1
|
Altés G, Olomí A, Perramon-Güell A, Hernández S, Casanovas A, Pérez A, Díaz-Tocados JM, Valdivielso JM, Megino C, Navaridas R, Matias-Guiu X, Klein OD, Egea J, Dolcet X, Yeramian A, Encinas M. Multiple endocrine defects in adult-onset Sprouty1/2/4 triple knockout mice. Sci Rep 2024; 14:19479. [PMID: 39174793 PMCID: PMC11341818 DOI: 10.1038/s41598-024-70529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Genes of the Sprouty family (Spry1-4) are feedback inhibitors of receptor tyrosine kinases, especially of Ret and the FGF receptors. As such, they play distinct and overlapping roles in embryo morphogenesis and are considered to be tumor suppressors in adult life. Genetic experiments in mice have defined in great detail the role of these genes during embryonic development, however their function in adult mice is less clearly established. Here we generate adult-onset, whole body Spry1/2/4 triple knockout mice. Tumor incidence in triple mutant mice is comparable to that of wild type littermates of up to one year of age, indicating that Sprouty loss per se is not sufficient to initiate tumorigenesis. On the other hand, triple knockout mice do not gain weight as they age, show less visceral fat, and have lower plasma glucose levels than wild type littermates, despite showing similar food intake and slightly reduced motor function. They also show alopecia, eyelid inflammation, and mild hyperthyroidism. Finally, triple knockout mice present phosphaturia and hypophosphatemia, suggesting exacerbated signaling downstream of FGF23. In conclusion, triple knockout mice develop a series of endocrine abnormalities but do not show increased tumor incidence.
Collapse
Affiliation(s)
- Gisela Altés
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Sara Hernández
- Experimental Neuromuscular Pathology Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Anna Casanovas
- Experimental Neuromuscular Pathology Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Aurora Pérez
- Vascular and Renal Translational Research Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Juan Miguel Díaz-Tocados
- Vascular and Renal Translational Research Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Cristina Megino
- Oncologic Pathology Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Joaquim Egea
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Xavi Dolcet
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Andrée Yeramian
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signaling Group, Edifici Biomedicina I, Lab 2.8, Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
2
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
4
|
Grego-Bessa J, Gómez-Apiñaniz P, Prados B, Gómez MJ, MacGrogan D, de la Pompa JL. Nrg1 Regulates Cardiomyocyte Migration and Cell Cycle in Ventricular Development. Circ Res 2023; 133:927-943. [PMID: 37846569 PMCID: PMC10631509 DOI: 10.1161/circresaha.123.323321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Cardiac ventricles provide the contractile force of the beating heart throughout life. How the primitive endocardium-layered myocardial projections called trabeculae form and mature into the adult ventricles is of great interest for biology and regenerative medicine. Trabeculation is dependent on the signaling protein Nrg1 (neuregulin-1). However, the mechanism of action of Nrg1 and its role in ventricular wall maturation are poorly understood. METHODS We investigated the functions and downstream mechanisms of Nrg1 signaling during ventricular chamber development using confocal imaging, transcriptomics, and biochemical approaches in mice with cardiac-specific inactivation or overexpression of Nrg1. RESULTS Analysis of cardiac-specific Nrg1 mutant mice showed that the transcriptional program underlying cardiomyocyte-oriented cell division and trabeculae formation depends on endocardial Nrg1 to myocardial ErbB2 (erb-b2 receptor tyrosine kinase 2) signaling and phospho-Erk (phosphorylated extracellular signal-regulated kinase; pErk) activation. Early endothelial loss of Nrg1 and reduced pErk activation diminished cardiomyocyte Pard3 and Crumbs2 (Crumbs Cell Polarity Complex Component 2) protein and altered cytoskeletal gene expression and organization. These alterations are associated with abnormal gene expression related to mitotic spindle organization and a shift in cardiomyocyte division orientation. Nrg1 is crucial for trabecular growth and ventricular wall thickening by regulating an epithelial-to-mesenchymal transition-like process in cardiomyocytes involving migration, adhesion, cytoskeletal actin turnover, and timely progression through the cell cycle G2/M phase. Ectopic cardiac Nrg1 overexpression and high pErk signaling caused S-phase arrest, sustained high epithelial-to-mesenchymal transition-like gene expression, and prolonged trabeculation, blocking compact myocardium maturation. Myocardial trabecular patterning alterations resulting from above- or below-normal Nrg1-dependent pErk activation were concomitant with sarcomere actin cytoskeleton disorganization. The Nrg1 loss- and gain-of-function transcriptomes were enriched for Yap1 (yes-associated protein-1) gene signatures, identifying Yap1 as a potential downstream effector. Furthermore, biochemical and imaging data reveal that Nrg1 influences pErk activation and Yap1 nuclear-cytoplasmic distribution during trabeculation. CONCLUSIONS These data establish the Nrg1-ErbB2/ErbB4-Erk axis as a crucial regulator of cardiomyocyte cell cycle progression and migration during ventricular development.
Collapse
Affiliation(s)
- Joaquim Grego-Bessa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - Paula Gómez-Apiñaniz
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | | | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| |
Collapse
|
5
|
Reyes-Castro RA, Chen SY, Seemann J, Kundu ST, Gibbons DL, Arur S. Phosphorylated nuclear DICER1 promotes open chromatin state and lineage plasticity of AT2 tumor cells in lung adenocarcinomas. SCIENCE ADVANCES 2023; 9:eadf6210. [PMID: 37494452 PMCID: PMC10371025 DOI: 10.1126/sciadv.adf6210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
KRAS/ERK pathway phosphorylates DICER1, causing its nuclear translocation, and phosphomimetic Dicer1 contributes to tumorigenesis in mice. Mechanisms through which phospho-DICER1 regulates tumor progression remain undefined. While DICER1 canonically regulates microRNAs (miRNA) and epithelial-to-mesenchymal transition (EMT), we found that phosphorylated nuclear DICER1 (phospho-nuclear DICER1) promotes late-stage tumor progression in mice with oncogenic Kras, independent of miRNAs and EMT. Instead, we observe that the murine AT2 tumor cells exhibit altered chromatin compaction, and cells from disorganized advanced tumors, but not localized tumors, express gastric genes. Collectively, this results in subpopulations of tumor cells transitioning from a restricted alveolar to a broader endodermal lineage state. In human LUADs, we observed expression of phospho-nuclear DICER1 in advanced tumors together with the expression of gastric genes. We define a multimeric chromatin-DICER1 complex composed of the Mediator complex subunit 12, CBX1, MACROH2A.1, and transcriptional regulators supporting the model that phospho-nuclear DICER1 leads to lineage reprogramming of AT2 tumor cells to mediate lung cancer progression.
Collapse
Affiliation(s)
- Raisa A. Reyes-Castro
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Shin-Yu Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob Seemann
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T. Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swathi Arur
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Paramore SV, Goodwin K, Devenport D, Nelson CM. Mesenchymal Vangl facilitates airway elongation and widening independently of the planar cell polarity complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547543. [PMID: 37461477 PMCID: PMC10349956 DOI: 10.1101/2023.07.03.547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.
Collapse
Affiliation(s)
| | | | | | - Celeste M Nelson
- Department of Molecular Biology
- Department of Chemical & Biological Engineering
| |
Collapse
|
7
|
Zhu X, Ni Q, Wang Q, Ma C, Yang F, Gao H, Zhu H, Zhou X, Chang H, Lu J, Liu F. Intraductal papillary mucinous neoplasm of the biliary tract in the caudate lobe of the liver: a case report and literature review. Front Oncol 2023; 13:1114514. [PMID: 37465111 PMCID: PMC10351580 DOI: 10.3389/fonc.2023.1114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
An intraductal papillary mucinous neoplasm of the biliary tract (BT-IPMN) in the caudate lobe of the liver is a rare tumor originating from the bile duct. Approximately 40% of the intraductal papillary neoplasms of the biliary tract (IPNB) secrete mucus and can grow in the intrahepatic or extrahepatic bile ducts. A 65-year-old woman presented with recurrent episodes of right upper pain. She developed her first episode 8 years ago, which resolved spontaneously. The frequency of symptoms has increased in the last 2 years. She underwent laparoscopic hepatectomy and choledochal exploration and was pathologically diagnosed with a rare BT-IPMN of the caudate lobe after admission. Here, we review studies on IPNB cases and systematically describe the pathological type, diagnosis, and treatment of IPNB to provide a valuable reference for hepatobiliary surgeons in the diagnosis and treatment of this disease.
Collapse
|
8
|
Liu S, Sun D, Butler R, Rawlins EL. RTK signalling promotes epithelial columnar cell shape and apical junction maintenance in human lung progenitor cells. Development 2023; 150:dev201284. [PMID: 37260147 PMCID: PMC10281517 DOI: 10.1242/dev.201284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Multipotent epithelial progenitor cells can be expanded from human embryonic lungs as organoids and maintained in a self-renewing state using a defined medium. The organoid cells are columnar, resembling the cell morphology of the developing lung tip epithelium in vivo. Cell shape dynamics and fate are tightly coordinated during development. We therefore used the organoid system to identify signalling pathways that maintain the columnar shape of human lung tip progenitors. We found that EGF, FGF7 and FGF10 have distinct functions in lung tip progenitors. FGF7 activates MAPK/ERK and PI3K/AKT signalling, and is sufficient to promote columnar cell shape in primary tip progenitors. Inhibitor experiments show that MAPK/ERK and PI3K/AKT signalling are key downstream pathways, regulating cell proliferation, columnar cell shape and cell junctions. We identified integrin signalling as a key pathway downstream of MAPK/ERK in the tip progenitors; disrupting integrin alters polarity, cell adhesion and tight junction assembly. By contrast, stimulation with FGF10 or EGF alone is not sufficient to maintain organoid columnar cell shape. This study employs organoids to provide insight into the cellular mechanisms regulating human lung development.
Collapse
Affiliation(s)
- Shuyu Liu
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Richard Butler
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
9
|
Zhu P, Zheng P, Kong X, Wang S, Cao M, Zhao C. Rassf7a promotes spinal cord regeneration and controls spindle orientation in neural progenitor cells. EMBO Rep 2023; 24:e54984. [PMID: 36408859 PMCID: PMC9827555 DOI: 10.15252/embr.202254984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) can cause long-lasting disability in mammals due to the lack of axonal regrowth together with the inability to reinitiate spinal neurogenesis at the injury site. Deciphering the mechanisms that regulate the proliferation and differentiation of neural progenitor cells is critical for understanding spinal neurogenesis after injury. Compared with mammals, zebrafish show a remarkable capability of spinal cord regeneration. Here, we show that Rassf7a, a member of the Ras-association domain family, promotes spinal cord regeneration after injury. Zebrafish larvae harboring a rassf7a mutation show spinal cord regeneration and spinal neurogenesis defects. Live imaging shows abnormal asymmetric neurogenic divisions and spindle orientation defects in mutant neural progenitor cells. In line with this, the expression of rassf7a is enriched in neural progenitor cells. Subcellular analysis shows that Rassf7a localizes to the centrosome and is essential for cell cycle progression. Our data indicate a role for Rassf7a in modulating spindle orientation and the proliferation of neural progenitor cells after spinal cord injury.
Collapse
Affiliation(s)
- Panpan Zhu
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Pengfei Zheng
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuo Wang
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chengtian Zhao
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
10
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
11
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
12
|
Iber D, Vetter R. Relationship between epithelial organization and morphogen interpretation. Curr Opin Genet Dev 2022; 75:101916. [PMID: 35605527 DOI: 10.1016/j.gde.2022.101916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Despite molecular noise and genetic differences between individuals, developmental outcomes are remarkably constant. Decades of research has focused on the underlying mechanisms that ensure this precision and robustness. Recent quantifications of chemical gradients and epithelial cell shapes provide novel insights into the basis of precise development. In this review, we argue that these two aspects may be linked in epithelial morphogenesis.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Farahani PE, Nelson CM. Revealing epithelial morphogenetic mechanisms through live imaging. Curr Opin Genet Dev 2022; 72:61-68. [PMID: 34864332 PMCID: PMC8860867 DOI: 10.1016/j.gde.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Epithelial morphogenesis is guided by mechanical forces and biochemical signals that vary spatiotemporally. As many morphogenetic events are driven by rapid cellular processes, understanding morphogenesis requires monitoring development in real time. Here, we discuss how live-imaging approaches can help identify morphogenetic mechanisms otherwise missed in static snapshots of development. We begin with a summary of live-imaging strategies, including recent advances that push the limits of spatiotemporal resolution and specimen size. We then describe recent efforts that employ live imaging to uncover morphogenetic mechanisms. We conclude by discussing how information collected from live imaging can be enhanced by genetically encoded biosensors and spatiotemporal perturbation techniques to determine the dynamics of patterning of developmental signals and their importance for guiding morphogenesis.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
14
|
Hirashima T. Mechanical Feedback Control for Multicellular Tissue Size Maintenance: A Minireview. Front Cell Dev Biol 2022; 9:820391. [PMID: 35096843 PMCID: PMC8795865 DOI: 10.3389/fcell.2021.820391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
All living tissues and organs have their respective sizes, critical to various biological functions, such as development, growth, and homeostasis. As tissues and organs generally converge to a certain size, intrinsic regulatory mechanisms may be involved in the maintenance of size regulation. In recent years, important findings regarding size regulation have been obtained from diverse disciplines at the molecular and cellular levels. Here, I briefly review the size regulation of biological tissues from the perspective of control systems. This minireview focuses on how feedback systems engage in tissue size maintenance through the mechanical interactions of constituent cell collectives through intracellular signaling. I introduce a general framework of a feedback control system for tissue size regulation, followed by two examples: maintenance of epithelial tissue volume and epithelial tube diameter. The examples deliver the idea of how cellular mechano-response works for maintaining tissue size.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
15
|
Stanton AE, Goodwin K, Sundarakrishnan A, Jaslove JM, Gleghorn JP, Pavlovich AL, Nelson CM. Negative Transpulmonary Pressure Disrupts Airway Morphogenesis by Suppressing Fgf10. Front Cell Dev Biol 2021; 9:725785. [PMID: 34926440 PMCID: PMC8673560 DOI: 10.3389/fcell.2021.725785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces are increasingly recognized as important determinants of cell and tissue phenotype and also appear to play a critical role in organ development. During the fetal stages of lung morphogenesis, the pressure of the fluid within the lumen of the airways is higher than that within the chest cavity, resulting in a positive transpulmonary pressure. Several congenital defects decrease or reverse transpulmonary pressure across the developing airways and are associated with a reduced number of branches and a correspondingly underdeveloped lung that is insufficient for gas exchange after birth. The small size of the early pseudoglandular stage lung and its relative inaccessibility in utero have precluded experimental investigation of the effects of transpulmonary pressure on early branching morphogenesis. Here, we present a simple culture model to explore the effects of negative transpulmonary pressure on development of the embryonic airways. We found that negative transpulmonary pressure decreases branching, and that it does so in part by altering the expression of fibroblast growth factor 10 (Fgf10). The morphogenesis of lungs maintained under negative transpulmonary pressure can be rescued by supplementing the culture medium with exogenous FGF10. These data suggest that Fgf10 expression is regulated by mechanical stress in the developing airways. Understanding the mechanical signaling pathways that connect transpulmonary pressure to FGF10 can lead to the establishment of novel non-surgical approaches for ameliorating congenital lung defects.
Collapse
Affiliation(s)
- Alice E Stanton
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Katharine Goodwin
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Jason P Gleghorn
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Amira L Pavlovich
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States.,Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
16
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
17
|
Ganguli S, Matthews HK. Cell biology: How cancer cells coerce normal cells into tumorigenesis. Curr Biol 2021; 31:R957-R959. [PMID: 34375600 DOI: 10.1016/j.cub.2021.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The role of altered tissue mechanics in early cancer development is not well understood. A new study reveals how oncogene activation generates force within a tissue to impact cell division in surrounding normal cells, which then contribute to tumour formation.
Collapse
Affiliation(s)
- Sushila Ganguli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
18
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Warburton D. Conserved Mechanisms in the Formation of the Airways and Alveoli of the Lung. Front Cell Dev Biol 2021; 9:662059. [PMID: 34211971 PMCID: PMC8239290 DOI: 10.3389/fcell.2021.662059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022] Open
Abstract
Branching is an intrinsic property of respiratory epithelium that can be induced and modified by signals emerging from the mesenchyme. However, during stereotypic branching morphogenesis of the airway, the relatively thick upper respiratory epithelium extrudes through a mesenchymal orifice to form a new branch, whereas during alveologenesis the relatively thin lower respiratory epithelium extrudes to form sacs or bubbles. Thus, both branching morphogenesis of the upper airway and alveolarization in the lower airway seem to rely on the same fundamental physical process: epithelial extrusion through an orifice. Here I propose that it is the orientation and relative stiffness of the orifice boundary that determines the stereotypy of upper airway branching as well as the orientation of individual alveolar components of the gas exchange surface. The previously accepted dogma of the process of alveologenesis, largely based on 2D microscopy, is that alveoli arise by erection of finger-like interalveolar septae to form septal clefts that subdivide pre-existing saccules, a process for which the contractile properties of specialized alveolar myofibroblasts are necessary. Here I suggest that airway tip splitting and stereotypical side domain branching are actually conserved processes, but modified somewhat by evolution to achieve both airway tip splitting and side branching of the upper airway epithelium, as well as alveologenesis. Viewed in 3D it is clear that alveolar “septal tips” are in fact ring or purse string structures containing elastin and collagen that only appear as finger like projections in cross section. Therefore, I propose that airway branch orifices as well as alveolar mouth rings serve to delineate and stabilize the budding of both airway and alveolar epithelium, from the tips and sides of upper airways as well as from the sides and tips of alveolar ducts. Certainly, in the case of alveoli arising laterally and with radial symmetry from the sides of alveolar ducts, the mouth of each alveolus remains within the plane of the side of the ductal lumen. This suggests that the thin epithelium lining these lateral alveolar duct buds may extrude or “pop out” from the duct lumen through rings rather like soap or gum bubbles, whereas the thicker upper airway epithelium extrudes through a ring like toothpaste from a tube to form a new branch.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
21
|
Conrad L, Runser SVM, Fernando Gómez H, Lang CM, Dumond MS, Sapala A, Schaumann L, Michos O, Vetter R, Iber D. The biomechanical basis of biased epithelial tube elongation in lung and kidney development. Development 2021; 148:261770. [PMID: 33946098 PMCID: PMC8126414 DOI: 10.1242/dev.194209] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lisa Conrad
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Steve Vincent Maurice Runser
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Harold Fernando Gómez
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Christine Michaela Lang
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Mathilde Sabine Dumond
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Aleksandra Sapala
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Laura Schaumann
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Odyssé Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| |
Collapse
|
22
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
23
|
Kim JM, Jo Y, Jung JW, Park K. A mechanogenetic role for the actomyosin complex in branching morphogenesis of epithelial organs. Development 2021; 148:dev.190785. [PMID: 33658222 DOI: 10.1242/dev.190785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/19/2021] [Indexed: 11/20/2022]
Abstract
The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.
Collapse
Affiliation(s)
- Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ju Won Jung
- Department of Dentistry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
24
|
Tomita H, Tanaka K, Hirata A, Okada H, Imai H, Shirakami Y, Ohnishi K, Sugie S, Aoki H, Hatano Y, Noguchi K, Kanayama T, Niwa A, Suzui N, Miyazaki T, Tanaka T, Akiyama H, Shimizu M, Yoshida K, Hara A. Inhibition of FGF10-ERK signal activation suppresses intraductal papillary neoplasm of the bile duct and its associated carcinomas. Cell Rep 2021; 34:108772. [PMID: 33626352 DOI: 10.1016/j.celrep.2021.108772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence regarding intraductal papillary neoplasm of the bile duct (IPNB) as a type of precancerous lesion of cholangiocarcinoma is limited. Moreover, a reproducible in vivo model is lacking, and IPNB pathogenesis remains unclear. Here, we use a doxycycline-inducible tetracycline (Tet)-on mice model to control fibroblast growth factor 10 (FGF10) expression, which regulates branching and tubule formation. FGF10-induced IPNB mimics the multifocal and divergent human IPNB phenotypes via the FGF10-FGF receptor 2 (FGFR2)-RAS-extracellular-signal-regulated kinase (ERK) signaling pathway. A paracrine/autocrine growth factor is sufficient to initiate and maintain IPNB originating from the peribiliary glands, including biliary stem/progenitor cells. With KrasG12D, p53, or p16 mutations or both, Fgf10-induced IPNB shows stepwise carcinogenesis, causing associated invasive carcinoma. Fgf10-induced papillary changes and progression are suppressed by the inhibition of the FGF10-FGFR2-RAS-ERK signaling pathway, demonstrating that the signal is a therapeutic target for IPNB and associated carcinoma.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Kaori Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, Gifu 501-1194, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hisashi Imai
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kotaro Ohnishi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu 500-8523, Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kei Noguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Natsuko Suzui
- Department of Pathology, Gifu University Hospital, Gifu 501-1194, Japan
| | | | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Haruhiko Akiyama
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
25
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Abstract
The pancreas of adult mammals displays a branched structure which transports digestive enzymes produced in the distal acini through a tree-like network of ducts into the duodenum. In contrast to several other branched organs, its branching patterns are not stereotypic. Moreover, the branches do not grow from dichotomic splitting of an initial stem but rather from the formation of microlumen in a mass of cells. These lumen progressively assemble into a hyperconnected network that refines into a tree by the time of birth. We review the cell remodeling events and the molecular mechanisms governing pancreas branching, as well as the role of the surrounding tissues in this process. Furthermore, we draw parallels with other branched organs such as the salivary and mammary gland.
Collapse
Affiliation(s)
- Lydie Flasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Coline Schewin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark.
| |
Collapse
|
27
|
Wong JC, Perez-Mancera PA, Huang TQ, Kim J, Grego-Bessa J, Del Pilar Alzamora M, Kogan SC, Sharir A, Keefe SH, Morales CE, Schanze D, Castel P, Hirose K, Huang GN, Zenker M, Sheppard D, Klein OD, Tuveson DA, Braun BS, Shannon K. KrasP34R and KrasT58I mutations induce distinct RASopathy phenotypes in mice. JCI Insight 2020; 5:140495. [PMID: 32990679 PMCID: PMC7710308 DOI: 10.1172/jci.insight.140495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 01/16/2023] Open
Abstract
Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre–mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials. Mouse models are developed to accurately recapitulate multiple features of RASopathy disorders caused by germline KRASP34R and KRAST581 mutations.
Collapse
Affiliation(s)
- Jasmine C Wong
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tannie Q Huang
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Jangkyung Kim
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Joaquim Grego-Bessa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Maria Del Pilar Alzamora
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | | | - Amnon Sharir
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, USA
| | - Susan H Keefe
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, USA
| | - Carolina E Morales
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center
| | - Kentaro Hirose
- Cardiovascular Research Institute.,Department of Physiology, and
| | - Guo N Huang
- Cardiovascular Research Institute.,Department of Physiology, and
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Dean Sheppard
- Cardiovascular Research Institute.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ophir D Klein
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, USA
| | - Benjamin S Braun
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
28
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Quadri R, Galli M, Galati E, Rotondo G, Gallo GR, Panigada D, Plevani P, Muzi-Falconi M. Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization. Cell Discov 2020; 6:42. [PMID: 32595981 PMCID: PMC7308332 DOI: 10.1038/s41421-020-0170-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/08/2022] Open
Abstract
Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis.
Collapse
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Present Address: IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Rotondo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Guido Roberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
30
|
Abstract
ABSTRACT
Over the past 5 years, several studies have begun to uncover the links between the classical signal transduction pathways and the physical mechanisms that are used to sculpt branched tissues. These advances have been made, in part, thanks to innovations in live imaging and reporter animals. With modern research tools, our conceptual models of branching morphogenesis are rapidly evolving, and the differences in branching mechanisms between each organ are becoming increasingly apparent. Here, we highlight four branched epithelia that develop at different spatial scales, within different surrounding tissues and via divergent physical mechanisms. Each of these organs has evolved to employ unique branching strategies to achieve a specialized final architecture.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
32
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
33
|
Abstract
During morphogenesis, epithelial tubes elongate. In the case of the mammalian lung, biased elongation has been linked to a bias in cell shape and cell division, but it has remained unclear whether a bias in cell shape along the axis of outgrowth is sufficient for biased outgrowth and how it arises. Here, we use our 2D cell-based tissue simulation software [Formula: see text] to investigate the conditions for biased epithelial outgrowth. We show that the observed bias in cell shape and cell division can result in the observed bias in outgrowth only in the case of strong cortical tension, and comparison to biological data suggests that the cortical tension in epithelia is likely sufficient. We explore mechanisms that may result in the observed bias in cell division and cell shapes. To this end, we test the possibility that the surrounding tissue or extracellular matrix acts as a mechanical constraint that biases growth in the longitudinal direction. While external compressive forces can result in the observed bias in outgrowth, we find that they do not result in the observed bias in cell shapes. We conclude that other mechanisms must exist that generate the bias in lung epithelial outgrowth.
Collapse
Affiliation(s)
- Anna Stopka
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland. Swiss Institute of Bioinformatics, Mattenstrasse 26, 4053 Basel, Switzerland
| | | | | |
Collapse
|
34
|
Hirashima T, Adachi T. Polarized cellular mechano-response system for maintaining radial size in developing epithelial tubes. Development 2019; 146:dev.181206. [PMID: 31619390 PMCID: PMC6918744 DOI: 10.1242/dev.181206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Size control in biological tissues involves multicellular communication via mechanical forces during development. Although fundamental cellular behaviours in response to mechanical stimuli underlie size maintenance during morphogenetic processes, the mechanisms underpinning the cellular mechano-response system that maintains size along an axis of a polarized tissue remain elusive. Here, we show how the diameter of an epithelial tube is maintained during murine epididymal development by combining quantitative imaging, mechanical perturbation and mathematical modelling. We found that epithelial cells counteract compressive forces caused by cell division exclusively along the circumferential axis of the tube to produce polarized contractile forces, eventually leading to an oriented cell rearrangement. Moreover, a mathematical model that includes the polarized mechano-responsive regime explains how the diameter of proliferating tubes is maintained. Our findings pave the way for an improved understanding of the cellular response to mechanical forces that involves collective multicellular behaviours for organizing diverse tissue morphologies. Summary: Polarized cellular constriction responding to mechanical stress controls the diameter of a developing epithelial tube during murine epididymal development.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, 6068501, Kyoto, Japan .,Institute for Frontier Life and Medical Sciences, Kyoto University, 6068501, Kyoto, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 6068501, Kyoto, Japan
| |
Collapse
|
35
|
Araújo SJ. Centrosomes in Branching Morphogenesis. Results Probl Cell Differ 2019; 67:323-336. [PMID: 31435801 DOI: 10.1007/978-3-030-23173-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The centrosome, a major microtubule organizer, has important functions in regulating the cytoskeleton as well as the position of cellular structures and orientation of cells within tissues. The centrosome serves as the main cytoskeleton-organizing centre in the cell and is the classical site of microtubule nucleation and anchoring. For these reasons, centrosomes play a very important role in morphogenesis, not just in the early stages of cell divisions but also in the later stages of organogenesis. Many organs such as lung, kidney and blood vessels develop from epithelial tubes that branch into complex networks. Cells in the nervous system also form highly branched structures in order to build complex neuronal networks. During branching morphogenesis, cells have to rearrange within tissues though multicellular branching or through subcellular branching, also known as single-cell branching. For highly branched structures to be formed during embryonic development, the cytoskeleton needs to be extensively remodelled. The centrosome has been shown to play an important role during these events.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
36
|
Vaquero M, Cuesta S, Anerillas C, Altés G, Ribera J, Basson MA, Licht JD, Egea J, Encinas M. Sprouty1 Controls Genitourinary Development via its N-Terminal Tyrosine. J Am Soc Nephrol 2019; 30:1398-1411. [PMID: 31300484 DOI: 10.1681/asn.2018111085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/18/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Studies in mice suggest that perturbations of the GDNF-Ret signaling pathway are a major genetic cause of congenital anomalies of the kidney and urinary tract (CAKUT). Mutations in Sprouty1, an intracellular Ret inhibitor, results in supernumerary kidneys, megaureters, and hydronephrosis in mice. But the underlying molecular mechanisms involved and which structural domains are essential for Sprouty1 function are a matter of controversy, partly because studies have so far relied on ectopic overexpression of the gene in cell lines. A conserved N-terminal tyrosine has been frequently, but not always, identified as critical for the function of Sprouty1 in vitro. METHODS We generated Sprouty1 knockin mice bearing a tyrosine-to-alanine substitution in position 53, corresponding to the conserved N-terminal tyrosine of Sprouty1. We characterized the development of the genitourinary systems in these mice via different methods, including the use of reporter mice expressing EGFP from the Ret locus, and whole-mount cytokeratin staining. RESULTS Mice lacking this tyrosine grow ectopic ureteric buds that will ultimately form supernumerary kidneys, a phenotype indistinguishable to that of Sprouty1 knockout mice. Sprouty1 knockin mice also present megaureters and vesicoureteral reflux, caused by failure of ureters to separate from Wolffian ducts and migrate to their definitive position. CONCLUSIONS Tyrosine 53 is absolutely necessary for Sprouty1 function during genitourinary development in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, UK; and
| | - Jonathan D Licht
- The University of Florida Health Cancer Center, The University of Florida Cancer/Genetics Research Complex, Gainesville, Florida
| | - Joaquim Egea
- Basic Medical Sciences, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | | |
Collapse
|
37
|
Jia H, Xu M, Bo Y, Li W, Zhou R. Ras-ERK1/2 signaling accelerates the progression of colorectal cancer via mediation of H2BK5ac. Life Sci 2019; 230:89-96. [PMID: 31129138 DOI: 10.1016/j.lfs.2019.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
AIMS Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) is a key downstream gene of Ras pathway. Activation of Ras-ERK1/2 has been testified to be linked to the progression of diverse cancers. Nonetheless, whether Ras-ERK1/2-tumorigenic pathway is mediated by epigenetic factors remains indistinct. The purpose of the research attempted to disclose the functions of H2BK5ac in Ras-ERK1/2-evoked CRC cell phenotypes. MATERIALS AND METHODS Western blot assay was implemented for exploration of the relevancy between Ras-ERK1/2 and H2BK5ac. H2BK5Q was established and its functions in cell viability, colony formation and migration were appraised via utilizing MTT, soft-agar colony formation and Transwell assays. The mRNA and transcription of ERK1/2 downstream genes were estimated via RT-qPCR and ChIP assays. HDAC2 functions in SW48 cell phenotypes were evaluated after co-transfection with pEGFP-RasQ61L/T35S and si-HDAC2 vectors. Additionally, the involvements of ATF2 and MDM2 in Ras-ERK1/2-affected H2BK5ac expression were estimated. KEY FINDINGS H2BK5ac expression was evidently repressed by Ras-ERK1/2 pathway in SW48 cells. Moreover, Ras-ERK1/2-elevated cell viability, the number of colonies and migration were both impeded by H2BK5ac. The mRNA and transcriptions of CYR61, IGFBP3, WNT16B, NT5E, GDF15 and CARD16 were both mediated by H2BK5ac. Additionally, HDAC2 silence overtly recovered H2BK5ac expression inhibited by Ras-ERK1/2, meanwhile abated Ras-ERK1/2-affected SW48 cell phenotypes. Beyond that, restrained H2BK5ac induced by Ras-ERK1/2 was concerned with MDM2-mediated ATF2 degradation. SIGNIFICANCE These investigations testified that Ras-ERK1/2 pathway affected SW48 cell phenotypes through repressing H2BK5ac expression. Otherwise, declined H2BK5ac might be linked to MDM2-mediated ATF2 degradation.
Collapse
Affiliation(s)
- Huanxiang Jia
- Department of Radiology, Jining No.1 People's Hospital, Jining 272011, Shandong, China
| | - Ming Xu
- Department of Anorectal Surgery, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, Shandong, China
| | - Yan Bo
- Department of General Surgery, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, Shandong, China
| | - Wenxiao Li
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Jinan 250000, Shandong, China
| | - Runhe Zhou
- Department of General Surgery, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, Shandong, China.
| |
Collapse
|
38
|
Deng W, Ma L, Zhang Y, Zhou J, Wang Y, Liu Z, Xue Y. THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy. Autophagy 2019; 14:296-310. [PMID: 29157087 DOI: 10.1080/15548627.2017.1402990] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved process for degrading cytoplasmic contents, determines cell survival or death, and regulates the cellular homeostasis. Besides ATG proteins, numerous regulators together with various post-translational modifications (PTMs) are also involved in autophagy. In this work, we collected 4,237 experimentally identified proteins regulated in autophagy and cell death pathways from the literature. Then we computationally identified potential orthologs of known proteins, and developed a comprehensive database of The Autophagy, Necrosis, ApopTosis OrchestratorS (THANATOS, http://thanatos.biocuckoo.org ), containing 191,543 proteins potentially associated with autophagy and cell death pathways in 164 eukaryotes. We performed an evolutionary analysis of ATG genes, and observed that ATGs required for the autophagosome formation are highly conserved across eukaryotes. Further analyses revealed that known cancer genes and drug targets were overrepresented in human autophagy proteins, which were significantly associated in a number of signaling pathways and human diseases. By reconstructing a human kinase-substrate phosphorylation network for ATG proteins, our results confirmed that phosphorylation play a critical role in regulating autophagy. In total, we mapped 65,015 known sites of 11 types of PTMs to collected proteins, and revealed that all types of PTM substrates were enriched in human autophagy. In addition, we observed multiple types of PTM regulators such as protein kinases and ubiquitin E3 ligases or adaptors were significantly associated with human autophagy, and again the results emphasized the importance of PTM regulations in autophagy. We anticipated THANATOS can be a useful resource for further studies.
Collapse
Affiliation(s)
- Wankun Deng
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Lili Ma
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Ying Zhang
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Jiaqi Zhou
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Yongbo Wang
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Zexian Liu
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China.,b State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine , Sun Yat-sen University Cancer Center , 651 Dongfeng Road East, 510060 , Guangzhou , Guangdong , P. R. China
| | - Yu Xue
- a Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
39
|
Franco M, Carmena A. Eph signaling controls mitotic spindle orientation and cell proliferation in neuroepithelial cells. J Cell Biol 2019; 218:1200-1217. [PMID: 30808706 PMCID: PMC6446852 DOI: 10.1083/jcb.201807157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, Franco and Carmena uncover a function for Eph signaling as a novel extrinsic mechanism controlling mitotic spindle alignment in Drosophila neuroepithelial cells through aPKC activity–dependent myosin II regulation. Additionally, Eph loss leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin–Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity–dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
40
|
Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback. Nat Commun 2019; 10:239. [PMID: 30651543 PMCID: PMC6484223 DOI: 10.1038/s41467-018-08212-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2018] [Indexed: 11/08/2022] Open
Abstract
Branching patterns and regulatory networks differ between branched organs. It has remained unclear whether a common regulatory mechanism exists and how organ-specific patterns can emerge. Of all previously proposed signalling-based mechanisms, only a ligand-receptor-based Turing mechanism based on FGF10 and SHH quantitatively recapitulates the lung branching patterns. We now show that a GDNF-dependent ligand-receptor-based Turing mechanism quantitatively recapitulates branching of cultured wildtype and mutant ureteric buds, and achieves similar branching patterns when directing domain outgrowth in silico. We further predict and confirm experimentally that the kidney-specific positive feedback between WNT11 and GDNF permits the dense packing of ureteric tips. We conclude that the ligand-receptor based Turing mechanism presents a common regulatory mechanism for lungs and kidneys, despite the differences in the molecular implementation. Given its flexibility and robustness, we expect that the ligand-receptor-based Turing mechanism constitutes a likely general mechanism to guide branching morphogenesis and other symmetry breaks during organogenesis. Many organs develop through branching morphogenesis, but whether the underlying mechanisms are shared is unknown. Here, the authors show that a ligand-receptor based Turing mechanisms, similar to that observed in lung development, likely underlies branching morphogenesis of the kidney.
Collapse
|
41
|
Lang C, Conrad L, Michos O. Mathematical Approaches of Branching Morphogenesis. Front Genet 2018; 9:673. [PMID: 30631344 PMCID: PMC6315180 DOI: 10.3389/fgene.2018.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Many organs require a high surface to volume ratio to properly function. Lungs and kidneys, for example, achieve this by creating highly branched tubular structures during a developmental process called branching morphogenesis. The genes that control lung and kidney branching share a similar network structure that is based on ligand-receptor reciprocal signalling interactions between the epithelium and the surrounding mesenchyme. Nevertheless, the temporal and spatial development of the branched epithelial trees differs, resulting in organs of distinct shape and size. In the embryonic lung, branching morphogenesis highly depends on FGF10 signalling, whereas GDNF is the driving morphogen in the kidney. Knockout of Fgf10 and Gdnf leads to lung and kidney agenesis, respectively. However, FGF10 plays a significant role during kidney branching and both the FGF10 and GDNF pathway converge on the transcription factors ETV4/5. Although the involved signalling proteins have been defined, the underlying mechanism that controls lung and kidney branching morphogenesis is still elusive. A wide range of modelling approaches exists that differ not only in the mathematical framework (e.g., stochastic or deterministic) but also in the spatial scale (e.g., cell or tissue level). Due to advancing imaging techniques, image-based modelling approaches have proven to be a valuable method for investigating the control of branching events with respect to organ-specific properties. Here, we review several mathematical models on lung and kidney branching morphogenesis and suggest that a ligand-receptor-based Turing model represents a potential candidate for a general but also adaptive mechanism to control branching morphogenesis during development.
Collapse
Affiliation(s)
| | | | - Odyssé Michos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
42
|
Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S, Du X, O'Brien LE. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. eLife 2018; 7:36248. [PMID: 30427308 PMCID: PMC6277200 DOI: 10.7554/elife.36248] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Organ renewal is governed by the dynamics of cell division, differentiation and loss. To study these dynamics in real time, we present a platform for extended live imaging of the adult Drosophila midgut, a premier genetic model for stem-cell-based organs. A window cut into a living animal allows the midgut to be imaged while intact and physiologically functioning. This approach prolongs imaging sessions to 12–16 hr and yields movies that document cell and tissue dynamics at vivid spatiotemporal resolution. By applying a pipeline for movie processing and analysis, we uncover new and intriguing cell behaviors: that mitotic stem cells dynamically re-orient, that daughter cells use slow kinetics of Notch activation to reach a fate-specifying threshold, and that enterocytes extrude via ratcheted constriction of a junctional ring. By enabling real-time study of midgut phenomena that were previously inaccessible, our platform opens a new realm for dynamic understanding of adult organ renewal.
Collapse
Affiliation(s)
- Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Leslie Ann Jaramillo Koyama
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - XinXin Du
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
43
|
Prince LS. FGF10 and Human Lung Disease Across the Life Spectrum. Front Genet 2018; 9:517. [PMID: 30429870 PMCID: PMC6220039 DOI: 10.3389/fgene.2018.00517] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/12/2018] [Indexed: 02/01/2023] Open
Abstract
Lung diseases impact patients across the lifespan, from infants in the first minutes of life through the aged population. Congenital abnormalities of lung structure can cause lung disease at birth or make adults more susceptible to chronic disease. Continuous inhalation of atmospheric components also requires the lung to be resilient to cellular injury. Fibroblast growth factor 10 (FGF10) regulates multiple stages of structural lung morphogenesis, cellular differentiation, and the response to injury. As a driver of lung airway branching morphogenesis, FGF10 signaling defects during development lead to neonatal lung disease. Alternatively, congenital airway abnormalities attributed to FGF10 mutations increase the risk of chronic airway disease in adulthood. FGF10 also maintains progenitor cell populations in the airway and promotes alveolar type 2 cell expansion and differentiation following injury. Here we review the cellular and molecular mechanisms linking FGF10 to multiple lung diseases, from bronchopulmonary dysplasia in extremely preterm neonates, cystic fibrosis in children, and chronic adult lung disorders. Understanding the connections between FGF10 and lung diseases may lead to exciting new therapeutic strategies.
Collapse
Affiliation(s)
- Lawrence S. Prince
- Department of Pediatrics, University of California, San Diego, Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
44
|
Li Q, Jiao J, Li H, Wan H, Zheng C, Cai J, Bao S. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci 2018; 131:jcs.217406. [PMID: 29950483 DOI: 10.1242/jcs.217406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Branching morphogenesis is essential for the successful development of a functional lung to accomplish its gas exchange function. Although many studies have highlighted requirements for the bone morphogenetic protein (BMP) signaling pathway during branching morphogenesis, little is known about how BMP signaling is regulated. Here, we report that the protein arginine methyltransferase 5 (Prmt5) and symmetric dimethylation at histone H4 arginine 3 (H4R3sme2) directly associate with chromatin of Bmp4 to suppress its transcription. Inactivation of Prmt5 in the lung epithelium results in halted branching morphogenesis, altered epithelial cell differentiation and neonatal lethality. These defects are accompanied by increased apoptosis and reduced proliferation of lung epithelium, as a consequence of elevated canonical BMP-Smad1/5/9 signaling. Inhibition of BMP signaling by Noggin rescues the lung branching defects of Prmt5 mutant in vitro Taken together, our results identify a novel mechanism through which Prmt5-mediated histone arginine methylation represses canonical BMP signaling to regulate lung branching morphogenesis.
Collapse
Affiliation(s)
- Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Institute of Women and Children's Health, and Department of Pediatrics, Huaxi Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
45
|
Morgan JT, Stewart WG, McKee RA, Gleghorn JP. The mechanosensitive ion channel TRPV4 is a regulator of lung development and pulmonary vasculature stabilization. Cell Mol Bioeng 2018; 11:309-320. [PMID: 30713588 DOI: 10.1007/s12195-018-0538-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction – Clinical observations and animal models suggest a critical role for the dynamic regulation of transmural pressure and peristaltic airway smooth muscle contractions for proper lung development. However, it is currently unclear how such mechanical signals are transduced into molecular and transcriptional changes at the cell level. To connect these physical findings to a mechanotransduction mechanism, we identified a known mechanosensor, TRPV4, as a component of this pathway. Methods – Embryonic mouse lung explants were cultured on membranes and in submersion culture to modulate explant transmural pressure. Time-lapse imaging was used to capture active changes in lung biology, and whole-mount images were used to visualize the organization of the epithelial, smooth muscle, and vascular compartments. TRPV4 activity was modulated by pharmacological agonism and inhibition. Results – TRPV4 expression is present in the murine lung with strong localization to the epithelium and major pulmonary blood vessels. TRPV4 agonism and inhibition resulted in hyper- and hypoplastic airway branching, smooth muscle differentiation, and lung growth, respectively. Smooth muscle contractions also doubled in frequency with agonism and were reduced by 60% with inhibition demonstrating a functional role consistent with levels of smooth muscle differentiation. Activation of TRPV4 increased the vascular capillary density around the distal airways, and inhibition resulted in a near complete loss of the vasculature. Conclusions – These studies have identified TRPV4 as a potential mechanosensor involved in transducing mechanical forces on the airways to molecular and transcriptional events that regulate the morphogenesis of the three essential tissue compartments in the lung.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Present Address: Department of Bioengineering, University of California, Riverside, CA USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Robert A McKee
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Department of Biological Sciences, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
46
|
Neumann NM, Perrone MC, Veldhuis JH, Huebner RJ, Zhan H, Devreotes PN, Brodland GW, Ewald AJ. Coordination of Receptor Tyrosine Kinase Signaling and Interfacial Tension Dynamics Drives Radial Intercalation and Tube Elongation. Dev Cell 2018; 45:67-82.e6. [PMID: 29634937 DOI: 10.1016/j.devcel.2018.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
We sought to understand how cells collectively elongate epithelial tubes. We first used 3D culture and biosensor imaging to demonstrate that epithelial cells enrich Ras activity, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and F-actin to their leading edges during migration within tissues. PIP3 enrichment coincided with, and could enrich despite inhibition of, F-actin dynamics, revealing a conserved migratory logic compared with single cells. We discovered that migratory cells can intercalate into the basal tissue surface and contribute to tube elongation. We then connected molecular activities to subcellular mechanics using force inference analysis. Migration and transient intercalation required specific and similar anterior-posterior ratios of interfacial tension. Permanent intercalations were distinguished by their capture at the boundary through time-varying tension dynamics. Finally, we integrated our experimental and computational data to generate a finite element model of tube elongation. Our model revealed that intercalation, interfacial tension dynamics, and high basal stress are together sufficient for mammary morphogenesis.
Collapse
Affiliation(s)
- Neil M Neumann
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - Matthew C Perrone
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jim H Veldhuis
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Robert J Huebner
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - G Wayne Brodland
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew J Ewald
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Kim JM, Choi S, Lee SW, Park K. Voltage-dependent Ca 2+ channels promote branching morphogenesis of salivary glands by patterning differential growth. Sci Rep 2018; 8:7566. [PMID: 29765108 PMCID: PMC5954160 DOI: 10.1038/s41598-018-25957-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Branching morphogenesis is a crucial part of early developmental processes in diverse organs, but the detailed mechanism of this morphogenic event remains to be elucidated. Here we introduce an unknown mechanism leading to branching morphogenesis using mouse embryonic organotypic cultures with time-lapse live imaging. We found spatially expressed L-type voltage-dependent Ca2+ channels (VDCCs) in the peripheral layers of developing epithelial buds and identified the VDCCs as a core signaling mediator for patterning branching architecture. In this process, differential growth in peripheral layers by VDCC-induced ERK activity promoted cleft formation through an epithelial buckling-folding mechanism. Our findings reveal an unexpected role of VDCCs in developmental processes, and address a fundamental question regarding the initial process of branching morphogenesis.
Collapse
Affiliation(s)
- J M Kim
- Department of Dentistry, CHA Bundang Medical Center, CHA University, Seongnam, 13496, South Korea
| | - S Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 03080, South Korea
| | - S W Lee
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 03080, South Korea
| | - K Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 03080, South Korea.
| |
Collapse
|
48
|
Gao B, Ajima R, Yang W, Li C, Song H, Anderson MJ, Liu RR, Lewandoski MB, Yamaguchi TP, Yang Y. Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development 2018; 145:dev.163824. [PMID: 29615464 DOI: 10.1242/dev.163824] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.
Collapse
Affiliation(s)
- Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China .,Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyu Li
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.,Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hai Song
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Robert R Liu
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Mark B Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Yingzi Yang
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA .,Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
49
|
Abstract
In this issue of Developmental Cell, Tang et al. (2018) and Li et al. (2018) combine genetic manipulation, mechanical perturbation, and live imaging to show how mechanical forces and local growth factors intersect to influence epithelial behavior and cell fate specification within the developing lung.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
50
|
Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N. The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells. Dev Cell 2018; 44:297-312.e5. [PMID: 29408236 DOI: 10.1016/j.devcel.2018.01.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022]
Abstract
The differentiation of alveolar epithelial type I (AT1) and type II (AT2) cells is essential for the lung gas exchange function. Disruption of this process results in neonatal death or in severe lung diseases that last into adulthood. We developed live imaging techniques to characterize the mechanisms that control alveolar epithelial cell differentiation. We discovered that mechanical forces generated from the inhalation of amniotic fluid by fetal breathing movements are essential for AT1 cell differentiation. We found that a large subset of alveolar progenitor cells is able to protrude from the airway epithelium toward the mesenchyme in an FGF10/FGFR2 signaling-dependent manner. The cell protrusion process results in enrichment of myosin in the apical region of protruded cells; this myosin prevents these cells from being flattened by mechanical forces, thereby ensuring their AT2 cell fate. Our study demonstrates that mechanical forces and local growth factors synergistically control alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Jiao Li
- China Agricultural University, Beijing 100083, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Qiqi Chu
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Juan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|