1
|
de Lima Camillo LP, Asif MH, Horvath S, Larschan E, Singh R. Histone mark age of human tissues and cell types. SCIENCE ADVANCES 2025; 11:eadk9373. [PMID: 39742485 DOI: 10.1126/sciadv.adk9373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Aging is a complex and multifaceted process involving many epigenetic alterations. One key area of interest in aging research is the role of histone modifications, which can dynamically regulate gene expression. Here, we conducted a pan-tissue analysis of the dynamics of seven key histone modifications during human aging. Our histone-specific age prediction models showed surprisingly accurate performance, proving resilient to experimental and artificial noise. Simulation experiments for comparison with DNA methylation age predictors revealed competitive performance. Moreover, gene set enrichment analysis uncovered several critical developmental pathways for age prediction. Different from DNA methylation age predictors, genes known to be involved in aging biology are among the most important ones for the models. Last, we developed a pan-tissue pan-histone age predictor, suggesting that age-related epigenetic information is degenerated across the epigenome. This research highlights the power of histone marks as input for creating robust age predictors and opens avenues for understanding the role of epigenetic changes during aging.
Collapse
Affiliation(s)
- Lucas Paulo de Lima Camillo
- School of Biological Sciences, University of Cambridge, Cambridge, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Erica Larschan
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Tian X, Liu G, Ji L, Shen Y, Gu J, Wang L, Ma J, Xia Z, Li X. Histone-acetyl epigenome regulates TGF-β pathway-associated chemoresistance in colorectal cancer. Transl Oncol 2025; 51:102166. [PMID: 39522302 PMCID: PMC11585898 DOI: 10.1016/j.tranon.2024.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
TGF-β signaling pathway has been demonstrated to be closely related to chemoresistance, which is the major cause of recurrence and poor outcome in colorectal cancer (CRC), however, the comprehensive epigenetic landscape that functionally implicates in the regulation of TGF-β pathway-associated chemoresistance has not yet well established in CRC. In our study, chromatin immunoprecipitation sequencing (ChIP-seq) and Western blot were employed to investigate epigenetic modifications for histones in response to TGF-β1 intervene. We found that the activation of the TGF-β pathway was characterized by genome-wide high levels of H3K9ac and H3K18ac. Mechanistically, the activation of the TGF-β signaling pathway leads to the downregulation of the deacetylase HDAC4, resulting in the upregulation of H3K9ac and H3K18ac. Consequently, this cascade induces oxaliplatin chemoresistance in CRC by triggering the anti-apoptotic PI3K/AKT signaling pathway. Our in vivo experiment results confirmed that overexpression of HDAC4 significantly enhances the sensitivity of CRC to oxaliplatin chemotherapy. Moreover, the expression level of HDAC4 was positively correlated with patients' prognosis in CRC. Our data suggest that histone-acetyl modification demonstrates a crucial role in modulating TGF-β pathway-associated chemoresistance in CRC, and HDAC4 would be a biomarker for prognostic prediction and potential therapeutic target for treatment in CRC.
Collapse
Affiliation(s)
- Xianglong Tian
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China.
| | - Guihua Liu
- Department of General Practice, Minhang District Hongqiao Community Health Service Center, Shanghai, 201103, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Shen
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China
| | - Junjun Gu
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China
| | - Lili Wang
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China
| | - Jiali Ma
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Zuguang Xia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xinghua Li
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China.
| |
Collapse
|
3
|
Wang Y, Zhang W, Zhang C, Van HQT, Seino T, Zhang Y. Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice. Cell Res 2025; 35:45-58. [PMID: 39743633 DOI: 10.1038/s41422-024-01057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Aging is a process accompanied by functional decline in tissues and organs with great social and medical consequences. Developing effective anti-aging strategies is of great significance. In this study, we demonstrated that transplantation of young hematopoietic stem cells (HSCs) into old mice can mitigate aging phenotypes, underscoring the crucial role of HSCs in the aging process. Through comprehensive molecular and functional analyses, we identified a subset of HSCs in aged mice that exhibit "younger" molecular profiles and functions, marked by low levels of CD150 expression. Mechanistically, CD150low HSCs from old mice but not their CD150high counterparts can effectively differentiate into downstream lineage cells. Notably, transplantation of old CD150low HSCs attenuates aging phenotypes and prolongs lifespan of elderly mice compared to those transplanted with unselected or CD150high HSCs. Importantly, reducing the dysfunctional CD150high HSCs can alleviate aging phenotypes in old recipient mice. Thus, our study demonstrates the presence of "younger" HSCs in old mice, and that aging-associated functional decline can be mitigated by reducing dysfunctional HSCs.
Collapse
Affiliation(s)
- Yuting Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wenhao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Hoang Q Tran Van
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Takashi Seino
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Li Y, Lin Y, Chen Z, Ji W, Liu H. Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells. Cell Signal 2024; 127:111579. [PMID: 39733927 DOI: 10.1016/j.cellsig.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice. In 20-month-old mJBMSCs, increased chromatin accessibility was observed alongside elevated expression of activating transcription factor 2 (ATF2) in both cells and alveolar bone. Silencing Atf2 in mJBMSCs failed to reverse physiological aging, but delayed replication stress and pamidronate (PAM) induced senescence. The analysis of ATAC-seq and RNA sequencing indicated that the differentially expressed genes upregulated by PAM but downregulated by ATF2 deficiency were related to some key biological processes, including negative regulation of cell proliferation, inflammatory response, adipogenesis, and cellular senescence. The dual-luciferase assay was conducted to demonstrate that ATF2 enhances Cdkn2a transcription by binding to its promoter region. Our findings suggest significant chromatin alterations in aged mJBMSCs, positioning ATF2 as a potential target for combating externally induced senescence.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Mariner BL, McCoy BM, Greenier A, Brassington L, Slikas E, Adjangba C, Marye A, Harrison BR, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. DNA methylation of transposons pattern aging differences across a diverse cohort of dogs from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617286. [PMID: 39416178 PMCID: PMC11482827 DOI: 10.1101/2024.10.08.617286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Within a species, larger individuals often have shorter lives and higher rates of age-related disease. Despite this well-known link, we still know little about underlying age-related epigenetic differences, which could help us better understand inter-individual variation in aging and the etiology, onset, and progression of age-associated disease. Dogs exhibit this negative correlation between size, health, and longevity and thus represent an excellent system in which to test the underlying mechanisms. Here, we quantified genome-wide DNA methylation in a cohort of 864 dogs in the Dog Aging Project. Age strongly patterned the dog epigenome, with the majority (66% of age-associated loci) of regions associating age-related loss of methylation. These age effects were non-randomly distributed in the genome and differed depending on genomic context. We found the LINE1 (long interspersed elements) class of TEs (transposable elements) were the most frequently hypomethylated with age (FDR < 0.05, 40% of all LINE1 regions). This LINE1 pattern differed in magnitude across breeds of different sizes- the largest dogs lost 0.26% more LINE1 methylation per year than the smallest dogs. This suggests that epigenetic regulation of TEs, particularly LINE1s, may contribute to accelerated age and disease phenotypes within a species. Since our study focused on the methylome of immune cells, we looked at LINE1 methylation changes in golden retrievers, a breed highly susceptible to hematopoietic cancers, and found they have accelerated age-related LINE1 hypomethylation compared to other breeds. We also found many of the LINE1s hypomethylated with age are located on the X chromosome and are, when considering X chromosome inactivation, counter-intuitively more methylated in males. These results have revealed the demethylation of LINE1 transposons as a potential driver of inter-species, demographic-dependent aging variation. Statements and declarations None. No competing interests.
Collapse
|
7
|
Li L, Li J, Chen R, Huang C, Zuo Y, Lu R, Liu X, Huang J, Wang Y, Zhao X, Cheng J, Zhao X, Du C, Yu J. Loss of Fbxo45 in AT2 cells leads to insufficient histone supply and initiates lung adenocarcinoma. Cell Death Differ 2024:10.1038/s41418-024-01433-z. [PMID: 39672818 DOI: 10.1038/s41418-024-01433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024] Open
Abstract
Dysregulation of histone supply is implicated in various cancers, including lung adenocarcinoma (LUAD), although the underlying mechanisms remain poorly understood. Here, we demonstrate that knockout of Fbxo45 in mouse alveolar epithelial type 2 (AT2) cells leads to spontaneous LUAD. Our findings reveal that FBXO45 is a novel cell-cycle-regulated protein that is degraded upon phosphorylation by CDK1 during the S/G2 phase. During the S phase or DNA damage repair, FBXO45 binds to UPF1 and recruits the phosphatase PPP6C, thereby inhibiting UPF1 phosphorylation. This process is crucial for preventing the degradation of replication-dependent (RD) histone mRNAs and ensuring an adequate histone supply. In the absence of FBXO45, the impaired interaction between PPP6C and UPF1 results in sustained hyperphosphorylation of UPF1 throughout the cell cycle, leading to an insufficient histone supply, chromatin relaxation, genomic instability, and an increased rate of gene mutations, ultimately culminating in malignant transformation. Notably, analysis of clinical LUAD specimens confirms a positive correlation between the loss of FBXO45 and genomic instability, which is consistent with our findings in the mouse model. These results highlight the critical role of FBXO45 as a genomic guardian in coordinating histone supply and DNA replication, providing valuable insights into potential therapeutic targets and strategies for the treatment of LUAD.
Collapse
Affiliation(s)
- Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojia Liu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chunling Du
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| |
Collapse
|
8
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Chaudhary V, Bhattacharjee D, Devi NK, Saraswathy KN. Global DNA Methylation Levels Viz-a-Viz Genetic and Biochemical Variations in One Carbon Metabolic Pathway: An Exploratory Study from North India. Biochem Genet 2024; 62:4738-4754. [PMID: 38356009 DOI: 10.1007/s10528-023-10659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Despite the importance of one carbon metabolic pathway (OCMP) in modulating the DNA methylation process, only a few population-based studies have explored their relationship among healthy individuals. This study aimed to understand the variations in global DNA methylation levels with respect to selected genetic (CBS 844ins68, MTRR A66G, MTR A2756G, and MTHFR C677T polymorphisms) and biochemical (folate, vitamin B12, and homocysteine) markers associated with OCMP among healthy North Indian adults. The study has been conducted among 1095 individuals of either sex (69.5% females), aged 30-75 years. A sample of 5 mL of blood was collected from each participant. Homocysteine, folate, and vitamin B12 levels were determined using the chemiluminescence technique. Restriction digestion was performed for genotyping MTRR A66G, MTR A2756G, and MTHFR C677T polymorphisms and allele-specific PCR amplification for CBS 844ins68 polymorphism. Global DNA methylation levels were analyzed using ELISA-based colorimetric technique. Of the selected genetic and biochemical markers, the mutant MTRR A66G allele was positively associated with global DNA methylation levels. Further, advanced age was inversely associated with methylation levels. MTRR 66GG genotype group was hypermethylated than other genotypes in folate replete and vitamin B12 deficient group (a condition prevalent among vegetarians), suggesting that the G allele may be more efficient than the wild-type allele in such conditions. Global DNA methylation levels appeared to be more influenced by genetic than biochemical factors. MTRR 66G allele may have a selective advantage in vitamin B12 deficient conditions. Further research should be undertaken to understand how genetics affects epigenetic processes.
Collapse
Affiliation(s)
- Vineet Chaudhary
- Department of Anthropology, University of Delhi, Delhi, 110007, India
| | | | | | | |
Collapse
|
10
|
Mao J, Zhang Q, Zhuang Y, Zhang Y, Li L, Pan J, Xu L, Ding Y, Wang M, Cong YS. Reactivation of senescence-associated endogenous retroviruses by ATF3 drives interferon signaling in aging. NATURE AGING 2024; 4:1794-1812. [PMID: 39543280 DOI: 10.1038/s43587-024-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Reactivation of endogenous retroviruses (ERVs) has been proposed to be involved in aging. However, the mechanism of reactivation and contribution to aging and age-associated diseases is largely unexplored. In this study, we identified a subclass of ERVs reactivated in senescent cells (termed senescence-associated ERVs (SA-ERVs)). These SA-ERVs can be bidirectional transcriptionally activated by activating transcription factor 3 (ATF3) to generate double-stranded RNAs (dsRNAs), which activate the RIG-I/MDA5-MAVS signaling pathway and trigger a type I interferon (IFN-I) response in senescent fibroblasts. Consistently, we found a concerted increased expression of ATF3 and SA-ERVs and enhanced IFN-I response in several tissues of healthy aged individuals and patients with Hutchinson-Gilford progeria syndrome. Moreover, we observed an accumulation of dsRNAs derived from SA-ERVs and higher levels of IFNβ in blood of aged individuals. Together, these results reveal a previously unknown mechanism for reactivation of SA-ERVs by ATF3 and illustrate SA-ERVs as an important component and hallmark of aging.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yinyu Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Juan Pan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Yuxuan Ding
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| |
Collapse
|
11
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
12
|
Dziewa M, Złotek M, Herbet M, Piątkowska-Chmiel I. Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease. Cell Mol Neurobiol 2024; 44:80. [PMID: 39607636 PMCID: PMC11604688 DOI: 10.1007/s10571-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Collapse
Affiliation(s)
- Magdalena Dziewa
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Magdalena Złotek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| |
Collapse
|
13
|
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira RS, Trigo D, Domingues P, Teixeira J, Bonaldi T, Oliveira PJ, Bär C, de Jesus BB, Nóbrega-Pereira S. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2024:e14371. [PMID: 39540462 DOI: 10.1111/acel.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rafaela Dias
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Bárbara Bola
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Rita S Ferreira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- LAQV/REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Cantanhede, Portugal
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Cantanhede, Portugal
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School (MHH), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Iannuzzi V, Narboux-Nême N, Lehoczki A, Levi G, Giuliani C. Stay social, stay young: a bioanthropological outlook on the processes linking sociality and ageing. GeroScience 2024:10.1007/s11357-024-01416-5. [PMID: 39527178 DOI: 10.1007/s11357-024-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
In modern human societies, social interactions and pro-social behaviours are associated with better individual and collective health, reduced mortality, and increased longevity. Conversely, social isolation is a predictor of shorter lifespan. The biological processes through which sociality affects the ageing process, as well as healthspan and lifespan, are still poorly understood. Unveiling the physiological, neurological, genomic, epigenomic, and evolutionary mechanisms underlying the association between sociality and longevity may open new perspectives to understand how lifespan is determined in a broader socio/evolutionary outlook. Here we summarize evidence showing how social dynamics can shape the evolution of life history traits through physiological and genetic processes directly or indirectly related to ageing and lifespan. We start by reviewing theories of ageing that incorporate social interactions into their model. Then, we address the link between sociality and lifespan from two separate points of view: (i) considering evidences from comparative evolutionary biology and bioanthropology that demonstrates how sociality contributes to natural variation in lifespan over the course of human evolution and among different human groups in both pre-industrial and post-industrial society, and (ii) discussing the main physiological, neurological, genetic, and epigenetic molecular processes at the interface between sociality and ageing. We highlight that the exposure to chronic social stressors deregulates neurophysiological and immunological pathways and promotes accelerated ageing and thereby reducing lifespan. In conclusion, we describe how sociality and social dynamics are intimately embedded in human biology, influencing healthy ageing and lifespan, and we highlight the need to foster interdisciplinary approaches including social sciences, biological anthropology, human ecology, physiology, and genetics.
Collapse
Affiliation(s)
- Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire Et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Giovanni Levi
- Physiologie Moléculaire Et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France.
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
15
|
Hao Y, Han K, Wang T, Yu J, Ding H, Dao F. Exploring the potential of epigenetic clocks in aging research. Methods 2024; 231:37-44. [PMID: 39251102 DOI: 10.1016/j.ymeth.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
The process of aging is a notable risk factor for numerous age-related illnesses. Hence, a reliable technique for evaluating biological age or the pace of aging is crucial for understanding the aging process and its influence on the progression of disease. Epigenetic alterations are recognized as a prominent biomarker of aging, and epigenetic clocks formulated on this basis have been shown to provide precise estimations of chronological age. Extensive research has validated the effectiveness of epigenetic clocks in determining aging rates, identifying risk factors for aging, evaluating the impact of anti-aging interventions, and predicting the emergence of age-related diseases. This review provides a detailed overview of the theoretical principles underlying the development of epigenetic clocks and their utility in aging research. Furthermore, it explores the existing obstacles and possibilities linked to epigenetic clocks and proposes potential avenues for future studies in this field.
Collapse
Affiliation(s)
- Yuduo Hao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaiyuan Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ting Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junwen Yu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Fuying Dao
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
16
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
17
|
Watowich MM, Costa CE, Chiou KL, Goldman EA, Petersen RM, Patterson S, Martínez MI, Sterner KN, Horvath JE, Montague MJ, Platt ML, Brent LJN, Higham JP, Lea AJ, Snyder-Mackler N. Immune gene regulation is associated with age and environmental adversity in a nonhuman primate. Mol Ecol 2024; 33:e17445. [PMID: 39032090 PMCID: PMC11521774 DOI: 10.1111/mec.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
Phenotypic aging is ubiquitous across mammalian species, suggesting shared underlying mechanisms of aging. Aging is linked to molecular changes to DNA methylation and gene expression, and environmental factors, such as severe external challenges or adversities, can moderate these age-related changes. Yet, it remains unclear whether environmental adversities affect gene regulation via the same molecular pathways as chronological, or 'primary', aging. Investigating molecular aging in naturalistic animal populations can fill this gap by providing insight into shared molecular mechanisms of aging and the effects of a greater diversity of environmental adversities - particularly those that can be challenging to study in humans or laboratory organisms. Here, we characterised molecular aging - specifically, CpG methylation - in a sample of free-ranging rhesus macaques living off the coast of Puerto Rico (n samples = 571, n individuals = 499), which endured a major hurricane during our study. Age was associated with methylation at 78,661 sites (31% of all sites tested). Age-associated hypermethylation occurred more frequently in areas of active gene regulation, while hypomethylation was enriched in regions that show less activity in immune cells, suggesting these regions may become de-repressed in older individuals. Age-associated hypomethylation also co-occurred with increased chromatin accessibility while hypermethylation showed the opposite trend, hinting at a coordinated, multi-level loss of epigenetic stability during aging. We detected 32,048 CpG sites significantly associated with exposure to a hurricane, and these sites overlapped age-associated sites, most strongly in regulatory regions and most weakly in quiescent regions. Together, our results suggest that environmental adversity may contribute to aging-related molecular phenotypes in regions of active gene transcription, but that primary aging has specific signatures in non-regulatory regions.
Collapse
Affiliation(s)
- Marina M. Watowich
- Department of Biology, University of Washington, Seattle, Washington, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Christina E. Costa
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elisabeth A. Goldman
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sam Patterson
- Department of Anthropology, New York University, New York, New York, USA
| | | | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | - Julie E. Horvath
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P. Higham
- Department of Anthropology, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
18
|
Bordoni L, Agostinho de Sousa J, Zhuo J, von Meyenn F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: an observational study. Am J Clin Nutr 2024; 120:1143-1155. [PMID: 39510725 DOI: 10.1016/j.ajcnut.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) has unique properties which makes it a potential biomarker for lifestyle-related exposures. Epigenetic clocks, particularly DNAm-based biological age predictors [epigenetic age (EA)], represent an exciting new area of clinical research and deviations of EA from chronological age [epigenetic age acceleration (EAA)] have been linked to overall health, age-related diseases, and environmental exposures. OBJECTIVES This observational study investigates the relationships between biological aging and various dietary factors within the LifeLines-DEEP Cohort. These factors include diet quality, processed food consumption, dietary glycemic load, and intake of vitamins involved in maintaining the epigenetic homeostasis (vitamins B-9, B-12, B-6, B-2, and C). METHODS Dietary records collected using food-frequency questionnaires were used to estimate diet quality [LifeLines Diet Score (LLDS)], measure the intake of unprocessed/ultraprocessed food according to the NOVA food classification system, and the adequacy of the dietary intake of vitamins B-9, B-12, B-2, B-6, and C. EA using Horvath, Hannum, Levine, and Horvath2 epigenetic clock models and DNAm-predicted telomere length (DNAm-TL) were calculated from DNAm data in 760 subjects. Associations between dietary factors and EAA were tested, adjusting for sex, energy intake, and body composition. RESULTS LLDS was associated with EAA (EAA_Horvath: β: -0.148; P = 1 × 10-4; EAA_Hannum: β: -0.148; P = 9 × 10-5; EAA_Levine: β: -0.174; P = 1 × 10-5; and EAA_Horvath2: β: -0.176; P = 4 × 10-6) and DNAm-TL (β: 0.116; P = 0.003). Particularly, EAA was associated with dietary glycemic load (EAA_Horvath: β: 0.476; P = 9 × 10-10; EAA_Hannum: β: 0.565; P = 1 × 10-13; EAA_Levine: β: 0.469; P = 5 × 10-9; EAA_Horvath2: β: 0.569; P = 1 × 10-13; and DNAmTL adjusted for age: β: -0.340; P = 2 × 10-5) and different measures of food processing (NOVA classes 1 and 4). Positive EAA was also associated with inadequate intake of vitamin B-12 (EAA_Horvath: β: -0.167; P = 0.002; EAA_Hannum: β: -0.144; P = 0.007; and EAA_Horvath2: β: -0.126; P = 0.019) and C (EAA_Hannum: β: -0.136; P = 0.010 and EAA_Horvath2: β: -0.151; P = 0.005). CONCLUSIONS Our findings corroborate the hypothesis that nutrition plays a pivotal role in influencing epigenetic homeostasis, especially DNAm, thereby contributing to individual health trajectories and the pace of aging.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy.
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Jingran Zhuo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
19
|
Singh R, Rathore AS, Dilnashin H, Keshri PK, Gupta NK, Prakash SAS, Zahra W, Singh S, Singh SP. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9110-9124. [PMID: 38587698 DOI: 10.1007/s12035-024-04115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Nitesh Kumar Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Singh Ankit Satya Prakash
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India.
| |
Collapse
|
20
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
21
|
Gems D, Virk RS, de Magalhães JP. Epigenetic clocks and programmatic aging. Ageing Res Rev 2024; 101:102546. [PMID: 39414120 DOI: 10.1016/j.arr.2024.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The last decade has seen remarkable progress in the characterization of methylation clocks that can serve as indicators of biological age in humans and many other mammalian species. While the biological processes of aging that underlie these clocks have remained unclear, several clues have pointed to a link to developmental mechanisms. These include the presence in the vicinity of clock CpG sites of genes that specify development, including those of the Hox (homeobox) and polycomb classes. Here we discuss how recent advances in programmatic theories of aging provide a framework within which methylation clocks can be understood as part of a developmental process of aging. This includes how such clocks evolve, how developmental mechanisms cause aging, and how they give rise to late-life disease. The combination of ideas from evolutionary biology, biogerontology and developmental biology open a path to a new discipline, that of developmental gerontology (devo-gero). Drawing on the properties of methylation clocks, we offer several new hypotheses that exemplify devo-gero thinking. We suggest that polycomb controls a trade-off between earlier developmental fidelity and later developmental plasticity. We also propose the existence of an evolutionarily-conserved developmental sequence spanning ontogenesis, adult development and aging, that both constrains and determines the evolution of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
| | - Roop Singh Virk
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, B15 2WB, United Kingdom
| |
Collapse
|
22
|
Usmani SS, Jung HG, Zhang Q, Kim MW, Choi Y, Caglayan AB, Cai D. Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer's disease-like pathologies in male mouse model. Nat Commun 2024; 15:9419. [PMID: 39482312 PMCID: PMC11528003 DOI: 10.1038/s41467-024-53507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
The hypothalamus plays an important role in aging, but it remains unclear regarding the underlying epigenetics and whether this hypothalamic basis can help address aging-related diseases. Here, by comparing mouse hypothalamus with two other limbic system components, we show that the hypothalamus is characterized by distinctively high-level DNA methylation during young age and by the distinct dynamics of DNA methylation and demethylation when approaching middle age. On the other hand, age-related DNA methylation in these limbic system components commonly and sensitively applies to genes in hypothalamic regulatory pathways, notably oxytocin (OXT) and gonadotropin-releasing hormone (GnRH) pathways. Middle age is associated with transcriptional declines of genes which encode OXT, GnRH and signaling components, which similarly occur in an Alzheimer's disease (AD)-like model. Therapeutically, OXT-GnRH combination is substantially more effective than individual peptides in treating AD-like disorders in male 5×FAD model. In conclusion, the hypothalamus is important for modeling age-related DNA methylation and developing hypothalamic strategies to combat AD.
Collapse
Affiliation(s)
- Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hyun-Gug Jung
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qichao Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Woo Kim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuna Choi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ahmet Burak Caglayan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
24
|
Mori M, Koshiguchi M, Takenouchi O, Mukose MA, Takase HM, Mishina T, Mei H, Kihara M, Abe T, Inoue A, Kitajima TS. Aging-associated reduction of chromosomal histones in mammalian oocytes. Genes Cells 2024; 29:808-819. [PMID: 39044347 PMCID: PMC11555632 DOI: 10.1111/gtc.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Mammalian oocytes undergo a long-term meiotic arrest that can last for almost the entire reproductive lifespan. This arrest occurs after DNA replication and is prolonged with age, which poses a challenge to oocytes in maintaining replication-dependent chromosomal proteins required for the completion of meiosis. In this study, we show that chromosomal histones are reduced with age in mouse oocytes. Both types of histone H3 variants, replication-dependent H3.1/H3.2 and replication-independent H3.3, decrease with age. Aging-associated histone reduction is associated with transcriptomic features that are caused by genetic depletion of histone H3.3. Neither the genetic reduction of chromosomal H3.1/H3.2 nor H3.3 accelerates the aging-associated increase in premature chromosome separation that causes meiotic segregation errors. We suggest that aging-associated reduction of chromosomal histones is linked to several transcriptomic abnormalities but does not significantly contribute to errors in meiotic chromosome segregation during the reproductive lifespan of mice.
Collapse
Affiliation(s)
- Masashi Mori
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Manami Koshiguchi
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Osamu Takenouchi
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Mei A. Mukose
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hinako M. Takase
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Tappei Mishina
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Present address:
Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Hailiang Mei
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
25
|
Zhang Y, Liu L, Yue L, Huang Y, Wang B, Liu P. Uncovering key mechanisms and intervention therapies in aging skin. Cytokine Growth Factor Rev 2024; 79:66-80. [PMID: 39198086 DOI: 10.1016/j.cytogfr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| |
Collapse
|
26
|
Han J, Cherry C, Mejías JC, Krishnan K, Ruta A, Maestas DR, Peña AN, Nguyen HH, Nagaraj S, Yang B, Gray-Gaillard EF, Rutkowski N, Browne M, Tam AJ, Fertig EJ, Housseau F, Ganguly S, Moore EM, Pardoll DM, Elisseeff JH. Age-associated Senescent - T Cell Signaling Promotes Type 3 Immunity that Inhibits the Biomaterial Regenerative Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310476. [PMID: 38087458 DOI: 10.1002/adma.202310476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Aging is associated with immunological changes that compromise response to infections and vaccines, exacerbate inflammatory diseases and can potentially mitigate tissue repair. Even so, age-related changes to the immune response to tissue damage and regenerative medicine therapies remain unknown. Here, it is characterized how aging induces changes in immunological signatures that inhibit tissue repair and therapeutic response to a clinical regenerative biological scaffold derived from extracellular matrix. Signatures of inflammation and interleukin (IL)-17 signaling increased with injury and treatment both locally and regionally in aged animals, and computational analysis uncovered age-associated senescent-T cell communication that promotes type 3 immunity in T cells. Local inhibition of type 3 immune activation using IL17-neutralizing antibodies improves healing and restores therapeutic response to the regenerative biomaterial, promoting muscle repair in older animals. These results provide insights into tissue immune dysregulation that occurs with aging that can be targeted to rejuvenate repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Christopher Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Joscelyn C Mejías
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kavita Krishnan
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Anna Ruta
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Alexis N Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Helen Hieu Nguyen
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Sushma Nagaraj
- Department of Neurology, Brain Science Institute, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Elise F Gray-Gaillard
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Maria Browne
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Ada J Tam
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Elana J Fertig
- Department of Biomedical Engineering and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Franck Housseau
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sudipto Ganguly
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Erika M Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Drew M Pardoll
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| |
Collapse
|
27
|
Alageel AA, Ali Khan I. Involvement of Single Nucleotide Variants in the Klotho Gene Among Obesity Individuals with and without Type 2 Diabetes Mellitus in the Saudi Population. Diabetes Metab Syndr Obes 2024; 17:3603-3617. [PMID: 39363894 PMCID: PMC11448462 DOI: 10.2147/dmso.s473843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose Aging is characterized by the gradual physiological changes and alterations that accumulate over time in the human body. The combination of obesity and ageing can lead to an increased risk of serious health issues or death. Single nucleotide variants (SNVs) in the Klotho gene were commonly studied, including that in type 2 diabetes mellitus (T2DM). Aim The aim of this study is to examine the possible effect of SNVs in Klotho on the obese population in Saudi Arabia using middle-aged participants with and without T2DM. Methods This study consists of 100 controls and 100 obesity patients, in which 50 had T2DM and the remaining 50 were obese without T2DM. Genotyping was performed with PCR, and Sanger sequencing analysis was used to validate the molecular association. Results In this study, rs1207568 (p = 0.001-0.003) and rs9527025 (p = 0.001-0.00004) SNVs were associated with obesity cases. However, none of the genotypes or allele frequencies showed a positive association with the rs564481 SNV (p = 0.344-0.881). The multiple linear regression model showed that waist and hip were associated (p = 0.01-0.02). ANOVA analysis showed age (p = 0.04), hip (p = 0.002), SBP, and TC (p = 0.02) were associated. Finally, SNV (rs1207568 and rs95270250) and obesity (p < 0.001) associations were confirmed through gene multifactor dimensionality reduction analysis with gene-gene interaction, dendrogram, and graphical depletion method. Conclusion This study concludes that rs1207568 and rs9527025 SNVs are associated with obesity in the Saudi population. Additional genetical statistics showed significant association between dependent and independent variables. SNVs in Klotho play a role in the Saudi population's susceptibility to obesity.
Collapse
Affiliation(s)
- Arwa A Alageel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Imran Ali Khan
- Medical Genomic Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Tiwari V, Prajapati B, Asare Y, Damkou A, Ji H, Liu L, Naser N, Gouna G, Leszczyńska KB, Mieczkowski J, Dichgans M, Wang Q, Kawaguchi R, Shi Z, Swarup V, Geschwind DH, Prinz M, Gokce O, Simons M. Innate immune training restores pro-reparative myeloid functions to promote remyelination in the aged central nervous system. Immunity 2024; 57:2173-2190.e8. [PMID: 39053462 DOI: 10.1016/j.immuni.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/21/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.
Collapse
Affiliation(s)
- Vini Tiwari
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Bharat Prajapati
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Yaw Asare
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Hao Ji
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Lu Liu
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Nawraa Naser
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Garyfallia Gouna
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Katarzyna B Leszczyńska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02093 Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02093 Warsaw, Poland; 3P-Medicine Laboratory, Medical University of Gdańsk, 80211 Gdańsk, Poland
| | - Martin Dichgans
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Qing Wang
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Ozgun Gokce
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
29
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Gurven MD, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Roberson J, Ng KS, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612068. [PMID: 39314398 PMCID: PMC11419010 DOI: 10.1101/2024.09.09.612068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)-which profiles ∼4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations-the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia-and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
|
30
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
- Tuba Ege
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
31
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
33
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
34
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
35
|
Marchante-Gayón JM, Nicolás Carcelén J, Potes Rodríguez H, Pineda-Cevallos D, Rodas Sánchez L, González-Gago A, Rodríguez-González P, García Alonso JI. Quantification of modified nucleotides and nucleosides by isotope dilution mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:998-1018. [PMID: 37597182 DOI: 10.1002/mas.21865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
Epigenetic modifications are closely related to certain disorders of the organism, including the development of tumors. One of the main epigenetic modifications is the methylation of DNA cytosines, 5-methyl-2'-deoxycycytidine. Furthermore, 5-mdC can be oxidized to form three new modifications, 5-(hydroxymethyl)-2'-deoxycytidine, 5-formyl-2'-deoxycytidine, and 5-carboxy-2'-deoxycytidine. The coupling of liquid chromatography with tandem mass spectrometry has been widely used for the total determination of methylated DNA cytosines in samples of biological and clinical interest. These methods are based on the measurement of the free compounds (e.g., urine) or after complete hydrolysis of the DNA (e.g., tissues) followed by a preconcentration, derivatization, and/or clean-up step. This review highlights the main advances in the quantification of modified nucleotides and nucleosides by isotope dilution using isotopically labeled analogs combined with liquid or gas chromatography coupled to mass spectrometry reported in the last 20 years. The different possible sources of labeled compounds are indicated. Special emphasis has been placed on the different types of chromatography commonly used (reverse phase and hydrophilic interaction liquid chromatography) and the derivatization methods developed to enhance chromatographic resolution and ionization efficiency. We have also revised the application of bidimensional chromatography and indicated significant biological and clinical applications of these determinations.
Collapse
Affiliation(s)
- Juan M Marchante-Gayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Jesús Nicolás Carcelén
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Helí Potes Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Daniela Pineda-Cevallos
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Laura Rodas Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Adriana González-Gago
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Jose I García Alonso
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
36
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
37
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
38
|
Middeldorp CM, Doyle AE. Editorial: Can Improving Youth Mental Health Reduce Mortality? J Am Acad Child Adolesc Psychiatry 2024; 63:773-774. [PMID: 38718974 DOI: 10.1016/j.jaac.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
It is well established that mental health conditions, including substance use disorders, are associated with premature mortality. A meta-analysis1 has demonstrated that this association holds across a range of diagnoses. Although the effect is stronger for schizophrenia, depression and anxiety contribute to more deaths overall because of their high prevalence rates. Moreover, more than two-thirds of associated deaths were explained by natural causes.1 The next logical questions, then, are as follows: which mechanisms underlie this association, and can they can be mitigated? In the current issue of JAACAP, Clark et al.2 aim to tie mental health symptoms and substance use to the acceleration of biological aging.
Collapse
Affiliation(s)
- Christel M Middeldorp
- Amsterdam UMC, Child Psychiatry and Psychology, Amsterdam Reproduction and Development Research Institute, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; Arkin Mental Health Care, Amsterdam, the Netherlands; Child Health Research Centre, University of Queensland, Brisbane, Australia; Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, Australia; Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands.
| | - Alysa E Doyle
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, MGH, Boston, Massachusetts
| |
Collapse
|
39
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
41
|
Basel A, Bhadsavle SS, Scaturro KZ, Parkey GK, Gaytan MN, Patel JJ, Thomas KN, Golding MC. Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model. Aging Dis 2024:AD.2024.0722. [PMID: 39122451 DOI: 10.14336/ad.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Although detrimental changes in mitochondrial morphology and function are widely described symptoms of fetal alcohol exposure, no studies have followed these mitochondrial deficits into adult life or determined if they predispose individuals with fetal alcohol spectrum disorders (FASDs) to accelerated biological aging. Here, we used a multiplex preclinical mouse model to compare markers of cellular senescence and age-related outcomes induced by maternal, paternal, and dual-parental alcohol exposures. We find that even in middle life (postnatal day 300), the adult offspring of alcohol-exposed parents exhibited significant increases in markers of stress-induced premature cellular senescence in the brain and liver, including an upregulation of cell cycle inhibitory proteins and increased senescence-associated β-galactosidase activity. Strikingly, in the male offspring, we observe an interaction between maternal and paternal alcohol use, with histological indicators of accelerated age-related liver disease in the dual-parental offspring exceeding those induced by either maternal or paternal alcohol use alone. Our studies indicate that chronic parental alcohol use causes enduring mitochondrial dysfunction in offspring, resulting in a reduced NAD+/NAHD ratio and altered expression of the NAD+-dependent deacetylases SIRT1 and SIRT3. These observations suggest that some aspects of FASDs may be linked to accelerated aging due to programmed changes in the regulation of mitochondrial function and cellular bioenergetics.
Collapse
|
42
|
Zheng Z, Li J, Liu T, Fan Y, Zhai QC, Xiong M, Wang QR, Sun X, Zheng QW, Che S, Jiang B, Zheng Q, Wang C, Liu L, Ping J, Wang S, Gao DD, Ye J, Yang K, Zuo Y, Ma S, Yang YG, Qu J, Zhang F, Jia P, Liu GH, Zhang W. DNA methylation clocks for estimating biological age in Chinese cohorts. Protein Cell 2024; 15:575-593. [PMID: 38482631 PMCID: PMC11259550 DOI: 10.1093/procel/pwae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 07/21/2024] Open
Abstract
Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.
Collapse
Affiliation(s)
- Zikai Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiao-Cheng Zhai
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao-Ran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Wen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shanshan Che
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beier Jiang
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Quan Zheng
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Ping
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Dan-Dan Gao
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
García-García I, Grisotto G, Heini A, Gibertoni S, Nusslé S, Gonseth Nusslé S, Donica O. Examining nutrition strategies to influence DNA methylation and epigenetic clocks: a systematic review of clinical trials. FRONTIERS IN AGING 2024; 5:1417625. [PMID: 39077104 PMCID: PMC11284312 DOI: 10.3389/fragi.2024.1417625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
Nutrition has powerful impacts on our health and longevity. One of the mechanisms by which nutrition might influence our health is by inducing epigenetic modifications, modulating the molecular mechanisms that regulate aging. Observational studies have provided evidence of a relationship between nutrition and differences in DNA methylation. However, these studies are limited in that they might not provide an accurate control of the interactions between different nutrients, or between nutrition and other lifestyle behaviors. Here we systematically reviewed clinical studies examining the impact of nutrition strategies on DNA methylation. We examined clinical studies in community-dwelling adults testing the effects of nutrition interventions on i) global DNA methylation and its proxies, and ii) epigenetic clocks. We included 21 intervention studies that focused on the effects of healthy nutrition patterns, specific foods or nutrients, as well as the effect of multivitamin or multimineral supplements. In four studies on the methylation effects of healthy dietary patterns, as defined by being rich in vegetables, fruits, whole-grains, and nuts and reduced in the intake of added sugars, saturated fat, and alcohol, two of them suggested that a healthy diet, is associated with lower epigenetic age acceleration, one of them reported increases in global DNA methylation, while another one found no diet effects. Studies examining epigenetic effects of specific foods, nutrients, or mixtures of nutrients were scarce. For both folic acid and polyunsaturated fatty acids, the available independent studies produced conflicting findings. Although more evidence is still needed to draw firm conclusions, results begin to suggest that healthy dietary patterns have positive effects on DNA methylation. Additional evidence from large randomized-controlled clinical trials is needed to support the effects of healthy nutrition on the DNA methylome.
Collapse
Affiliation(s)
| | | | - Adrian Heini
- Clinique la Prairie, Clarens-Montreux, Vaud, Switzerland
| | | | | | | | - Olga Donica
- Clinique la Prairie, Clarens-Montreux, Vaud, Switzerland
| |
Collapse
|
44
|
Juarez D, Handal-Silva A, Morán-Perales JL, Torres-Cifuentes DM, Flores G, Treviño S, Moreno-Rodriguez A, Guevara J, Diaz A. New insights into sodium phenylbutyrate as a pharmacotherapeutic option for neurological disorders. Synapse 2024; 78:e22301. [PMID: 38819491 DOI: 10.1002/syn.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jose Luis Morán-Perales
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Diana M Torres-Cifuentes
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Samuel Treviño
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Albino Moreno-Rodriguez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
45
|
Griñán-Ferré C, Bellver-Sanchis A, Guerrero A, Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol Res 2024; 205:107247. [PMID: 38834164 DOI: 10.1016/j.phrs.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Nesterova VV, Babenkova PI, Brezgunova AA, Samoylova NA, Sadovnikova IS, Semenovich DS, Andrianova NV, Gureev AP, Plotnikov EY. Differences in the Effect of Beta-Hydroxybutyrate on the Mitochondrial Biogenesis, Oxidative Stress and Inflammation Markers in Tissues from Young and Old Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1336-1348. [PMID: 39218029 DOI: 10.1134/s0006297924070149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024]
Abstract
One of the therapeutic approaches to age-related diseases is modulation of body cell metabolism through certain diets or their pharmacological mimetics. The ketogenic diet significantly affects cell energy metabolism and functioning of mitochondria, which has been actively studied in various age-related pathologies. Here, we investigated the effect of the ketogenic diet mimetic beta-hydroxybutyrate (BHB) on the expression of genes regulating mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam), quality control (Sqstm1), functioning of the antioxidant system (Nfe2l2, Gpx1, Gpx3, Srxn1, Txnrd2, Slc6a9, Slc7a11), and inflammatory response (Il1b, Tnf, Ptgs2, Gfap) in the brain, lungs, heart, liver, kidneys, and muscles of young and old rats. We also analyzed mitochondrial DNA (mtDNA) copy number, accumulation of mtDNA damage, and levels of oxidative stress based on the concentration of reduced glutathione and thiobarbituric acid-reactive substances (TBARS). In some organs, aging disrupted mitochondrial biogenesis and functioning of cell antioxidant system, which was accompanied by the increased oxidative stress and inflammation. Administration of BHB for 2 weeks had different effects on the organs of young and old rats. In particular, BHB upregulated expression of genes coding for proteins associated with the mitochondrial biogenesis and antioxidant system, especially in the liver and muscles of young (but not old) rats. At the same time, BHB contributed to the reduction of TBARS in the kidneys of old rats. Therefore, our study has shown that administration of ketone bodies significantly affected gene expression in organs, especially in young rats, by promoting mitochondrial biogenesis, improving the functioning of the antioxidant defense system, and partially reducing the level of oxidative stress. However, these changes were much less pronounced in old animals.
Collapse
Affiliation(s)
| | | | - Anna A Brezgunova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | - Dmitry S Semenovich
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Artem P Gureev
- Voronezh State University, Voronezh, 394018, Russia
- Voronezh State University of Engineering Technology, Voronezh, 394036, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
47
|
Bhargavan B, Chhunchha B, Kubo E, Singh DP. DNA methylation as an epigenetic mechanism in the regulation of LEDGF expression and biological response in aging and oxidative stress. Cell Death Discov 2024; 10:296. [PMID: 38909054 PMCID: PMC11193803 DOI: 10.1038/s41420-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The physiological quantum of stress-inducible transcriptional protein, Lens Epithelium-Derived Growth Factor (LEDGF), is vital for the maintenance of cellular physiology. Erratic epigenetic reprogramming in response to oxidative stress or with advancing age is found to be a major cause in the gene silencing, leading to pathobiologies. Using aging human (h) eye lens/lens epithelial cells (LECs) coupled with redox-active Peroxiredoxin 6 (Prdx6)-deficient (Prdx6-/-) mLECs as model systems, herein, we showed that in aging/oxidative stress, the human LEDGF gene was regulated by unique methylation patterns of CGs nucleotides within and around the Sp1 binding site(s) of CpG island of the LEDGF promoter (-170 to -27nts). The process caused the repression of LEDGF and its target, Hsp27, resulting in reactive oxygen species (ROS) amplification and cellular insults. This phenomenon was opposed to the unmethylated promoter in LECs. Clinically, we observed that the loss of LEDGF in the Prdx6-/- mLECs or aging lenses/LECs, correlating with increased expression of DNMT1, DNMT3a, and DNMT3b along with the methyl CpG binding protein 2 (MeCP2). Upon oxidative stress, the expression of these molecules was increased with the dramatic reduction in LEDGF expression. While demethylating agent, 5-Aza deoxycytidine (5-AzaC) transposed the aberrant methylation status, and revived LEDGF and Hsp27 expression. Mechanistically, the chloramphenicol acetyltransferase (CAT) reporter gene driven by the LEDGF promoter (-170/ + 35) and ChIP assays uncovered that 5-AzaC acted on GC/Sp1 sites to release LEDGF transcription. The data argued, for the first time, that de novo methylation of CGs around and within Sp1 sites of the CpG island directly disrupted Sp1 activity, which ensued in LEDGF repression and its biological functions. The findings should improve our understanding of cellular insults-associated with aberrant DNMTs-mediated LEDGF's activity, and can offer strategies for therapeutic intervention to halt aging/oxidative stress-induced abnormalities.
Collapse
Affiliation(s)
- Biju Bhargavan
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, 9200293, Japan
| | - Dhirendra P Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
48
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Shrestha B, Nieminen AI, Matilainen O. Loss of the histone chaperone UNC-85/ASF1 inhibits the epigenome-mediated longevity and modulates the activity of one-carbon metabolism. Cell Stress Chaperones 2024; 29:392-403. [PMID: 38608859 PMCID: PMC11039323 DOI: 10.1016/j.cstres.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism Caenorhabditis elegans to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase ash-2 does not extend the lifespan of unc-85 mutants. In this context, we found that the longevity-promoting ash-2 RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component dao-3/MTHFD2 partially rescues the short lifespan of unc-85 mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
50
|
Farina MP, Klopack ET, Umberson D, Crimmins EM. The embodiment of parental death in early life through accelerated epigenetic aging: Implications for understanding how parental death before 18 shapes age-related health risk among older adults. SSM Popul Health 2024; 26:101648. [PMID: 38596364 PMCID: PMC11002886 DOI: 10.1016/j.ssmph.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Parental death in early life has been linked to various adverse health outcomes in older adulthood. This study extends prior research to evaluate how parental death in early life is tied to accelerated epigenetic aging, a potentially important biological mechanism from which social and environmental exposures impact age-related health. We used data from the 2016 Venous Blood Study (VBS), a component of the Health and Retirement Study (HRS), to examine the association between parental death in early life and accelerated epigenetic aging as measured by three widely used epigenetic clocks (PCPhenoAge, PCGrimAge, and DunedinPACE). We also assessed whether some of the association is explained by differences in educational attainment, depressive symptoms, and smoking behavior. Methods included a series of linear regression models and formal mediation analysis. Findings indicated that parental death in early life is associated with accelerated epigenetic aging for PCPhenoAge and DunedinPACE. The inclusion of educational attainment, depressive symptoms, and smoking behavior attenuated this association, with formal mediation analysis providing additional support for these observations. Parental death in early life may be one of the most difficult experiences an individual may face. The elevated biological risk associated with parental death in early life may operate through immediate changes but also through more downstream risk factors. This study highlights how early life adversity can set in motion biological changes that have lifelong consequences.
Collapse
Affiliation(s)
- Mateo P. Farina
- Department of Human Development and Family Sciences, University of Texas at Austin, United States
- Population Research Center, University of Texas at Austin, United States
| | - Eric T. Klopack
- Davis School of Gerontology, University of Southern California, United States
| | - Debra Umberson
- Population Research Center, University of Texas at Austin, United States
- Department of Sociology, University of Texas at Austin, United States
| | - Eileen M. Crimmins
- Davis School of Gerontology, University of Southern California, United States
| |
Collapse
|