1
|
Naryzhnaya NV, Logvinov SV, Kurbatov BK, Derkachev IA, Mustafina LR, Gorbunov AS, Sirotina MA, Kilin M, Gusakova SV, Maslov LN. The β 2-adrenergic receptor agonist formoterol attenuates necrosis and apoptosis in the rat myocardium under experimental stress-induced cardiac injury. Fundam Clin Pharmacol 2024. [PMID: 38956972 DOI: 10.1111/fcp.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Currently, there is no effective therapy for takotsubo syndrome (stress-induced cardiac injury in humans) in the clinics. It has previously been shown that β2-adrenergic receptor (β2-AR) agonist formoterol reduces cardiomyocyte injury in experimental takotsubo syndrome. OBJECTIVES The aim of this study was to investigate whether formoterol prevents apoptosis and necrosis of cardiomyocytes and endothelial cells in stress-induced cardiomyopathy. METHODS Stress-induced cardiac injury was induced by immobilization of rats for 2, 6, and 24 hours. RESULTS The myocardium of stressed rats showed a reduction in contractility and histological manifestations of cardiomyocyte damage: karyopyknosis, perinuclear edema of cardiomyocytes and endothelial cells, and microcirculation disturbances augmented with extended exposure to stress. In addition, apoptosis of endothelial cells was detected 6 hours after the onset of stress and peaked at 24 hours. Apoptosis of cardiomyocytes significantly gained only after 24 hours of stress exposure. These morphological alterations were associated with increased levels of serum creatine kinase-MB, syndecan-1, and thrombomodulin after 24 hours of stress. Administration of β2-AR agonist formoterol (50 μg/kg) four times during 24-hour stress exposure led to the improvement in myocardial inotropy, decrease in the severity of histological signatures, reduction in the number of TUNEL-positive cardiomyocytes, serum creatine kinase-MB, syndecan-1, and thrombomodulin levels. CONCLUSION Present data suggest that apoptosis and necrosis of cardiomyocytes and necrosis of endothelial cells in stress-induced cardiac injury can be mitigated by activation of the β2-AR. However, formoterol did not eliminate completely cardiomyocyte apoptosis, histological alterations, or endothelium injury markers under stress.
Collapse
Affiliation(s)
- Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Sergey V Logvinov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Liliia R Mustafina
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Aleksandr S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Maria A Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Mikhail Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Svetlana V Gusakova
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| |
Collapse
|
2
|
Rusali LE, Lopez-Hernandez AM, Kremiller KM, Kulkarni GC, Gour A, Straub CJ, Argade MD, Peters CJ, Sharma A, Toll L, Cippitelli A, Riley AP. Synthesis of α3β4 Nicotinic Acetylcholine Receptor Modulators Derived from Aristoquinoline That Reduce Reinstatement of Cocaine-Seeking Behavior. J Med Chem 2024; 67:529-542. [PMID: 38151460 PMCID: PMC10872344 DOI: 10.1021/acs.jmedchem.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Growing evidence suggests that inhibition of the α3β4 nicotinic acetylcholine receptor (nAChR) represents a promising therapeutic strategy to treat cocaine use disorder. Recently, aristoquinoline (1), an alkaloid from Aristotelia chilensis, was identified as an α3β4-selective nAChR inhibitor. Here, we prepared 22 derivatives of 1 and evaluated their ability to inhibit the α3β4 nAChR. These studies revealed structure-activity trends and several compounds with increased potency compared to 1 with few off-target liabilities. Additional mechanistic studies indicated that these compounds inhibit the α3β4 nAChR noncompetitively, but do not act as channel blockers, suggesting they are negative allosteric modulators. Finally, using a cocaine-primed reinstatement paradigm, we demonstrated that 1 significantly attenuates drug-seeking behavior in an animal model of cocaine relapse. The results from these studies further support a role for the α3β4 nAChR in the addictive properties of cocaine and highlight the possible utility of aristoquinoline derivatives in treating cocaine use disorder.
Collapse
Affiliation(s)
- Lisa E. Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Ana M. Lopez-Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Kyle M. Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Gauri C. Kulkarni
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Abhishek Gour
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Carolyn J. Straub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Malaika D. Argade
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Christian J. Peters
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, United States
| | - Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, United States
| | - Andrew P. Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, United States
| |
Collapse
|
3
|
Zhou L, Dau V, Jensen AA. Discovery of a Novel Class of Benzimidazole-Based Nicotinic Acetylcholine Receptor Modulators: Positive and Negative Modulation Arising from Overlapping Allosteric Sites. J Med Chem 2023; 66:12586-12601. [PMID: 37650525 DOI: 10.1021/acs.jmedchem.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Here, we present the discovery of a novel class of benzimidazole-based allosteric modulators of nicotinic acetylcholine receptors (nAChRs). The modulators were developed based on a compound (1) exhibiting positive modulatory activity at α4β2 nAChR in a compound library screening by functional characterization of 100 analogues of 1 at nAChRs. Two distinct series of positive and negative allosteric modulators (PAMs and NAMs, respectively) comprising benzimidazole as a shared structural moiety emerged from this SAR study. The PAMs mediated weak modulation of α4β2 and α6β2β3, whereas the NAMs exhibited essentially equipotent inhibition of α4β2, α6β2β3, α6β4β3, and α3β4 nAChRs, with analogue 9j [2-(2,4-dichlorophenoxy)-1,3-dimethyl-1-H-benzo[d]imidazole-3-ium] displaying high-nanomolar and low-micromolar IC50 values at the β2- and β4-containing receptor subtypes, respectively. We propose that the PAMs and NAMs act through overlapping sites in the nAChR, and these findings thus underline the heterogenous modes of modulation that can arise from a shared allosteric site in the receptor.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Vidan Dau
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Yao R, Jensen AA, Bryce-Rogers HP, Schultz-Knudsen K, Zhou L, Hovendal NP, Pedersen H, Kubus M, Ulven T, Laraia L. Identification of 5-HT2 Serotonin Receptor Modulators through the Synthesis of a Diverse, Tropane- and Quinuclidine-alkaloid-Inspired Compound Library. J Med Chem 2023; 66:11536-11554. [PMID: 37566000 DOI: 10.1021/acs.jmedchem.3c01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.
Collapse
Affiliation(s)
- Ruwei Yao
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hogan P Bryce-Rogers
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Katrine Schultz-Knudsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nicklas P Hovendal
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Henrik Pedersen
- Medicinal Chemistry, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Mariusz Kubus
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
5
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Mi X, Ding WG, Toyoda F, Kojima A, Omatsu-Kanbe M, Matsuura H. Selective activation of adrenoceptors potentiates I Ks current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J Mol Cell Cardiol 2021; 161:86-97. [PMID: 34375616 DOI: 10.1016/j.yjmcc.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Delayed rectifier K+ current (IKs) is a key contributor to repolarization of action potentials. This study investigated the mechanisms underlying the adrenoceptor-induced potentiation of IKs in pulmonary vein cardiomyocytes (PVC). PVC were isolated from guinea pig pulmonary vein. The action potentials and IKs current were recorded using perforated and conventional whole-cell patch-clamp techniques. The expression of IKs was examined using immunocytochemistry and Western blotting. KCNQ1, a IKs pore-forming protein was detected as a signal band approximately 100 kDa in size, and its immunofluorescence signal was found to be mainly localized on the cell membrane. The IKs current in PVC was markedly enhanced by both β1- and β2-adrenoceptor stimulation with a negative voltage shift in the current activation, although the potentiation was more effectively induced by β2-adrenoceptor stimulation than β1-adrenoceptor stimulation. Both β-adrenoceptor-mediated increases in IKs were attenuated by treatment with the adenylyl cyclase (AC) inhibitor or protein kinase A (PKA) inhibitor. Furthermore, the IKs current was increased by α1-adrenoceptor agonist but attenuated by the protein kinase C (PKC) inhibitor. PVC exhibited action potentials in normal Tyrode solution which was slightly reduced by HMR-1556 a selective IKs blocker. However, HMR-1556 markedly reduced the β-adrenoceptor-potentiated firing rate. The stimulatory effects of β- and α1-adrenoceptor on IKs in PVC are mediated via the PKA and PKC signal pathways. HMR-1556 effectively reduced the firing rate under β-adrenoceptor activation, suggesting that the functional role of IKs might increase during sympathetic excitation under in vivo conditions.
Collapse
Affiliation(s)
- Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
7
|
Clementson S, Matheu SA, Rørsted EM, Pedersen H, Jensen AA, Clausen RP, Vital P, Glibstrup E, Jessing M, Kristensen JL. Erythrina Alkaloid Analogues as nAChR Antagonists-A Flexible Platform for Leads in Drug Discovery. J Org Chem 2021; 86:8248-8262. [PMID: 34061521 DOI: 10.1021/acs.joc.1c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythrina alkaloids and their central nervous system effects have been studied for over a century, mainly due to their potent antagonistic actions at β2-containing nicotinic acetylcholine receptors (nAChRs). In the present work, we report a synthetic approach giving access to a diverse set of Erythrina natural product analogues and present the enantioselective total synthesis of (+)-Cocculine and (+)-Cocculidine, both found to be potent antagonists of the β2-containing nAChRs.
Collapse
Affiliation(s)
- Sebastian Clementson
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Sergio Armentia Matheu
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Emil Märcher Rørsted
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Henrik Pedersen
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Paulo Vital
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Emil Glibstrup
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Mikkel Jessing
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
8
|
Park J, Taly A, Bourreau J, De Nardi F, Legendre C, Henrion D, Guérineau NC, Legros C, Mattei C, Tricoire-Leignel H. Partial Agonist Activity of Neonicotinoids on Rat Nicotinic Receptors: Consequences over Epinephrine Secretion and In Vivo Blood Pressure. Int J Mol Sci 2021; 22:ijms22105106. [PMID: 34065933 PMCID: PMC8151892 DOI: 10.3390/ijms22105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3β4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3β4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 μM, but it was stronger at 500 μM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3β4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.
Collapse
Affiliation(s)
- Joohee Park
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Antoine Taly
- Theoretical Biochemistry Laboratory, Institute of Physico-Chemical Biology, CNRS UPR 9080, University of Paris Diderot Sorbonne Paris Cité, 75005 Paris, France;
| | - Jennifer Bourreau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Frédéric De Nardi
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Claire Legendre
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Daniel Henrion
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Nathalie C. Guérineau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- IGF, University of Montpellier, CNRS, INSERM, 34000 Montpellier, France
| | - Christian Legros
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| |
Collapse
|
9
|
Cho Y, Pham Ba VA, Jeong JY, Choi Y, Hong S. Ion-Selective Carbon Nanotube Field-Effect Transistors for Monitoring Drug Effects on Nicotinic Acetylcholine Receptor Activation in Live Cells. SENSORS 2020; 20:s20133680. [PMID: 32630098 PMCID: PMC7374424 DOI: 10.3390/s20133680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
We developed ion-selective field-effect transistor (FET) sensors with floating electrodes for the monitoring of the potassium ion release by the stimulation of nicotinic acetylcholine receptors (nAChRs) on PC12 cells. Here, ion-selective valinomycin-polyvinyl chloride (PVC) membranes were coated on the floating electrode-based carbon nanotube (CNT) FETs to build the sensors. The sensors could selectively measure potassium ions with a minimum detection limit of 1 nM. We utilized the sensor for the real-time monitoring of the potassium ion released from a live cell stimulated by nicotine. Notably, this method also allowed us to quantitatively monitor the cell responses by agonists and antagonists of nAChRs. These results suggest that our ion-selective CNT-FET sensor has potential uses in biological and medical researches such as the monitoring of ion-channel activity and the screening of drugs.
Collapse
Affiliation(s)
- Youngtak Cho
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Viet Anh Pham Ba
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
- Department of Environmental Toxicology and Monitoring, Hanoi University of Natural Resources and Environment, Hanoi 11916, Vietnam
| | - Jin-Young Jeong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Yoonji Choi
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Seunghun Hong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
- Correspondence: ; Tel.: +82-2-880-1343
| |
Collapse
|
10
|
Li AS, Iijima A, Huang J, Li QX, Chen Y. Putative Mode of Action of the Monoterpenoids Linalool, Methyl Eugenol, Estragole, and Citronellal on Ligand-Gated Ion Channels. ENGINEERING (BEIJING, CHINA) 2020; 6:541-545. [PMID: 38274392 PMCID: PMC10810144 DOI: 10.1016/j.eng.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Essential oil has been used as sedatives, anticonvulsants, and local anesthetics in traditional medical remedies; as preservatives for food, fruit, vegetable, and grain storage; and as bio-pesticides for food production. Linalool (LL), along with a few other major components such as methyl eugenol (ME), estragole (EG), and citronellal, are the active chemicals in many essential oils such as basil oil. Basil oil and the aforementioned monoterpenoids are potent against insect pests. However, the molecular mechanism of action of these chemical constituents is not well understood. It is well-known that the γ-aminobutyric acid type A receptors (GABAARs) and nicotinic acetylcholine receptor (nAChR) are primary molecular targets of the synthetic insecticides used in the market today. Furthermore, the GABAAR-targeted therapeutics have been used in clinics for many decades, including barbiturates and benzodiazepines, to name just a few. In this research, we studied the electrophysiological effects of LL, ME, EG, and citronellal on GABAAR and nAChR to further understand their versatility as therapeutic agents in traditional remedies and as insecticides. Our results revealed that LL inhibits both GABAAR and nAChR, which may explain its insecticidal activity. LL is a concentration-dependent, non-competitive inhibitor on GABAAR, as the half-maximal effective concentration (EC50) values of γ-aminobutyric acid (GABA) for the rat α1β3γ2L GABAAR were not affected by LL: (36.2 ± 7.9) μmol·L-1 and (36.1 ± 23.8) μmol·L-1 in the absence and presence of 5 mmol·L-1 LL, respectively. The half-maximal inhibitory concentration (IC50) of LL on GABAAR was approximately 3.2 mmol·L-1. Considering that multiple monoterpenoids are found within the same essential oil, it is likely that LL has a synergistic effect with ME, which has been previously characterized as both a GABAAR agonist and a positive allosteric modulator, and with other monoterpenoids, which offers a possible explanation for the sedative and anticonvulsant effects and the insecticidal activities of LL.
Collapse
Affiliation(s)
- Amy S. Li
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
- Department of Internal Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Akimasa Iijima
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Junhao Huang
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yongli Chen
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| |
Collapse
|
11
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
12
|
Dezfuli G, Olson TT, Martin LM, Keum Y, Siegars BA, Desai A, Uitz M, Sahibzada N, Gillis RA, Kellar KJ. α4β2 nicotinic acetylcholine receptors intrinsically influence body weight in mice. Neuropharmacology 2019; 166:107921. [PMID: 31881170 DOI: 10.1016/j.neuropharm.2019.107921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Desensitization of the nicotinic acetylcholine receptor (nAChR) containing the β2 subunit is a potentially critical mechanism underlying the body weight (BW) reducing effects of nicotine. The purpose of this study was a) to determine the α subunit(s) that partners with the β2 subunit to form the nAChR subtype that endogenously regulates energy balance and b) to probe the extent to which nAChR desensitization could be involved in the regulation of BW. We demonstrate that deletion of either the α4 or the β2, but not the α5, subunit of the nAChR suppresses weight gain in a sex-dependent manner. Furthermore, chronic treatment with the β2-selective nAChR competitive antagonist dihydro-β-erythroidine (DHβE) in mice fed a high-fat diet suppresses weight gain. These results indicate that heteromeric α4β2 nAChRs play a role as intrinsic regulators of energy balance and that desensitizing or inhibiting this nAChR is likely a relevant mechanism and thus could be a strategy for weight loss.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Thao T Olson
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Lukas M Martin
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Youngshin Keum
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Byron A Siegars
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Anushka Desai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Mia Uitz
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Richard A Gillis
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Kenneth J Kellar
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA.
| |
Collapse
|
13
|
Reno CM, Bayles J, Huang Y, Oxspring M, Hirahara AM, Dosdall DJ, Fisher SJ. Severe Hypoglycemia-Induced Fatal Cardiac Arrhythmias Are Mediated by the Parasympathetic Nervous System in Rats. Diabetes 2019; 68:2107-2119. [PMID: 31439645 PMCID: PMC7118248 DOI: 10.2337/db19-0306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
The contribution of the sympathetic nervous system (SNS) versus the parasympathetic nervous system (PSNS) in mediating fatal cardiac arrhythmias during insulin-induced severe hypoglycemia is not well understood. Therefore, experimental protocols were performed in nondiabetic Sprague-Dawley rats to test the SNS with 1) adrenal demedullation and 2) chemical sympathectomy, and to test the PSNS with 3) surgical vagotomy, 4) nicotinic receptor (mecamylamine) and muscarinic receptor (AQ-RA 741) blockade, and 5) ex vivo heart perfusions with normal or low glucose, acetylcholine (ACh), and/or mecamylamine. In protocols 1-4, 3-h hyperinsulinemic (0.2 units/kg/min) and hypoglycemic (10-15 mg/dL) clamps were performed. Adrenal demedullation and chemical sympathectomy had no effect on mortality or arrhythmias during severe hypoglycemia compared with controls. Vagotomy led to a 6.9-fold decrease in mortality; reduced first- and second-degree heart block 4.6- and 4-fold, respectively; and prevented third-degree heart block compared with controls. Pharmacological blockade of nicotinic receptors, but not muscarinic receptors, prevented heart block and mortality versus controls. Ex vivo heart perfusions demonstrated that neither low glucose nor ACh alone caused arrhythmias, but their combination induced heart block that could be abrogated by nicotinic receptor blockade. Taken together, ACh activation of nicotinic receptors via the vagus nerve is the primary mediator of severe hypoglycemia-induced fatal cardiac arrhythmias.
Collapse
Affiliation(s)
- Candace M Reno
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Justin Bayles
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Yiqing Huang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Milan Oxspring
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Annie M Hirahara
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT
| | - Derek J Dosdall
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| |
Collapse
|
14
|
Gharpure A, Teng J, Zhuang Y, Noviello CM, Walsh RM, Cabuco R, Howard RJ, Zaveri NT, Lindahl E, Hibbs RE. Agonist Selectivity and Ion Permeation in the α3β4 Ganglionic Nicotinic Receptor. Neuron 2019; 104:501-511.e6. [PMID: 31488329 DOI: 10.1016/j.neuron.2019.07.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are pentameric ion channels that mediate fast chemical neurotransmission. The α3β4 nicotinic receptor subtype forms the principal relay between the central and peripheral nervous systems in the autonomic ganglia. This receptor is also expressed focally in brain areas that affect reward circuits and addiction. Here, we present structures of the α3β4 nicotinic receptor in lipidic and detergent environments, using functional reconstitution to define lipids appropriate for structural analysis. The structures of the receptor in complex with nicotine, as well as the α3β4-selective ligand AT-1001, complemented by molecular dynamics, suggest principles of agonist selectivity. The structures further reveal much of the architecture of the intracellular domain, where mutagenesis experiments and simulations define residues governing ion conductance.
Collapse
Affiliation(s)
- Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard M Walsh
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rico Cabuco
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden
| | | | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden; Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna 17121, Sweden
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Walweel K, Gomez-Hurtado N, Rebbeck RT, Oo YW, Beard NA, Molenaar P, Dos Remedios C, van Helden DF, Cornea RL, Knollmann BC, Laver DR. Calmodulin inhibition of human RyR2 channels requires phosphorylation of RyR2-S2808 or RyR2-S2814. J Mol Cell Cardiol 2019; 130:96-106. [PMID: 30928430 DOI: 10.1016/j.yjmcc.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023]
Abstract
Calmodulin (CaM) is a Ca-binding protein that binds to, and can directly inhibit cardiac ryanodine receptor calcium release channels (RyR2). Animal studies have shown that RyR2 hyperphosphorylation reduces CaM binding to RyR2 in failing hearts, but data are lacking on how CaM regulates human RyR2 and how this regulation is affected by RyR2 phosphorylation. Physiological concentrations of CaM (100 nM) inhibited the diastolic activity of RyR2 isolated from failing human hearts by ~50% but had no effect on RyR2 from healthy human hearts. Using FRET between donor-FKBP12.6 and acceptor-CaM bound to RyR2, we determined that CaM binds to RyR2 from healthy human heart with a Kd = 121 ± 14 nM. Ex-vivo phosphorylation/dephosphorylation experiments suggested that the divergent CaM regulation of healthy and failing human RyR2 was caused by differences in RyR2 phosphorylation by protein kinase A and Ca-CaM-dependent kinase II. Ca2+-spark measurements in murine cardiomyocytes harbouring RyR2 phosphomimetic or phosphoablated mutants at S2814 and S2808 suggest that phosphorylation of residues corresponding to either human RyR2-S2808 or S2814 is both necessary and sufficient for RyR2 regulation by CaM. Our results challenge the current concept that CaM universally functions as a canonical inhibitor of RyR2 across species. Rather, CaM's biological action on human RyR2 appears to be more nuanced, with inhibitory activity only on phosphorylated RyR2 channels, which occurs during exercise or in patients with heart failure.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | - Nieves Gomez-Hurtado
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Ye Wint Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - Nicole A Beard
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia.
| | - Peter Molenaar
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, QLD 4032. Australia.
| | - Cris Dos Remedios
- Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| |
Collapse
|
16
|
Badanavalu MP, Srivatsan M. Nicotine is neuroprotective to neonatal neurons of sympathetic ganglion in rat. Auton Neurosci 2018; 216:25-32. [PMID: 30206032 DOI: 10.1016/j.autneu.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 01/04/2023]
Abstract
Sympathetic neurons of SCG are dependent on availability of nerve growth factor (NGF) for their survival. SCG neurons express nicotinic receptors (nAChR) whose expression levels are modulated by nicotine. Nicotine exerts multiple effects on neurons, including neuroprotection, through nAChR binding. Although sympathetic neurons express robust levels of nAChR, a possible neuroprotective role for nicotine in these neurons is not well-understood. Therefore we determined the effect of nicotine exposure on survival of SCG neurons during NGF withdrawal in a well-established cell culture system. NGF was withdrawn in rat neonatal SCG neuron cultures which were then treated with either 10 μM nicotine alone or with nAChR antagonists 0.1 μM α-bungarotoxin (antagonist for α7 subunit bearing nAChR) and 10 μM mecamylamine (non-specific antagonist for ganglionic nAChR) for 48 h. Apoptotic death was determined by TUNEL staining. Cell survival was also determined by MTS assay. Western blot analysis of ERK1/2 was also performed. Our results showed that exposure to 10 μM nicotine significantly reduced apoptotic cell death in SCG neurons resulting from NGF withdrawal as shown by fewer TUNEL positive cells. The MTS assay results also revealed that 10 μM nicotine concentration significantly increased cell survival thus indicating neuroprotective effect of nicotine against cell death resulting from NGF withdrawal. Nicotinic receptor antagonists (bungarotoxin & mecamylamine) attenuated the effect of nicotine's action of neuroprotection. Western blot analysis showed an increased expression of ERK1/2 in nicotine treated cultures suggesting nicotine provided neuroprotection in SCG neurons by increasing the expression of ERK1/2 through nicotinic receptor dependent mechanisms.
Collapse
Affiliation(s)
- Mahadevappa P Badanavalu
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, United States
| | - Malathi Srivatsan
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, United States.
| |
Collapse
|
17
|
Withey SL, Doyle MR, Bergman J, Desai RI. Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys. J Pharmacol Exp Ther 2018; 366:397-409. [PMID: 29784663 DOI: 10.1124/jpet.118.248070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that the α4β2, but not the α7, subtype of the nicotinic acetylcholine receptor (nAChR) plays a key role in mediating the behavioral effects of nicotine and related drugs. However, the importance of other nAChR subtypes remains unclear. The present studies were conducted to examine the involvement of nAChR subtypes by determining the effects of selected nicotinic agonists and antagonists in squirrel monkeys either 1) responding for food reinforcement or 2) discriminating the nicotinic agonist (+)-epibatidine (0.001 mg/kg) from vehicle. In food-reinforcement studies, nicotine, (+)-epibatidine, varenicline and cytisine all produced dose-dependent decreases in rates of food-maintained responding. The rate-decreasing effects of nicotine were antagonized by mecamylamine (nonselective), not appreciably altered by dihydro-β-erythroidine (α4β2 selective), and exacerbated by the nicotinic partial agonists, varenicline and cytisine. Results from discrimination studies show that non-nicotinic drugs did not substitute for (+)-epibatidine, and that except for lobeline, the nicotinic agonists produced either full [(+)-epibatidine, (-)-epibatidine, and nicotine] or partial (varenicline, cytisine, anabaseine, and isoarecolone) substitution for (+)-epibatidine. In interaction studies with antagonists differing in selectivity, (+)-epibatidine discrimination was substantively antagonized by mecamylamine, slightly attenuated by hexamethonium (peripherally restricted) or dihydro-β-erythroidine, and not altered by methyllycaconitine (α7 selective). Varenicline and cytisine enhanced (+)-epibatidine's discriminative-stimulus effects. Correlational analysis revealed a close correspondence between relative behavioral potencies of nicotinic agonists in both studies and their published relative binding affinities at α4β2 and α3β4, but not α7 nAChR, subtypes. Collectively, these results are consistent with the idea that the α4β2 and α3β4, but not α7 nAChR subtypes play a role in the behavioral effects of nicotinic agonists.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Michelle R Doyle
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
18
|
Tetzner A, Naughton M, Gebolys K, Eichhorst J, Sala E, Villacañas Ó, Walther T. Decarboxylation of Ang-(1-7) to Ala 1-Ang-(1-7) leads to significant changes in pharmacodynamics. Eur J Pharmacol 2018; 833:116-123. [PMID: 29792841 DOI: 10.1016/j.ejphar.2018.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/28/2022]
Abstract
The heptapeptide angiotensin (Ang)-(1-7) is part of the beneficial arm of the renin-angiotensin system. Ang-(1-7) has cardiovascular protective effects, stimulates regeneration, and opposes the often detrimental effects of AngII. We recently identified the G protein-coupled receptors Mas and MrgD as receptors for the heptapeptide. Ala1-Ang-(1-7) (Alamandine), a decarboxylated form of Ang-(1-7), has similar vasorelaxant effects, but has been described as only stimulating MrgD. Therefore, this study aimed to characterise the consequences of the lack of the carboxyl group in amino acid 1 on intracellular signalling and to identify the receptor fingerprint for Ala1-Ang-(1-7). In primary endothelial and mesangial cells, Ala1-Ang-(1-7) elevated cAMP concentration. Dose response curves generated with Ang-(1-7) and Ala1-Ang-(1-7) significantly differed from each other, with a much lower EC50 and a bell-shape curve for Ala1-Ang-(1-7). We provided pharmacological proof that both, Mas and MrgD, are functional receptors for Ala1-Ang-(1-7). Consequently, in primary mesangial cells with genetic deficiency in both receptors, the heptapeptide failed to increase cAMP concentration. As we previously described for Ang-(1-7), the Ala1-Ang-(1-7)-mediated cAMP increase in Mas/MrgD-transfected HEK293 cells and primary cells was blocked by the AT2 receptor blocker, PD123319. The very distinct dose-response curves for both heptapeptides could be explained by in silico modelling, electrostatic potential calculations, and an involvement of Galpha i for higher concentrations of Ala1-Ang-(1-7). Our results identify Ala1-Ang-(1-7) as a peptide with specific pharmacodynamic properties and builds the basis for the design of more potent and efficient Ang-(1-7) analogues for therapeutic intervention in a rapidly growing number of diseases.
Collapse
Affiliation(s)
- Anja Tetzner
- Dept. Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork (UCC), Cork, Ireland; Departments Obstetrics and Paediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Maura Naughton
- Dept. Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork (UCC), Cork, Ireland
| | - Kinga Gebolys
- Dept. Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork (UCC), Cork, Ireland
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut for Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | | | - Thomas Walther
- Dept. Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork (UCC), Cork, Ireland; Departments Obstetrics and Paediatric Surgery, University of Leipzig, Leipzig, Germany; Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
19
|
Berndt-Paetz M, Herbst L, Weimann A, Gonsior A, Stolzenburg JU, Neuhaus J. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA). Acta Histochem 2018; 120:329-339. [PMID: 29551457 DOI: 10.1016/j.acthis.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/08/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. MATERIAL AND METHODS Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (Gαq/11, Gαs, Gαi) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor®488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. RESULTS Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP-subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. CONCLUSION PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC.
Collapse
|
20
|
Fitch RW, Snider BB, Zhou Q, Foxman BM, Pandya AA, Yakel JL, Olson TT, Al-Muhtasib N, Xiao Y, Welch KD, Panter KE. Absolute Configuration and Pharmacology of the Poison Frog Alkaloid Phantasmidine. JOURNAL OF NATURAL PRODUCTS 2018; 81:1029-1035. [PMID: 29671588 PMCID: PMC7142328 DOI: 10.1021/acs.jnatprod.8b00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phantasmidine, a rigid congener of the well-known nicotinic acetylcholine receptor agonist epibatidine, is found in the same species of poison frog ( Epipedobates anthonyi). Natural phantasmidine was found to be a 4:1 scalemic mixture, enriched in the (2a R,4a S,9a S) enantiomer by chiral-phase LC-MS comparison to the synthetic enantiomers whose absolute configurations were previously established by Mosher's amide analysis. The major enantiomer has the opposite S configuration at the benzylic carbon to natural epibatidine, whose benzylic carbon is R. Pharmacological characterization of the synthetic racemate and separated enantiomers established that phantasmidine is ∼10-fold less potent than epibatidine, but ∼100-fold more potent than nicotine in most receptors tested. Unlike epibatidine, phantasmidine is sharply enantioselective in its activity and the major natural enantiomer whose benzylic carbon has the 4a S configuration is more active. The stereoselective pharmacology of phantasmidine is ascribed to its rigid and asymmetric shape as compared to the nearly symmetric conformations previously suggested for epibatidine enantiomers. While phantasmidine itself is too toxic for direct therapeutic use, we believe it is a useful platform for the development of potent and selective nicotinic agonists, which may have value as pharmacological tools.
Collapse
Affiliation(s)
- Richard W Fitch
- Department of Chemistry and Physics , Indiana State University , Terre Haute , Indiana 47809 , United States
| | - Barry B Snider
- Department of Chemistry , Brandeis University MS 015 , Waltham , Massachusetts 02453 , United States
| | - Quan Zhou
- Department of Chemistry , Brandeis University MS 015 , Waltham , Massachusetts 02453 , United States
| | - Bruce M Foxman
- Department of Chemistry , Brandeis University MS 015 , Waltham , Massachusetts 02453 , United States
| | - Anshul A Pandya
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, NIH/DHHS , Research Triangle Park , North Carolina 27709 , United States
| | - Jerrel L Yakel
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, NIH/DHHS , Research Triangle Park , North Carolina 27709 , United States
| | - Thao T Olson
- Department of Pharmacology and Physiology , Georgetown University , Washington , D.C. 20057 , United States
| | - Nour Al-Muhtasib
- Department of Pharmacology and Physiology , Georgetown University , Washington , D.C. 20057 , United States
| | - Yingxian Xiao
- Department of Pharmacology and Physiology , Georgetown University , Washington , D.C. 20057 , United States
| | - Kevin D Welch
- Poisonous Plant Research Laboratory, United States Department of Agriculture , Agricultural Research Service , Logan , Utah 84341 , United States
| | - Kip E Panter
- Poisonous Plant Research Laboratory, United States Department of Agriculture , Agricultural Research Service , Logan , Utah 84341 , United States
| |
Collapse
|
21
|
Functional properties and mechanism of action of PPTQ, an allosteric agonist and low nanomolar positive allosteric modulator at GABAA receptors. Biochem Pharmacol 2018; 147:153-169. [DOI: 10.1016/j.bcp.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022]
|
22
|
Majinda RRT. An Update of Erythrinan Alkaloids and Their Pharmacological Activities. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2018; 107:95-159. [PMID: 30178271 DOI: 10.1007/978-3-319-93506-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The period of the past 5 years has witnessed a remarkable increase in all of the number, structural variety, and complexity of erythrinan alkaloids reported. This structural diversity seems to be most pronounced in the alkaloids reported from the two species Erythrina arborescens and Erythrina variegata. Between them, work-up of these taxa yielded new polymeric (dimeric and trimeric) erythrinan alkaloids, a first example in one case where a normal 6,5,6,6-membered indoloisoquinoline spirocylic core has rearranged to a spiro-fused 6,5,7,6-skeleton. Furthermore, erythrinan alkaloids with a fifth ring containing a 2H-imidazole functionality were also reported for the first time, together with some new structures having an unusual substitution and with functionalities at positions C-3 and C-7 of the erythrinan core. This contribution has included 40 more erythrinan alkaloids that are either new or were omitted in the most recent major reviews on the same topic, leading to a total of 154 known erythrinan alkaloids to date. There are a few cases where the structures of the new alkaloids are contestable due to insufficient data having been obtained on isolation. To facilitate easier reference and identification, all structures having a common core have been placed in the same table or figure in this chapter.The reported pharmacological activities of the new and known erythrinan alkaloids documented have shown a considerable bias towards central nervous system and related activities. Other prominent activities that have been reported are antifeedant, insecticidal, cytotoxic, antiprotozoal, anti-inflammatory, antioxidant, antifungal, and antiviral effects. Erythrinan alkaloids generally seem to lack antibacterial activity. Several new polymeric alkaloids were found to lack cytotoxicity against a number of human cancer cell lines, although two of them showed moderate aphicidal activity and one exhibited weak to moderate acetylcholinesterase inhibition. The biological activity of erythrinan alkaloids seems to be influenced by basic substructural requirements, such as a conjugated diene (Δ1,2, Δ6,7) system and is modulated by the presence (or absence) of other groups in rings A, B, C, and D of the erythrinan core. The erythrinan core may provide potential leads to structures that eventually may be useful therapeutically.In recent years, a number of stereoselective chemical synthesis methods have been applied towards the erythinan alkaloids, and these are described in this contribution.
Collapse
|
23
|
Axen SD, Huang XP, Cáceres EL, Gendelev L, Roth BL, Keiser MJ. A Simple Representation of Three-Dimensional Molecular Structure. J Med Chem 2017; 60:7393-7409. [PMID: 28731335 DOI: 10.1021/acs.jmedchem.7b00696] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Statistical and machine learning approaches predict drug-to-target relationships from 2D small-molecule topology patterns. One might expect 3D information to improve these calculations. Here we apply the logic of the extended connectivity fingerprint (ECFP) to develop a rapid, alignment-invariant 3D representation of molecular conformers, the extended three-dimensional fingerprint (E3FP). By integrating E3FP with the similarity ensemble approach (SEA), we achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20 and equivalent receiver operating characteristic performance. We identify classes of molecules for which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from 0.442-0.637 kcal/mol/heavy atom.
Collapse
Affiliation(s)
- Seth D Axen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Elena L Cáceres
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.,Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| | - Leo Gendelev
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.,Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Michael J Keiser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.,Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| |
Collapse
|
24
|
Sottile SY, Ling L, Cox BC, Caspary DM. Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. J Physiol 2017; 595:5375-5385. [PMID: 28585699 PMCID: PMC5538226 DOI: 10.1113/jp274467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal nicotinic acetylcholine receptors (nAChRs) play a fundamental role in the attentional circuitry throughout the mammalian CNS. In the present study, we report a novel finding that ageing negatively impacts nAChR efficacy in auditory thalamus, and this is probably the result of a loss of nAChR density (Bmax ) and changes in the subunit composition of nAChRs. Our data support the hypothesis that age-related maladaptive changes involving nAChRs within thalamocortical circuits partially underpin the difficulty that elderly adults experience with respect to attending to speech and other salient acoustic signals. ABSTRACT The flow of auditory information through the medial geniculate body (MGB) is regulated, in part, by cholinergic projections from the pontomesencephalic tegmentum. The functional significance of these projections is not fully established, although they have been strongly implicated in the allocation of auditory attention. Using in vitro slice recordings, we have analysed postsynaptic function and pharmacology of neuronal nicotinic ACh receptors (nAChRs) in young adult and the aged rat MGB. We find that ACh produces significant excitatory postsynaptic actions on young MGB neurons, probably mediated by β2-containing heteromeric nAChRs. Radioligand binding studies show a significant age-related loss of heteromeric nAChR receptor number, which supports patch clamp data showing an age-related loss in ACh efficacy in evoking postsynaptic responses. Use of the β2-selective nAChR antagonist, dihydro-β-erythroidine, suggests that loss of cholinergic efficacy may also be the result of an age-related subunit switch from high affinity β2-containing nAChRs to low affinity β4-containing nAChRs, in addition to the loss of total nAChR number. This age-related nAChR dysfunction may partially underpin the attentional deficits that contribute to the loss of speech understanding in the elderly.
Collapse
Affiliation(s)
| | | | - Brandon C. Cox
- Department of Pharmacology
- Department of Surgery, Division of OtolaryngologySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Donald M. Caspary
- Department of Pharmacology
- Department of Surgery, Division of OtolaryngologySouthern Illinois University School of MedicineSpringfieldILUSA
| |
Collapse
|
25
|
Shelukhina I, Mikhailov N, Abushik P, Nurullin L, Nikolsky EE, Giniatullin R. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Front Neurol 2017; 8:163. [PMID: 28496430 PMCID: PMC5406407 DOI: 10.3389/fneur.2017.00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. METHODS Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. RESULTS Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. CONCLUSION Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine.
Collapse
Affiliation(s)
- Irina Shelukhina
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita Mikhailov
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Polina Abushik
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leniz Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan, Russian Federation.,Open Laboratory of Neuropharmacology, Kazan Federal University, Kazan, Russian Federation
| | - Evgeny E Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan, Russian Federation.,Open Laboratory of Neuropharmacology, Kazan Federal University, Kazan, Russian Federation
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
26
|
De Nardi F, Lefort C, Bréard D, Richomme P, Legros C, Guérineau NC. Monitoring the Secretory Behavior of the Rat Adrenal Medulla by High-Performance Liquid Chromatography-Based Catecholamine Assay from Slice Supernatants. Front Endocrinol (Lausanne) 2017; 8:248. [PMID: 28993760 PMCID: PMC5622411 DOI: 10.3389/fendo.2017.00248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
Catecholamine (CA) secretion from the adrenal medullary tissue is a key step of the adaptive response triggered by an organism to cope with stress. Whereas molecular and cellular secretory processes have been extensively studied at the single chromaffin cell level, data available for the whole gland level are much scarcer. We tackled this issue in rat by developing an easy to implement experimental strategy combining the adrenal acute slice supernatant collection with a high-performance liquid chromatography-based epinephrine and norepinephrine (NE) assay. This technique affords a convenient method for measuring basal and stimulated CA release from single acute slices, allowing thus to individually address the secretory function of the left and right glands. Our data point that the two glands are equally competent to secrete epinephrine and NE, exhibiting an equivalent epinephrine:NE ratio, both at rest and in response to a cholinergic stimulation. Nicotine is, however, more efficient than acetylcholine to evoke NE release. A pharmacological challenge with hexamethonium, an α3-containing nicotinic acetylcholine receptor antagonist, disclosed that epinephrine- and NE-secreting chromaffin cells distinctly expressed α3 nicotinic receptors, with a dominant contribution in NE cells. As such, beyond the novelty of CA assays from acute slice supernatants, our study contributes at refining the secretory behavior of the rat adrenal medullary tissue, and opens new perspectives for monitoring the release of other hormones and transmitters, especially those involved in the stress response.
Collapse
Affiliation(s)
- Frédéric De Nardi
- Mitochondrial and Cardiovascular Pathophysiology – MITOVASC, CNRS UMR6015, INSERM U1083, UBL/Angers University, Angers, France
| | - Claudie Lefort
- Mitochondrial and Cardiovascular Pathophysiology – MITOVASC, CNRS UMR6015, INSERM U1083, UBL/Angers University, Angers, France
| | - Dimitri Bréard
- EA921, SONAS, SFR QUASAV, UBL/Angers University, Angers, France
| | - Pascal Richomme
- EA921, SONAS, SFR QUASAV, UBL/Angers University, Angers, France
| | - Christian Legros
- Mitochondrial and Cardiovascular Pathophysiology – MITOVASC, CNRS UMR6015, INSERM U1083, UBL/Angers University, Angers, France
- *Correspondence: Christian Legros, ; Nathalie C. Guérineau,
| | - Nathalie C. Guérineau
- Mitochondrial and Cardiovascular Pathophysiology – MITOVASC, CNRS UMR6015, INSERM U1083, UBL/Angers University, Angers, France
- *Correspondence: Christian Legros, ; Nathalie C. Guérineau,
| |
Collapse
|
27
|
LeSage MG, Staley M, Muelken P, Smethells JR, Stepanov I, Vogel RI, Pentel PR, Harris AC. Abuse liability assessment of an e-cigarette refill liquid using intracranial self-stimulation and self-administration models in rats. Drug Alcohol Depend 2016; 168:76-88. [PMID: 27627814 PMCID: PMC5257285 DOI: 10.1016/j.drugalcdep.2016.08.628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/14/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND The popularity of electronic cigarettes (ECs) has increased dramatically despite their unknown health consequences. Because the abuse liability of ECs is one of the leading concerns of the Food and Drug Administration (FDA), models to assess it are urgently needed to inform FDA regulatory decisions regarding these products. The purpose of this study was to assess the relative abuse liability of an EC liquid compared to nicotine alone in rats. Because this EC liquid contains non-nicotine constituents that may enhance its abuse liability, we hypothesized that it would have greater abuse liability than nicotine alone. METHODS Nicotine alone and nicotine dose-equivalent concentrations of EC liquid were compared in terms of their acute effects on intracranial self-stimulation (ICSS) thresholds, acquisition of self-administration, reinforcing efficacy (i.e., elasticity of demand), blockade of these behavioral effects by mecamylamine, nicotine pharmacokinetics and nicotinic acetylcholine receptor binding and activation. RESULTS There were no significant differences between formulations on any measure, except that EC liquid produced less of an elevation in ICSS thresholds at high nicotine doses. CONCLUSIONS Collectively, these findings suggest that the relative abuse liability of this EC liquid is similar to that of nicotine alone in terms of its reinforcing and reinforcement-enhancing effects, but that it may have less aversive/anhedonic effects at high doses. The present methods may be useful for assessing the abuse liability of other ECs to inform potential FDA regulation of those products.
Collapse
Affiliation(s)
- MG LeSage
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN,Department of Medicine, University of Minnesota, Minneapolis, MN,Department of Psychology, University of Minnesota, Minneapolis, MN, 55455
| | - M Staley
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN
| | - P Muelken
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN
| | - JR Smethells
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN,Department of Psychiatry, University of Minnesota, Minneapolis, MN, 55455
| | - I Stepanov
- Masonic Cancer, Center University of Minnesota, Minneapolis, MN
| | - RI Vogel
- Masonic Cancer Center Biostatistics and Bioinformatics Core ,University of Minnesota Minneapolis, MN
| | - PR Pentel
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN,Department of Medicine, University of Minnesota, Minneapolis, MN
| | - AC Harris
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN,Department of Medicine, University of Minnesota, Minneapolis, MN,Department of Psychology, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
28
|
Desai RI, Sullivan KA, Kohut SJ, Bergman J. Influence of experimental history on nicotine self-administration in squirrel monkeys. Psychopharmacology (Berl) 2016; 233:2253-63. [PMID: 27040402 DOI: 10.1007/s00213-016-4274-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Methods for establishing robust long-term self-administration of intravenous (i.v.) nicotine, the primary psychoactive agent in tobacco, are not well-established in laboratory animals. OBJECTIVE Here, we examine the use of a fading procedure to establish robust and consistent i.v. nicotine self-administration under second-order schedule conditions in squirrel monkeys. METHODS First, self-administration behavior was developed in two groups of male squirrel monkeys using a second-order fixed-interval 5-min schedule with fixed-ratio 5 units (FI 5-min (FR5: S)). Comparable performances were maintained by i.v. cocaine (0.032 mg/kg/injection (inj); group A, n = 3) and the combination of food delivery (20-30 % condensed milk) and 0.01 mg/kg/inj i.v. nicotine (group B, n = 3). Subsequently, the concentration of condensed milk was gradually reduced to zero in the second group and self-administration behavior was maintained by i.v. nicotine alone. Next, self-administration of a range of doses of i.v. nicotine (0.001-0.032 mg/kg/inj) and, in additional experiments, the minor tobacco alkaloid anatabine (0.01-0.18 mg/kg/inj) was studied in both groups. RESULTS Results show that nicotine and anatabine had reinforcing effects in both groups. However, optimal doses of nicotine and anatabine maintained significantly higher rates of i.v. self-administration behavior in subjects trained with the fading procedure than in subjects provided with a history of cocaine-maintained responding. CONCLUSION These results illustrate conditions under which robust i.v. nicotine self-administration can be established in squirrel monkeys and the influence of prior experimental history in the expression of reinforcing effects of nicotine and anatabine.
Collapse
Affiliation(s)
- Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Katherine A Sullivan
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
29
|
Desai RI, Doyle MR, Withey SL, Bergman J. Nicotinic effects of tobacco smoke constituents in nonhuman primates. Psychopharmacology (Berl) 2016; 233:1779-89. [PMID: 26892379 DOI: 10.1007/s00213-016-4238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
RATIONALE Recent studies in rodents suggest that non-nicotine constituents of tobacco smoke (e.g., minor tobacco alkaloids) may promote tobacco consumption-either through their own pharmacological effects or by augmenting the effects of nicotine. However, there is scant information on the behavioral pharmacology of minor tobacco alkaloids in primate species. OBJECTIVE The present studies were conducted to determine whether the minor tobacco alkaloids nornicotine, anabasine, anatabine, myosmine, and cotinine exhibit nicotine-like behavioral effects in squirrel monkeys. METHODS Initial experiments were conducted to determine the effects of nicotine (0.032-1.0 mg/kg) and the minor tobacco alkaloids nornicotine (1-1.8 mg/kg), anabasine (0.1-1.0 mg/kg), anatabine (10-32 mg/kg), myosmine (0.32-1.8 mg/kg), and cotinine (10-180 mg/kg) on food-maintained performance (n = 4). Next, the ability of tobacco alkaloids to substitute for the α4β2-selective nicotinic agonist (+)-epibatidine in drug discrimination experiments was evaluated in a separate group of monkeys (n = 4). RESULTS Results show that nicotine and each minor tobacco alkaloid except cotinine (a) produced dose-related decreases in food-maintained responding; (b) substituted for (+)-epibatidine and, in additional experiments, produced additive effects when combined with nicotine; (c) induced emesis or tremor at doses that reduced food-maintained responding and had (+)-epibatidine-like discriminative-stimulus effects; and (d) based on correlation with reported receptor binding affinities, likely produced their behavioral effects through α4β2 receptor mechanisms. CONCLUSION Selected minor tobacco alkaloids have nicotinic-like effects that may contribute to tobacco consumption and addiction.
Collapse
Affiliation(s)
- Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Michelle R Doyle
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| | - Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
30
|
Krivoshein AV. Anticonvulsants Based on the α-Substituted Amide Group Pharmacophore Bind to and Inhibit Function of Neuronal Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2016; 7:316-26. [PMID: 26741746 DOI: 10.1021/acschemneuro.5b00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.
Collapse
Affiliation(s)
- Arcadius V. Krivoshein
- Department of Basic and Social
Sciences, Albany College of Pharmacy and Health Sciences, 106
New Scotland Avenue, Albany, New York 12208, United States
| |
Collapse
|
31
|
Ogunjirin AE, Fortunak JM, Brown LL, Xiao Y, Dávila-García MI. Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen. Neurochem Res 2015; 40:2131-42. [PMID: 26508288 PMCID: PMC4741274 DOI: 10.1007/s11064-015-1705-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a crucial role in a number of clinically relevant mental and neurological pathways, as well as autonomic and immune functions. The development of subtype-selective ligands for nAChRs therefore is potentially useful for targeted therapeutic management of conditions where nAChRs are involved. We tested if selectivity for a particular nAChR subtype can be achieved through small structural modifications of a lead compound containing the nicotinic pharmacophore by changing the distance between the electronegative elements. For this purpose, analogs of A-84543 were designed, synthesized and characterized as potentially new nAChR subtype-selective ligands. Compounds were tested for their binding properties in rat cerebral cortical tissue homogenates, and subtype-selectivity was determined using stably transfected HEK cells expressing different nAChR subtypes. All compounds synthesized were found to competitively displace [(3)H]-epibatidine ([(3)H]EB) from the nAChR binding site. Of all the analogues, H-11MNH showed highest affinity for nAChRs compared to a ~ fivefold to tenfold lower affinity of A-84543. All other compounds had affinities >10,000 nM. Both A-84543 and H-11MNH have highest affinity for α2β2 and α4β2 nAChRs and show moderate affinity for β4- and α7-containing receptors. H-11MNH was found to be a full agonist with high potency at α3β4, while A-84543 is a partial agonist with low potency. Based on their unique pharmacological binding properties we suggest that A-84543 and its desmethylpyrrolidine analog can be useful as pharmacological ligands for studying nAChRs if selective pharmacological and/or genetic tools are used to mask the function of other receptors subtypes.
Collapse
Affiliation(s)
- Adebowale E Ogunjirin
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Joseph M Fortunak
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - LaVerne L Brown
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Martha I Dávila-García
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA.
| |
Collapse
|
32
|
Forcelli PA, Turner JR, Lee BG, Olson TT, Xie T, Xiao Y, Blendy JA, Kellar KJ. Anxiolytic- and antidepressant-like effects of the methadone metabolite 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP). Neuropharmacology 2015; 101:46-56. [PMID: 26365569 DOI: 10.1016/j.neuropharm.2015.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
Abstract
The enhancement of GABAergic and monoaminergic neurotransmission has been the mainstay of pharmacotherapy and the focus of drug-discovery for anxiety and depressive disorders for several decades. However, the significant limitations of drugs used for these disorders underscores the need for novel therapeutic targets. Neuronal nicotinic acetylcholine receptors (nAChRs) may represent one such target. For example, mecamylamine, a non-competitive antagonist of nAChRs, displays positive effects in preclinical tests for anxiolytic and antidepressant activity in rodents. In addition, nicotine elicits similar effects in rodent models, possibly by receptor desensitization. Previous studies (Xiao et al., 2001) have identified two metabolites of methadone, EMDP (2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline) and EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine), which are considered to be inactive at opiate receptors, as relatively potent noncompetitive channel blockers of rat α3β4 nAChRs. Here, we show that these compounds are likewise highly effective blockers of human α3β4 and α4β2 nAChRs. Moreover, we show that they display relatively low affinity for opiate binding sites labeled by [(3)H]-naloxone. We then evaluated these compounds in rats and mice in preclinical behavioral models predictive of potential anxiolytic and antidepressant efficacy. We found that EMDP, but not EDDP, displayed robust effects predictive of anxiolytic and antidepressant efficacy without significant effects on locomotor activity. Moreover, EMDP at behaviorally active doses, unlike mecamylamine, did not produce eyelid ptosis, suggesting it may produce fewer autonomic side effects than mecamylamine. Thus, the methadone metabolite EMDP may represent a novel therapeutic avenue for the treatment of some affective disorders.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC
| | - Jill R Turner
- Department of Pharmacology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA
| | - Bridgin G Lee
- Department of Pharmacology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA
| | - Thao T Olson
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC
| | - Teresa Xie
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC
| | - Yingxian Xiao
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC
| | - Julie A Blendy
- Department of Pharmacology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA
| | - Kenneth J Kellar
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
33
|
Bach TB, Jensen AA, Petersen JG, Sørensen TE, Della Volpe S, Liu J, Blaazer AR, van Muijlwijk-Koezen JE, Balle T, Frølund B. Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane. Eur J Med Chem 2015; 102:425-44. [DOI: 10.1016/j.ejmech.2015.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
34
|
Tuan EW, Horti AG, Olson TT, Gao Y, Stockmeier CA, Al-Muhtasib N, Bowman Dalley C, Lewin AE, Wolfe BB, Sahibzada N, Xiao Y, Kellar KJ. AT-1001 Is a Partial Agonist with High Affinity and Selectivity at Human and Rat α3β4 Nicotinic Cholinergic Receptors. Mol Pharmacol 2015; 88:640-9. [PMID: 26162864 DOI: 10.1124/mol.115.099978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022] Open
Abstract
AT-1001 [N-(2-bromophenyl)-9-methyl-9-azabicyclo[3.3.1] nonan-3-amine] is a high-affinity and highly selective ligand at α3β4 nicotinic cholinergic receptors (nAChRs) that was reported to decrease nicotine self-administration in rats. It was initially reported to be an antagonist at rat α3β4 nAChRs heterologously expressed in HEK293 cells. Here we compared AT-1001 actions at rat and human α3β4 and α4β2 nAChRs similarly expressed in HEK 293 cells. We found that, as originally reported, AT-1001 is highly selective for α3β4 receptors over α4β2 receptors, but its binding selectivity is much greater at human than at rat receptors, because of a higher affinity at human than at rat α3β4 nAChRs. Binding studies in human and rat brain and pineal gland confirmed the selectivity of AT-1001 for α3β4 nAChRs and its higher affinity for human compared with rat receptors. In patch-clamp electrophysiology studies, AT-1001 was a potent partial agonist with 65-70% efficacy at both human and rat α3β4 nAChRs. It was also a less potent and weaker (18%) partial agonist at α4β2 nAChRs. Both α3β4 and α4β2 nAChRs are upregulated by exposure of cells to AT-1001 for 3 days. Similarly, AT-1001 desensitized both receptor subtypes in a concentration-dependent manner, but it was 10 and 30 times more potent to desensitize human α3β4 receptors than rat α3β4 and human α4β2 receptors, respectively. After exposure to AT-1001, the time to recovery from desensitization was longest for the human α3β4 nAChR and shortest for the human α4β2 receptor, suggesting that recovery from desensitization is primarily related to the dissociation of the ligand from the receptor.
Collapse
Affiliation(s)
- Edward W Tuan
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Andrew G Horti
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Thao T Olson
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Yongiun Gao
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Craig A Stockmeier
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Nour Al-Muhtasib
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Carrie Bowman Dalley
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Amanda E Lewin
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Barry B Wolfe
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Niaz Sahibzada
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Yingxian Xiao
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| | - Kenneth J Kellar
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, Washington, DC (E.W.T., T.T.O., N.A.-M., C.B.D., A.E.L., B.B.W., N.S., Y.X., K.J.K.); Department of Radiology Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (A.G.H., Y.G.); and Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (C.A.S.)
| |
Collapse
|
35
|
Ton HT, Smart AE, Aguilar BL, Olson TT, Kellar KJ, Ahern GP. Menthol Enhances the Desensitization of Human α3β4 Nicotinic Acetylcholine Receptors. Mol Pharmacol 2015; 88:256-64. [PMID: 25964258 DOI: 10.1124/mol.115.098285] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine's actions in the brain. We examined menthol's effects on recombinant human α3β4 nAChRs and native nAChRs in mouse sensory neurons. Menthol markedly decreased nAChR activity as assessed by Ca(2+) imaging, (86)Rb(+) efflux, and voltage-clamp measurements. Coapplication of menthol with acetylcholine or nicotine increased desensitization, demonstrated by an increase in the rate and magnitude of the current decay and a reduction of the current integral. These effects increased with agonist concentration. Pretreatment with menthol followed by its washout did not affect agonist-induced desensitization, suggesting that menthol must be present during the application of agonist to augment desensitization. Notably, menthol acted in a voltage-independent manner and reduced the mean open time of single channels without affecting their conductance, arguing against a simple channel-blocking effect. Further, menthol slowed or prevented the recovery of nAChRs from desensitization, indicating that it probably stabilizes a desensitized state. Moreover, menthol at concentrations up to 1 mM did not compete for the orthosteric nAChR binding site labeled by [(3)H]epibatidine. Taken together, these data indicate that menthol promotes desensitization of α3β4 nAChRs by an allosteric action.
Collapse
Affiliation(s)
- Hoai T Ton
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Amanda E Smart
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Brittany L Aguilar
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Kenneth J Kellar
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Gerard P Ahern
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
36
|
Beinat C, Reekie T, Banister SD, O'Brien-Brown J, Xie T, Olson TT, Xiao Y, Harvey A, O'Connor S, Coles C, Grishin A, Kolesik P, Tsanaktsidis J, Kassiou M. Structure-activity relationship studies of SEN12333 analogues: determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. Eur J Med Chem 2015; 95:277-301. [PMID: 25827398 DOI: 10.1016/j.ejmech.2015.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) have implications in the regulation of cognitive processes such as memory and attention and have been identified as a promising therapeutic target for the treatment of the cognitive deficits associated with schizophrenia and Alzheimer's disease (AD). Structure affinity relationship studies of the previously described α7 agonist SEN12333 (8), have resulted in the identification of compound 45, a potent and selective agonist of the α7 nAChR with enhanced affinity and improved physicochemical properties over the parent compound (SEN12333, 8).
Collapse
Affiliation(s)
- Corinne Beinat
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tristan Reekie
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Teresa Xie
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | - John Tsanaktsidis
- CSIRO Materials Science & Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
37
|
Harris AC, Tally L, Schmidt CE, Muelken P, Stepanov I, Saha S, Vogel RI, LeSage MG. Animal models to assess the abuse liability of tobacco products: effects of smokeless tobacco extracts on intracranial self-stimulation. Drug Alcohol Depend 2015; 147:60-7. [PMID: 25561387 PMCID: PMC4337227 DOI: 10.1016/j.drugalcdep.2014.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/12/2014] [Accepted: 12/11/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Preclinical models are needed to inform regulation of tobacco products by the Food and Drug Administration (FDA). Typically, animal models of tobacco addiction involve exposure to nicotine alone or nicotine combined with isolated tobacco constituents (e.g. minor alkaloids). The goal of this study was to develop a model using extracts derived from tobacco products that contain a range of tobacco constituents to more closely model product exposure in humans. METHODS This study compared the addiction-related effects of nicotine alone and nicotine dose-equivalent concentrations of aqueous smokeless tobacco extracts on intracranial self-stimulation (ICSS) in rats. Extracts were prepared from Kodiak Wintergreen, a conventional product, or Camel Snus, a potential "modified risk tobacco product". Binding affinities of nicotine alone and extracts at various nicotinic acetylcholine receptor (nAChR) subtypes were also compared. RESULTS Kodiak and Camel Snus extracts contained levels of minor alkaloids within the range of those shown to enhance nicotine's behavioral effects when studied in isolation. Nonetheless, acute injection of both extracts produced reinforcement-enhancing (ICSS threshold-decreasing) effects similar to those of nicotine alone at low to moderate nicotine doses, as well as similar reinforcement-attenuating/aversive (ICSS threshold-increasing) effects at high nicotine doses. Extracts and nicotine alone also had similar binding affinity at all nAChRs studied. CONCLUSIONS Relative nicotine content is the primary pharmacological determinant of the abuse liability of Kodiak and Camel Snus as measured using ICSS. These models may be useful to compare the relative abuse liability of other tobacco products and to model FDA-mandated changes in product performance standards.
Collapse
Affiliation(s)
- Andrew C Harris
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Laura Tally
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Clare E Schmidt
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Peter Muelken
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Subhrakanti Saha
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Isaksson Vogel
- Masonic Cancer Center, Biostatistics and Bioinformatics Core, University of Minnesota Minneapolis, MN, USA
| | - Mark G LeSage
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Jozwiak K, Targowska-Duda KM, Kaczor AA, Kozak J, Ligeza A, Szacon E, Wrobel TM, Budzynska B, Biala G, Fornal E, Poso A, Wainer IW, Matosiuk D. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor. Bioorg Med Chem 2014; 22:6846-56. [PMID: 25464883 DOI: 10.1016/j.bmc.2014.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 11/26/2022]
Abstract
9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction.
Collapse
Affiliation(s)
- Krzysztof Jozwiak
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Katarzyna M Targowska-Duda
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, 4a Chodzki St., PL-20093 Lublin, Poland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, PO Box 1627, FI-70211 Kuopio, Finland
| | - Joanna Kozak
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, 4a Chodzki St., PL-20093 Lublin, Poland; Department of Anatomy, Medical University of Lublin, 4 Jaczewskiego St., PL-20090 Lublin, Poland
| | - Agnieszka Ligeza
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Elzbieta Szacon
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Tomasz M Wrobel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Emilia Fornal
- Department of Chemistry, Catholic University of Lublin, al. Krasnicka 102, PL-20718 Lublin, Poland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, PO Box 1627, FI-70211 Kuopio, Finland
| | - Irving W Wainer
- Laboratory of Clinical Investigation, Division of Intramural Research Programs, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, 4a Chodzki St., PL-20093 Lublin, Poland.
| |
Collapse
|
39
|
D'Souza RD, Vijayaraghavan S. Paying attention to smell: cholinergic signaling in the olfactory bulb. Front Synaptic Neurosci 2014; 6:21. [PMID: 25309421 PMCID: PMC4174753 DOI: 10.3389/fnsyn.2014.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
The tractable, layered architecture of the olfactory bulb (OB), and its function as a relay between odor input and higher cortical processing, makes it an attractive model to study how sensory information is processed at a synaptic and circuit level. The OB is also the recipient of strong neuromodulatory inputs, chief among them being the central cholinergic system. Cholinergic axons from the basal forebrain modulate the activity of various cells and synapses within the OB, particularly the numerous dendrodendritic synapses, resulting in highly variable responses of OB neurons to odor input that is dependent upon the behavioral state of the animal. Behavioral, electrophysiological, anatomical, and computational studies examining the function of muscarinic and nicotinic cholinergic receptors expressed in the OB have provided valuable insights into the role of acetylcholine (ACh) in regulating its function. We here review various studies examining the modulation of OB function by cholinergic fibers and their target receptors, and provide putative models describing the role that cholinergic receptor activation might play in the encoding of odor information.
Collapse
Affiliation(s)
- Rinaldo D D'Souza
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| | - Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| |
Collapse
|
40
|
Liu Y, Paige M, Olson TT, Al-Muhtasib N, Xie T, Hou S, White MP, Cordova A, Guo JL, Kellar KJ, Xiao Y, Brown ML. Synthesis and pharmacological characterization of new neuronal nicotinic acetylcholine receptor ligands derived from Sazetidine-A. Bioorg Med Chem Lett 2014; 24:2954-6. [DOI: 10.1016/j.bmcl.2014.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/17/2022]
|
41
|
Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors. PLoS One 2014; 9:e94142. [PMID: 24727685 PMCID: PMC3984115 DOI: 10.1371/journal.pone.0094142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.
Collapse
|
42
|
Chang YP, Banerjee J, Dowell C, Wu J, Gyanda R, Houghten RA, Toll L, McIntosh JM, Armishaw CJ. Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library. J Med Chem 2014; 57:3511-21. [PMID: 24649848 PMCID: PMC4358631 DOI: 10.1021/jm500183r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
α-Conotoxins are disulfide-rich peptide neurotoxins that selectively inhibit neuronal nicotinic acetylcholine receptors (nAChRs). The α3β4 nAChR subtype has been identified as a novel target for managing nicotine addiction. Using a mixture-based positional-scanning synthetic combinatorial library (PS-SCL) with the α4/4-conotoxin BuIA framework, we discovered a highly potent and selective α3β4 nAChR antagonist. The initial PS-SCL consisted of a total of 113 379 904 sequences that were screened for α3β4 nAChR inhibition, which facilitated the design and synthesis of a second generation library of 64 individual α-conotoxin derivatives. Eleven analogues were identified as α3β4 nAChR antagonists, with TP-2212-59 exhibiting the most potent antagonistic activity and selectivity over the α3β2 and α4β2 nAChR subtypes. Final electrophysiological characterization demonstrated that TP-2212-59 inhibited acetylcholine evoked currents in α3β4 nAChRs heterogeneously expressed in Xenopus laevis oocytes with a calculated IC50 of 2.3 nM and exhibited more than 1000-fold selectivity over the α3β2 and α7 nAChR subtypes. As such, TP-2212-59 is among the most potent α3β4 nAChRs antagonists identified to date and further demonstrates the utility of mixture-based combinatorial libraries in the discovery of novel α-conotoxin derivatives with refined pharmacological activity.
Collapse
Affiliation(s)
- Yi-Pin Chang
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Takotsubo cardiomyopathy (TTC) is an acute heart failure syndrome classically characterized by hypocontractile apical and midventricular regions of the left ventricle, with a compensatory hypercontractile base. Available data support the hypothesis that TTC and atypical TTC-like disorders are primarily induced by catecholaminergic overstimulation, with epinephrine playing a crucial role. Knowledge from the available preclinical models should be used to guide the development of potential clinical trials in the most severe cases, where rates of acute morbidity and mortality are highest, and also to prevent recurrence in susceptible individuals.
Collapse
Affiliation(s)
- Matthew H Tranter
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
44
|
Yenugonda VM, Xiao Y, Levin ED, Rezvani AH, Tran T, Al-Muhtasib N, Sahibzada N, Xie T, Wells C, Slade S, Johnson JE, Dakshanamurthy S, Kong HS, Tomita Y, Liu Y, Paige M, Kellar KJ, Brown ML. Design, synthesis and discovery of picomolar selective α4β2 nicotinic acetylcholine receptor ligands. J Med Chem 2013; 56:8404-21. [PMID: 24047231 DOI: 10.1021/jm4008455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing novel and selective compounds that desensitize α4β2 nicotinic acetylcholine receptors (nAChRs) could provide new effective treatments for nicotine addiction, as well as other disorders. Here we report a new class of nAChR ligands that display high selectivity and picomolar binding affinity for α4β2 nicotinic receptors. The novel compounds have Ki values in the range of 0.031-0.26 nM and properties that should make them good candidates as drugs acting in the CNS. The selected lead compound 1 (VMY-2-95) binds with high affinity and potently desensitizes α4β2 nAChRs. At a dose of 3 mg/kg, compound 1 significantly reduced rat nicotine self-administration. The overall results support further characterizations of compound 1 and its analogues in preclinical models of nicotine addiction and perhaps other disorders involving nAChRs.
Collapse
Affiliation(s)
- Venkata M Yenugonda
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW, Research Building, EP-07, Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov 2013; 8:1203-23. [DOI: 10.1517/17460441.2013.822365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Nery AA, Magdesian MH, Trujillo CA, Sathler LB, Juliano MA, Juliano L, Ulrich H, Ferreira ST. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype. PLoS One 2013; 8:e67194. [PMID: 23894286 PMCID: PMC3718777 DOI: 10.1371/journal.pone.0067194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.
Collapse
Affiliation(s)
- Arthur A. Nery
- Department of Biochemistry, Chemistry Institute, São Paulo University, São Paulo, SP, Brazil
| | - Margaret H. Magdesian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cleber A. Trujillo
- Department of Biochemistry, Chemistry Institute, São Paulo University, São Paulo, SP, Brazil
| | - Luciana B. Sathler
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria A. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, São Paulo University, São Paulo, SP, Brazil
- * E-mail: (HU); (STF)
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail: (HU); (STF)
| |
Collapse
|
47
|
Liu Y, Richardson J, Tran T, Al-Muhtasib N, Xie T, Yenugonda VM, Sexton HG, Rezvani AH, Levin ED, Sahibzada N, Kellar KJ, Brown ML, Xiao Y, Paige M. Chemistry and pharmacological studies of 3-alkoxy-2,5-disubstituted-pyridinyl compounds as novel selective α4β2 nicotinic acetylcholine receptor ligands that reduce alcohol intake in rats. J Med Chem 2013; 56:3000-11. [PMID: 23540678 PMCID: PMC3809750 DOI: 10.1021/jm4000374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal acetylcholine receptors mediate the addictive effects of nicotine and may also be involved in alcohol addiction. Varenicline, an approved smoking cessation medication, showed clear efficacy in reducing alcohol consumption in heavy-drinking smokers. More recently, sazetidine-A, which selectively desensitizes α4β2 nicotinic receptors, was shown to significantly reduce alcohol intake in a rat model. To develop novel therapeutics for treating alcohol use disorder, we designed and synthesized novel sazetidine-A analogues containing a methyl group at the 2-position of the pyridine ring. In vitro pharmacological studies revealed that some of the novel compounds showed overall pharmacological property profiles similar to that of sazetidine-A but exhibited reduced agonist activity across all nicotinic receptor subtypes tested. In rat studies, compound (S)-9 significantly reduced alcohol uptake. More importantly, preliminary results from studies in a ferret model indicate that these novel nAChR ligands have an improved adverse side-effect profile in comparison with that of varenicline.
Collapse
Affiliation(s)
- Yong Liu
- Center of Drug Discovery, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, D.C. 20057
| | - Janell Richardson
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Thao Tran
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Nour Al-Muhtasib
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Teresa Xie
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Venkata Mahidhar Yenugonda
- Center of Drug Discovery, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, D.C. 20057
| | - Hannah G. Sexton
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710
| | - Amir H. Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Kenneth J. Kellar
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Milton L. Brown
- Center of Drug Discovery, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, D.C. 20057
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, D.C. 20057
| | - Mikell Paige
- Center of Drug Discovery, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, D.C. 20057
| |
Collapse
|
48
|
Ussing CA, Hansen CP, Petersen JG, Jensen AA, Rohde LAH, Ahring PK, Nielsen EØ, Kastrup JS, Gajhede M, Frølund B, Balle T. Synthesis, Pharmacology, and Biostructural Characterization of Novel α4β2 Nicotinic Acetylcholine Receptor Agonists. J Med Chem 2013; 56:940-51. [DOI: 10.1021/jm301409f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine A. Ussing
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Camilla P. Hansen
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Jette G. Petersen
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Anders A. Jensen
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Line A. H. Rohde
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
- NeuroSearch A/S, Pederstrupvej 93, DK-2750 Ballerup,
Denmark
| | | | | | - Jette S. Kastrup
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Thomas Balle
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
- Faculty of Pharmacy, Building
A15, The University of Sydney, Sydney,
NSW 2006, Australia
| |
Collapse
|
49
|
Meeusen JW, Haselkorn KE, Fryer JP, Kryzer TJ, Gibbons SJ, Xiao Y, Lennon VA. Gastrointestinal hypomotility with loss of enteric nicotinic acetylcholine receptors: active immunization model in mice. Neurogastroenterol Motil 2013; 25:84-8.e10. [PMID: 23072523 PMCID: PMC3535544 DOI: 10.1111/nmo.12030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Autoimmune gastrointestinal dysmotility (AGID) is a limited form of dysautonomia. The only proven effector to date is IgG specific for ganglionic nicotinic-acetylcholine receptors containing α3 subunits [α3*- nicotinic acetylcholine receptor (nAChR)]. Rabbits immunized with recombinant α3-polypeptide produce α3*-nAChR autoantibodies, and profound AGID ensues. Human and rabbit α3*-nAChR-specific-IgGs induce transient hypomotility when injected into mice. Here, we describe success and problems encountered inducing gastrointestinal hypomotility in mice by active immunization. METHODS We repeatedly injected young adult mice of seven different strains susceptible to autoimmunity (spontaneous diabetes or neural antigen immunization-induced myasthenia gravis or encephalomyelitis) with: (i) α3-polypeptide, intradermally or (ii) live α3*-nAChR-expressing xenogeneic cells, intraperitoneally. We measured serum α3*-nAChR-IgG twice monthly, and terminally assessed blue dye gastrointestinal transit, total small intestinal α3*-nAChR content (radiochemically) and myenteric plexus neuron numbers (immunohistochemically, ileal-jejunal whole-mount preparations). KEY RESULTS Standard cutaneous inoculation with α3-polypeptide was minimally immunogenic, regardless of dose. Intraperitoneally injected live cells were potently immunogenic. Self-reactive α3*-nAChR-IgG was induced only by rodent immunogen; small intestinal transit slowing and enteric α3*-nAChR loss required high serum levels. Ganglionic neurons were not lost. CONCLUSIONS & INFERENCES Autoimmune gastrointestinal dysmotility is inducible in mice by active immunization. Accompanying enteric α3*-nAChR reduction without neuronal death is consistent with an IgG-mediated rather than T cell-mediated pathogenesis, as is improvement of symptoms in patients receiving antibody-depleting therapies.
Collapse
Affiliation(s)
- Jeffrey W. Meeusen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - James P. Fryer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Thomas J. Kryzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Simon J. Gibbons
- Department of Enteric Neuroscience Program, Mayo Clinic, Rochester, MN
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Vanda A. Lennon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Department of Immunology, Mayo Clinic, Rochester, MN,Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
50
|
Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, Rosenberg A, Tran T, Xiao Y, Zarate CA, Wainer IW. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol 2012. [PMID: 23183107 DOI: 10.1016/j.ejphar.2012.11.023] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents in α7-nicotinic acetylcholine receptor, IC(50) = 55 ± 6 nM, and that (2S,6S)-hydroxynorketamine, (2R,6R)-hydroxynorketamine and (R,S)-norketamine also inhibited α7-nicotinic acetylcholine receptor function at concentrations ≤ 1 μM, while (R,S)-ketamine was inactive at these concentrations. The inhibitory effect of (R,S)-dehydronorketamine was voltage-independent and the compound did not competitively displace selective α7-nicotinic acetylcholine receptor ligands [(125)I]-α-bungarotoxin and [(3)H]-epibatidine indicating that (R,S)-dehydronorketamine is a negative allosteric modulator of the α7-nicotinic acetylcholine receptor. (R,S)-Ketamine and (R,S)-norketamine inhibited (S)-nicotine-induced whole-cell currents in cells expressing α3β4-nicotinic acetylcholine receptor, IC(50) 3.1 and 9.1 μM, respectively, while (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine were weak inhibitors, IC(50) >100 μM. The binding affinities of (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine at the NMDA receptor were also determined using rat brain membranes and the selective NMDA receptor antagonist [(3)H]-MK-801. The calculated K(i) values were 38.95 μM for (S)-dehydronorketamine, 21.19 μM for (2S,6S)-hydroxynorketamine and>100 μM for (2R,6R)-hydroxynorketamine. The results suggest that the inhibitory activity of ketamine metabolites at the α7-nicotinic acetylcholine receptor may contribute to the clinical effect of the drug.
Collapse
Affiliation(s)
- Ruin Moaddel
- Laboratory of Clinical Investigation, Division of Intramural Research Programs, National institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|