological effects of ketamine may affect homeostatic sleep regulation via slow wave related mechanisms. In the present study effects of ketamine applied at anesthetic dose (80 mg/kg) were tested on neocortical electric activity for 24 h in freely moving rats. Ketamine effects were compared to changes during control (saline) injections and after 6 h gentle handling sleep deprivation (SD). As circadian factors may mask drug effects, an illumination protocol consisting of short light-dark cycles was applied. Ketamine application induced a short hypnotic stage with characteristic slow cortical rhythm followed by a long-lasting hyperactive waking resulting pharmacological SD. Coherence analysis indicated an increased level of local synchronization in broad local field potential frequency ranges during hyperactive waking but not during natural- or SD-evoked waking. Both slow wave sleep and rapid eye movement sleep were replaced after the termination of the ketamine effect. Our results show that both ketamine-induced hypnotic state and hyperactive waking can induce homeostatic sleep pressure with comparable intensity as 6 h SD, but ketamine-induced waking was different compared to the SD-evoked one. Both types of waking stages were different compared to spontaneous waking but all three types of wakefulness can engage the homeostatic sleep regulating machinery to generate sleep pressure dissipated by subsequent sleep. Current-source density analysis of the slow waves showed that cortical transmembrane currents were stronger during ketamine-induced hypnotic stage compared to both sleep replacement after SD and ketamine application, but intracortical activation patterns showed only quantitative differences. These findings may hold some translational value for human medical ketamine applications aiming the treatment of depression-associated sleep problems, which can be alleviated by the homeostatic sleep effect of the drug without the need for an intact circadian regulation.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary.
| | - Katalin Sviatkó
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary
| |
Collapse
|
13
|
Acevedo J, Mugarura NE, Welter AL, Johnson EM, Siegel JA. The Effects of Acute and Repeated Administration of Ketamine on Memory, Behavior, and Plasma Corticosterone Levels in Female Mice. Neuroscience 2023; 512:99-109. [PMID: 36496189 DOI: 10.1016/j.neuroscience.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Ketamine is an anesthetic drug that has recently been approved for the treatment of treatment-resistant depression. Females are diagnosed with Major Depressive Disorder at higher rates than males, yet most of the pre-clinical research on ketamine has been conducted in male subjects. Additionally, the literature on the acute and long-term behavioral and cognitive effects of ketamine shows conflicting results. It is important to examine the acute and long-term cognitive and behavioral effects of ketamine exposure at lower sub-anesthetic doses, as the recreational use of the drug at higher doses is associated with cognitive and memory impairments. The current study examined the effects of acute and repeated ketamine exposure on anxiety-like behavior, novel object recognition memory, depression-like behavior, and plasma corticosterone levels in 20 adult female C57BL/6J mice. Mice were exposed acutely or repeatedly for 10 consecutive days to saline or 15 mg/kg ketamine and behavior was measured in the open field test, novel object recognition test, and the Porsolt forced swim test. Plasma corticosterone levels were measured following behavioral testing. Acute ketamine exposure decreased locomotor activity and increased anxiety-like behavior in the open field test compared to controls, while repeated ketamine exposure impaired memory in the novel object recognition test. There were no effects of acute or repeated ketamine exposure on depression-like behavior in the Porsolt forced swim test or on plasma corticosterone levels. These findings suggest that a subanesthetic dose of ketamine alters behavior and cognition in female mice and the effects are dependent on the duration of exposure.
Collapse
Affiliation(s)
- Jonathan Acevedo
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA 90502, USA.
| | - Naomi E Mugarura
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Alex L Welter
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Emily M Johnson
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Jessica A Siegel
- Department of Biochemistry and Biophysics, The College of Science, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
14
|
S-ketamine exerts sex- and dose-dependent anti-compulsive-like effect as monotherapy or in augmentation to fluoxetine. Eur J Pharmacol 2022; 937:175382. [DOI: 10.1016/j.ejphar.2022.175382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/16/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
|
15
|
The α 2C-adrenoceptor antagonist JP-1302 controls behavioral parameters, tyrosine hydroxylase activity and receptor expression in a rat model of ketamine-induced schizophrenia-like deficits. Pharmacol Biochem Behav 2022; 221:173490. [PMID: 36379444 DOI: 10.1016/j.pbb.2022.173490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Schizophrenia is a chronic disabling disease affecting 1 % of the population. Current antipsychotics have limited efficacy in mitigating the severity of the symptoms of the disease. Therefore, searching for new therapeutic targets is essential. Previous studies have shown that α2C-adrenoceptor antagonists may have antipsychotic and pro-cognitive effects. Therefore, the current study evaluates the behavioral and neurochemical effects of JP-1302, a selective α2C-adrenoceptor antagonist, in a model of schizophrenia-like deficits induced by sub-chronic ketamine (KET) administration. Here, we administered ketamine (25 mg/kg, i.p.) to male and female Wistar rats for eight consecutive days. On the last two days of ketamine administration, rats were pretreated with either JP-1302 (1-3-10 μmol/kg, i.p.), chlorpromazine (0.1 mg/kg, i.p.), or saline, and the behavioral tests were performed. Behaviors related to positive (locomotor activity), negative (social interaction), and cognitive (novel object recognition) symptoms of schizophrenia were assessed. Glutamate, glutamine, GABA levels, and α2C-adrenoceptor expression were measured in the frontal cortex and the hippocampus. Tyrosine hydroxylase immunocytochemical reactivity was also shown in the midbrain regions. Sub-chronic ketamine administration increased locomotor activity and produced robust social interaction and object recognition deficits, and JP-1302 significantly ameliorated ketamine-induced cognitive deficits. Ketamine induced a hyperdopaminergic activity in the striatum, which was reversed by the treatment with JP-1302. Also, the α2C-adrenoceptor expression was higher in the frontal cortex and hippocampus in the ketamine-treated rats. Our findings confirm that α2C-adrenoceptor antagonism may be a potential drug target for treating cognitive disorders related to schizophrenia.
Collapse
|
16
|
Simmler LD, Li Y, Hadjas LC, Hiver A, van Zessen R, Lüscher C. Dual action of ketamine confines addiction liability. Nature 2022; 608:368-373. [PMID: 35896744 DOI: 10.1038/s41586-022-04993-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 12/19/2022]
Abstract
Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability.
Collapse
Affiliation(s)
- Linda D Simmler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Yue Li
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Lotfi C Hadjas
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Ruud van Zessen
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. .,Service de Neurologie, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
17
|
The role of serotonin neurotransmission in rapid antidepressant actions. Psychopharmacology (Berl) 2022; 239:1823-1838. [PMID: 35333951 DOI: 10.1007/s00213-022-06098-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE Ketamine has rapid antidepressant effects that represent a significant advance in treating depression, but its poor safety and tolerability limit its clinical utility. Accreting evidence suggests that serotonergic neurotransmission participates in the rapid antidepressant effects of ketamine and hallucinogens. Thus, understanding how serotonin contributes to these effects may allow identification of novel rapid antidepressant mechanisms with improved tolerability. OBJECTIVE The goal of this paper is to understand how serotonergic mechanisms participate in rapid antidepressant mechanisms. METHODS We review the relevance of serotonergic neurotransmission for rapid antidepressant effects and evaluate the role of 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors in synaptic plasticity, BDNF signaling, and GSK-3β activity. Subsequently, we develop hypotheses on the relationship of these receptor systems to rapid antidepressant effects. RESULTS We found that 5-HT1A and 5-HT1B receptors may participate in ketamine's rapid antidepressant mechanisms, while agonists at 5-HT2A and 5-HT4 receptors may independently behave as rapid antidepressants. 5-HT1A, 5-HT2A, and 5-HT4 receptors increase synaptic plasticity in the cortex or hippocampus but do not consistently increase BDNF signaling. We found that 5-HT1A and 5-HT1B receptors may participate in rapid antidepressant mechanisms as a consequence of increased BDNF signaling, rather than a cause. 5-HT2A and 5-HT4 receptor agonists may increase BDNF signaling, but these relationships are tenuous and need more study. Finally, we found that ketamine and several serotonergic receptor systems may mechanistically converge on reduced GSK-3β activity. CONCLUSIONS We find it plausible that serotonergic neurotransmission participates in rapid antidepressant mechanisms by increasing synaptic plasticity, perhaps through GSK-3β inhibition.
Collapse
|
18
|
Guerrero AB, Logue J, Schoepfer K, Zhou Y, Kabbaj M. Data and experimental setup for a comprehensive study of ketamine's effect on neuronal plasticity following social isolation rearing in male and female rats. Data Brief 2022; 43:108338. [PMID: 35712367 PMCID: PMC9194694 DOI: 10.1016/j.dib.2022.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we collected electrophysiological data from acute hippocampal slices of male and female Sprague Dawley rats. Rats were exposed to social isolation rearing and then acutely treated with various doses of ketamine in order to rescue hippocampal plasticity deficits induced by isolation stress. We used two different approaches to study neuronal plasticity: Long-Term Potentiation (LTP) which is a well-established cellular model for memory and Paired-Pulse Facilitation (PPF) which is short-term of presynaptic plasticity. The aim of this article is to offer more experimental details about out LTP and PPF procedures.
Collapse
|
19
|
Spencer HF, Berman RY, Boese M, Zhang M, Kim SY, Radford KD, Choi KH. Effects of an intravenous ketamine infusion on inflammatory cytokine levels in male and female Sprague-Dawley rats. J Neuroinflammation 2022; 19:75. [PMID: 35379262 PMCID: PMC8981848 DOI: 10.1186/s12974-022-02434-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/20/2022] [Indexed: 12/29/2022] Open
Abstract
Background Ketamine, a multimodal dissociative anesthetic drug, is widely used as an analgesic following traumatic injury. Although ketamine may produce anti-inflammatory effects when administered after injury, the immunomodulatory properties of intravenous (IV) ketamine in a non-inflammatory condition are unclear. In addition, most preclinical studies use an intraperitoneal (IP) injection of ketamine, which limits its clinical translation as patients usually receive an IV ketamine infusion after injury. Methods Here, we administered sub-anesthetic doses of a single IV ketamine infusion (0, 10, or 40 mg/kg) to male and female Sprague–Dawley rats over a 2-h period. We collected blood samples at 2- and 4-h post-ketamine infusion to determine plasma inflammatory cytokine levels using multiplex immunoassays. Results The 10 mg/kg ketamine infusion reduced spontaneous locomotor activity in male and female rats, while the 40 mg/kg infusion stimulated activity in female, but not male, rats. The IV ketamine infusion produced dose-dependent and sex-specific effects on plasma inflammatory cytokine levels. A ketamine infusion reduced KC/GRO and tumor necrosis factor alpha (TNF-α) levels in both male and female rats, interleukin-6 (IL-6) levels in female rats, and interleukin-10 (IL-10) levels in male rats. However, most cytokine levels returned to control levels at 4-h post-infusion, except for IL-6 levels in male rats and TNF-α levels in female rats, indicating a different trajectory of certain cytokine changes over time following ketamine administration. Conclusions The current findings suggest that sub-anesthetic doses of an IV ketamine infusion may produce sex-related differences in the effects on peripheral inflammatory markers in rodents, and further research is warranted to determine potential therapeutic effects of an IV ketamine infusion in an inflammatory condition.
Collapse
Affiliation(s)
- Haley F Spencer
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Rina Y Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Michael Zhang
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Sharon Y Kim
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwang H Choi
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
20
|
Roszkowska A, Plenis A, Kowalski P, Bączek T, Olędzka I. Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Radford KD, Berman RY, Jaiswal S, Kim SY, Zhang M, Spencer HF, Choi KH. Enhanced Fear Memories and Altered Brain Glucose Metabolism ( 18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23031922. [PMID: 35163844 PMCID: PMC8836808 DOI: 10.3390/ijms23031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although women and men are equally likely to receive ketamine following traumatic injury, little is known regarding sex-related differences in the impact of ketamine on traumatic memory. We previously reported that subanesthetic doses of an intravenous (IV) ketamine infusion following fear conditioning impaired fear extinction and altered regional brain glucose metabolism (BGluM) in male rats. Here, we investigated the effects of IV ketamine infusion on fear memory, stress hormone levels, and BGluM in female rats. Adult female Sprague–Dawley rats received a single IV ketamine infusion (0, 2, 10, or 20 mg/kg, over a 2-h period) following auditory fear conditioning (three pairings of tone and footshock). Levels of plasma stress hormones, corticosterone (CORT) and progesterone, were measured after the ketamine infusion. Two days after ketamine infusion, fear memory retrieval, extinction, and renewal were tested over a three-day period. The effects of IV ketamine infusion on BGluM were determined using 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG-PET) and computed tomography (CT). The 2 and 10 mg/kg ketamine infusions reduced locomotor activity, while 20 mg/kg infusion produced reduction (first hour) followed by stimulation (second hour) of activity. The 10 and 20 mg/kg ketamine infusions significantly elevated plasma CORT and progesterone levels. All three doses enhanced fear memory retrieval, impaired fear extinction, and enhanced cued fear renewal in female rats. Ketamine infusion produced dose-dependent effects on BGluM in fear- and stress-sensitive brain regions of female rats. The current findings indicate that subanesthetic doses of IV ketamine produce robust effects on the hypothalamic–pituitary–adrenal (HPA) axis and brain energy utilization that may contribute to enhanced fear memory observed in female rats.
Collapse
Affiliation(s)
- Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Shalini Jaiswal
- Biomedical Research Imaging Core (BRIC), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Sharon Y. Kim
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Michael Zhang
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Kwang H. Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
- Department of Psychiatry, F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2682
| |
Collapse
|
22
|
Saland SK, Wilczak K, Voss E, Lam TT, Kabbaj M. Sex- and estrous-cycle dependent dorsal hippocampal phosphoproteomic changes induced by low-dose ketamine. Sci Rep 2022; 12:1820. [PMID: 35110693 PMCID: PMC8810966 DOI: 10.1038/s41598-022-05937-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Numerous emotional and cognitive processes mediated by the hippocampus present differences between sexes and can be markedly influenced by hormonal status in males and females of several species. In rodents, the dorsal hippocampus (dHPC) is known to contribute to the rapid antidepressant actions of the NMDA receptor antagonist ketamine. We and others have demonstrated a greater sensitivity to the fast-acting antidepressant ketamine in female versus male rats that is estrogen- and progesterone-dependent. However, the underlying mechanisms remain unclear. Using an acute low dose (2.5 mg/kg) of ketamine that is behaviorally effective in female but not male rats, a label-free phosphoproteomics approach was employed to identify ketamine-induced changes in signaling pathway activation and phosphoprotein abundance within the dHPC of intact adult male rats and female rats in either diestrus or proestrus. At baseline, males and females showed striking dissimilarities in the dHPC proteome and phosphoproteome related to synaptic signaling and mitochondrial function-differences also strongly influenced by cycle stage in female rats. Notably, phosphoproteins enriched in PKA signaling emerged as being both significantly sex-dependent at baseline and also the primary target of ketamine-induced protein phosphorylation selectively in female rats, regardless of cycle stage. Reduced phosphoprotein abundance within this pathway was observed in males, suggesting bi-directional effects of low-dose ketamine between sexes. These findings present biological sex and hormonal milieu as critical modulators of ketamine's rapid actions within this brain region and provide greater insight into potential translational and post-translational processes underlying sex- and hormone-dependent modulation of ketamine's therapeutic effects.
Collapse
Affiliation(s)
- Samantha K Saland
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Kathrin Wilczak
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Edward Voss
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
23
|
Highland JN, Farmer CA, Zanos P, Lovett J, Zarate CA, Moaddel R, Gould TD. Sex-dependent metabolism of ketamine and ( 2R,6R)-hydroxynorketamine in mice and humans. J Psychopharmacol 2022; 36:170-182. [PMID: 34971525 PMCID: PMC9904319 DOI: 10.1177/02698811211064922] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ketamine is rapidly metabolized to norketamine and hydroxynorketamine (HNK) metabolites. In female mice, when compared to males, higher levels of (2R,6R;2S,6S)-HNK have been observed following ketamine treatment, and higher levels of (2R,6R)-HNK following the direct administration of (2R,6R)-HNK. AIM The objective of this study was to evaluate the impact of sex in humans and mice, and gonadal hormones in mice on the metabolism of ketamine to form norketamine and HNKs and in the metabolism/elimination of (2R,6R)-HNK. METHODS In CD-1 mice, we utilized gonadectomy to evaluate the role of circulating gonadal hormones in mediating sex-dependent differences in ketamine and (2R,6R)-HNK metabolism. In humans (34 with treatment-resistant depression and 23 healthy controls) receiving an antidepressant dose of ketamine (0.5 mg/kg i.v. infusion over 40 min), we evaluated plasma levels of ketamine, norketamine, and HNKs. RESULTS In humans, plasma levels of ketamine and norketamine were higher in males than females, while (2R,6R;2S,6S)-HNK levels were not different. Following ketamine administration to mice (10 mg/kg i.p.), Cmax and total plasma concentrations of ketamine and norketamine were higher, and those of (2R,6R;2S,6S)-HNK were lower, in intact males compared to females. Direct (2R,6R)-HNK administration (10 mg/kg i.p.) resulted in higher levels of (2R,6R)-HNK in female mice. Ovariectomy did not alter ketamine metabolism in female mice, whereas orchidectomy recapitulated female pharmacokinetic differences in male mice, which was reversed with testosterone replacement. CONCLUSION Sex is an important biological variable that influences the metabolism of ketamine and the HNKs, which may contribute to sex differences in therapeutic antidepressant efficacy or side effects.
Collapse
Affiliation(s)
- Jaclyn N. Highland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD, USA.,Program in Toxicology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Cristan A. Farmer
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD, USA.,Pharmacology, University of Maryland School of Medicine, Baltimore MD, USA.,Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD, USA.,Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA.,Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore MD, USA.,Veterans Affairs Maryland Health Care System, Baltimore MD, USA.,Reprint requests: Todd D. Gould, Rm. 936 MSTF 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Ren Z, Wang M, Aldhabi M, Zhang R, Liu Y, Liu S, Tang R, Chen Z. Low-dose S-ketamine exerts antidepressant-like effects via enhanced hippocampal synaptic plasticity in postpartum depression rats. Neurobiol Stress 2022; 16:100422. [PMID: 34977283 PMCID: PMC8686162 DOI: 10.1016/j.ynstr.2021.100422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/05/2022] Open
Abstract
Rapid antidepressant effects of S-ketamine have repeatedly been confirmed in patients with depression, as well as in chronic unpredictable mild stress (CUMS) animal models. However, the pharmacological study of S-ketamine for anti-postpartum depression has not been considered. In this study, the classical method of reproductive hormone withdrawal was used to construct a rat model of postpartum depression (PPD). Subsequently, the study evaluated the effects of low-dose S-ketamine on behavior and synaptic plasticity, which is related to depression, in the hippocampus of PPD rats. Multiple behavioral tests were used to evaluate depression-like behaviors in PPD models. Synaptic plasticity of the hippocampus can be demonstrated by Western blot, Golgi staining, transmission electron microscopy, and electrophysiological recording. Our study provides insight into the role of low-dose S-ketamine in antidepressant as well as antianxiety and indicates that maintaining synaptic plasticity is a key target for S-ketamine therapy for postpartum depression induced by reproductive hormone withdrawal.
Collapse
Affiliation(s)
- Zhuoyu Ren
- Department of Anesthesiology, Qingdao Women and Children's Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingling Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Mokhtar Aldhabi
- Department of Urology of the Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Rui Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Yongxin Liu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Shaoyan Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rundong Tang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zuolei Chen
- Department of Anesthesiology, Qingdao Women and Children's Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Anesthesiology of the Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| |
Collapse
|
25
|
Logue J, Schoepfer K, Guerrero AB, Zhou Y, Kabbaj M. Sex-specific effects of social isolation stress and ketamine on hippocampal plasticity. Neurosci Lett 2022; 766:136301. [PMID: 34688854 PMCID: PMC8639811 DOI: 10.1016/j.neulet.2021.136301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Chronic social isolation stress (SIS) induces lasting negative effects on the brain, including memory deficits, cognitive impairments, and mood alterations such as depression and anxiety. All these symptoms, at least in part, reflect reduced hippocampal function. In both clinical and preclinical studies, subanesthetic doses of the NMDA receptor antagonist, ketamine (KET), was shown to have rapid and lasting antidepressant effects. Animal studies have shown that biological sex and levels of gonadal hormones alter the behavioral effects of KET, with ovarian hormones increasing sensitivity to the antidepressant-like effects of KET. Since the hippocampus plays a key role in mediating some of the effects of SIS, and considering that KET at low doses has been shown to rescue some of the behavioral deficits of isolation rearing this study aimed to assess the effects of isolation stress on pre- and post-synaptic hippocampal functions in male and female rats reared in SIS, as well as determine whether some of the physiological deficits can be rescued with a single injection of sub-anesthetic doses of KET. To do this, Sprague-Dawley rats were raised from weaning in either social isolation or with same-sex cage mate for 5 to 7 weeks. Male and female rats in either diestrus of proestrus received a single injection of KET (0, 2.5, or 5.0 mg/kg) three hours prior to termination and collection of acute hippocampal slices for ex vivo electrophysiological field potential recordings. Long-term potentiation (LTP) and paired pulse facilitation (PPF) outputs were assessed in a canonical CA3-CA1 dorsal hippocampal circuit. Our data show that SIS inhibits hippocampal LTP without affecting PPF in male rats, an effect that was rescued by KET. In female rats, isolation stress did not alter LTP, but did reduce PPF - especially when females were tested in diestrus-, an effect that was rescued by KET at the highest dose. Our data thus suggest sex differences in the contribution of pre-and postsynaptic hippocampal compartments in response to stress and KET.
Collapse
Affiliation(s)
- Jordan Logue
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Kristin Schoepfer
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Alfonso Brea Guerrero
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Zhou
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
26
|
Hashimoto K, Yamawaki Y, Yamaoka K, Yoshida T, Okada K, Tan W, Yamasaki M, Matsumoto-Makidono Y, Kubo R, Nakayama H, Kataoka T, Kanematsu T, Watanabe M, Okamoto Y, Morinobu S, Aizawa H, Yamawaki S. Spike firing attenuation of serotonin neurons in learned helplessness rats is reversed by ketamine. Brain Commun 2021; 3:fcab285. [PMID: 34939032 PMCID: PMC8688795 DOI: 10.1093/braincomms/fcab285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Animals suffering from uncontrollable stress sometimes show low effort to escape stress (learned helplessness). Changes in serotonin (5-hydroxytryptamine) signalling are thought to underlie this behaviour. Although the release of 5-hydroxytryptamine is triggered by the action potential firing of dorsal raphe nuclei 5-hydroxytryptamine neurons, the electrophysiological changes induced by uncontrollable stress are largely unclear. Herein, we examined electrophysiological differences among 5-hydroxytryptamine neurons in naïve rats, learned helplessness rats and rats resistant to inescapable stress (non-learned helplessness). Five-week-old male Sprague Dawley rats were exposed to inescapable foot shocks. After an avoidance test session, rats were classified as learned helplessness or non-learned helplessness. Activity-dependent 5-hydroxytryptamine release induced by the administration of high-potassium solution was slower in free-moving learned helplessness rats. Subthreshold electrophysiological properties of 5-hydroxytryptamine neurons were identical among the three rat groups, but the depolarization-induced spike firing was significantly attenuated in learned helplessness rats. To clarify the underlying mechanisms, potassium (K+) channels regulating the spike firing were initially examined using naïve rats. K+ channels sensitive to 500 μM tetraethylammonium caused rapid repolarization of the action potential and the small conductance calcium-activated K+ channels produced afterhyperpolarization. Additionally, dendrotoxin-I, a blocker of Kv1.1 (encoded by Kcna1), Kv1.2 (encoded by Kcna2) and Kv1.6 (encoded by Kcna6) voltage-dependent K+ channels, weakly enhanced the spike firing frequency during depolarizing current injections without changes in individual spike waveforms in naïve rats. We found that dendrotoxin-I significantly enhanced the spike firing of 5-hydroxytryptamine neurons in learned helplessness rats. Consequently, the difference in spike firing among the three rat groups was abolished in the presence of dendrotoxin-I. These results suggest that the upregulation of dendrotoxin-I-sensitive Kv1 channels underlies the firing attenuation of 5-hydroxytryptamine neurons in learned helplessness rats. We also found that the antidepressant ketamine facilitated the spike firing of 5-hydroxytryptamine neurons and abolished the firing difference between learned helplessness and non-learned helplessness by suppressing dendrotoxin-I-sensitive Kv1 channels. The dendrotoxin-I-sensitive Kv1 channel may be a potential target for developing drugs to control activity of 5-hydroxytryptamine neurons.
Collapse
Affiliation(s)
- Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kenji Yamaoka
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Wanqin Tan
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yoshiko Matsumoto-Makidono
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Reika Kubo
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hisako Nakayama
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Tsutomu Kataoka
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeru Morinobu
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
27
|
Ponton E, Turecki G, Nagy C. Sex Differences in the Behavioral, Molecular, and Structural Effects of Ketamine Treatment in Depression. Int J Neuropsychopharmacol 2021; 25:75-84. [PMID: 34894233 PMCID: PMC8756094 DOI: 10.1093/ijnp/pyab082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This review aims to highlight that gap by exploring pre-clinical data-at a behavioral, molecular, and structural level-and recent clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that ketamine should be administered adhering to sex-specific considerations.
Collapse
Affiliation(s)
- Ethan Ponton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Correspondence: Corina Nagy, PhD, 6875 LaSalle Blvd, Verdun, Québec, Canada H4H 1R3 ()
| |
Collapse
|
28
|
Fitzgerald PJ, Kounelis-Wuillaume SK, Gheidi A, Morrow JD, Spencer-Segal JL, Watson BO. Sex- and stress-dependent effects of a single injection of ketamine on open field and forced swim behavior. Stress 2021; 24:857-865. [PMID: 33517825 PMCID: PMC8325703 DOI: 10.1080/10253890.2021.1871600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ketamine has emerged as a novel treatment for common psychiatric conditions such as Major Depressive Disorder (MDD) and anxiety disorders, many of which can be initiated and exacerbated by psychological stress. Sex differences in the frequency of both anxiety and depressive disorders are well known and could be due to sex differences in neuroendocrine responses to stress. Ketamine is known to modulate the hormonal response to stress, specifically corticosterone. It is not clear if the acute effect of ketamine on corticosterone differs by sex, or what role this could play in subsequent behavior. Here we test whether a single injection of (R,S)-ketamine (30 mg/kg, i.p.), administered either with or without unpredictable chronic stress (UCS), has different sustained effects on open field test (OFT), elevated zero maze (EZM) or forced swim test (FST) behavior in female versus male C57BL/6J mice. In the OFT (24 h post-injection), ketamine increased center square exploration in males but not females. In contrast, in the FST (72 h post-injection), females showed a trend toward a decrease in immobility after ketamine whereas males were not strongly modulated. These behavioral effects of ketamine were stronger in the presence of UCS than in unstressed animals. UCS animals also showed lower corticosterone after injection than unstressed animals, and in the presence of UCS ketamine increased corticosterone; these effects were similar in both sexes. Corticosterone post-injection did not predict subsequent behavior. These findings complement a growing preclinical literature suggesting both stress-dependency and sex differences in OFT and FST behavioral responses to ketamine.LAY SUMMARYIn humans, it is known that major depression and anxiety disorders, which can be caused or made worse by exposure to psychological stress, occur roughly twice as frequently in women than in men, but the underpinnings of these effects are not well characterized. In the current study, we explored how sex interacts with stress and ketamine (a rapidly acting antidepressant) by assessing both open field and forced swim behavior in mice after chronic mild stress. We report the novel finding that male mice exhibit greater exploration of the aversive center square in the open field after ketamine, whereas females trended toward lower immobility (often interpreted as an antidepressant-like effect) in the forced swim test after this drug, and these effects were amplified by prior stress exposure.
Collapse
Affiliation(s)
- Paul J. Fitzgerald
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | - Ali Gheidi
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jonathan D. Morrow
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Joanna L. Spencer-Segal
- Michigan Neuroscience Institute, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109
- For correspondence: ,
| | - Brendon O. Watson
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109
- For correspondence: ,
| |
Collapse
|
29
|
Lin C, Zhang D, Sun S, Shi Y, Yan C, Lin J. Pharmacokinetic and tissue distribution study of ZCY-15, a novel compound against Alzheimer's disease, in rats by liquid chromatography-tandem mass spectrometry. Eur J Pharm Sci 2021; 164:105917. [PMID: 34175447 DOI: 10.1016/j.ejps.2021.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
ZCY-15, N-(3,5-dimethyladamatan-1-yl)-N-(3-methylphenyl) urea, is a candidate compound synthesized from the memantine structure and has been shown to be remarkably effective in treating Alzheimer's disease. To elucidate the pharmacokinetics and tissue distribution of ZCY-15 in rats after oral and intravenous administration, a rapid and selective LC-MS/MS method was established for the determination of ZCY-15 in rat plasma and tissues. According to the dissolution characteristics, the plasma samples were prepared by acetonitrile protein precipitation and carbamazepine was selected as the internal standard (IS). After separation by gradient elution using Aqela Venusil ASB C8 (2.1 × 50 mm, 3 µm), the pretreated samples were analyzed in MRM mode in positive ESI mode. The effective detection limit of this method was 1.95-1000 ng·mL-1. Tissue samples were collected from the heart, liver, spleen, lung, kidney, fat, muscle, brain, hippocampus, testicles or ovaries, large intestine, small intestine and stomach. The proposed method demonstrated fine precision and accuracy for analyzing ZCY-15 in selected tissues within the concentration range of standard liquid chromatography-tandem mass spectrometry. The whole analysis time was 3.6 min per sample. After oral administration, the blood and tissue concentrations of ZCY-15 in female rats were significantly higher than those in male rats. The clearance rate of ZCY-15 in female rats was lower than that in male rats. The results confirmed that there were gender differences. It has been shown that ZCY-15 could pass through the blood-brain barrier and was highly concentrated in the hippocampus. We established the first bioanalytical method to quantify ZCY-15 in rodent bio-samples for ongoing pharmacokinetic and tissue distribution studies, and the results were expected to lay foundation for the subsequent studies.
Collapse
Affiliation(s)
- Chengjiang Lin
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China; School of Pharmaceutical Science, China Medical University, Puhe Road No.77, Shenyang City 110122, Liaoning, China
| | - Donghu Zhang
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Yue Shi
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Chengda Yan
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Jianyang Lin
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China.
| |
Collapse
|
30
|
Morris PJ, Burke RD, Sharma AK, Lynch DC, Lemke-Boutcher LE, Mathew S, Elayan I, Rao DB, Gould TD, Zarate CA, Zanos P, Moaddel R, Thomas CJ. A comparison of the pharmacokinetics and NMDAR antagonism-associated neurotoxicity of ketamine, (2R,6R)-hydroxynorketamine and MK-801. Neurotoxicol Teratol 2021; 87:106993. [PMID: 33945878 PMCID: PMC8440345 DOI: 10.1016/j.ntt.2021.106993] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022]
Abstract
With the increasing use of ketamine as an off-label treatment for depression and the recent FDA approval of (S)-ketamine for treatment-resistant depression, there is an increased need to understand the long-term safety profile of chronic ketamine administration. Of particular concern is the neurotoxicity previously observed in rat models following acute exposure to high doses of ketamine, broadly referred to as 'Olney's lesions'. This type of toxicity presents as abnormal neuronal cellular vacuolization, followed by neuronal death and has been associated with ketamine's inhibition of the N-methyl-d-aspartate receptor (NMDAR). In this study, a pharmacological and neuropathological analysis of ketamine, the potent NMDAR antagonist MK-801, and the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK)] in rats is described following both single dose and repeat dose drug exposures. Ketamine dosing was studied up to 20 mg/kg intravenously for the single-dose neuropathology study and up to 60 mg/kg intraperitoneally for the multiple-dose neuropathology study. MK-801 dosing was studied up to 0.8 mg/kg subcutaneously for both the single and multiple-dose neuropathology studies, while (2R,6R)-HNK dosing was studied up to 160 mg/kg intravenously in both studies. These studies confirm dose-dependent induction of 'Olney's lesions' following both single dose and repeat dosing of MK-801. Ketamine exposure, while showing common behavioral effects, did not induce wide-spread Olney's lesions. Treatment with (2R,6R)-HNK did not produce behavioral effects, toxicity or any evidence of Olney's lesion formation. Based on these results, future NMDAR-antagonist neurotoxicity studies should strongly consider taking pharmacokinetics more thoroughly into account.
Collapse
Affiliation(s)
- Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | | | | | | | | | - Shiny Mathew
- Division of Pharmacology/Toxicology Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ikram Elayan
- Division of Pharmacology/Toxicology Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Deepa B Rao
- Division of Pharmacology/Toxicology Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Panos Zanos
- Department of Psychiatry, Pharmacology, and Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
31
|
Sultana S, Berger G, Cox A, Kelly MEM, Lehmann C. Rodent models of ketamine-induced cystitis. Neurourol Urodyn 2021; 40:1704-1719. [PMID: 34350618 DOI: 10.1002/nau.24763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023]
Abstract
AIMS Long-term or recreational use of ketamine affects the urinary system and can result in ketamine-induced cystitis (KIC). Rodent models of KIC are important to study KIC pathophysiology and are paramount to the future development of therapies for this painful condition. This review aims to provide a summary of rodent models of KIC, focusing on disease induction, experimental methods, and pathological features of the model. METHOD A literature search was performed using the National Center for Biotechnology Information (NCBI) Pubmed database up to March 2021. 20 articles met the inclusion criteria and were finally selected. RESULTS There are considerable variations in the rodent models used for studying KIC in terms of the strain of the animal being used; dose, duration, and route of ketamine administration to induce KIC, and assessment of pathological features. CONCLUSION KIC remains difficult to fully recapitulate in humans. Improved characterization of KIC models and the experimental parameters and meticulous discussion on translational limitations are required to improve the translational value of research using rodent models of KIC.
Collapse
Affiliation(s)
- Saki Sultana
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Geraint Berger
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ashley Cox
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
32
|
Jang G, MacIver MB. Ketamine Produces a Long-Lasting Enhancement of CA1 Neuron Excitability. Int J Mol Sci 2021; 22:ijms22158091. [PMID: 34360854 PMCID: PMC8347661 DOI: 10.3390/ijms22158091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.
Collapse
|
33
|
Zhang M, Spencer HF, Berman RY, Radford KD, Choi KH. Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in male and female Sprague-Dawley rats. IBRO Neurosci Rep 2021; 11:42-51. [PMID: 34286313 PMCID: PMC8273220 DOI: 10.1016/j.ibneur.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/30/2022] Open
Abstract
Although ketamine, a multimodal dissociative anesthetic, is frequently used for analgesia and treatment-resistant major depression, molecular mechanisms of ketamine remain unclear. Specifically, differences in the effects of ketamine on neuroplasticity-related proteins in the brains of males and females need further investigation. In the current study, adult male and female Sprague-Dawley rats with an indwelling jugular venous catheter received an intravenous ketamine infusion (0, 10, or 40 mg/kg, 2-h), starting with a 2 mg/kg bolus for ketamine groups. Spontaneous locomotor activity was monitored by infrared photobeams during the infusion. Two hours after the infusion, brain tissue was dissected to obtain the medial prefrontal cortex (mPFC), hippocampus including the CA1, CA3, and dentate gyrus, and amygdala followed by Western blot analyses of a transcription factor (c-Fos), brain-derived neurotrophic factor (BDNF), and phosphorylated extracellular signal-regulated kinase (pERK). The 10 mg/kg ketamine infusion suppressed locomotor activity in male and female rats while the 40 mg/kg infusion stimulated activity only in female rats. In the mPFC, 10 mg/kg ketamine reduced pERK levels in male rats while 40 mg/kg ketamine increased c-Fos levels in male and female rats. Female rats in proestrus/estrus phases showed greater ketamine-induced c-Fos elevation as compared to those in diestrus phase. In the amygdala, 10 and 40 mg/kg ketamine increased c-Fos levels in female, but not male, rats. In the hippocampus, 10 mg/kg ketamine reduced BDNF levels in male, but not female, rats. Taken together, the current data suggest that subanesthetic doses of intravenous ketamine infusions produce differences in neuroplasticity-related proteins in the brains of male and female rats.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Haley F Spencer
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Rina Y Berman
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kwang H Choi
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
34
|
Kato R, Zhang ER, Mallari OG, Moody OA, Vincent KF, Melonakos ED, Siegmann MJ, Nehs CJ, Houle TT, Akeju O, Solt K. D-Amphetamine Rapidly Reverses Dexmedetomidine-Induced Unconsciousness in Rats. Front Pharmacol 2021; 12:668285. [PMID: 34084141 PMCID: PMC8167047 DOI: 10.3389/fphar.2021.668285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
D-amphetamine induces emergence from sevoflurane and propofol anesthesia in rats. Dexmedetomidine is an α2-adrenoreceptor agonist that is commonly used for procedural sedation, whereas ketamine is an anesthetic that acts primarily by inhibiting NMDA-type glutamate receptors. These drugs have different molecular mechanisms of action from propofol and volatile anesthetics that enhance inhibitory neurotransmission mediated by GABAA receptors. In this study, we tested the hypothesis that d-amphetamine accelerates recovery of consciousness after dexmedetomidine and ketamine. Sixteen rats (Eight males, eight females) were used in a randomized, blinded, crossover experimental design and all drugs were administered intravenously. Six additional rats with pre-implanted electrodes in the prefrontal cortex (PFC) were used to analyze changes in neurophysiology. After dexmedetomidine, d-amphetamine dramatically decreased mean time to emergence compared to saline (saline:112.8 ± 37.2 min; d-amphetamine:1.8 ± 0.6 min, p < 0.0001). This arousal effect was abolished by pre-administration of the D1/D5 dopamine receptor antagonist, SCH-23390. After ketamine, d-amphetamine did not significantly accelerate time to emergence compared to saline (saline:19.7 ± 18.0 min; d-amphetamine:20.3 ± 16.5 min, p = 1.00). Prefrontal cortex local field potential recordings revealed that d-amphetamine broadly decreased spectral power at frequencies <25 Hz and restored an awake-like pattern after dexmedetomidine. However, d-amphetamine did not produce significant spectral changes after ketamine. The duration of unconsciousness was significantly longer in females for both dexmedetomidine and ketamine. In conclusion, d-amphetamine rapidly restores consciousness following dexmedetomidine, but not ketamine. Dexmedetomidine reversal by d-amphetamine is inhibited by SCH-23390, suggesting that the arousal effect is mediated by D1 and/or D5 receptors. These findings suggest that d-amphetamine may be clinically useful as a reversal agent for dexmedetomidine.
Collapse
Affiliation(s)
- Risako Kato
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Olivia G Mallari
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Eric D Melonakos
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Morgan J Siegmann
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Brulé S, Herlin B, Pouget P, Missal M. Ketamine reduces temporal expectation in the rhesus monkey. Psychopharmacology (Berl) 2021; 238:559-567. [PMID: 33169200 DOI: 10.1007/s00213-020-05706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Ketamine, a well-known general dissociative anesthetic agent that is a non-competitive antagonist of the N-methyl-D-aspartate receptor, perturbs the perception of elapsed time and the expectation of upcoming events. OBJECTIVE The objective of this study was to determine the influence of ketamine on temporal expectation in the rhesus monkey. METHODS Two rhesus monkeys were trained to make a saccade between a central warning stimulus and an eccentric visual target that served as imperative stimulus. The delay between the warning and the imperative stimulus could take one of four different values randomly with the same probability (variable foreperiod paradigm). During experimental sessions, a subanesthetic low dose of ketamine (0.25-0.35 mg/kg) was injected i.m. and the influence of the drug on movement latency was measured. RESULTS We found that in the control conditions, saccadic latencies strongly decreased with elapsed time before the appearance of the visual target showing that temporal expectation built up during the delay period between the warning and the imperative stimulus. However, after ketamine injection, temporal expectation was significantly reduced in both subjects. In addition, ketamine also increased average movement latency but this effect could be dissociated from the reduction of temporal expectation. CONCLUSION In conclusion, a subanesthetic dose of ketamine could have two independent effects: increasing reaction time and decreasing temporal expectation. This alteration of temporal expectation could explain cognitive deficits observed during ketamine use.
Collapse
Affiliation(s)
- Sophie Brulé
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Bastien Herlin
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Pierre Pouget
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - Marcus Missal
- Institute of Neurosciences (IONS), Cognition and System (COSY), Université catholique de Louvain, 53 av Mounier, B1.53. 4 COSY, 1200, Brussels, Belgium.
| |
Collapse
|
36
|
Strong CE, Kabbaj M. Neural Mechanisms Underlying the Rewarding and Therapeutic Effects of Ketamine as a Treatment for Alcohol Use Disorder. Front Behav Neurosci 2020; 14:593860. [PMID: 33362485 PMCID: PMC7759199 DOI: 10.3389/fnbeh.2020.593860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder and causes a significant global burden. Relapse rates remain incredibly high after decades of attempting to develop novel treatment options that have failed to produce increased rates of sobriety. Ketamine has emerged as a potential treatment for AUD following its success as a therapeutic agent for depression, demonstrated by several preclinical studies showing that acute administration reduced alcohol intake in rodents. As such, ketamine's therapeutic effects for AUD are now being investigated in clinical trials with the hope of it being efficacious in prolonging sobriety from alcohol in humans (ClinicalTrials.gov, Identifier: NCT01558063). Importantly, ketamine's antidepressant effects only last for about 1-week and because AUD is a lifelong disorder, repeated treatment regimens would be necessary to maintain sobriety. This raises questions regarding its safety for AUD treatment since ketamine itself has the potential for addiction. Therefore, this review aims to summarize the neuroadaptations related to alcohol's addictive properties as well as ketamine's therapeutic and addictive properties. To do this, the focus will be on reward-related brain regions such as the nucleus accumbens (NAc), dorsal striatum, prefrontal cortex (PFC), hippocampus, and ventral tegmental area (VTA) to understand how acute vs. chronic exposure will alter reward signaling over time. Additionally, evidence from these studies will be summarized in both male and female subjects. Accordingly, this review aims to address the safety of repeated ketamine infusions for the treatment of AUD. Although more work about the safety of ketamine to treat AUD is warranted, we hope this review sheds light on some answers about the safety of repeated ketamine infusions.
Collapse
Affiliation(s)
- Caroline E Strong
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
37
|
Simchovitz-Gesher A, Soreq H. Pharmaceutical Implications of Sex-Related RNA Divergence in Psychiatric Disorders. Trends Pharmacol Sci 2020; 41:840-850. [DOI: 10.1016/j.tips.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
|
38
|
Radford KD, Berman RY, Zhang M, Wu TJ, Choi KH. Sex-related differences in intravenous ketamine effects on dissociative stereotypy and antinociception in male and female rats. Pharmacol Biochem Behav 2020; 199:173042. [PMID: 32976859 DOI: 10.1016/j.pbb.2020.173042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Ketamine, a multimodal dissociative anesthetic drug, is widely used to treat various conditions including acute pain and treatment-resistant depression. We previously reported that subanesthetic doses of intravenous (i.v.) ketamine produced transient dissociative stereotypy and antinociception in male rats. However, sex-related differences in the effects of i.v. ketamine on these measures are not well characterized. Adult male and female Sprague-Dawley rats (10 weeks old) received an i.v. bolus saline or ketamine (2 and 5 mg/kg), and dissociative stereotypy (head weaving, ataxia, and circling) and natural behaviors (horizontal activity, rearing, and grooming) were quantified over a 10-min period. Ten minutes after the behavioral observation, antinociception was measured using a tail flick test. The i.v. ketamine administration increased head weaving, ataxia, circling, and horizontal activity while decreasing rearing and grooming behaviors in male and female rats. Following 5 mg/kg ketamine administration, ataxia was greater in female rats, while head weaving was greater in male rats. Among the female rats, head weaving was greater in the low estrogen group (diestrus phase) as compared to the high estrogen group (proestrus/estrus phase). Ketamine doses (2 and 5 mg/kg) produced antinociception in male and female rats, and female rats were more sensitive to the antinociceptive effects of 2 mg/kg ketamine. The current findings suggest that i.v. ketamine administration, a clinically relevant route of administration, may produce sex-related differences in dissociative behaviors and analgesia between males and females.
Collapse
Affiliation(s)
- Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Rina Y Berman
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - T John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kwang H Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
39
|
McDougall SA, Apodaca MG, Park GI, Teran A, Baum TJ, Montejano NR. MK801-induced locomotor activity in preweanling and adolescent male and female rats: role of the dopamine and serotonin systems. Psychopharmacology (Berl) 2020; 237:2469-2483. [PMID: 32445054 PMCID: PMC7354898 DOI: 10.1007/s00213-020-05547-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
RATIONALE MK801, like other NMDA receptor open-channel blockers (e.g., ketamine and phencyclidine), increases the locomotor activity of rats and mice. Whether this behavioral effect ultimately relies on monoamine neurotransmission is of dispute. OBJECTIVE The purpose of this study was to determine whether these psychopharmacological effects and underlying neural mechanisms vary according to sex and age. METHODS Across four experiments, male and female preweanling and adolescent rats were pretreated with vehicle, the monoamine-depleting agent reserpine (1 or 5 mg/kg), the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), or both AMPT and PCPA. The locomotor activity of preweanling and adolescent rats was then measured after saline or MK801 (0.3 mg/kg) treatment. RESULTS As expected, MK801 increased the locomotor activity of all age groups and both sexes, but the stimulatory effects were significantly less pronounced in male adolescent rats. Preweanling rats and adolescent female rats were more sensitive to the effects of DA and 5-HT synthesis inhibitors, as AMPT and PCPA caused only small reductions in the MK801-induced locomotor activity of male adolescent rats. Co-administration of AMPT+PCPA or high-dose reserpine (5 mg/kg) treatment substantially reduced MK801-induced locomotor activity in both age groups and across both sexes. CONCLUSIONS These results, when combined with other recent studies, show that NMDA receptor open-channel blockers cause pronounced age-dependent behavioral effects that can vary according to sex. The neural changes underlying these sex and age differences appear to involve monoamine neurotransmission.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| | - Matthew G Apodaca
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Ginny I Park
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Angie Teran
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Timothy J Baum
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| |
Collapse
|
40
|
Silote GP, de Oliveira SFS, Ribeiro DE, Machado MS, Andreatini R, Joca SRL, Beijamini V. Ketamine effects on anxiety and fear-related behaviors: Current literature evidence and new findings. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109878. [PMID: 31982463 DOI: 10.1016/j.pnpbp.2020.109878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, presents a rapid and sustained antidepressant effect in clinical and preclinical studies. Regarding ketamine effects on anxiety, there is a widespread discordance among pre-clinical studies. To address this issue, the present study reviewed the literature (electronic database MEDLINE) to summarize the profile of ketamine effects in animal tests of anxiety/fear. We found that ketamine anxiety/fear-related effects may depend on the anxiety paradigm, schedule of ketamine administration and tested species. Moreover, there was no report of ketamine effects in animal tests of fear related to panic disorder (PD). Based on that finding, we evaluated if treatment with ketamine and another NMDA antagonist, MK-801, would induce acute and sustained (24 hours later) anxiolytic and/or panicolytic-like effects in animals exposed to the elevated T-maze (ETM). The ETM evaluates, in the same animal, conflict-evoked and fear behaviors, which are related, respectively, to generalized anxiety disorder and PD. Male Wistar rats were systemically treated with racemic ketamine (10, 30 and 80 mg/kg) or MK-801 (0.05 and 0.1 mg/kg) and tested in the ETM in the same day or 24 hours after their administration. Ketamine did not affect the behavioral tasks performed in the ETM acutely or 24 h later. MK-801 impaired inhibitory avoidance in the ETM only at 45 min post-injection, suggesting a rapid but not sustained anxiolytic-like effect. Altogether our results suggest that ketamine might have mixed effects in anxiety tests while it does not affect panic-related behaviors.
Collapse
Affiliation(s)
- Gabriela P Silote
- Biochemistry and Pharmacology Graduate Program, Federal University of Espirito Santo, Vitoria, ES, Brazil; Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F S de Oliveira
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Deidiane E Ribeiro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayara S Machado
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Vanessa Beijamini
- Biochemistry and Pharmacology Graduate Program, Federal University of Espirito Santo, Vitoria, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES, Brazil; Pharmaceutical Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
41
|
Zhou Z, Yang L, Cheng L, Yu Y, Song L, Zhou K, Wu Y, Zhang Y. Simultaneous characterization of multiple Psoraleae Fructus bioactive compounds in rat plasma by ultra‐high‐performance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex‐related differences in pharmacokinetics. J Sep Sci 2020; 43:2804-2816. [DOI: 10.1002/jssc.202000286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Zhi‐xing Zhou
- Department of PharmacologyShenyang Pharmaceutical University Shenyang P. R. China
| | - Li Yang
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Li‐yuan Cheng
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Ying‐li Yu
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| | - Lei Song
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| | - Kun Zhou
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| | - Ying‐liang Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang P. R. China
| | - Yue Zhang
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| |
Collapse
|
42
|
Herzog DP, Mellema RM, Remmers F, Lutz B, Müller MB, Treccani G. Sexually Dimorphic Behavioral Profile in a Transgenic Model Enabling Targeted Recombination in Active Neurons in Response to Ketamine and (2R,6R)-Hydroxynorketamine Administration. Int J Mol Sci 2020; 21:ijms21062142. [PMID: 32244978 PMCID: PMC7139539 DOI: 10.3390/ijms21062142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Rapid-acting antidepressants ketamine and (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) have overcome some of the major limitations of classical antidepressants. However, little is known about sex-specific differences in the behavioral and molecular effects of ketamine and (2R,6R)-HNK in rodents. Methods: We treated mice with an intraperitoneal injection of either saline, ketamine (30 mg kg−1) or (2R,6R)-HNK (10 mg kg−1). We performed a comprehensive behavioral test battery to characterize the Arc-CreERT2 × CAG-Sun1/sfGFP mouse line which enables targeted recombination in active populations. We performed a molecular study in Arc-CreERT2 × CAG-Sun1/sfGFP female mice using both immunohistochemistry and in situ hybridization. Results: Arc-CreERT2 × CAG-Sun1/sfGFP mice showed sex differences in sociability and anxiety tests. Moreover, ketamine and (2R,6R)-HNK had opposite effects in the forced swim test (FST) depending on gender. In addition, in male mice, ketamine-treated animals were less immobile compared to (2R,6R)-HNK, thus showing a different profile of the two drugs in the FST. At the molecular level we identified Bdnf mRNA level to be increased after ketamine treatment in female mice. Conclusion: Arc-CreERT2 × CAG-Sun1/sfGFP mice showed sex differences in social and anxiety behavior and a different pattern between ketamine and (2R,6R)-HNK in the FST in male and female mice. At the molecular level, female mice treated with ketamine showed an increase of Bdnf mRNA level, as previously observed in male mice.
Collapse
Affiliation(s)
- David P. Herzog
- Laboratory of Translational Psychiatry and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, 55128 Mainz, Germany; (D.P.H.); (R.M.M.); (M.B.M.)
| | - Ratnadevi M. Mellema
- Laboratory of Translational Psychiatry and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, 55128 Mainz, Germany; (D.P.H.); (R.M.M.); (M.B.M.)
| | - Floortje Remmers
- Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, 55128 Mainz, Germany; (F.R.); (B.L.)
| | - Beat Lutz
- Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, 55128 Mainz, Germany; (F.R.); (B.L.)
- Leibniz Institute for Resilience Research, 55131 Mainz, Germany
| | - Marianne B. Müller
- Laboratory of Translational Psychiatry and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, 55128 Mainz, Germany; (D.P.H.); (R.M.M.); (M.B.M.)
- Leibniz Institute for Resilience Research, 55131 Mainz, Germany
| | - Giulia Treccani
- Laboratory of Translational Psychiatry and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, 55128 Mainz, Germany; (D.P.H.); (R.M.M.); (M.B.M.)
- Leibniz Institute for Resilience Research, 55131 Mainz, Germany
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +49-(0)6131-39-21345
| |
Collapse
|
43
|
Ardalan M, Elfving B, Rafati AH, Mansouri M, Zarate CA, Mathe AA, Wegener G. Rapid effects of S-ketamine on the morphology of hippocampal astrocytes and BDNF serum levels in a sex-dependent manner. Eur Neuropsychopharmacol 2020; 32:94-103. [PMID: 31973999 PMCID: PMC7281850 DOI: 10.1016/j.euroneuro.2020.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
The prevalence of major depressive disorder (MDD) is higher in women than men. Importantly, a differential behavioral response by sex to the antidepressant response to ketamine in rodents has been reported. Mechanistically, male depressed-like animals showed an increased spine density after ketamine treatment via restoration of synaptic protein levels while those proteins were not altered in female rats. In addition, preclinical studies indicate that the impairment of astrocytic plasticity is one of the contributing mechanisms in the pathophysiology of MDD. Accordingly, in this study, we determined the effect of sex on the rapid morphological alteration of hippocampal astrocytes and the serum level of BDNF one hour after S-ketamine injection. A single intraperitoneal dose of S-ketamine (15 mg/kg) or saline was injected to the male and female Flinders Sensitive Line (FSL) rats, a genetic animal model of depression and their brains were perfused one hour after treatment. The size of the GFAP positive astrocytes in the hippocampal subregions was measured. The volume of different hippocampal subregions was assessed using the Cavalieri estimator. Moreover, serum levels of BDNF were measured with enzyme-linked immunosorbent assay (ELISA) kits. The volume of hippocampal subregions significantly increased one hour after S-ketamine in both male and female FSL animals. However, a substantial alteration in the morphology of the hippocampal astrocytes was observed only in the female rats. Additionally, significantly increased serum BDNF levels in the female depressed rats were observed one hour after S-ketamine treatment. Our results indicate that the rapid effects of S-ketamine on the morphology of the hippocampal astrocytes and the serum level of BDNF are sex-dependent.
Collapse
Affiliation(s)
- Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ali H Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Monireh Mansouri
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National, Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Aleksander A Mathe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockohlm, Sweden
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa; AUGUST Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Luca GC, Barter LS, Pypendop BH. Pharmacokinetics of ketamine following a short intravenous infusion to isoflurane-anesthetized New Zealand White rabbits (Oryctolagus cuniculus). Vet Anaesth Analg 2020; 47:334-340. [PMID: 32222343 DOI: 10.1016/j.vaa.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe the pharmacokinetics of ketamine following a short intravenous (IV) infusion to isoflurane-anesthetized rabbits. STUDY DESIGN Prospective experimental study. ANIMALS A total of six adult healthy female New Zealand White rabbits. METHODS Anesthesia was induced with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the isoflurane concentration was reduced to 0.75 MAC and ketamine hydrochloride (5 mg kg-1) was administered IV over 5 minutes. Blood samples were collected before and at 2, 5, 6, 7, 8, 9, 13, 17, 21, 35, 65, 125, 215 and 305 minutes after initiating the ketamine infusion. Samples were processed immediately and the plasma separated and stored at -80 °C until analyzed for ketamine and norketamine concentrations using liquid chromatography-mass spectrometry. Compartment models were fitted to the concentration-time data for ketamine and for ketamine plus norketamine using nonlinear mixed-effects (population) modeling. RESULTS A three- and five-compartment model best fitted the plasma concentration-time data for ketamine and for ketamine plus norketamine, respectively. For the ketamine only model, the volume of distribution at steady state (Vss) was 3217 mL kg-1, metabolic clearance was 88 mL minute-1 kg-1 and the terminal half-life was 59 minutes. For the model including both ketamine and norketamine, Vss were 3224 and 2073 mL kg-1, total metabolic clearance was 107 and 52 mL minute-1 kg-1 and terminal half-lives were 52 and 55 minutes for the parent drug and its metabolite, respectively. CONCLUSIONS AND CLINICAL RELEVANCE This study characterized the pharmacokinetics of ketamine and norketamine in isoflurane-anesthetized New Zealand White rabbits following short IV infusion. The results obtained herein will be useful to determine ketamine infusion regimens in isoflurane-anesthetized rabbits.
Collapse
Affiliation(s)
- Genevieve C Luca
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Linda S Barter
- Veterinary Surgical and Radiological Sciences, University of California, Davis, CA, USA.
| | - Bruno H Pypendop
- Veterinary Surgical and Radiological Sciences, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Ettenberg A, Ayala K, Krug JT, Collins L, Mayes MS, Fisher MPA. Differential effects of lithium isotopes in a ketamine-induced hyperactivity model of mania. Pharmacol Biochem Behav 2020; 190:172875. [PMID: 32084493 DOI: 10.1016/j.pbb.2020.172875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/19/2022]
Abstract
Sub-anesthetic doses of ketamine produce an increase in rodent ambulation that is attenuated by co-administration of naturally-occurring lithium (LiN), the drug most commonly employed in the treatment of bipolar illness. As a consequence, ketamine-induced hyperactivity has been proposed as an animal model of manic behavior. The current study employed a modified version of this model to compare the potency of LiN to that of each of its two stable isotopes - lithium-6 (Li-6) and lithium-7 (Li-7). Since Li-7 constitutes 92.4% of the parent compound it was hypothesized to produce comparable behavioral effects to that of LiN. The current study was devised to determine whether Li-6 might be more, less, or equally effective at tempering hyperactivity relative to Li-7 or to LiN in an animal model of manic behavior. Male rats were maintained on a restricted but high-incentive diet containing a daily dose of 2.0 mEq/kg of lithium (LiN), Li-6 or Li-7 for 30 days. A control group consumed a diet infused with sodium chloride (NaCl) in place of lithium to control for the salty taste of the food. On day 30, baseline testing revealed no differences in the locomotor behavior among the four treatment groups. Animals then continued their Li/NaCl diets for an additional 11 days during which every subject received a single IP injection of either ketamine (25 mg/kg) or 0.9% physiological saline. On the final four days of this regimen, locomotor activity was assessed during 60 min sessions each beginning immediately after ketamine injection. While all three lithium groups produced comparable decreases in ketamine-induced hyperactivity on the first trial, by the fourth trial Li-6 animals exhibited significantly greater and more prolonged reductions in hyperactivity compared to either Li-7 and Li. These results suggest that Li-6 may be more effective at treating mania than its parent compound.
Collapse
Affiliation(s)
- Aaron Ettenberg
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA.
| | - Kathy Ayala
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Jacob T Krug
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Lisette Collins
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Matthew S Mayes
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Matthew P A Fisher
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
46
|
Czerniczyniec A, Karadayian AG, Bustamante J, Lores-Arnaiz S. Ketamine treatment affects hippocampal but not cortical mitochondrial function in prepubertal rats. Int J Dev Neurosci 2020; 80:175-187. [PMID: 32053738 DOI: 10.1002/jdn.10015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Previous reports have shown that ketamine triggered apoptosis in immature developing brain involving mitochondrial-mediated pathways. However, no data for ketamine effects on hippocampal and cortical mitochondrial function are available in prepubertal rats. Twenty-one-day-old Sprague-Dawley rats received ketamine (40 mg/kg i.p.) for 3 days and were killed 24 hr after the last injection. Hippocampal mitochondria from ketamine-treated rats showed decreased malate-glutamate state 4 and 3 respiratory rates and an inhibition in complex I and IV activities. Hippocampal mitochondrial membrane depolarization and mitochondrial permeability transition induction were observed. This was not reflected in an increment of H2 O2 production probably due to increased Mn-SOD and catalase activities, 24 hr after treatment. Interestingly, increased H2 O2 production rates and cardiolipin oxidation were found in hippocampal mitochondria shortly after ketamine treatment (45 min). Unlike the hippocampus, ketamine did not affect mitochondrial parameters in the brain cortex, being the area less vulnerable to suffer ketamine-induced oxidative damage. Results provide evidences that exposure of prepubertal rats to ketamine leads to an induction of mitochondrial ROS generation at early stages of treatment that was normalized by the triggering of antioxidant systems. Although hippocampal mitochondria from prepubertal rats were capable of responding to the oxidative stress, they remain partially dysfunctional.
Collapse
Affiliation(s)
- Analía Czerniczyniec
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía G Karadayian
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juanita Bustamante
- Centro de Altos Estudios en Ciencias de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
McDonnell CW, Dunphy-Doherty F, Rouine J, Bianchi M, Upton N, Sokolowska E, Prenderville JA. The Antidepressant-Like Effects of a Clinically Relevant Dose of Ketamine Are Accompanied by Biphasic Alterations in Working Memory in the Wistar Kyoto Rat Model of Depression. Front Psychiatry 2020; 11:599588. [PMID: 33551869 PMCID: PMC7863985 DOI: 10.3389/fpsyt.2020.599588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. The majority of antidepressant drugs require several weeks or months of treatment to demonstrate efficacy and a subset of patients are resistant to such interventions. Ketamine demonstrates rapid and long-lasting antidepressant effects in treatment resistant patients; however, side effects may limit its widespread clinical utility. The pharmaceutical industry is engaged in developing novel rapid-acting antidepressant drugs and the establishment of clinically relevant assays are needed to advance this process. Wistar Kyoto (WKY) rats are a valuable model of many of the characteristics of MDD and their resistance to selective serotonin reuptake inhibitors (SSRIs) in several behavioral paradigms emulates treatment resistance in clinical populations. Here, we confirmed the depressive-like phenotype of WKY rats in comparison to Sprague Dawley rats, characterized by increased immobility in the forced swim test, decreased locomotor activity and entries to the centre in the open field test, anhedonia in the female urine sniffing test and working memory deficits in the delayed non-match to position task. Single subcutaneous administration of 5 mg/kg ketamine in WKY rats mirrored the plasma exposure produced by the antidepressant dose in the clinic and rescued depressive-like behaviors. The same dose induced transient side effects, including decreased locomotor activity and reduced positive affect-associated vocalizations. Furthermore, ketamine acutely impaired working memory but induced pro-cognitive effects at a later time point. These data confirm the WKY rat as a preclinical model of depression. Ketamine's efficacy in recovering this depressive-like phenotype while inducing transient dissociative-like effects supports this as a translational model suitable for investigating novel antidepressant drugs.
Collapse
Affiliation(s)
- Conor W McDonnell
- Transpharmation Ireland Ltd., Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Fionn Dunphy-Doherty
- Transpharmation Ireland Ltd., Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Jennifer Rouine
- Transpharmation Ireland Ltd., Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Massimiliano Bianchi
- Transpharmation Ireland Ltd., Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Neil Upton
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Ewa Sokolowska
- Transpharmation Ireland Ltd., Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Jack A Prenderville
- Transpharmation Ireland Ltd., Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
McDougall SA, Rios JW, Apodaca MG, Park GI, Montejano NR, Taylor JA, Moran AE, Robinson JAM, Baum TJ, Teran A, Crawford CA. Effects of dopamine and serotonin synthesis inhibitors on the ketamine-, d-amphetamine-, and cocaine-induced locomotor activity of preweanling and adolescent rats: sex differences. Behav Brain Res 2019; 379:112302. [PMID: 31655095 DOI: 10.1016/j.bbr.2019.112302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
The pattern of ketamine-induced locomotor activity varies substantially across ontogeny and according to sex. Although ketamine is classified as an NMDA channel blocker, it appears to stimulate the locomotor activity of both male and female rats via a monoaminergic mechanism. To more precisely determine the neural mechanisms underlying ketamine's actions, male and female preweanling and adolescent rats were pretreated with vehicle, the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA). After completion of the pretreatment regimen, the locomotor activating effects of saline, ketamine, d-amphetamine, and cocaine were assessed during a 2 h test session. In addition, the ability of AMPT and PCPA to reduce dorsal striatal DA and 5-HT content was measured in male and female preweanling, adolescent, and adult rats. Results showed that AMPT and PCPA reduced, but did not fully attenuate, the ketamine-induced locomotor activity of preweanling rats and female adolescent rats. Ketamine (20 and 40 mg/kg) caused a minimal amount of locomotor activity in male adolescent rats, and this effect was not significantly modified by AMPT or PCPA pretreatment. When compared to ketamine, d-amphetamine and cocaine produced different patterns of locomotor activity across ontogeny; moreover, AMPT and PCPA pretreatment affected psychostimulant- and ketamine-induced locomotion differently. When these results are considered together, it appears that both dopaminergic and serotonergic mechanisms mediate the ketamine-induced locomotor activity of preweanling and female adolescent rats. The dichotomous actions of ketamine relative to the psychostimulants in vehicle-, AMPT-, and PCPA-treated rats, suggests that ketamine modulates DA and 5-HT neurotransmission through an indirect mechanism.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, USA.
| | - Jasmine W Rios
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Matthew G Apodaca
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ginny I Park
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Jordan A Taylor
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Andrea E Moran
- Department of Psychology, California State University, San Bernardino, CA, USA; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Timothy J Baum
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Angie Teran
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA
| |
Collapse
|
49
|
Crawford CA, Moran AE, Baum TJ, Apodaca MG, Montejano NR, Park GI, Gomez V, McDougall SA. Effects of monoamine depletion on the ketamine-induced locomotor activity of preweanling, adolescent, and adult rats: Sex and age differences. Behav Brain Res 2019; 379:112267. [PMID: 31593789 DOI: 10.1016/j.bbr.2019.112267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Ketamine significantly increases the locomotor activity of rodents, however this effect varies according to the sex and age of the animal being tested. To determine the role monoamine systems play in ketamine's locomotor activating effects: (a) male and female preweanling, adolescent, and adult rats were pretreated with vehicle or the monoamine depleting agent reserpine (1 or 5 mg/kg), and (b) the behavioral actions of ketamine (20 or 40 mg/kg) were then compared to d-amphetamine (2 mg/kg) and cocaine (10 or 15 mg/kg). The ability of reserpine to deplete dorsal striatal dopamine (DA) and serotonin (5-HT) in male and female rats was determined using HPLC. Ketamine caused substantial increases in the locomotion of preweanling rats and older female rats (adolescents and adults), but had only small stimulatory effects on adolescent and adult male rats. When compared to cocaine and d-amphetamine, ketamine was especially sensitive to the locomotor-inhibiting effects of monoamine depletion. Ketamine-induced locomotion is at least partially mediated by monoamine systems, since depleting DA and 5-HT levels by 87-96% significantly attenuated the locomotor activating effects of ketamine in male and female rats from all three age groups. When administered to reserpine-pretreated rats, ketamine produced a different pattern of behavioral effects than either psychostimulant, suggesting that ketamine does not stimulate locomotor activity via actions at the presynaptic terminal. Instead, our results are consistent with the hypothesis that ketamine increases locomotor activity through a down-stream mechanism, possibly involving ascending DA and/or 5-HT projection neurons.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA.
| | - Andrea E Moran
- Department of Psychology, California State University, San Bernardino, CA, USA; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Timothy J Baum
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Matthew G Apodaca
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ginny I Park
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Vanessa Gomez
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, USA
| |
Collapse
|
50
|
Grunebaum MF, Galfalvy HC, Choo TH, Parris MS, Burke AK, Suckow RF, Cooper TB, Mann JJ. Ketamine metabolite pilot study in a suicidal depression trial. J Psychiatr Res 2019; 117:129-134. [PMID: 31415914 PMCID: PMC6746183 DOI: 10.1016/j.jpsychires.2019.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/18/2023]
Abstract
Ketamine shows promise as a rapidly-acting treatment for depression and suicidal ideation, but side effects and abuse potential limit its use. Understanding its mechanism of action could help develop analogous but safer drugs. This post hoc study explored relationships of ketamine and metabolites, including hydroxynorketamine enantiomers, (2S,6S)- and (2R,6R)-HNK, to clinical response in a subgroup from a published trial in suicidal depression. Depressed adults with clinically significant suicidal ideation were randomized to double-blind infusion of sub-anesthetic ketamine or midazolam. Ketamine and metabolites were measured after infusion (N = 53). Plasma (2R,6R)-HNK was associated with change (higher levels correlated with less clinical improvement) from baseline to 24 h post-infusion of depression (HDRS-24: Spearman r = 0.37, p = 0.009) and suicidal thoughts (SSI: Spearman r = 0.29, p = 0.041). There were similar correlations with weekly follow-up clinical rating scores for both HNK enantiomers and dehydronorketamine (DHNK). Ketamine and norketamine were not associated with change in depression or suicidal ideation (unadjusted p > 0.28).
Collapse
Affiliation(s)
- Michael F Grunebaum
- Department of Psychiatry, Columbia University Medical Center, USA; New York State Psychiatric Institute, USA.
| | - Hanga C Galfalvy
- Department of Biostatistics, Columbia University, Mailman School of Public Health, USA
| | - Tse-Hwei Choo
- Department of Biostatistics, Columbia University, Mailman School of Public Health, USA
| | | | | | - Raymond F Suckow
- Department of Psychiatry, Columbia University Medical Center, USA; New York State Psychiatric Institute, USA
| | - Thomas B Cooper
- Department of Psychiatry, Columbia University Medical Center, USA; New York State Psychiatric Institute, USA; Analytical Psychopharmacology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, USA
| | - J John Mann
- Department of Psychiatry, Columbia University Medical Center, USA; New York State Psychiatric Institute, USA
| |
Collapse
|