1
|
Bavo F, Pallavicini M, Appiani R, Bolchi C. Determinants for α4β2 vs. α3β4 Subtype Selectivity of Pyrrolidine-Based nAChRs Ligands: A Computational Perspective with Focus on Recent cryo-EM Receptor Structures. Molecules 2021; 26:molecules26123603. [PMID: 34204637 PMCID: PMC8231201 DOI: 10.3390/molecules26123603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
The selectivity of α4β2 nAChR agonists over the α3β4 nicotinic receptor subtype, predominant in ganglia, primarily conditions their therapeutic range and it is still a complex and challenging issue for medicinal chemists and pharmacologists. Here, we investigate the determinants for such subtype selectivity in a series of more than forty α4β2 ligands we have previously reported, docking them into the structures of the two human subtypes, recently determined by cryo-electron microscopy. They are all pyrrolidine based analogues of the well-known α4β2 agonist N-methylprolinol pyridyl ether A-84543 and differ in the flexibility and pattern substitution of their aromatic portion. Indeed, the direct or water mediated interaction with hydrophilic residues of the relatively narrower β2 minus side through the elements decorating the aromatic ring and the stabilization of the latter by facing to the not conserved β2-Phe119 result as key distinctive features for the α4β2 affinity. Consistently, these compounds show, despite the structural similarity, very different α4β2 vs. α3β4 selectivities, from modest to very high, which relate to rigidity/extensibility degree of the portion containing the aromatic ring and to substitutions at the latter. Furthermore, the structural rationalization of the rat vs. human differences of α4β2 vs. α3β4 selectivity ratios is here proposed.
Collapse
Affiliation(s)
- Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Universita’degli Studi di Milano, I-20133 Milano, Italy; (F.B.); (M.P.); (R.A.)
- Correspondence:
| |
Collapse
|
2
|
Clementson S, Matheu SA, Rørsted EM, Pedersen H, Jensen AA, Clausen RP, Vital P, Glibstrup E, Jessing M, Kristensen JL. Erythrina Alkaloid Analogues as nAChR Antagonists-A Flexible Platform for Leads in Drug Discovery. J Org Chem 2021; 86:8248-8262. [PMID: 34061521 DOI: 10.1021/acs.joc.1c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythrina alkaloids and their central nervous system effects have been studied for over a century, mainly due to their potent antagonistic actions at β2-containing nicotinic acetylcholine receptors (nAChRs). In the present work, we report a synthetic approach giving access to a diverse set of Erythrina natural product analogues and present the enantioselective total synthesis of (+)-Cocculine and (+)-Cocculidine, both found to be potent antagonists of the β2-containing nAChRs.
Collapse
Affiliation(s)
- Sebastian Clementson
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Sergio Armentia Matheu
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Emil Märcher Rørsted
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Henrik Pedersen
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Paulo Vital
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Emil Glibstrup
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Mikkel Jessing
- Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
3
|
Suzuki E, Momiyama T. M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons. Eur J Neurosci 2020; 53:796-813. [PMID: 33270289 DOI: 10.1111/ejn.15074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Acetylcholine (ACh) modulates neurotransmitter release in the central nervous system. Although GABAergic transmission onto the striatal cholinergic interneurons (ChIN) is modulated by dopamine receptors, cholinergic modulation of the same synapse is still unknown. In the present study, modulatory roles of ACh in the GABAergic transmission from striatal medium spiny neurons (MSNs) onto ChIN were investigated using optogenetics and whole-cell patch-clamp technique in juvenile and young-adult mice brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal electrical- or blue-light stimulation. Bath application of carbachol, a muscarinic ACh receptor agonist, suppressed the amplitude of IPSCs in a concentration-dependent manner in both age groups. A choline esterase inhibitor, physostigmine, also suppressed the amplitude of IPSCs. In the presence of a membrane permeable M1 muscarine receptor antagonist, pirenzepine, carbachol-induced suppression of IPSCs was antagonized, whereas a M2 muscarine receptor antagonist, a M4 receptor antagonist, or a membrane impermeable M1 receptor antagonist did not antagonize carbachol-induced suppression of IPSCs. Retrograde cannabinoid cascade via cannabinoid receptor 1 was not involved in carbachol-induced inhibition. Furthermore, carbachol did not affect amplitude of inward currents induced by puff application of GABA, whereas coefficient of variation of IPSCs was significantly increased by carbachol. These results suggest that activation of presynaptic M1 muscarine receptors located on the GABAergic terminals including intracellular organelle of MSNs inhibits GABA release onto ChIN.
Collapse
Affiliation(s)
- Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
4
|
Toxins as tools: Fingerprinting neuronal pharmacology. Neurosci Lett 2018; 679:4-14. [DOI: 10.1016/j.neulet.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
5
|
Withey SL, Doyle MR, Bergman J, Desai RI. Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys. J Pharmacol Exp Ther 2018; 366:397-409. [PMID: 29784663 DOI: 10.1124/jpet.118.248070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that the α4β2, but not the α7, subtype of the nicotinic acetylcholine receptor (nAChR) plays a key role in mediating the behavioral effects of nicotine and related drugs. However, the importance of other nAChR subtypes remains unclear. The present studies were conducted to examine the involvement of nAChR subtypes by determining the effects of selected nicotinic agonists and antagonists in squirrel monkeys either 1) responding for food reinforcement or 2) discriminating the nicotinic agonist (+)-epibatidine (0.001 mg/kg) from vehicle. In food-reinforcement studies, nicotine, (+)-epibatidine, varenicline and cytisine all produced dose-dependent decreases in rates of food-maintained responding. The rate-decreasing effects of nicotine were antagonized by mecamylamine (nonselective), not appreciably altered by dihydro-β-erythroidine (α4β2 selective), and exacerbated by the nicotinic partial agonists, varenicline and cytisine. Results from discrimination studies show that non-nicotinic drugs did not substitute for (+)-epibatidine, and that except for lobeline, the nicotinic agonists produced either full [(+)-epibatidine, (-)-epibatidine, and nicotine] or partial (varenicline, cytisine, anabaseine, and isoarecolone) substitution for (+)-epibatidine. In interaction studies with antagonists differing in selectivity, (+)-epibatidine discrimination was substantively antagonized by mecamylamine, slightly attenuated by hexamethonium (peripherally restricted) or dihydro-β-erythroidine, and not altered by methyllycaconitine (α7 selective). Varenicline and cytisine enhanced (+)-epibatidine's discriminative-stimulus effects. Correlational analysis revealed a close correspondence between relative behavioral potencies of nicotinic agonists in both studies and their published relative binding affinities at α4β2 and α3β4, but not α7 nAChR, subtypes. Collectively, these results are consistent with the idea that the α4β2 and α3β4, but not α7 nAChR subtypes play a role in the behavioral effects of nicotinic agonists.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Michelle R Doyle
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
6
|
Crestey F, Jensen AA, Soerensen C, Magnus CB, Andreasen JT, Peters GHJ, Kristensen JL. Dual Nicotinic Acetylcholine Receptor α4β2 Antagonists/α7 Agonists: Synthesis, Docking Studies, and Pharmacological Evaluation of Tetrahydroisoquinolines and Tetrahydroisoquinolinium Salts. J Med Chem 2018; 61:1719-1729. [DOI: 10.1021/acs.jmedchem.7b01895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- François Crestey
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian Soerensen
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Charlotte Busk Magnus
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Jesper T. Andreasen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Pyakurel P, Shin M, Venton BJ. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int 2018; 114:33-41. [PMID: 29305920 DOI: 10.1016/j.neuint.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023]
Abstract
Acetylcholine is an excitatory neurotransmitter in the central nervous system of insects and the nicotinic acetylcholine receptor (nAChR) is a target for neonicotinoid insecticides. Functional insect nAChRs are difficult to express in host cells, and hence difficult to study. In mammals, acetylcholine and nicotine evoke dopamine release, but the extent to which this mechanism is conserved in insects is unknown. In intact larval ventral nerve cords (VNCs), we studied dopamine evoked by acetylcholine, nicotine, or neonicotinoids. Using fast-scan cyclic voltammetry, we confirmed dopamine was measured by its cyclic voltammogram and also by feeding Drosophila the synthesis inhibitor, 3-iodotyrosine, which lowered the evoked dopamine response. Acetylcholine (1.8 pmol) evoked on average 0.43 ± 0.04 μM dopamine. Dopamine release significantly decreased after incubation with α-bungarotoxin, demonstrating the release is mediated by nAChR, but atropine, a muscarinic AChR antagonist, had no effect. Nicotine (t1/2 = 71 s) and the neonicotinoids nitenpyram and imidacloprid (t1/2 = 86 s, 121 s respectively) also evoked dopamine release, which lasted longer than acetylcholine-stimulated release (t1/2 = 19 s). Nicotine-stimulated dopamine was significantly lower in the presence of sodium channel blocker, tetrodotoxin, showing that the release is exocytotic. Drosophila that have mutations in the nAChR subunit α1 or β2 have significantly lower neonicotinoid-stimulated release but no changes in nicotine-stimulated release. This work demonstrates that nAChR agonists mediate dopamine release in Drosophila larval VNC and that mutations in nAChR subunits affect how insecticides stimulate dopamine release.
Collapse
Affiliation(s)
- Poojan Pyakurel
- Department of Chemistry, University of Virginia, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, United States.
| |
Collapse
|
8
|
Scheffel C, Niessen KV, Rappenglück S, Wanner KT, Thiermann H, Worek F, Seeger T. Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning. Toxicol Lett 2017; 293:149-156. [PMID: 29248576 DOI: 10.1016/j.toxlet.2017.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/30/2023]
Abstract
Irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine and overstimulation of muscarinic and nicotinic receptors accounts for the acute toxicity of organophosphorus compounds (OP). Accordingly, the mainstay pharmacotherapy against poisoning by OP comprises the competitive muscarinic acetylcholine receptor antagonist atropine to treat muscarinic effects and, in addition, oximes to reactivate inhibited AChE. A therapeutic gap still remains in the treatment of desensitized nicotinic acetylcholine receptors following OP exposure. Hereby, nicotinic effects result in paralysis of the central and peripheral respiratory system if untreated. Thus, these receptors pose an essential target for therapeutic indication to address these life-threatening nicotinic symptoms of the cholinergic crisis. Identification of ligands regulating dynamic transitions between functional states by binding to modulatory sites appears to be a promising strategy for therapeutic intervention. In this patch clamp study, the ability of differently substituted bispyridinium non-oximes to "resensitize" i.e. to recover the activity of desensitized human homomeric α7-type nAChRs stably transfected in CHO cells was investigated and compared to the already described α7-specific positive allosteric modulator PNU-120596. The structures of these bispyridinium analogues were based on the lead structure of the tert-butyl-substituted bispyridinium propane MB327, which has been shown to have a positive therapeutic effect due to a non-competitive antagonistic action at muscle-type nAChRs in vivo and has been found to have a positive allosteric activity at neuronal receptors in vitro. Prior to test compounds, desensitization of hα7-nAChRs was verified by applying an excess of nicotine revealing activation at low, and desensitization at high concentrations. Thereby, desensitization could be reduced by modulation with PNU-120596. Desensitization was further verified by dose-response profiles of agonists, carbamoylcholine and epibatidine in the absence and presence of PNU-120596. Although less pronounced than PNU-120596 and the lead structure MB327, bispyridinium compounds, particularly those substituted at position 3 and 4, resensitized the nicotine desensitized hα7-nAChRs in a concentration-dependent manner and prolonged the mean channel open time. In summary, identification of more potent compounds able to restore nAChR function in OP intoxication is needed for development of a putative efficient antidote.
Collapse
Affiliation(s)
- Corinna Scheffel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| | - Karin V Niessen
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | - Klaus T Wanner
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
9
|
Jepsen TH, Glibstrup E, Crestey F, Jensen AA, Kristensen JL. A strategic approach to [6,6]-bicyclic lactones: application towards the CD fragment of DHβE. Beilstein J Org Chem 2017; 13:988-994. [PMID: 28684978 PMCID: PMC5480346 DOI: 10.3762/bjoc.13.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
We report an effective synthetic protocol to access [6,6]-bicyclic lactone moieties through a regio- and stereoselective intramolecular Mizoroki–Heck cross-coupling reaction followed by a 6π-electrocyclization. This method enabled the first synthesis of the elusive CD fragment of the Erythrina alkaloid DHβE. Preliminary pharmacological evaluations support the notion that the key pharmacophores of DHβE are located in the A and B rings.
Collapse
Affiliation(s)
- Tue Heesgaard Jepsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Emil Glibstrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - François Crestey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Langgaard Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Betterton RT, Broad LM, Tsaneva‐Atanasova K, Mellor JR. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors. Eur J Neurosci 2017; 45:1570-1585. [PMID: 28406538 PMCID: PMC5518221 DOI: 10.1111/ejn.13582] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad‐spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose‐dependent manner by acting primarily through muscarinic M1 receptors.
Collapse
Affiliation(s)
- Ruth T. Betterton
- Centre for Synaptic PlasticitySchool of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | | | - Krasimira Tsaneva‐Atanasova
- Department of MathematicsCollege of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Jack R. Mellor
- Centre for Synaptic PlasticitySchool of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
11
|
Gasiorek A, Trattnig SM, Ahring PK, Kristiansen U, Frølund B, Frederiksen K, Jensen AA. Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors. Biochem Pharmacol 2016; 110-111:92-108. [DOI: 10.1016/j.bcp.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
|
12
|
Desai RI, Doyle MR, Withey SL, Bergman J. Nicotinic effects of tobacco smoke constituents in nonhuman primates. Psychopharmacology (Berl) 2016; 233:1779-89. [PMID: 26892379 DOI: 10.1007/s00213-016-4238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
RATIONALE Recent studies in rodents suggest that non-nicotine constituents of tobacco smoke (e.g., minor tobacco alkaloids) may promote tobacco consumption-either through their own pharmacological effects or by augmenting the effects of nicotine. However, there is scant information on the behavioral pharmacology of minor tobacco alkaloids in primate species. OBJECTIVE The present studies were conducted to determine whether the minor tobacco alkaloids nornicotine, anabasine, anatabine, myosmine, and cotinine exhibit nicotine-like behavioral effects in squirrel monkeys. METHODS Initial experiments were conducted to determine the effects of nicotine (0.032-1.0 mg/kg) and the minor tobacco alkaloids nornicotine (1-1.8 mg/kg), anabasine (0.1-1.0 mg/kg), anatabine (10-32 mg/kg), myosmine (0.32-1.8 mg/kg), and cotinine (10-180 mg/kg) on food-maintained performance (n = 4). Next, the ability of tobacco alkaloids to substitute for the α4β2-selective nicotinic agonist (+)-epibatidine in drug discrimination experiments was evaluated in a separate group of monkeys (n = 4). RESULTS Results show that nicotine and each minor tobacco alkaloid except cotinine (a) produced dose-related decreases in food-maintained responding; (b) substituted for (+)-epibatidine and, in additional experiments, produced additive effects when combined with nicotine; (c) induced emesis or tremor at doses that reduced food-maintained responding and had (+)-epibatidine-like discriminative-stimulus effects; and (d) based on correlation with reported receptor binding affinities, likely produced their behavioral effects through α4β2 receptor mechanisms. CONCLUSION Selected minor tobacco alkaloids have nicotinic-like effects that may contribute to tobacco consumption and addiction.
Collapse
Affiliation(s)
- Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Michelle R Doyle
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| | - Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
13
|
Shahsavar A, Gajhede M, Kastrup JS, Balle T. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate. Basic Clin Pharmacol Toxicol 2016; 118:399-407. [DOI: 10.1111/bcpt.12528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azadeh Shahsavar
- Department of Molecular Biology and Genetics; Danish Research Institute of Translational Neuroscience - DANDRITE; Aarhus University; Aarhus Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jette S. Kastrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Thomas Balle
- Faculty of Pharmacy; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
14
|
Freitas KC, Carroll FI, Negus SS. Effects of nicotinic acetylcholine receptor agonists in assays of acute pain-stimulated and pain-depressed behaviors in rats. J Pharmacol Exp Ther 2016; 355:341-50. [PMID: 26359313 DOI: 10.1124/jpet.115.226803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Agonists at nicotinic acetylcholine receptors (nAChRs) constitute one drug class being evaluated as candidate analgesics. Previous preclinical studies have implicated α4β2 and α7 nAChRs as potential mediators of the antinociceptive effects of (–)-nicotine hydrogen tartrate (nicotine) and other nAChR agonists; however, these studies have relied exclusively on measures of pain-stimulated behavior, which can be defined as behaviors that increase in frequency, rate, or intensity after presentation of a noxious stimulus. Pain is also associated with depression of many behaviors, and drug effects can differ in assays of pain-stimulated versus pain-depressed behavior. Accordingly, this study compared the effects of nicotine, the selective α4/6β2 agonist 5-(123I)iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), and the selective α7 agonist N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide in assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats. Intraperitoneal injection of dilute lactic acid served as an acute noxious stimulus to either stimulate a stretching response or depress the operant responding, which is maintained by electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. Nicotine produced a dose-dependent, time-dependent, and mecamylamine-reversible blockade of both acid-stimulated stretching and acid-induced depression of ICSS. 5-I-A-85380 also blocked both acid-stimulated stretching and acid-induced depression of ICSS, whereas N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide produced no effect in either procedure. Both nicotine and 5-I-A-85380 were ≥10-fold more potent in blocking the acid-induced depression of ICSS than in blocking the acid-induced stimulation of stretching. These results suggest that stimulation of α4β2 and/or α6β2 nAChRs may be especially effective to alleviate the signs of pain-related behavioral depression in rats; however, nonselective behavioral effects may contribute to apparent antinociception.
Collapse
Affiliation(s)
- Kelen C Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | | | | |
Collapse
|
15
|
Curtice KJ, Leavitt LS, Chase K, Raghuraman S, Horvath MP, Olivera BM, Teichert RW. Classifying neuronal subclasses of the cerebellum through constellation pharmacology. J Neurophysiol 2015; 115:1031-42. [PMID: 26581874 DOI: 10.1152/jn.00894.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022] Open
Abstract
A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.
Collapse
Affiliation(s)
- Kigen J Curtice
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Lee S Leavitt
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin Chase
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | | | | | | |
Collapse
|
16
|
Guan Y, Shan X, Zhang F, Wang S, Chen HY, Tao N. Kinetics of small molecule interactions with membrane proteins in single cells measured with mechanical amplification. SCIENCE ADVANCES 2015; 1:e1500633. [PMID: 26601298 PMCID: PMC4646812 DOI: 10.1126/sciadv.1500633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/14/2015] [Indexed: 05/21/2023]
Abstract
Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring of the deformation with subnanometer resolution allows quantitative analysis of small molecule-membrane protein interaction kinetics in single cells. This new strategy provides mechanical amplification of small binding signals, making it possible to detect small molecule interactions with membrane proteins. This capability, together with spatial resolution, also allows the study of the heterogeneous nature of cells by analyzing the interaction kinetics variability between different cells and between different regions of a single cell.
Collapse
Affiliation(s)
- Yan Guan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaonan Shan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Corresponding author. E-mail: (N.T.); (H.-Y.C.)
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Corresponding author. E-mail: (N.T.); (H.-Y.C.)
| |
Collapse
|
17
|
Bach TB, Jensen AA, Petersen JG, Sørensen TE, Della Volpe S, Liu J, Blaazer AR, van Muijlwijk-Koezen JE, Balle T, Frølund B. Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane. Eur J Med Chem 2015; 102:425-44. [DOI: 10.1016/j.ejmech.2015.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
18
|
de la Fuente Revenga M, Balle T, Jensen AA, Frølund B. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations. Eur J Med Chem 2015; 102:352-62. [DOI: 10.1016/j.ejmech.2015.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/02/2015] [Accepted: 07/16/2015] [Indexed: 02/04/2023]
|
19
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
20
|
Hermann D, van Amsterdam C. Analysis of spontaneous hippocampal activity allows sensitive detection of acetylcholine-mediated effects. J Pharmacol Toxicol Methods 2014; 71:54-60. [PMID: 25497900 DOI: 10.1016/j.vascn.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/04/2014] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Excitation of Acetylcholine-mediated (Ach) transmission (especially if irreversible) may pose life-threatening adverse events by increasing neuronal network activity. Unfortunately, adequate detection of this liability during early drug development is hampered, because published ex vivo electrophysiological models are very insensitive to this regard. For example, Eserine, which reversibly inhibits acetylcholinesterase (AchE) in the double digit nM range, affects electrically evoked potentials in hippocampal slices only at ≥10μM. Here, a significantly more sensitive method for detecting Ach-mediated alternations is presented by analyzing spontaneous neuronal network activity in hippocampal slices. METHODS The microelectrode array (MEA) technique with an 8×8 electrode grid was applied to analyze evoked and spontaneous extracellular field recordings in parallel from acute rat hippocampal slices. For evoked potentials, the Schaffer collateral CA3-CA1 pathway was electrically stimulated and the resulting field potential analyzed at the CA1 pyramidal layer. Spontaneous spike activity was detected as negative inflections from the 100Hz high pass filtered signal. Spike frequency was analyzed within the whole CA1 region. RESULTS Modification of Ach-mediated neuronal transmission via carbachol, Eserine, or Diisopropylfluorophosphate (DFP) does not induce any effects on evoked field potentials at physiologically relevant concentrations. Similar to previous reports, subtle effects were detectable at very high concentrations. By contrast, spontaneous spike frequency was already increased within the expected concentration range. Eserine-induced effects can also be reversed by atropine and washout. On the contrary, effects by the irreversible AchE-blocker DFP could not be washed out. DISCUSSION Compared to evoked field potentials, spontaneous spike activity in the hippocampal CA1 region appears to be a significantly more sensitive parameter for functional electrophysiological analysis of drug induced Ach-mediated effects. This finding may supplement existing models for detection and prediction of drug-related adverse effects like seizure liability already during early development stages.
Collapse
Affiliation(s)
- David Hermann
- Merck Serono Research Darmstadt, Merck KGaA, 64293 Darmstadt, Germany.
| | | |
Collapse
|
21
|
Jensen AB, Hoestgaard-Jensen K, Jensen AA. Pharmacological characterisation of α6β4⁎ nicotinic acetylcholine receptors assembled from three chimeric α6/α3 subunits in tsA201 cells. Eur J Pharmacol 2014; 740:703-13. [DOI: 10.1016/j.ejphar.2014.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023]
|
22
|
Green BT, Lee ST, Welch KD, Panter KE. Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission. ACTA ACUST UNITED AC 2014; 99:235-46. [PMID: 24339035 DOI: 10.1002/bdrc.21049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/26/2022]
Abstract
The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes, but those induced by piperidine and quinolizidine alkaloids arise from the inhibition of fetal movement and are generally referred to as multiple congenital contracture-type deformities. These skeletal deformities include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis, associated secondary defects, and cleft palate. Structure-function studies have shown that plant alkaloids with a piperidine ring and a minimum of a three-carbon side-chain α to the piperidine nitrogen are teratogenic. Further studies determined that an unsaturation in the piperidine ring, as occurs in gamma coniceine, or anabaseine, enhances the toxic and teratogenic activity, whereas the N-methyl derivatives are less potent. Enantiomers of the piperidine teratogens, coniine, ammodendrine, and anabasine, also exhibit differences in biological activity, as shown in cell culture studies, suggesting variability in the activity due to the optical rotation at the chiral center of these stereoisomers. In this article, we review the molecular mechanism at the nicotinic pharmacophore and biological activities, as it is currently understood, of a group of piperidine and quinolizidine alkaloid teratogens that impart a series of flexure-type skeletal defects and cleft palate in animals.
Collapse
Affiliation(s)
- Benedict T Green
- United States Department of Agriculture, Poisonous Plant Research Laboratory, Agricultural Research Service, 1150 E 1400 N, Logan, Utah, 84321
| | | | | | | |
Collapse
|
23
|
Jepsen TH, Jensen AA, Lund MH, Glibstrup E, Kristensen JL. Synthesis and Pharmacological Evaluation of DHβE Analogues as Neuronal Nicotinic Acetylcholine Receptor Antagonists. ACS Med Chem Lett 2014; 5:766-70. [PMID: 25050162 DOI: 10.1021/ml500094c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022] Open
Abstract
Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis, and pharmacological characterization of a series of DHβE analogues in which two of the four rings in the natural product has been excluded. We found that the direct analogue of DHβE maintains affinity for the α4β2-subtype, but further modifications of the simplified analogues were detrimental to their activities on the nAChRs.
Collapse
Affiliation(s)
- Tue Heesgaard Jepsen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mads Henrik Lund
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Emil Glibstrup
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Langgaard Kristensen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Andriambeloson E, Huyard B, Poiraud E, Wagner S. Methyllycaconitine- and scopolamine-induced cognitive dysfunction: differential reversal effect by cognition-enhancing drugs. Pharmacol Res Perspect 2014; 2:e00048. [PMID: 25505596 PMCID: PMC4186438 DOI: 10.1002/prp2.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence pointing to the pivotal role of alpha-7 nicotinic acetylcholine receptor (α7 nAchR) dysfunction in cognitive disorders such as Alzheimer’s disease or schizophrenia. This study was undertaken to establish and characterize an in vivo model for cognitive disorder secondary to the blockade of α7 nAChR by its specific antagonist, methyllycaconitine (MLA). The results show that MLA elicited cognitive dysfunction as assessed by reduced spontaneous alternation of mice in the T-maze. The maximal effect of MLA produced 25–30% reduction in the spontaneous alternation of mice, a level comparable with that induced by the muscarinic antagonism of scopolamine. Donepezil and galantamine fully reversed both MLA and scopolamine-induced cognitive dysfunction. However, the ED50 of donepezil and galantamine was significantly shifted to the left in the MLA- compared to scopolamine-treated mice (0.0005 and 0.002 mg/kg for donepezil; 0.0003 and 0.7 mg/kg for galantamine). Moreover, memantine elicited marked reversion of cognitive dysfunction (up to 70%) in MLA-treated mice while only a weak reversal effect at high dose of memantine (less than 20%) was observed in scopolamine-treated mice. The above findings indicate that MLA-induced cognitive dysfunction in the mouse is highly sensitive and more responsive to the current procognitive drugs than the traditional scopolamine-based assay. Thus, it can be of value for the preclinical screening and profiling of cognition-enhancing drugs.
Collapse
Affiliation(s)
- Emile Andriambeloson
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| | - Bertrand Huyard
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| | - Etienne Poiraud
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| | - Stéphanie Wagner
- Neurofit SAS boulevard Sébastien Brant, Bioparc Parc d'Innovation, 674.00, Illkirch, France
| |
Collapse
|
25
|
Desai RI, Bergman J. Methamphetamine-like discriminative-stimulus effects of nicotinic agonists. J Pharmacol Exp Ther 2014; 348:478-88. [PMID: 24389640 DOI: 10.1124/jpet.113.211235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotine was recently shown to engender d-methamphetamine (MA)-like discriminative-stimulus effects in rats, which may be indicative of shared psychomotor stimulant properties. To further investigate such overlapping discriminative-stimulus effects, nicotinic agonists varying in efficacy and selectivity were studied in squirrel monkeys that discriminated a moderate intramuscular dose of MA (0.1 mg/kg) from vehicle. These included α4β2-selective ligands that may vary in efficacy from relatively high [nicotine, (+)- and (-)-epibatidine] to relatively low [isoarecolone, varenicline, (-)-cytisine, (-)-lobeline] and the α7-selective ligands anabaseine and anabasine. Results show that nicotine, (+)-epibatidine, and (-)-epibatidine substituted fully for MA, whereas the highest doses of other nicotinic agonists produced intermediate levels of MA-like effects (isoarecolone, anabaseine, anabasine, and varenicline) or did not substitute for MA [(-)-cytisine and (-)-lobeline]. The relative potencies of nicotinic agonists, based on effective dose50 (ED50) values, corresponded more closely with their relative affinities at α4β2 than at α7 receptors. Regardless of selectivity or efficacy, nicotinic agonists also were observed to produce untoward effects, including salivation and emesis during or after experimental sessions. In pretreatment studies, the α4β2-selective antagonist dihydro-β-erythroidine hydrobromide (DHβE) (0.032 and 0.1 mg/kg) and the partial agonists varenicline (0.0032-0.1 mg/kg) and (-)-cytisine (0.032 and 0.1 mg/kg) surmountably antagonized (>10-fold rightward shift) nicotine's MA-like effects but were ineffective in blocking nicotine's emetic effects. Overall, our results show that 1) MA-like discriminative-stimulus effects of nicotinic agonists likely are mediated through α4β2 nicotinic acetylcholine receptor actions, and 2) nicotinic α4β2 partial agonists, like the nicotinic antagonist DHβE, can reduce MA-like behavioral effects of nicotine.
Collapse
Affiliation(s)
- Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | | |
Collapse
|
26
|
Bolchi C, Valoti E, Binda M, Fasoli F, Ferrara R, Fumagalli L, Gotti C, Matucci R, Vistoli G, Pallavicini M. Design, synthesis and binding affinity of acetylcholine carbamoyl analogues. Bioorg Med Chem Lett 2013; 23:6481-5. [DOI: 10.1016/j.bmcl.2013.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023]
|
27
|
Crestey F, Jensen AA, Borch M, Andreasen JT, Andersen J, Balle T, Kristensen JL. Design, Synthesis, and Biological Evaluation of Erythrina Alkaloid Analogues as Neuronal Nicotinic Acetylcholine Receptor Antagonists. J Med Chem 2013; 56:9673-82. [DOI: 10.1021/jm4013592] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- François Crestey
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Morten Borch
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Tobias Andreasen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jacob Andersen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Balle
- Faculty
of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jesper Langgaard Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
28
|
Green BT, Welch KD, Panter KE, Lee ST. Plant toxins that affect nicotinic acetylcholine receptors: a review. Chem Res Toxicol 2013; 26:1129-38. [PMID: 23848825 DOI: 10.1021/tx400166f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants produce a wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis, or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. However, in some cases these secondary metabolites found in poisonous plants perturb biological systems. Ingestion of toxins from poisonous plants by grazing livestock often results in large economic losses to the livestock industry. The chemical structures of these compounds are diverse and range from simple, low molecular weight toxins such as oxalate in halogeton to the highly complex norditerpene alkaloids in larkspurs. While the negative effects of plant toxins on people and the impact of plant toxins on livestock producers have been widely publicized, the diversity of these toxins and their potential as new pharmaceutical agents for the treatment of diseases in people and animals has also received widespread interest. Scientists are actively screening plants from all regions of the world for bioactivity and potential pharmaceuticals for the treatment or prevention of many diseases. In this review, we focus the discussion to those plant toxins extensively studied at the USDA Poisonous Plant Research Laboratory that affect the nicotinic acetylcholine receptors including species of Delphinium (Larkspurs), Lupinus (Lupines), Conium (poison hemlock), and Nicotiana (tobaccos).
Collapse
Affiliation(s)
- Benedict T Green
- USDA/ARS Poisonous Plant Research Laboratory , 1150 East 1400 North, Logan, Utah 84341, USA
| | | | | | | |
Collapse
|
29
|
Dederer H, Berger M, Meyer T, Werr M, Ilg T. Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2. INSECT MOLECULAR BIOLOGY 2013; 22:183-198. [PMID: 23331538 DOI: 10.1111/imb.12014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as hybrids with the chicken β2 nAChR (Ggβ2) subunit resulted in ACh-gated ion channels with distinct dose-response curves for Lcα1/Ggβ2 (effective concentration 50% [EC50 ] = 80 nM; nH = 1.05), and Lcα2/Ggβ2 (EC50 = 5.37 μM, nH = 1.46). The neonicotinoid imidacloprid was a potent agonist for the α-bungarotoxin-sensitive Lcα1/Ggβ2 (EC50 ∼ 20 nM), while the α-bungarotoxin-resistant Lcα2/Ggβ2 showed a 30-fold lower sensitivity to this insecticide (EC50 = 0.62 μM). Thirteen close derivatives of ACh were analysed in EC50 , Hill coefficient and maximum current (relative to ACh) determinations for Lcα1/Ggβ2 and Lcα2/Ggβ2 and the chicken Ggα4/Ggβ2 nAChRs, and comparisons relative to ACh allowed the definition of novel structure-activity and structure-selectivity relationships. In the case of N-ethyl-acetylcholine, the EC50 of the chicken Ggα4/Ggβ2 rose by a factor of 1000, while for both Lcα1/Ggβ2 and Lcα2/Ggβ2, potency remained unchanged. Further derivatives with insect nAChR selectivity potential were acetyl-α-methylcholine and trimethyl-(3-methoxy-3-oxopropyl)ammonium, followed by acetylhomocholine and trimethyl-(4-oxopentyl) ammonium. Our results may provide guidance for the identification or design of insect-specific nAChR agonists using structure-based or in silico methods.
Collapse
Affiliation(s)
- H Dederer
- MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | | | | | | | | |
Collapse
|
30
|
Galantamine increases hippocampal insulin-like growth factor 2 expression via α7 nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl) 2013; 225:543-51. [PMID: 22932776 DOI: 10.1007/s00213-012-2841-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 01/17/2023]
Abstract
RATIONALE AND OBJECTIVE Galantamine, a drug for the treatment of Alzheimer's disease, has neuroprotection in several experimental models and stimulates adult neurogenesis in the rodent brain, but the exact mechanism remains unclear. This study examined whether galantamine affects the expression of neurotrophic/growth factors in the mouse hippocampus and prefrontal cortex. METHODS Nine-week-old male ddY mice were used. The mRNA levels of neurotrophic/growth factors were analyzed by a real-time quantitative PCR. The protein levels of insulin-like growth factor 2 (IGF2) were analyzed by Western blotting. RESULTS Acute administration of galantamine (0.3-3 mg/kg, i.p.) increased IGF2 mRNA levels in the hippocampus, but not in the prefrontal cortex, in time- and dose-dependent manner. Galantamine (3 mg/kg, i.p.) caused a transient increase in fibroblast growth factor 2 mRNA levels and a decrease in brain-derived neurotrophic factor mRNA levels in the hippocampus, while it did not affect the mRNA levels of other neurotrophic/growth factors. The galantamine-induced increase in the hippocampal IGF2 mRNA levels was blocked by mecamylamine, a nonselective nicotinic acetylcholine (ACh) receptor (nAChR) antagonist, and methyllycaconitine, a selective α7 nAChR antagonist, but not by telenzepine, a preferential M(1) muscarinic ACh receptor antagonist. Moreover, the selective α7 nAChR agonist PHA-543613 increased the IGF2 mRNA levels, while donepezil, an acetylcholinesterase inhibitor, did not. Galantamine also increased hippocampal IGF2 protein, which was blocked by methyllycaconitine. CONCLUSIONS These findings suggest that galantamine increases hippocampal IGF2 levels via α7 nAChR activation in mice and imply that the effect may contribute to its neuroprotection or neurogenesis.
Collapse
|
31
|
Ussing CA, Hansen CP, Petersen JG, Jensen AA, Rohde LAH, Ahring PK, Nielsen EØ, Kastrup JS, Gajhede M, Frølund B, Balle T. Synthesis, Pharmacology, and Biostructural Characterization of Novel α4β2 Nicotinic Acetylcholine Receptor Agonists. J Med Chem 2013; 56:940-51. [DOI: 10.1021/jm301409f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine A. Ussing
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Camilla P. Hansen
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Jette G. Petersen
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Anders A. Jensen
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Line A. H. Rohde
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
- NeuroSearch A/S, Pederstrupvej 93, DK-2750 Ballerup,
Denmark
| | | | | | - Jette S. Kastrup
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Thomas Balle
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
- Faculty of Pharmacy, Building
A15, The University of Sydney, Sydney,
NSW 2006, Australia
| |
Collapse
|
32
|
Rohde LAH, Ahring PK, Jensen ML, Nielsen EØ, Peters D, Helgstrand C, Krintel C, Harpsøe K, Gajhede M, Kastrup JS, Balle T. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: unique role of halogen bonding revealed. J Biol Chem 2011; 287:4248-59. [PMID: 22170047 DOI: 10.1074/jbc.m111.292243] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α4β2 subtype of the nicotinic acetylcholine receptor has been pursued as a drug target for treatment of psychiatric and neurodegenerative disorders and smoking cessation aids for decades. Still, a thorough understanding of structure-function relationships of α4β2 agonists is lacking. Using binding experiments, electrophysiology and x-ray crystallography we have investigated a consecutive series of five prototypical pyridine-containing agonists derived from 1-(pyridin-3-yl)-1,4-diazepane. A correlation between binding affinities at α4β2 and the acetylcholine-binding protein from Lymnaea stagnalis (Ls-AChBP) confirms Ls-AChBP as structural surrogate for α4β2 receptors. Crystal structures of five agonists with efficacies at α4β2 from 21-76% were determined in complex with Ls-AChBP. No variation in closure of loop C is observed despite large efficacy variations. Instead, the efficacy of a compound appears tightly coupled to its ability to form a strong intersubunit bridge linking the primary and complementary binding interfaces. For the tested agonists, a specific halogen bond was observed to play a large role in establishing such strong intersubunit anchoring.
Collapse
Affiliation(s)
- Line Aagot Hede Rohde
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Desai RI, Bergman J. Drug discrimination in methamphetamine-trained rats: effects of cholinergic nicotinic compounds. J Pharmacol Exp Ther 2010; 335:807-16. [PMID: 20847037 DOI: 10.1124/jpet.110.173773] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence suggests that acetylcholine nicotinic systems may contribute importantly to the abuse-related effects of d-methamphetamine (d-MA). The present study was conducted to compare the effects of indirect dopamine (DA) agonists (d-amphetamine, d-MA, and l-methamphetamine), full [(-)-nicotine, anabaseine, (+)-epibatidine, (-)-epibatidine, isoarecolone] and partial (varenicline) nicotinic agonists, and other cholinergic compounds (mecamylamine, dihydro-β-erythroidine hydrobromide, methyllycaconitine, atropine, scopolamine, rivastigmine, and donepezil) in rats trained to discriminate 0.3 mg/kg i.p. d-MA from saline. All indirect DA agonists fully substituted for d-MA in a dose-related manner. Among nicotinic agonists, only (-)-nicotine fully substituted for d-MA in a dose-dependent manner, whereas all other nicotinic agonists and, to a limited extent, muscarinic antagonists produced partial d-MA-like responding. Other cholinergic compounds failed to produce d-MA-like discriminative stimulus effects. In drug interaction studies, varenicline served to dose-dependently attenuate the d-MA-like effects of (-)-nicotine, whereas mecamylamine, but not varenicline, reduced the discriminative stimulus effects of the training dose of d-MA. Differences between (-)-nicotine and other nicotinic agonists may be related to their ability to activate the DA system. These results provide further evidence that nicotinic mechanisms may be useful neurochemical targets for the development of therapeutics for the management of monoaminergic stimulant abuse and addiction.
Collapse
Affiliation(s)
- Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
34
|
Møller HA, Sander T, Kristensen JL, Nielsen B, Krall J, Bergmann ML, Christiansen B, Balle T, Jensen AA, Frølund B. Novel 4-(Piperidin-4-yl)-1-hydroxypyrazoles as γ-Aminobutyric AcidA Receptor Ligands: Synthesis, Pharmacology, and Structure−Activity Relationships. J Med Chem 2010; 53:3417-21. [DOI: 10.1021/jm100106r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henriette A. Møller
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Tommy Sander
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Jesper L. Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Birgitte Nielsen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Jacob Krall
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Marianne L. Bergmann
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Bolette Christiansen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Thomas Balle
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Anders A. Jensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| | - Bente Frølund
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK 2100 Copenhagen
| |
Collapse
|
35
|
Armishaw C, Jensen AA, Balle T, Clark RJ, Harpsøe K, Skonberg C, Liljefors T, Strømgaard K. Rational design of alpha-conotoxin analogues targeting alpha7 nicotinic acetylcholine receptors: improved antagonistic activity by incorporation of proline derivatives. J Biol Chem 2009; 284:9498-512. [PMID: 19131337 PMCID: PMC2666602 DOI: 10.1074/jbc.m806136200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/07/2009] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that belong to the superfamily of Cys loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine-binding proteins (AChBPs) that share significant sequence homology with the amino-terminal domains of the nAChRs. alpha-Conotoxins, which are isolated from the venom of carnivorous marine snails, selectively inhibit the signaling of neuronal nAChR subtypes. Co-crystal structures of alpha-conotoxins in complex with AChBP show that the side chain of a highly conserved proline residue in these toxins is oriented toward the hydrophobic binding pocket in the AChBP but does not have direct interactions with this pocket. In this study, we have designed and synthesized analogues of alpha-conotoxins ImI and PnIA[A10L], by introducing a range of substituents on the Pro(6) residue in these toxins to probe the importance of this residue for their binding to the nAChRs. Pharmacological characterization of the toxin analogues at the alpha(7) nAChR shows that although polar and charged groups on Pro(6) result in analogues with significantly reduced antagonistic activities, analogues with aromatic and hydrophobic substituents in the Pro(6) position exhibit moderate activity at the receptor. Interestingly, introduction of a 5-(R)-phenyl substituent at Pro(6) in alpha-conotoxin ImI gives rise to a conotoxin analogue with a significantly higher binding affinity and antagonistic activity at the alpha(7) nAChR than those exhibited by the native conotoxin.
Collapse
Affiliation(s)
- Christopher Armishaw
- Department of Medicinal Chemistry and Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø DK-2100, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hansen CP, Jensen AA, Christensen JK, Balle T, Liljefors T, Frølund B. Novel acetylcholine and carbamoylcholine analogues: development of a functionally selective alpha4beta2 nicotinic acetylcholine receptor agonist. J Med Chem 2009; 51:7380-95. [PMID: 18989912 DOI: 10.1021/jm701625v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha4beta2 nAChR and pronounced selectivity for this subtype over alpha3beta4, alpha4beta4, and alpha7 nAChRs. The high nAChR activity of carbamoylcholine analogue 5d was found to reside in its R-enantiomer, a characteristic most likely true for all other compounds in the series. Interestingly, the pronounced alpha4beta2 selectivities exhibited by some of the compounds in the binding assays translated into functional selectivity. Compound 5a was a fairly potent partial alpha4beta2 nAChR agonist with negligible activities at the alpha3beta4 and alpha7 subtypes, thus being one of the few truly functionally selective alpha4beta2 nAChR agonists published to date. Ligand-protein docking experiments using homology models of the amino-terminal domains of alpha4beta2 and alpha3beta4 nAChRs identified residues Val111(beta2)/Ile113(beta4), Phe119(beta2)/Gln121(beta4), and Thr155(alpha4)/Ser150(alpha3) as possible key determinants of the alpha4beta2/alpha3beta4-selectivity displayed by the analogues.
Collapse
Affiliation(s)
- Camilla P Hansen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, UniVersitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Hansen CP, Jensen AA, Balle T, Bitsch-Jensen K, Hassan MM, Liljefors T, Frølund B. Carbamoylcholine analogs as nicotinic acetylcholine receptor agonists—Structural modifications of 3-(dimethylamino)butyl dimethylcarbamate (DMABC). Bioorg Med Chem Lett 2009; 19:87-91. [DOI: 10.1016/j.bmcl.2008.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/01/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
|
38
|
Guandalini L, Norcini M, Varani K, Pistolozzi M, Gotti C, Bazzicalupi C, Martini E, Dei S, Manetti D, Scapecchi S, Teodori E, Bertucci C, Ghelardini C, Romanelli MN. Design, Synthesis, and Preliminary Pharmacological Evaluation of New Quinoline Derivatives as Nicotinic Ligands. J Med Chem 2007; 50:4993-5002. [PMID: 17850058 DOI: 10.1021/jm070325r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of nicotinic ligands, carrying a quinoline nucleus, and characterized by a pharmacophoric distance between the quinoline nitrogen (H-bond acceptor) and the cationic nitrogen atoms higher than that proposed in the classical pharmacophoric models, have been synthesized and tested for their affinity for the central nicotinic receptor. The enantiomers of the nicotine analogue 1-methyl-2-pyrrolidinyl-6-quinoline and of its methiodide display enantioselectivity in binding studies, but not when tested in vivo; on alpha7* nicotinic receptor enantioselectivity is inverted with respect to the alpha4beta2* subtype. N,N,N-Trimethyl-4-(quinolin-6-yl)but-3-yn-1-ammonium iodide (3c) and trans-N,N,N-trimethyl-4-(quinolin-6-yl)but-3-en-1-ammonium iodide (4c), showing pharmacophoric distances in the range 8.5-10.4 A, interact with the alpha4beta2* nicotinic receptor with Ki in the microM range; compound 3c shows preference for the alpha7* subtype.
Collapse
Affiliation(s)
- Luca Guandalini
- Laboratory of Design, Synthesis and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, University of Florence, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jensen AA, Zlotos DP, Liljefors T. Pharmacological characteristics and binding modes of caracurine V analogues and related compounds at the neuronal alpha7 nicotinic acetylcholine receptor. J Med Chem 2007; 50:4616-29. [PMID: 17722904 DOI: 10.1021/jm070574f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pharmacological properties of bisquaternary caracurine V, iso-caracurine V, and pyrazino[1,2-a;4,5-a']diindole analogues and of the neuromuscular blocking agents alcuronium and toxiferine I have been characterized at numerous ligand-gated ion channels. Several of the analogues are potent antagonists of the homomeric alpha7 nicotinic acetylcholine receptor (nAChR), displaying nanomolar binding affinities and inhibiting acetylcholine-evoked signaling through the receptor in a competitive manner. In contrast, they do not display activities at heteromeric neuronal nAChRs and only exhibit weak antagonistic activities at the related 5-HT3A serotonin receptor. In a mutagenesis study, five selected analogues have been demonstrated to bind to the orthosteric site of the alpha7 nAChR. The binding site of the compounds overlaps with that of the standard alpha7 antagonist methyllycaconitine, the binding of them being centered in a cation-pi interaction between the quaternary nitrogen atom of the ligand and the Trp149 residue in the receptor, with additional key contributions from other aromatic receptor residues such as Tyr188, Tyr195, and Trp55.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Madsen C, Jensen AA, Liljefors T, Kristiansen U, Nielsen B, Hansen CP, Larsen M, Ebert B, Bang-Andersen B, Krogsgaard-Larsen P, Frølund B. 5-Substituted imidazole-4-acetic acid analogues: synthesis, modeling, and pharmacological characterization of a series of novel gamma-aminobutyric acid(C) receptor agonists. J Med Chem 2007; 50:4147-61. [PMID: 17655213 DOI: 10.1021/jm070447j] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of ring-substituted analogues of imidazole-4-acetic acid (IAA, 4), a partial agonist at both GABAA and GABAC receptors (GABA = gamma-aminobutyric acid), have been synthesized. The synthesized compounds 8a-l have been evaluated as ligands for the alpha1beta2gamma2S GABAA receptors and the rho1 GABAC receptors using the FLIPR membrane potential (FMP) assay and by electrophysiology techniques. None of the tested compounds displayed activity at the GABAA receptors at concentrations up to 1000 microM. However, the 5-Me, 5-Ph, 5-p-Me-Ph, and 5-p-F-Ph IAA analogues, 8a,c,f,g, displayed full agonist activities at the rho1 receptors in the FMP assay (EC50 in the range 22-420 microM). Ligand-protein docking identified the Thr129 in the alpha1 subunit and the corresponding Ser168 residue in rho1 as determinants of the selectivity displayed by the 5-substituted IAA analogues. The fact that GABA, 4, and 8a displayed decreased agonist potencies at a rho1Ser168Thr mutant compared to the WT rho1 receptor strongly supported this hypothesis. However, in contrast to GABA and 4, which exhibited increased agonist potencies at a alpha1(Thr129Ser)beta2gamma2 mutant compared to WT GABAA receptor, the data obtained for 8a at the WT and mutant receptors were nonconclusive.
Collapse
Affiliation(s)
- Christian Madsen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jensen AA, Gharagozloo P, Birdsall NJM, Zlotos DP. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol 2006; 539:27-33. [PMID: 16687139 DOI: 10.1016/j.ejphar.2006.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/09/2006] [Accepted: 04/03/2006] [Indexed: 11/16/2022]
Abstract
Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
42
|
Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005; 48:4705-45. [PMID: 16033252 DOI: 10.1021/jm040219e] [Citation(s) in RCA: 437] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
43
|
Daly JW. Nicotinic agonists, antagonists, and modulators from natural sources. Cell Mol Neurobiol 2005; 25:513-52. [PMID: 16075378 DOI: 10.1007/s10571-005-3968-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/14/2004] [Indexed: 10/25/2022]
Abstract
1. Acetylcholine receptors were initially defined as nicotinic or muscarinic, based on selective activation by two natural products, nicotine and muscarine. Several further nicotinic agonists have been discovered from natural sources, including cytisine, anatoxin, ferruginine, anabaseine, epibatidine, and epiquinamide. These have provided lead structures for the design of a wide range of synthetic agents. 2. Natural sources have also provided competitive nicotinic antagonists, such as the Erythrina alkaloids, the tubocurarines, and methyllycaconitine. Noncompetitive antagonists, such as the histrionicotoxins, various izidines, decahydroquinolines, spiropyrrolizidine oximes, pseudophrynamines, ibogaine, strychnine, cocaine, and sparteine have come from natural sources. Finally, galanthamine, codeine, and ivermectin represent positive modulators of nicotinic function, derived from natural sources. 3. Clearly, research on acetylcholine receptors and functions has been dependent on key natural products and the synthetic agents that they inspired.
Collapse
Affiliation(s)
- John W Daly
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA.
| |
Collapse
|
44
|
Gündisch D, Andrä M, Munoz L, Cristina Tilotta M. Synthesis and evaluation of phenylcarbamate derivatives as ligands for nicotinic acetylcholine receptors. Bioorg Med Chem 2004; 12:4953-62. [PMID: 15336274 DOI: 10.1016/j.bmc.2004.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Phenylcarbamate derivatives were synthesized and evaluated in radioligand binding assays for different nicotinic acetylcholine receptor (nAChR) subtypes. Carbamate derivatives bearing a pyrrolidine or piperidine moiety 8-20 exhibited much lower affinity for alpha7* nAChR than the analogues in the quinuclidine series 21-25, although the same structural elements are present. Furthermore, in contrast to the quinuclidine analogues 21-25, all (S)-pyrrolidine derivatives 8-12 and the piperidine analogues 15 and 16 exhibited higher affinities for alpha4beta2* nAChR.
Collapse
Affiliation(s)
- Daniela Gündisch
- Department of Pharmaceutical Chemistry, Rhein. Friedr.-Wilhelm-University, Kreuzbergweg 26, D-53115 Bonn, Germany.
| | | | | | | |
Collapse
|
45
|
Jensen AA, Mikkelsen I, Frølund B, Frydenvang K, Brehm L, Jaroszewski JW, Bräuner-Osborne H, Falch E, Krogsgaard-Larsen P. Carbamoylcholine homologs: synthesis and pharmacology at nicotinic acetylcholine receptors. Eur J Pharmacol 2004; 497:125-37. [PMID: 15306197 DOI: 10.1016/j.ejphar.2004.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/17/2004] [Accepted: 06/22/2004] [Indexed: 11/18/2022]
Abstract
In a recent study, racemic 3-(N,N-dimethylamino)butyl-N,N-dimethylcarbamate (1) was shown to be a potent agonist at neuronal nicotinic acetylcholine receptors with a high selectivity for nicotinic over muscarinic acetylcholine receptors [Mol. Pharmacol. 64 (2003) 865-875]. Here we present the synthesis and pharmacological characterization of a series of analogs of, where the methyl group at C-3 has been replaced by different alkyl substituents. Ring systems have been incorporated into the carbon backbone of some of the molecules, or the amino group has been build into ring systems. Furthermore, the (+)- and (-)-enantiomers of have been separated, and X-ray crystallography has revealed that (-)-1 possesses (S)-configuration. The compounds have been characterized pharmacologically at recombinant nicotinic receptor subtypes. The structure-activity relationship study has provided valuable insight into the mode of interactions of and its analogs with neuronal nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jensen AA, Bräuner-Osborne H. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay. Biochem Pharmacol 2004; 67:2115-27. [PMID: 15135308 DOI: 10.1016/j.bcp.2004.02.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics of the cell lines in the FMP assay were in good agreement with previous findings in electrophysiology studies of the transporters. The FMP assay was capable of distinguishing between substrates and non-substrate inhibitors and to discriminate between "full" and "partial" substrates at the transporters. Taking advantage of the prolific nature of the FMP assay, interactions of the EAATs with substrates and inhibitors were studied in some detail. This is the first report of a high throughput screening assay for EAATs. We propose that the assay will be of great use in future studies of the transporters. Although conventional electrophysiology set-ups might be superior in terms of studying sophisticated kinetic aspects of the uptake process, the FMP assay enables the collection of considerable amounts of highly reproducible data with relatively little labor. Furthermore, considering that the number of EAAT ligands presently available is limited, and that almost all of these are characterized by low potency and a low degree of subtype selectivity, future screening of compound libraries at the EAAT-cell lines in the FMP assay could help identify structurally and pharmacologically novel ligands for the transporters.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
47
|
Jensen AA, Kristiansen U. Functional characterisation of the human α1 glycine receptor in a fluorescence-based membrane potential assay. Biochem Pharmacol 2004; 67:1789-99. [PMID: 15081878 DOI: 10.1016/j.bcp.2003.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 12/22/2003] [Indexed: 11/30/2022]
Abstract
In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput screening assay. In the patch-clamp assay, the alpha1 GlyR exhibited the properties expected from a strychnine-sensitive glycine-gated chloride channel. In the FMP assay exposure of the cell line to GlyR agonists elicited a concentration-dependent increase in fluorescent intensity, a signal that could be suppressed by pre-incubation with GlyR antagonists. Agonists and antagonists displayed EC50 and Ki values in good agreement with previously reported values from studies of recombinant alpha1 GlyRs and native alpha1beta GlyRs. The rank orders of potencies was glycine > beta-alanine > taurine for the agonists and RU 5135>strychnine>brucine>PMBA=picrotoxin>atropine for the antagonists. The actions of three allosteric modulators at the alpha1 GlyR cell line were also characterised in the FMP assay. Micromolar concentrations of Zn2+ inhibited alpha1 GlyR signalling but in contrast to previous reports the metal ion did not appear to potentiate GlyR function at lower concentrations. Analogously, whereas pregnenolone sulphate inhibited alpha1 GlyR function, the potentiation of alpha1 GlyR by pregnenolone in electrophysiological studies could not be reproduced in the assay. In conclusion, the FMP assay may not be suited for sophisticated studies of GlyR pharmacology and kinetics. However, the assay offers several advantages in studies of ligand-receptor interactions. Furthermore, the assay could be highly useful in the search for structurally novel ligands acting at GlyRs.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, Copenhagen DK-2100, Denmark.
| | | |
Collapse
|
48
|
Xiao Y, Kellar KJ. The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 2004; 310:98-107. [PMID: 15016836 DOI: 10.1124/jpet.104.066787] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We stably transfected human embryonic kidney cells (HEK 293 cells) with genes encoding rat neuronal nicotinic receptor alpha2, alpha3, or alpha4 subunits in combination with the beta2 or beta4 subunit to generate six cell lines that express defined subunit combinations that represent potential subtypes of rat neuronal nicotinic acetylcholine receptors (nAChRs). These cell lines were designated KXalpha2beta2, KXalpha2beta4, KXalpha3beta2, KXalpha3beta4, KXalpha4beta2, and KXalpha4beta4. The Kd values of [3H](+/-)epibatidine ([3H]EB) binding to membranes from these six cell lines ranged from approximately 0.02 to 0.3 nM. The pharmacological profiles of the agonist binding sites of these putative nAChR subtypes were examined in competition studies in which unlabeled nicotinic ligands, including 10 agonists and two antagonists, competed against [3H]EB. Most nicotinic ligands examined had higher affinity for the receptor subtypes containing the beta2 subunit compared with those containing the beta4 subunit. An excellent correlation (r > 0.99) of the binding affinities of the 10 agonists was observed between receptors from KXalpha4beta2 cells and from rat forebrain tissue, in which [3H]EB binding represents predominantly alpha4beta2 nAChRs. More important, the affinities (Ki values) for the two tissues were nearly identical. The densities of the binding sites of all six cell lines were increased after a 5-day exposure to (-)-nicotine or the quaternary amine agonist carbachol. These data indicate that these cell lines expressing nAChR subunit combinations should be useful models for investigating pharmacological properties and regulation of the binding sites of potential nAChR subtypes, as well as for studying the properties of nicotinic compounds.
Collapse
Affiliation(s)
- Yingxian Xiao
- Department of Pharmacology, Georgetown University School of Medicine, Washington, DC 20057-2195, USA
| | | |
Collapse
|
49
|
Bremner JB, Godfrey CA, Jensen AA, Smith RJ. Synthesis and nicotinic receptor activity of a hydroxylated tropane. Bioorg Med Chem Lett 2004; 14:271-3. [PMID: 14684341 DOI: 10.1016/j.bmcl.2003.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+/-)-3alpha-hydroxy homoepibatidine 4 has been synthesized from the alkaloid scopolamine 5 and its properties as a nicotinic agonist assessed. While still binding strongly, the compound showed reduced agonist potency for the alpha(4)beta(2) nAChR compared with the parent compound epibatidine 1. Compound 4 also displayed generally similar binding and selectivity profiles at alpha(4)beta(2), alpha(2)beta(4), alpha(3)beta(4), and alpha(4)beta(4) nAChR subtypes to those for nicotine.
Collapse
Affiliation(s)
- John B Bremner
- Department of Chemistry and Institute for Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|