1
|
Tompary A, Davachi L. Integration of overlapping sequences emerges with consolidation through medial prefrontal cortex neural ensembles and hippocampal-cortical connectivity. eLife 2024; 13:e84359. [PMID: 39545928 DOI: 10.7554/elife.84359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Systems consolidation theories propose two mechanisms that enable the behavioral integration of related memories: coordinated reactivation between hippocampus and cortex, and the emergence of cortical traces that reflect overlap across memories. However, there is limited empirical evidence that links these mechanisms to the emergence of behavioral integration over time. In two experiments, participants implicitly encoded sequences of objects with overlapping structure. Assessment of behavioral integration showed that response times during a recognition task reflected behavioral priming between objects that never occurred together in time but belonged to overlapping sequences. This priming was consolidation-dependent and only emerged for sequences learned 24 hr prior to the test. Critically, behavioral integration was related to changes in neural pattern similarity in the medial prefrontal cortex and increases in post-learning rest connectivity between the posterior hippocampus and lateral occipital cortex. These findings suggest that memories with a shared predictive structure become behaviorally integrated through a consolidation-related restructuring of the learned sequences, providing insight into the relationship between different consolidation mechanisms that support behavioral integration.
Collapse
|
2
|
Cassel JC, Panzer E, Guimaraes-Olmo I, Cosquer B, de Vasconcelos AP, Stephan A. The ventral midline thalamus and long-term memory: What consolidation, what retrieval, what plasticity in rodents? Neurosci Biobehav Rev 2024; 167:105932. [PMID: 39454977 DOI: 10.1016/j.neubiorev.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France.
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Isabella Guimaraes-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| |
Collapse
|
3
|
Jun DJ, Shannon R, Tschida K, Smith DM. The Infralimbic, but not the Prelimbic Cortex is needed for a Complex Olfactory Memory Task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618554. [PMID: 39463969 PMCID: PMC11507807 DOI: 10.1101/2024.10.15.618554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in memory and behavioral flexibility, and a growing body of evidence suggests that the prelimbic (PL) and infralimbic (IL) subregions contribute differently to these processes. Studies of fear conditioning and goal-directed learning suggest that the PL promotes behavioral responses and memory retrieval, while the IL inhibits them. Other studies have shown that the mPFC is engaged under conditions of high interference. This raises the possibility that the PL and IL play differing roles in resolving interference. To examine this, we first used chemogenetics (DREADDs) to suppress mPFC neuronal activity and tested subjects on a conditional discrimination task known to be sensitive to muscimol inactivation. After confirming the effectiveness of the DREADD procedures, we conducted a second experiment to examine the PL and IL roles in a high interference memory task. We trained rats on two consecutive sets of conflicting odor discrimination problems, A and B, followed by test sessions involving a mid-session switch between the problem sets. Controls repeatedly performed worse on Set A, suggesting that learning Set B inhibited the rats' ability to retrieve Set A memories (i.e. retroactive interference). PL inactivation rats performed similarly to controls. However, IL inactivation rats did not show this effect, suggesting that the IL plays a critical role in suppressing the retrieval of previously acquired memories that may interfere with retrieval of more recent memories. These results suggest that the IL plays a critical role in memory control processes needed for resolving interference.
Collapse
Affiliation(s)
- Dahae J. Jun
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Rebecca Shannon
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Katherine Tschida
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - David M. Smith
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| |
Collapse
|
4
|
Lei L, Lai CSW, Lee TMC, Lam CLM. The effect of transcranial direct current and magnetic stimulation on fear extinction and return of fear: A meta-analysis and systematic review. J Affect Disord 2024; 362:263-286. [PMID: 38908557 DOI: 10.1016/j.jad.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND We conducted a meta-analysis and qualitative review on the randomized controlled trials investigating the effects of transcranial direct current stimulation and transcranial magnetic stimulation on fear extinction and the return of fear in non-primate animals and humans. METHODS The meta-analysis was conducted by searching PubMed, Web of science, PsycINFO, and Cochrane Library and extracting fear response in the active and sham groups in the randomized controlled trials. The pooled effect size was quantified by Hedges' g using a three-level meta-analytic model in R. RESULTS We identified 18 articles on the tDCS effect and 5 articles on the TMS effect, with 466 animal subjects and 621 human subjects. Our findings show that tDCS of the prefrontal cortex significantly inhibit fear retrieval in animal models (Hedges' g = -0.50). In human studies, TMS targeting the dorsolateral/ventromedial prefrontal cortex has an inhibiting effect on the return of fear (Hedges' g = -0.24). LIMITATIONS The limited number of studies and the heterogeneous designs of the selected studies made cross-study and cross-species comparison difficult. CONCLUSIONS Our findings shed light on the optimal non-invasive brain stimulation protocols for targeting the neural circuitry of threat extinction in humans.
Collapse
Affiliation(s)
- Letian Lei
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Cora S W Lai
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Centofante E, Santoboni M, Mombelli ELJ, Rinaldi A, Mele A. Distinct Roles of Medial Prefrontal Cortex Subregions in the Consolidation and Recall of Remote Spatial Memories. eNeuro 2024; 11:ENEURO.0192-24.2024. [PMID: 39406482 PMCID: PMC11493174 DOI: 10.1523/eneuro.0192-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
It is a common belief that memories, over time, become progressively independent of the hippocampus and are gradually stored in cortical areas. This view is mainly based on evidence showing that prefrontal cortex (PFC) manipulations impair the retrieval of remote memories, while hippocampal inhibition does not. More controversial is whether activity in the medial PFC is required immediately after learning to initiate consolidation. Another question concerns functional differences among PFC subregions in forming and storing remote memories. To address these issues, we directly contrasted the effects of loss-of-function manipulations of the anterior cingulate cortex (aCC) and the ventromedial PFC, which includes the infralimbic (IL) and prelimbic (PL) cortices, before testing and immediately after training on the ability of CD1 mice to recall the hidden platform location in the Morris water maze. We injected an AAV carrying the hM4Di receptor into the PL-IL or aCC. Interestingly, pretest administrations of clozapine-N-oxide (CNO; 3 mg/kg) revealed that the aCC, but not the PL-IL, was necessary to recall remote spatial information. Furthermore, systemic post-training administration of CNO impaired memory recall at remote, but not recent, time points in both groups. These findings revealed a functional dissociation between the two prefrontal areas, demonstrating that both the PL-IL and the aCC are involved in early consolidation of remote spatial memories, but only the aCC is engaged in their recall.
Collapse
Affiliation(s)
- Eleonora Centofante
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Mattia Santoboni
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Elena L J Mombelli
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Andrea Mele
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| |
Collapse
|
6
|
Liu S, Nawarawong N, Liu X, Liu QS, Olsen CM. Dissociable dorsal medial prefrontal cortex ensembles are necessary for cocaine seeking and fear conditioning in mice. Transl Psychiatry 2024; 14:387. [PMID: 39313502 PMCID: PMC11420216 DOI: 10.1038/s41398-024-03068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The dorsal medial prefrontal cortex (dmPFC) plays a dual role in modulating drug seeking and fear-related behaviors. Learned associations between cues and drug seeking are encoded by a specific ensemble of neurons. This study explored the stability of a dmPFC cocaine seeking ensemble over 2 weeks and its influence on persistent cocaine seeking and fear memory retrieval. In the first series of experiments, we trained TetTag c-fos-driven-EGFP mice in cocaine self-administration and tagged strongly activated neurons with EGFP during the initial day 7 cocaine seeking session. Subsequently, a follow-up seeking test was conducted 2 weeks later to examine ensemble reactivation between two seeking sessions via c-Fos immunostaining. In the second series of experiments, we co-injected viruses expressing TRE-cre and a cre-dependent inhibitory PSAM-GlyR into the dmPFC of male and female c-fos-tTA mice to enable "tagging" of cocaine seeking ensemble or cued fear ensemble neurons with inhibitory chemogenetic receptors. These c-fos-tTA mice have the c-fos promoter that drives expression of the tetracycline transactivator (tTA). The tTA can bind to the tetracycline response element (TRE) site on the viral construct, resulting in the expression of cre-recombinase, which enables the expression of cre-dependent inhibitory chemogenetic receptors and fluorescent reporters. Then we investigated ensemble contribution to subsequent cocaine seeking and fear recall during inhibition of the tagged ensemble by administering uPSEM792s (0.3 mg/kg), a selective ligand for PSAM-GlyR. In both sexes, there was a positive association between the persistence of cocaine seeking and the proportion of reactivated EGFP+ neurons within the dmPFC. More importantly, inhibition of the cocaine seeking ensemble suppressed cocaine seeking, but not recall of fear memory, while inhibition of the fear ensemble reduced conditioned freezing but not cocaine seeking. The results demonstrate that cocaine and fear recall ensembles in the dmPFC are stable, but largely exclusive from one another.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Natalie Nawarawong
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaojie Liu
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher M Olsen
- Department of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Zou GJ, Chen ZR, Wang XQ, Cui YH, Li F, Li CQ, Wang LF, Huang FL. Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction. Eur J Pharmacol 2024; 978:176759. [PMID: 38901527 DOI: 10.1016/j.ejphar.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Excessive or inappropriate fear responses can lead to anxiety-related disorders, such as post-traumatic stress disorder (PTSD). Studies have shown that microglial activation occurs after fear conditioning and that microglial inhibition impacts fear memory. However, the role of microglia in fear memory recall remains unclear. In this study, we investigated the activated profiles of microglia after the recall of remote-cued fear memory and the role of activated microglia in the extinction of remote-cued fear in adult male C57BL/6 mice. The results revealed that the expression of the microglia marker Iba1 increased in the medial prefrontal cortex (mPFC) at 10 min and 1 h following remote-cued fear recall, which was accompanied by amoeboid morphology. Inhibiting microglial activation through PLX3397 treatment before remote fear recall did not affect recall, reconsolidation, or regular extinction but facilitated recall-extinction and mitigated spontaneous recovery. Moreover, our results demonstrated reduced co-expression of Iba1 and postsynaptic density protein 95 (PSD95) in the mPFC, along with decreases in the p-PI3K/PI3K ratio, p-Akt/Akt ratio, and KLF4 expression after PLX3397 treatment. Our results suggest that microglial activation after remote fear recall impedes fear extinction through the pruning of synapses in the mPFC, accompanied by alterations in the expression of the PI3K/AKT/KLF4 pathway. This finding can help elucidate the mechanism involved in remote fear extinction, contributing to the theoretical foundation for the intervention and treatment of PTSD.
Collapse
Affiliation(s)
- Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan, 413000, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; Hunan University of Chinese Medicine, Changsha, Hunan, 410219, China
| | - Xue-Qin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Lai-Fa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Fu-Lian Huang
- School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan, 413000, China.
| |
Collapse
|
8
|
Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem 2024; 213:107943. [PMID: 38821256 DOI: 10.1016/j.nlm.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Liu W, Chen QY, Li XH, Zhou Z, Zhuo M. Cortical Tagged Synaptic Long-Term Depression in the Anterior Cingulate Cortex of Adult Mice. J Neurosci 2024; 44:e0028242024. [PMID: 39054067 PMCID: PMC11358531 DOI: 10.1523/jneurosci.0028-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD; however, blocking N-methyl-d-aspartate receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels, also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.
Collapse
Affiliation(s)
- Weiqi Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
| | - Qi-Yu Chen
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
| | - Zhaoxiang Zhou
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Department of Exercise & Health Science, Xi'an Physical Education University, Xi'an 710068, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
10
|
Hori H, Fukushima H, Nagayoshi T, Ishikawa R, Zhuo M, Yoshida F, Kunugi H, Okamoto K, Kim Y, Kida S. Fear memory regulation by the cAMP signaling pathway as an index of reexperiencing symptoms in posttraumatic stress disorder. Mol Psychiatry 2024; 29:2105-2116. [PMID: 38409596 PMCID: PMC11408251 DOI: 10.1038/s41380-024-02453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder associated with traumatic memory, yet its etiology remains unclear. Reexperiencing symptoms are specific to PTSD compared to other anxiety-related disorders. Importantly, reexperiencing can be mimicked by retrieval-related events of fear memory in animal models of traumatic memory. Recent studies revealed candidate PTSD-associated genes that were related to the cyclic adenosine monophosphate (cAMP) signaling pathway. Here, we demonstrate the tight linkage between facilitated cAMP signaling and PTSD by analyzing loss- and gain-of-cAMP signaling effects on fear memory in mice and the transcriptomes of fear memory-activated mice and female PTSD patients with reexperiencing symptoms. Pharmacological and optogenetic upregulation or downregulation of cAMP signaling transduction enhanced or impaired, respectively, the retrieval and subsequent maintenance of fear memory in mice. In line with these observations, integrative mouse and human transcriptome analysis revealed the reduced mRNA expression of phosphodiesterase 4B (PDE4B), an enzyme that degrades cAMP, in the peripheral blood of PTSD patients showing more severe reexperiencing symptoms and the mouse hippocampus after fear memory retrieval. Importantly, more severe reexperiencing symptoms and lower PDE4B mRNA levels were correlated with decreased DNA methylation of a locus within PDE4B, suggesting the involvement of methylation in the mechanism of PTSD. These findings raise the possibility that the facilitation of cAMP signaling mediating the downregulation of PDE4B expression enhances traumatic memory, thereby playing a key role in the reexperiencing symptoms of PTSD patients as a functional index of these symptoms.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Hotaka Fukushima
- Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Taikai Nagayoshi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rie Ishikawa
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
11
|
Santos TB, de Oliveira Coelho CA, Kramer-Soares JC, Frankland PW, Oliveira MGM. Reactivation of encoding ensembles in the prelimbic cortex supports temporal associations. Neuropsychopharmacology 2024; 49:1296-1308. [PMID: 38454052 PMCID: PMC11224261 DOI: 10.1038/s41386-024-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Fear conditioning is encoded by strengthening synaptic connections between the neurons activated by a conditioned stimulus (CS) and those activated by an unconditioned stimulus (US), forming a memory engram, which is reactivated during memory retrieval. In temporal associations, activity within the prelimbic cortex (PL) plays a role in sustaining a short-term, transient memory of the CS, which is associated with the US after a temporal gap. However, it is unknown whether the PL has only a temporary role, transiently representing the CS, or is part of the neuronal ensembles that support the retrieval, i.e., whether PL neurons support both transient, short-term memories and stable, long-term memories. We investigated neuronal ensembles underlying temporal associations using fear conditioning with a 5-s interval between the CS and US (CFC-5s). Controls were trained in contextual fear conditioning (CFC), in which the CS-US overlaps. We used Robust Activity Marking (RAM) to selectively manipulate PL neurons activated by CFC-5s learning and Targeted Recombination in Active Populations (TRAP2) mice to label neurons activated by CFC-5s learning and reactivated by memory retrieval in the amygdala, medial prefrontal cortex, hippocampus, perirhinal cortices (PER) and subiculum. We also computed their co-reactivation to generate correlation-based networks. The optogenetic reactivation or silencing of PL encoding ensembles either promoted or impaired the retrieval of CFC-5s but not CFC. CFC-5s retrieval reactivated encoding ensembles in the PL, PER, and basolateral amygdala. The engram network of CFC-5s had higher amygdala and PER centralities and interconnectivity. The same PL neurons support learning and stable associative memories.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil.
| | | | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | - Paul W Frankland
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | | |
Collapse
|
12
|
Joo B, Xu S, Park H, Kim K, Rah JC, Koo JW. Parietal-Frontal Pathway Controls Relapse of Fear Memory in a Novel Context. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100315. [PMID: 38726036 PMCID: PMC11078648 DOI: 10.1016/j.bpsgos.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Background Fear responses significantly affect daily life and shape our approach to uncertainty. However, the potential resurgence of fear in unfamiliar situations poses a significant challenge to exposure-based therapies for maladaptive fear responses. Nonetheless, how novel contextual stimuli are associated with the relapse of extinguished fear remains unknown. Methods Using a context-dependent fear renewal model, the functional circuits and underlying mechanisms of the posterior parietal cortex (PPC) and anterior cingulate cortex (ACC) were investigated using optogenetic, histological, in vivo, and ex vivo electrophysiological and pharmacological techniques. Results We demonstrated that the PPC-to-ACC pathway governs fear relapse in a novel context. We observed enhanced populational calcium activity in the ACC neurons that received projections from the PPC and increased synaptic activity in the basolateral amygdala-projecting PPC-to-ACC neurons upon renewal in a novel context, where excitatory postsynaptic currents amplitudes increased but inhibitory postsynaptic current amplitudes decreased. In addition, we found that parvalbumin-expressing interneurons controlled novel context-dependent fear renewal, which was blocked by the chronic administration of fluoxetine. Conclusions Our findings highlight the PPC-to-ACC pathway in mediating the relapse of extinguished fear in novel contexts, thereby contributing significant insights into the intricate neural mechanisms that govern fear renewal.
Collapse
Affiliation(s)
- Bitna Joo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Shijie Xu
- Medical Research Center, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hyungju Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jong-Cheol Rah
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Sensory & Motor Systems Neuroscience Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
13
|
Zangen E, Hadar S, Lawrence C, Obeid M, Rasras H, Hanzin E, Aslan O, Zur E, Schulcz N, Cohen-Hatab D, Samama Y, Nir S, Li Y, Dobrotvorskia I, Sabbah S. Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nat Commun 2024; 15:5501. [PMID: 38951486 PMCID: PMC11217280 DOI: 10.1038/s41467-024-49794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.
Collapse
Affiliation(s)
- Elyashiv Zangen
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shira Hadar
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Christopher Lawrence
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Mustafa Obeid
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Hala Rasras
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ella Hanzin
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ori Aslan
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Eyal Zur
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Nadav Schulcz
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Daniel Cohen-Hatab
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yona Samama
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Sarah Nir
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yi Li
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Irina Dobrotvorskia
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
14
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
15
|
Mocle AJ, Ramsaran AI, Jacob AD, Rashid AJ, Luchetti A, Tran LM, Richards BA, Frankland PW, Josselyn SA. Excitability mediates allocation of pre-configured ensembles to a hippocampal engram supporting contextual conditioned threat in mice. Neuron 2024; 112:1487-1497.e6. [PMID: 38447576 PMCID: PMC11065628 DOI: 10.1016/j.neuron.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Little is understood about how engrams, sparse groups of neurons that store memories, are formed endogenously. Here, we combined calcium imaging, activity tagging, and optogenetics to examine the role of neuronal excitability and pre-existing functional connectivity on the allocation of mouse cornu ammonis area 1 (CA1) hippocampal neurons to an engram ensemble supporting a contextual threat memory. Engram neurons (high activity during recall or TRAP2-tagged during training) were more active than non-engram neurons 3 h (but not 24 h to 5 days) before training. Consistent with this, optogenetically inhibiting scFLARE2-tagged neurons active in homecage 3 h, but not 24 h, before conditioning disrupted memory retrieval, indicating that neurons with higher pre-training excitability were allocated to the engram. We also observed stable pre-configured functionally connected sub-ensembles of neurons whose activity cycled over days. Sub-ensembles that were more active before training were allocated to the engram, and their functional connectivity increased at training. Therefore, both neuronal excitability and pre-configured functional connectivity mediate allocation to an engram ensemble.
Collapse
Affiliation(s)
- Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adam I Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Alexander D Jacob
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Alessandro Luchetti
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Lina M Tran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada
| | | | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
16
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Refaeli R, Kreisel T, Yaish TR, Groysman M, Goshen I. Astrocytes control recent and remote memory strength by affecting the recruitment of the CA1→ACC projection to engrams. Cell Rep 2024; 43:113943. [PMID: 38483907 PMCID: PMC10995765 DOI: 10.1016/j.celrep.2024.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/14/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
The maturation of engrams from recent to remote time points involves the recruitment of CA1 neurons projecting to the anterior cingulate cortex (CA1→ACC). Modifications of G-protein-coupled receptor pathways in CA1 astrocytes affect recent and remote recall in seemingly contradictory ways. To address this inconsistency, we manipulated these pathways in astrocytes during memory acquisition and tagged c-Fos-positive engram cells and CA1→ACC cells during recent and remote recall. The behavioral results were coupled with changes in the recruitment of CA1→ACC projection cells to the engram: Gq pathway activation in astrocytes caused enhancement of recent recall alone and was accompanied by earlier recruitment of CA1→ACC projecting cells to the engram. In contrast, Gi pathway activation in astrocytes resulted in the impairment of only remote recall, and CA1→ACC projecting cells were not recruited during remote memory. Finally, we provide a simple working model, hypothesizing that Gq and Gi pathway activation affect memory differently, by modulating the same mechanism: CA1→ACC projection.
Collapse
Affiliation(s)
- Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Maya Groysman
- ELSC Vector Core Facility, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
18
|
Liu S, Nawarawong N, Liu X, Liu QS, Olsen CM. Dissociable dorsal medial prefrontal cortex ensembles are necessary for cocaine seeking and fear conditioning in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585444. [PMID: 38562850 PMCID: PMC10983871 DOI: 10.1101/2024.03.17.585444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dmPFC plays a dual role in modulating drug seeking and fear-related behaviors. Learned associations between cues and drug seeking are encoded by a specific ensemble of neurons. This study explored the stability of a dmPFC cocaine seeking ensemble over two weeks and its influence on persistent cocaine seeking and fear memory retrieval. In the first series of experiments, we trained TetTag mice in cocaine self-administration and tagged strongly activated neurons with EGFP during the initial day 7 cocaine seeking session. Subsequently, a follow-up seeking test was conducted two weeks later to examine ensemble reactivation between two seeking sessions via c-Fos immunostaining. In the second series of experiments, we co-injected viruses expressing TRE-cre and a cre-dependent inhibitory PSAM-GlyR into the dmPFC of male and female c-fos -tTA mice to enable "tagging" of cocaine seeking ensemble or cued fear ensemble neurons with an inhibitory chemogenetic receptors. Then we investigated their contribution to subsequent cocaine seeking and fear recall during inhibition of the tagged ensemble by administering uPSEM792s (0.3 mg/kg), a selective ligand for PSAM-GlyR. In both sexes, there was a positive association between the persistence of cocaine seeking and the proportion of reactivated EGFP+ neurons within the dmPFC. More importantly, inhibition of the cocaine seeking ensemble suppressed cocaine seeking, but not recall of fear memory, while inhibition of the fear ensemble reduced conditioned freezing but not cocaine seeking. The results demonstrate that cocaine and fear recall ensembles in the dmPFC are stable, but largely exclusive from one another.
Collapse
|
19
|
Krasne FB, Fanselow MS. Remote memory in a Bayesian model of context fear conditioning (BaconREM). Front Behav Neurosci 2024; 17:1295969. [PMID: 38515786 PMCID: PMC10955142 DOI: 10.3389/fnbeh.2023.1295969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/13/2023] [Indexed: 03/23/2024] Open
Abstract
Here, we propose a model of remote memory (BaconREM), which is an extension of a previously published Bayesian model of context fear learning (BACON) that accounts for many aspects of recently learned context fear. BaconREM simulates most known phenomenology of remote context fear as studied in rodents and makes new predictions. In particular, it predicts the well-known observation that fear that was conditioned to a recently encoded context becomes hippocampus-independent and shows much-enhanced generalization ("hyper-generalization") when systems consolidation occurs (i.e., when memory becomes remote). However, the model also predicts that there should be circumstances under which the generalizability of remote fear may not increase or even decrease. It also predicts the established finding that a "reminder" exposure to a feared context can abolish hyper-generalization while at the same time making remote fear again hippocampus-dependent. This observation has in the past been taken to suggest that reminders facilitate access to detail memory that remains permanently in the hippocampus even after systems consolidation is complete. However, the present model simulates this result even though it totally moves all the contextual memory that it retains to the neo-cortex when context fear becomes remote.
Collapse
Affiliation(s)
- Franklin B. Krasne
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Dirven BCJ, van Melis L, Daneva T, Dillen L, Homberg JR, Kozicz T, Henckens MJAG. Hippocampal Trauma Memory Processing Conveying Susceptibility to Traumatic Stress. Neuroscience 2024; 540:87-102. [PMID: 38220126 DOI: 10.1016/j.neuroscience.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.
Collapse
Affiliation(s)
- Bart C J Dirven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lennart van Melis
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Teya Daneva
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lieke Dillen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Center for Individualized Medicine, Department of Clinical Genomics, and Biochemical Genetics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; University of Pecs Medical School, Department of Anatomy, Pecs, Hungary
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages. Bioessays 2024; 46:e2300160. [PMID: 38135889 DOI: 10.1002/bies.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
22
|
Ramos-Medina L, Rosas-Vidal LE, Patel S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology (Berl) 2024; 241:569-584. [PMID: 38182791 PMCID: PMC10884152 DOI: 10.1007/s00213-023-06523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.
Collapse
Affiliation(s)
| | - Luis E Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Tallman CW, Luo Z, Smith CN. Human brain activity and functional connectivity associated with verbal long-term memory consolidation across 1 month. Front Hum Neurosci 2024; 18:1342552. [PMID: 38450223 PMCID: PMC10915245 DOI: 10.3389/fnhum.2024.1342552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Declarative memories are initially dependent on the hippocampus and become stabilized through the neural reorganization of connections between the medial temporal lobe and neocortex. The exact time-course of these neural changes is not well established, although time-dependent changes in retrieval-related brain function can be detected across relatively short time periods in humans (e.g., hours to months). Methods In a study involving older adults with normal cognition (N = 24), we investigated changes in brain activity and functional connectivity associated with the long-term memory consolidation of verbal material over one month. Participants studied fact-like, three-word sentences at 1-month, 1-week, 1-day, and 1-hour intervals before a recognition memory test inside an MRI scanner. Old/new recognition with confidence ratings and response times were recorded. We examined whole-brain changes in retrieval-related brain activity, as well as functional connectivity of the hippocampus and ventromedial prefrontal cortex (vmPFC), as memories aged from 1 hour to 1 month. Secondary analyses minimized the effect of confounding factors affected by memory age (i.e., changes in confidence and response time or re-encoding of targets). Results Memory accuracy, confidence ratings, and response times changed with memory age. A memory age network was identified where retrieval-related brain activity in cortical regions increased or decreased as a function of memory age. Hippocampal brain activity in an anatomical region of interest decreased with memory age. Importantly, these changes in retrieval-related activity were not confounded with changes in activity related to concomitant changes in behavior or encoding. Exploratory analyses of vmPFC functional connectivity as a function of memory age revealed increased connectivity with the posterior parietal cortex, as well as with the vmPFC itself. In contrast, hippocampal functional connectivity with the vmPFC and orbitofrontal cortex decreased with memory age. Discussion The observed changes in retrieval-related brain activity and functional connectivity align with the predictions of standard systems consolidation theory. These results suggest that processes consistent with long-term memory consolidation can be identified over short time periods using fMRI, particularly for verbal material.
Collapse
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
| | - Zhishang Luo
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
- Halıcıoğlu Data Science Institute, University of California, San Diego, San Diego, CA, United States
| | - Christine N. Smith
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Cruz AS, Cruz S, Remondes M. Effects of optogenetic silencing the anterior cingulate cortex in a delayed non-match to trajectory task. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae002. [PMID: 38595941 PMCID: PMC10939314 DOI: 10.1093/oons/kvae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Working memory is a fundamental cognitive ability, allowing us to keep information in memory for the time needed to perform a given task. A complex neural circuit fulfills these functions, among which is the anterior cingulate cortex (CG). Functionally and anatomically connected to the medial prefrontal, retrosplenial, midcingulate and hippocampus, as well as motor cortices, CG has been implicated in retrieving appropriate information when needed to select and control appropriate behavior. The role of cingulate cortex in working memory-guided behaviors remains unclear due to the lack of studies reversibly interfering with its activity during specific epochs of working memory. We used eNpHR3.0 to silence cingulate neurons while animals perform a standard delayed non-match to trajectory task, and found that, while not causing an absolute impairment in working memory, silencing cingulate neurons during retrieval decreases the mean performance if compared to silencing during encoding. Such retrieval-associated changes are accompanied by longer delays observed when light is delivered to control animals, when compared to eNpHR3.0+ ones, consistent with an adaptive recruitment of additional cognitive resources.
Collapse
Affiliation(s)
- Ana S Cruz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sara Cruz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel Remondes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
- Faculdade de Medicina Veterinária Universidade Lusófona, Lisbon 1749-024, Portugal
| |
Collapse
|
25
|
Met Hoxha E, Robinson PK, Greer KM, Trask S. Generalization and discrimination of inhibitory avoidance differentially engage anterior and posterior retrosplenial subregions. Front Behav Neurosci 2024; 18:1327858. [PMID: 38304851 PMCID: PMC10832059 DOI: 10.3389/fnbeh.2024.1327858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction In a variety of behavioral procedures animals will show selective fear responding in shock-associated contexts, but not in other contexts. However, several factors can lead to generalized fear behavior, where responding is no longer constrained to the conditioning context and will transfer to novel contexts. Methods Here, we assessed memory generalization using an inhibitory avoidance paradigm to determine if generalized avoidance behavior engages the retrosplenial cortex (RSC). Male and female Long Evans rats received inhibitory avoidance training prior to testing in the same context or a shifted context in two distinct rooms; one room that had fluorescent lighting (Light) and one that had red LED lighting (Dark). Results We found that animals tested in a light context maintained context-specificity; animals tested in the same context as training showed longer latencies to cross and animals tested in the shifted context showed shorter latencies to cross. However, animals tested in the dark generalized their avoidance behavior; animals tested in the same context and animals tested in the shifted context showed similarly-high latencies to cross. We next examined expression of the immediate early gene zif268 and perineuronal nets (PNNs) following testing and found that while activity in the basolateral amygdala corresponded with overall levels of avoidance behaviors, anterior RSC (aRSC) activity corresponded with learned avoidance generally, but posterior RSC (pRSC) activity seemed to correspond with generalized memory. PNN reduction in the RSC was associated with memory formation and retrieval, suggesting a role for PNNs in synaptic plasticity. Further, PNNs did not reduce in the RSC in animals who showed a generalized avoidance behavior, in line with their hypothesized role in memory consolidation. Discussion These findings suggest that there is differential engagement of retrosplenial subregions along the rostrocaudal axis to generalization and discrimination.
Collapse
Affiliation(s)
- Erisa Met Hoxha
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
| | - Payton K. Robinson
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
| | - Kaitlyn M. Greer
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
| | - Sydney Trask
- Purdue University Department of Psychological Sciences, West Lafayette, IN, United States
- Purdue University Institute for Integrative Neuroscience, West Lafayette, IN, United States
- Purdue University Center on Aging and the Life Course, West Lafayette, IN, United States
| |
Collapse
|
26
|
Zeidler Z, DeNardo L. The Role of Prefrontal Ensembles in Memory Across Time: Time-Dependent Transformations of Prefrontal Memory Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:67-78. [PMID: 39008011 DOI: 10.1007/978-3-031-62983-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in recalling recent and remote fearful memories. Modern neuroscience techniques, such as projection-specific circuit manipulation and activity-dependent labeling, have illuminated how mPFC memory ensembles are reorganized over time. This chapter discusses the implications of new findings for traditional theories of memory, such as the systems consolidation theory and theories of memory engrams. It also examines the specific contributions of mPFC subregions, like the prelimbic and infralimbic cortices, in fear memory, highlighting how their distinct connections influence memory recall. Further, it elaborates on the cellular and molecular changes within the mPFC that support memory persistence and how these are influenced by interactions with the hippocampus. Ultimately, this chapter provides insights into how lasting memories are dynamically encoded in prefrontal circuits, arguing for a key role of memory ensembles that extend beyond strict definitions of the engram.
Collapse
Affiliation(s)
- Zachary Zeidler
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Laura DeNardo
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Fuentes-Ramos M, Barco Á. Unveiling Transcriptional and Epigenetic Mechanisms Within Engram Cells: Insights into Memory Formation and Stability. ADVANCES IN NEUROBIOLOGY 2024; 38:111-129. [PMID: 39008013 DOI: 10.1007/978-3-031-62983-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memory traces for behavioral experiences, such as fear conditioning or taste aversion, are believed to be stored through biophysical and molecular changes in distributed neuronal ensembles across various brain regions. These ensembles are known as engrams, and the cells that constitute them are referred to as engram cells. Recent advancements in techniques for labeling and manipulating neural activity have facilitated the study of engram cells throughout different memory phases, including acquisition, allocation, long-term storage, retrieval, and erasure. In this chapter, we will explore the application of next-generation sequencing methods to engram research, shedding new light on the contribution of transcriptional and epigenetic mechanisms to engram formation and stability.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain.
| |
Collapse
|
28
|
Aggleton JP, Vann SD, O'Mara SM. Converging diencephalic and hippocampal supports for episodic memory. Neuropsychologia 2023; 191:108728. [PMID: 37939875 DOI: 10.1016/j.neuropsychologia.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom.
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College, Dublin - the University of Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
29
|
Casagrande MA, Porto RR, Haubrich J, Kautzmann A, de Oliveira Álvares L. Emotional Value of Fear Memory and the Role of the Ventral Hippocampus in Systems Consolidation. Neuroscience 2023; 535:184-193. [PMID: 37944583 DOI: 10.1016/j.neuroscience.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Recent studies have explored the circuitry involving the ventral hippocampus (vHPC), the amygdala, and the prefrontal cortex, a pathway mainly activated to store contextual information efficiently. Lesions in the vHPC impair remote memory, but not in the short term. However, how the vHPC is affected by distinct memory strength or its role in systems consolidation has not yet been elucidated. Here, we investigated how distinct training intensities, with strong or weak contextual fear conditioning, affect activation of the dorsal hippocampus (dHPC) and the vHPC. We found that the time course of memory consolidation differs in fear memories of different training intensities in both the dHPC and vHPC. Our results also indicate that memory generalization happens alongside greater activation of the vHPC, and these processes occur faster with stronger fear memories. The vHPC is required for the expression of remote fear memory and may control contextual fear generalization, a view corroborated by the fact that inactivation of the vHPC suppresses generalized fear expression, making memory more precise again. Systems consolidation occurs concomitantly with greater activation of the vHPC, which is accelerated in stronger fear memories. These findings lead us to propose that greater activation of the vHPC could be used as a marker for memory generalization.
Collapse
Affiliation(s)
- M A Casagrande
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil
| | - R R Porto
- Behavioural Neuroscience Laboratory, Western Sydney University, School of Medicine, Cnr David Pilgrim Ave & Goldsmith Ave, Building 30, Campbelltown, NSW 2560, Australia
| | - J Haubrich
- Dept. of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße, 150 MA 4/150, 44780 Bochum, Germany
| | - A Kautzmann
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil
| | - L de Oliveira Álvares
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil.
| |
Collapse
|
30
|
Nachtigall EG, de Freitas JDR, Marcondes LA, Furini CRG. Memory persistence induced by environmental enrichment is dependent on different brain structures. Physiol Behav 2023; 272:114375. [PMID: 37806510 DOI: 10.1016/j.physbeh.2023.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment (EE) has been demonstrated to have a beneficial effect on different functions of the central nervous system in several mammal species, being used to improve behavior and cell damage in various neurological and psychiatric diseases. However, little has been investigated on the effect of EE in healthy animals, particularly regarding its impact on memory persistence and the brain structures involved. Therefore, here we verified in male Wistar rats that contextual fear conditioning (CFC) memory persistence, tested 28 days after the CFC training session, was facilitated by 5 weeks of exposure to EE, with no effect in groups tested 7 or 14 days after CFC training. However, a two-week exposure to EE did not affect memory persistence. Moreover, we investigated the role of specific brain regions in mediating the effect of EE on memory persistence. We conducted inactivation experiments using the GABAergic agonist Muscimol to target the basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and CA1 region of the hippocampus (CA1). Inactivation of the BLA immediately and 12 h after CFC training impaired the effect of EE on memory persistence. Similarly, inactivation of the CA1 region and mPFC 12 h after training, but not immediately, also impaired the effect of EE on memory persistence. These results have important scientific implications as they shed new light on the effect of an enriched environment on memory persistence and the brain structures involved, thereby helping elucidate how an environment rich in experiences can modify the persistence of learned information.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Lucas Aschidamini Marcondes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Sullens DG, Nguyen P, Gilley K, Wiffler MB, Sekeres MJ. Hippocampal motor memory network reorganization depends on familiarity, not time. Learn Mem 2023; 30:320-324. [PMID: 38056901 PMCID: PMC10750863 DOI: 10.1101/lm.053792.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.
Collapse
Affiliation(s)
- D Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Phuoc Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia 24515, USA
| | - Madison B Wiffler
- Department of Biology, Baylor University, Waco, Texas 76798, USA
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Melanie J Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
32
|
Atucha E, Ku SP, Lippert MT, Sauvage MM. Recalling gist memory depends on CA1 hippocampal neurons for lifetime retention and CA3 neurons for memory precision. Cell Rep 2023; 42:113317. [PMID: 37897725 DOI: 10.1016/j.celrep.2023.113317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023] Open
Abstract
Why some of us remember events more clearly than others and why memory loses precision over time is a major focus in memory research. Here, we show that the recruitment of specific neuroanatomical pathways within the medial temporal lobe (MTL) of the brain defines the precision of the memory recalled over the lifespan. Using optogenetics, neuronal activity mapping, and studying recent to very remote memories, we report that the hippocampal subfield CA1 is necessary for retrieving the gist of events and receives maximal support from MTL cortical areas (MEC, LEC, PER, and POR) for recalling the most remote memories. In contrast, reduction of CA3's activity alone coincides with the loss of memory precision over time. We propose that a shift between specific MTL subnetworks over time might be a fundamental mechanism of memory consolidation.
Collapse
Affiliation(s)
- Erika Atucha
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Shih-Pi Ku
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael T Lippert
- Systems Physiology of Learning Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Magdalena M Sauvage
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
33
|
Voelker P, Weible AP, Niell CM, Rothbart MK, Posner MI. Molecular Mechanisms for Changing Brain Connectivity in Mice and Humans. Int J Mol Sci 2023; 24:15840. [PMID: 37958822 PMCID: PMC10648558 DOI: 10.3390/ijms242115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Michael I. Posner
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| |
Collapse
|
34
|
Krenz V, Alink A, Sommer T, Roozendaal B, Schwabe L. Time-dependent memory transformation in hippocampus and neocortex is semantic in nature. Nat Commun 2023; 14:6037. [PMID: 37758725 PMCID: PMC10533832 DOI: 10.1038/s41467-023-41648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Memories undergo a time-dependent neural reorganization, which is assumed to be accompanied by a transformation from detailed to more gist-like memory. However, the nature of this transformation and its underlying neural mechanisms are largely unknown. Here, we report that the time-dependent transformation of memory is semantic in nature, while we find no credible evidence for a perceptual transformation. Model-based MRI analyses reveal time-dependent increases in semantically transformed representations of events in prefrontal and parietal cortices, while specific pattern representations in the anterior hippocampus decline over time. Posterior hippocampal memory reinstatement, in turn, increases over time and is linked to the semantic gist of the original memory, without a statistically significant link to perceptual details. These findings indicate that qualitative changes in memory over time, associated with distinct representational changes in the neocortex and within the hippocampus, reflect a semantic transformation, which may promote the integration of memories into abstract knowledge structures.
Collapse
Affiliation(s)
- Valentina Krenz
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
| | - Arjen Alink
- Department of General Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany.
| |
Collapse
|
35
|
Refaeli R, Kreisel T, Groysman M, Adamsky A, Goshen I. Engram stability and maturation during systems consolidation. Curr Biol 2023; 33:3942-3950.e3. [PMID: 37586373 PMCID: PMC10524918 DOI: 10.1016/j.cub.2023.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Remote memories play an important role in how we perceive the world, and they are rooted throughout the brain in "engrams": ensembles of cells that are formed during acquisition. Upon their reactivation, a specific memory can be recalled.1,2,3,4,5,6,7,8,9,10,11,12 Many studies have focused on the ensembles in CA1 of the hippocampus and the anterior cingulate cortex (ACC). However, the evolution of these components during systems' consolidation has not yet been comprehensively addressed.13,14,15,16 By applying transgenic approaches for ensemble identification, CLARITY, retro-AAV, and pseudo-rabies virus for circuit mapping, and chemogenetics for functional interrogation, we addressed the dynamics of recent and remote CA1 ensembles. We expected both stability (as they represent the same memory) and maturation (over time). Indeed, we found that CA1 engrams remain stable between recent and remote recalls, and the inhibition of engrams for recent recall during remote recall functionally impairs memory. We also found that new cells in the remote recall engram in the CA1 are not added randomly during maturation but differ according to their connections. First, we show in two ways that the anterograde CA1 → ACC engram cell projection grows larger. Finally, in the retrograde projections, the ACC reduces input to CA1 engram cells, whereas input from the entorhinal cortex and paraventricular nucleus of the thalamus increases. Our results shine fresh light on systems' consolidation by providing a deeper understanding of engram stability and maturation in the transition from recent to remote memory.
Collapse
Affiliation(s)
- Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Groysman
- ELSC Vector Core Facility, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Adar Adamsky
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
36
|
Rashid AJ, Golbabaei A, Josselyn SA. Memory: Meet the new engram, same as the old engram. Curr Biol 2023; 33:R955-R957. [PMID: 37751708 DOI: 10.1016/j.cub.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A new study shows that while the neuronal organization of a memory changes with time, including greater cortical engagement, a core ensemble exists in the CA1 region of the dorsal hippocampus that is necessary for retrieval of both a recent and remote memory.
Collapse
Affiliation(s)
- Asim J Rashid
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ali Golbabaei
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
37
|
Sepahvand T, Power KD, Qin T, Yuan Q. The Basolateral Amygdala: The Core of a Network for Threat Conditioning, Extinction, and Second-Order Threat Conditioning. BIOLOGY 2023; 12:1274. [PMID: 37886984 PMCID: PMC10604397 DOI: 10.3390/biology12101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Threat conditioning, extinction, and second-order threat conditioning studied in animal models provide insight into the brain-based mechanisms of fear- and anxiety-related disorders and their treatment. Much attention has been paid to the role of the basolateral amygdala (BLA) in such processes, an overview of which is presented in this review. More recent evidence suggests that the BLA serves as the core of a greater network of structures in these forms of learning, including associative and sensory cortices. The BLA is importantly regulated by hippocampal and prefrontal inputs, as well as by the catecholaminergic neuromodulators, norepinephrine and dopamine, that may provide important prediction-error or learning signals for these forms of learning. The sensory cortices may be required for the long-term storage of threat memories. As such, future research may further investigate the potential of the sensory cortices for the long-term storage of extinction and second-order conditioning memories.
Collapse
Affiliation(s)
| | | | | | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University, St John’s, NL A1B 3V6, Canada; (T.S.); (K.D.P.); (T.Q.)
| |
Collapse
|
38
|
Sampedro-Viana D, Cañete T, Sanna F, Oliveras I, Castillo-Ruiz M, Corda MG, Giorgi O, Tobeña A, Fernández-Teruel A. c-Fos expression after neonatal handling in social brain regions: Distinctive profile of RHA-rat schizophrenia model on a social preference test. Behav Brain Res 2023; 453:114625. [PMID: 37567256 DOI: 10.1016/j.bbr.2023.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Neonatal handling (NH) is an environmental manipulation that induces long-lasting changes in behavioural, neuroendocrine, and neuroanatomical processes in rodents. We have previously reported that NH treatment increases social interaction preference in an animal model of schizophrenia-relevant features, the Roman high-avoidance (RHA) rats. The present study was aimed at evaluating whether the increase of social behaviour/preference due to NH treatment in RHA rats is associated with differences in c-Fos expression levels in some of the brain areas that integrate the "social brain". To this aim, we evaluated the performance of adult male rats from both Roman rat strains (RHA vs. RLA -Roman low-avoidance- rats), either untreated (control) or treated with NH (administered during the first 21 days of life) in a social interaction task. For the analyses of c-Fos activation untreated and NH-treated animals were divided into three different experimental conditions: undisturbed home cage controls (HC); rats exposed to the testing set-up context (CTX); and rats exposed to a social interaction (SI) test. It was found that, compared with their RLA counterparts, NH treatment increased social behaviour in RHA rats, and also specifically enhanced c-Fos expression in RHA rats tested for SI in some brain areas related to social behaviour, i.e. the infralimbic cortex (IL) and the medial posterodorsal amygdala (MePD) regions.
Collapse
Affiliation(s)
- D Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - T Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - F Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - I Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mdm Castillo-Ruiz
- Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - M G Corda
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - O Giorgi
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - A Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - A Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
39
|
Yip KYT, Gräff J. Tissue clearing applications in memory engram research. Front Behav Neurosci 2023; 17:1181818. [PMID: 37700912 PMCID: PMC10493294 DOI: 10.3389/fnbeh.2023.1181818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
A memory engram is thought to be the physical substrate of the memory trace within the brain, which is generally depicted as a neuronal ensemble activated by learning to fire together during encoding and retrieval. It has been postulated that engram cell ensembles are functionally interconnected across multiple brain regions to store a single memory as an "engram complex", but visualizing this engram complex across the whole brain has for long been hindered by technical limitations. With the recent development of tissue clearing techniques, advanced light-sheet microscopy, and automated 3D image analysis, it has now become possible to generate a brain-wide map of engram cells and thereby to visualize the "engram complex". In this review, we first provide a comprehensive summary of brain-wide engram mapping studies to date. We then compile a guide on implementing the optimal tissue clearing technique for engram tagging approaches, paying particular attention to visualize engram reactivation as a critical mnemonic property, for which whole-brain multiplexed immunostaining becomes a challenging prerequisite. Finally, we highlight the potential of tissue clearing to simultaneously shed light on both the circuit connectivity and molecular underpinnings of engram cells in a single snapshot. In doing so, novel brain regions and circuits can be identified for subsequent functional manipulation, thus providing an opportunity to robustly examine the "engram complex" underlying memory storage.
Collapse
Affiliation(s)
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
41
|
Clifford KP, Miles AE, Prevot TD, Misquitta KA, Ellegood J, Lerch JP, Sibille E, Nikolova YS, Banasr M. Brain structure and working memory adaptations associated with maturation and aging in mice. Front Aging Neurosci 2023; 15:1195748. [PMID: 37484693 PMCID: PMC10359104 DOI: 10.3389/fnagi.2023.1195748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction As the population skews toward older age, elucidating mechanisms underlying human brain aging becomes imperative. Structural MRI has facilitated non-invasive investigation of lifespan brain morphology changes, yet this domain remains uncharacterized in rodents despite increasing use as models of disordered human brain aging. Methods Young (2m, n = 10), middle-age (10m, n = 10) and old (22m, n = 9) mice were utilized for maturational (young vs. middle-age) and aging-related (middle-age vs. old mice) comparisons. Regional brain volume was averaged across hemispheres and reduced to 32 brain regions. Pairwise group differences in regional volume were tested using general linear models, with total brain volume as a covariate. Sample-wide associations between regional brain volume and Y-maze performance were assessed using logistic regression, residualized for total brain volume. Both analyses corrected for multiple comparisons. Structural covariance networks were generated using the R package "igraph." Group differences in network centrality (degree), integration (mean distance), and segregation (transitivity, modularity) were tested across network densities (5-40%), using 5,000 (1,000 for degree) permutations with significance criteria of p < 0.05 at ≥5 consecutive density thresholds. Results Widespread significant maturational changes in volume occurred in 18 brain regions, including considerable loss in isocortex regions and increases in brainstem regions and white matter tracts. The aging-related comparison yielded 6 significant changes in brain volume, including further loss in isocortex regions and increases in white matter tracts. No significant volume changes were observed across either comparison for subcortical regions. Additionally, smaller volume of the anterior cingulate area (χ2 = 2.325, pBH = 0.044) and larger volume of the hippocampal formation (χ2 = -2.180, pBH = 0.044) were associated with poorer cognitive performance. Maturational network comparisons yielded significant degree changes in 9 regions, but no aging-related changes, aligning with network stabilization trends in humans. Maturational decline in modularity occurred (24-29% density), mirroring human trends of decreased segregation in young adulthood, while mean distance and transitivity remained stable. Conclusion/Implications These findings offer a foundational account of age effects on brain volume, structural brain networks, and working memory in mice, informing future work in facilitating translation between rodent models and human brain aging.
Collapse
Affiliation(s)
- Kevan P. Clifford
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Amy E. Miles
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Keith A. Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Yuliya S. Nikolova
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Terranova JI, Yokose J, Osanai H, Ogawa SK, Kitamura T. Systems consolidation induces multiple memory engrams for a flexible recall strategy in observational fear memory in male mice. Nat Commun 2023; 14:3976. [PMID: 37407567 DOI: 10.1038/s41467-023-39718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Observers learn to fear the context in which they witnessed a demonstrator's aversive experience, called observational contextual fear conditioning (CFC). The neural mechanisms governing whether recall of the observational CFC memory occurs from the observer's own or from the demonstrator's point of view remain unclear. Here, we show in male mice that recent observational CFC memory is recalled in the observer's context only, but remote memory is recalled in both observer and demonstrator contexts. Recall of recent memory in the observer's context requires dorsal hippocampus activity, while recall of remote memory in both contexts requires the medial prefrontal cortex (mPFC)-basolateral amygdala pathway. Although mPFC neurons activated by observational CFC are involved in remote recall in both contexts, distinct mPFC subpopulations regulate remote recall in each context. Our data provide insights into a flexible recall strategy and the functional reorganization of circuits and memory engram cells underlying observational CFC memory.
Collapse
Affiliation(s)
- Joseph I Terranova
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60615, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
43
|
Neudert MK, Schäfer A, Zehtner RI, Fricke S, Seinsche RJ, Kruse O, Stark R, Hermann A. Behavioral pattern separation is associated with neural and electrodermal correlates of context-dependent fear conditioning. Sci Rep 2023; 13:5577. [PMID: 37019951 PMCID: PMC10076331 DOI: 10.1038/s41598-023-31504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Hippocampus-dependent pattern separation is considered as a relevant factor for context discrimination and might therefore impact the contextual modulation of conditioned fear. However, the association between pattern separation and context-dependent fear conditioning has not been investigated so far. In the current study, 72 healthy female students completed the Mnemonic Similarity Task, a measure of behavioral pattern separation, in addition to a context-dependent fear conditioning paradigm during functional magnetic resonance imaging. The paradigm included fear acquisition in context A and extinction training in context B on a first day, as well as retrieval testing of the fear and extinction memories in the safe context B (extinction recall) and a novel context C (fear renewal) one day later. Main outcome measures comprised skin conductance responses (SCRs) and blood oxygen level-dependent responses in brain regions of the fear and extinction circuit. Regarding retrieval testing, pattern separation did not correlate with extinction recall, but with stronger dorsal anterior cingulate cortex activation and conditioned SCRs (trend) during fear renewal, indicating a stronger retrieval of the fear memory trace. Our findings suggest that behavioral pattern separation ability seems to be important for context-dependent fear modulation, which is impaired in patients with posttraumatic stress disorder.
Collapse
Affiliation(s)
- Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany.
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany.
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Raphaela I Zehtner
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Fricke
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rosa J Seinsche
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
44
|
Cheng K, Wang Y, He Y, Tian Y, Li J, Chen C, Xu X, Wu Z, Yu H, Chen X, Wu Y, Song W, Dong Z, Xu H, Xie P. Upregulation of carbonic anhydrase 1 beneficial for depressive disorder. Acta Neuropathol Commun 2023; 11:59. [PMID: 37013604 PMCID: PMC10071615 DOI: 10.1186/s40478-023-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Carbonic Anhydrase 1 (CAR1) is a zinc-metalloenzyme that catalyzes the hydration of carbon dioxide, and the alteration of CAR1 has been implicated in neuropsychiatric disorders. However, the mechanism underlying the role of CAR1 in major depressive disorder (MDD) remains largely unknown. In this study, we report the decreased level of CAR1 in MDD patients and depression-like model rodents. We found that CAR1 is expressed in hippocampal astrocytes and CAR1 regulates extracellular bicarbonate concentration and pH value in the partial hilus. Ablation of the CAR1 gene increased the activity of granule cells via decreasing their miniature inhibitory postsynaptic currents (mIPSC), and caused depression-like behaviors in CAR1-knockout mice. Astrocytic CAR1 expression rescued the deficits in mIPSCs of granule cells and reduced depression-like behaviors in CAR1 deficient mice. Furthermore, pharmacological activation of CAR1 and overexpression of CAR1 in the ventral hippocampus of mice improved depressive behaviors. These findings uncover a critical role of CAR1 in the MDD pathogenesis and its therapeutic potential.
Collapse
Affiliation(s)
- Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingzhe Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Huatai Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
45
|
Auguste A, Fourcaud-Trocmé N, Meunier D, Gros A, Garcia S, Messaoudi B, Thevenet M, Ravel N, Veyrac A. Distinct brain networks for remote episodic memory depending on content and emotional experience. Prog Neurobiol 2023; 223:102422. [PMID: 36796748 DOI: 10.1016/j.pneurobio.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic. Here, using a new task in rodents that models human episodic memory including odour/place/context components and applying advances behavioural and computational analyses, we show that rats form and recollect integrated remote episodic memories of two occasionally encountered complex episodes occurring in their daily life. Similar to humans, the information content and accuracy of memories vary across individuals and depend on the emotional relationship with odours experienced during the very first episode. We used cellular brain imaging and functional connectivity analyses, to find out the engrams of remote episodic memories for the first time. Activated brain networks completely reflect the nature and content of episodic memories, with a larger cortico-hippocampal network when the recollection is complete and with an emotional brain network related to odours that is critical in maintaining accurate and vivid memories. The engrams of remote episodic memories remain highly dynamic since synaptic plasticity processes occur during recall related to memory updates and reinforcement.
Collapse
Affiliation(s)
- Anne Auguste
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nicolas Fourcaud-Trocmé
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - David Meunier
- University Aix Marseille, Insitut des Neurosciences de la Timone, Marseille, France
| | - Alexandra Gros
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Samuel Garcia
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Belkacem Messaoudi
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Marc Thevenet
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nadine Ravel
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Alexandra Veyrac
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France.
| |
Collapse
|
46
|
Toader AC, Regalado JM, Li YR, Terceros A, Yadav N, Kumar S, Satow S, Hollunder F, Bonito-Oliva A, Rajasethupathy P. Anteromedial thalamus gates the selection and stabilization of long-term memories. Cell 2023; 186:1369-1381.e17. [PMID: 37001501 PMCID: PMC10169089 DOI: 10.1016/j.cell.2023.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/16/2022] [Accepted: 02/16/2023] [Indexed: 04/03/2023]
Abstract
Memories initially formed in hippocampus gradually stabilize to cortex over weeks-to-months for long-term storage. The mechanistic details of this brain re-organization remain poorly understood. We recorded bulk neural activity in circuits that link hippocampus and cortex as mice performed a memory-guided virtual-reality task over weeks. We identified a prominent and sustained neural correlate of memory in anterior thalamus, whose inhibition substantially disrupted memory consolidation. More strikingly, gain amplification enhanced consolidation of otherwise unconsolidated memories. To gain mechanistic insights, we developed a technology for simultaneous cellular-resolution imaging of hippocampus, thalamus, and cortex throughout consolidation. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus preferentially encodes salient memories, and gradually increases correlations with cortex to facilitate tuning and synchronization of cortical ensembles. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer-term cortical storage.
Collapse
Affiliation(s)
- Andrew C Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Josue M Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Andrea Terceros
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Suraj Kumar
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Sloane Satow
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Florian Hollunder
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Alessandra Bonito-Oliva
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
47
|
Kim SW, Kim M, Baek J, Latchoumane CF, Gangadharan G, Yoon Y, Kim DS, Lee JH, Shin HS. Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron 2023; 111:418-429.e4. [PMID: 36460007 PMCID: PMC10681369 DOI: 10.1016/j.neuron.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
Observational fear, a form of emotional contagion, is thought to be a basic form of affective empathy. However, the neural process engaged at the specific moment when socially acquired information provokes an emotional response remains elusive. Here, we show that reciprocal projections between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) in the right hemisphere are essential for observational fear, and 5-7 Hz neural oscillations were selectively increased in those areas at the onset of observational freezing. A closed-loop disruption demonstrated the causal relationship between 5-7 Hz oscillations in the cingulo-amygdala circuit and observational fear responses. The increase/decrease in theta power induced by optogenetic manipulation of the hippocampal theta rhythm bi-directionally modulated observational fear. Together, these results indicate that hippocampus-dependent 5-7 Hz oscillations in the cingulo-amygdala circuit in the right hemisphere are the essential component of the cognitive process that drives empathic fear, but not freezing, in general.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Minsoo Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jinhee Baek
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | | | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yongwoo Yoon
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Republic of Korea
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; SL Bigen, Incheon 21983, Republic of Korea.
| |
Collapse
|
48
|
Lee JH, Kim WB, Park EH, Cho JH. Neocortical synaptic engrams for remote contextual memories. Nat Neurosci 2023; 26:259-273. [PMID: 36564546 PMCID: PMC9905017 DOI: 10.1038/s41593-022-01223-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2022] [Indexed: 12/24/2022]
Abstract
While initial encoding of contextual memories involves the strengthening of hippocampal circuits, these memories progressively mature to stabilized forms in neocortex and become less hippocampus dependent. Although it has been proposed that long-term storage of contextual memories may involve enduring synaptic changes in neocortical circuits, synaptic substrates of remote contextual memories have been elusive. Here we demonstrate that the consolidation of remote contextual fear memories in mice correlated with progressive strengthening of excitatory connections between prefrontal cortical (PFC) engram neurons active during learning and reactivated during remote memory recall, whereas the extinction of remote memories weakened those synapses. This synapse-specific plasticity was CREB-dependent and required sustained hippocampal signals, which the retrosplenial cortex could convey to PFC. Moreover, PFC engram neurons were strongly connected to other PFC neurons recruited during remote memory recall. Our study suggests that progressive and synapse-specific strengthening of PFC circuits can contribute to long-term storage of contextual memories.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Woong Bin Kim
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Eui Ho Park
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
49
|
Toader AC, Regalado JM, Li YR, Terceros A, Yadav N, Kumar S, Satow S, Hollunder F, Bonito-Oliva A, Rajasethupathy P. Anteromedial Thalamus Gates the Selection & Stabilization of Long-Term Memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525908. [PMID: 36747720 PMCID: PMC9900928 DOI: 10.1101/2023.01.27.525908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Memories initially formed in hippocampus gradually stabilize to cortex, over weeks-to-months, for long-term storage. The mechanistic details of this brain re-organization process remain poorly understood. In this study, we developed a virtual-reality based behavioral task and observed neural activity patterns associated with memory reorganization and stabilization over weeks-long timescales. Initial photometry recordings in circuits that link hippocampus and cortex revealed a unique and prominent neural correlate of memory in anterior thalamus that emerged in training and persisted for several weeks. Inhibition of the anteromedial thalamus-to-anterior cingulate cortex projections during training resulted in substantial memory consolidation deficits, and gain amplification more strikingly, was sufficient to enhance consolidation of otherwise unconsolidated memories. To provide mechanistic insights, we developed a new behavioral task where mice form two memories, of which only the more salient memory is consolidated, and also a technology for simultaneous and longitudinal cellular resolution imaging of hippocampus, thalamus, and cortex throughout the consolidation window. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus forms preferential tuning to salient memories, and establishes inter-regional correlations with cortex, that are critical for synchronizing and stabilizing cortical representations at remote time. Indeed, inhibition of this thalamo-cortical circuit while imaging in cortex reveals loss of contextual tuning and ensemble synchrony in anterior cingulate, together with behavioral deficits in remote memory retrieval. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer term cortical storage.
Collapse
Affiliation(s)
- Andrew C. Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Josue M. Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Andrea Terceros
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Suraj Kumar
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Sloane Satow
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Florian Hollunder
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Alessandra Bonito-Oliva
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
50
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|