1
|
Baidya P, Roy S, Karapurkar J, Bagchi S. Replacing native grazers with livestock influences arthropods to have implications for ecosystem functions and disease. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3091. [PMID: 39888220 DOI: 10.1002/eap.3091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025]
Abstract
Grazing by large mammalian herbivores influences ecosystem structure and functions through its impacts on vegetation and soil, as well as by the influence on other animals such as arthropods. As livestock progressively replace native grazers around the world, it is pertinent to ask whether they have comparable influence over arthropods, or not. We use a replicated landscape-level, long-term grazer-exclusion experiment (14 years) to address how ground-dwelling arthropods respond to such a change in grazing regime where livestock replace native grazers in the cold deserts of the Trans-Himalayan ecosystem of northern India. We analyze spatial and temporal variation in the abundance of 25,604 arthropods sampled using pitfall traps across 2765 trap-days through the duration of the growing season spanning spring, summer, and autumn. These were from 88 operational taxonomic units covering six orders from 33 families (ants, wasps, bees, ticks and mites, spiders, grasshoppers, and beetles). We find that grazer assemblage-whether livestock or native herbivores-had a strong influence on both vegetation and arthropods. Partial redundancy analysis (RDA) showed that 53.6% of the spatial and temporal variation in arthropod communities could be explained by grazing and by grazer assemblage identity, alongside covariation with vegetation composition and soil variables. Structural equation models revealed that grazing and grazer assemblage identity have direct effects on arthropods, as well as indirect effects that are mediated through vegetation. Importantly, spiders (predators) were less abundant under livestock, whereas grasshoppers (leaf eaters) and ticks and mites (parasitic disease vectors) were more abundant, compared with native grazers. Reduction in spiders can fundamentally alter material and energy flow through the cascading effects of losing predators, and an abundance of grasshoppers may even contribute to vegetation degradation that is often associated with livestock. Parallelly, increases in ticks and mites lead to concerns over vector-borne disease that require planned interventions to align animal husbandry with One Health. Thus, losing native grazers to livestock expansion can have wide-ranging repercussions via arthropods. This may not only affect ecosystem structure and functions, but also offer challenges and opportunities to mitigate risks from vector-borne disease.
Collapse
Affiliation(s)
- Pronoy Baidya
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Arannya Environment Research Organisation, Sattari, Goa, India
| | - Shamik Roy
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Technische Universität Dresden, Forest Zoology, Tharandt, Germany
| | - Jalmesh Karapurkar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Arannya Environment Research Organisation, Sattari, Goa, India
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
2
|
Zandonà E, Sullam KE, Dalton CM, El-Sabaawi RW, Kilham SS, Flecker AS. Diet and predation risk affect tissue and excretion nutrients of Trinidadian guppies: a field survey. Sci Rep 2024; 14:31923. [PMID: 39738379 PMCID: PMC11685892 DOI: 10.1038/s41598-024-83420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Consumers vary in their excretion of nitrogen and phosphorus, altering nutrient cycles and ecosystem function. Traditional mass balance models that focus on dietary and tissue nutrients have poorly explained such variation in excretion. Here, we contrast diet and tissue nutrient models for nutrient excretion with predation risk, an often overlooked factor, using the Trinidadian guppy (Poecilia reticulata) as our model system. We surveyed guppies at 12 sites spread across two streams with parallel gradients in food quality and predation risk. At each site, we assessed guppy diet, tissue nitrogen (N), and phosphorus (P) content, and N and P excretion. Predation risk best explained guppy excretion, especially P: guppies excreted less in sites with a dominant predator, while traditional models for excretion rate based on diet quality and tissue nutrients failed to explain it. Guppy tissue N (but not P) most closely correlated with guppy diet quality, showing evidence for flexible homeostasis. Our work extends previous laboratory studies' results to natural streams and shows that predation risk alters feeding behavior and physiology, driving substantial variation in guppy nutrient, particularly P, excretion rates. We suggest that predation risk is an important factor determining nutrient excretion variation, warranting further attention. Our results also show that tissue nutrients and excretion nutrients are decoupled.
Collapse
Affiliation(s)
- Eugenia Zandonà
- Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Karen E Sullam
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Agroscope, Molecular Ecology, Research Division Methods Development and Analytics, Zurich, Switzerland
| | - Christopher M Dalton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Science Department, The Rivers School, Weston, MA, USA
| | | | - Susan S Kilham
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Rozanova OL, Tsurikov SM, Kudrin AA, Leonov VD, Krivosheina MG, Fedorenko DN, Tanasevitch AV, Rybalov LB, Tiunov AV. Incorporation of the 15N-labeled simulated arthropod rain in the soil food web. Oecologia 2024; 205:587-596. [PMID: 39026111 DOI: 10.1007/s00442-024-05595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Direct trophic links between aboveground and belowground animal communities are rarely considered in food web models. Most invertebrate animals inhabiting aboveground space eventually become prey of soil predators and scavengers forming a gravity-driven spatial subsidy to detrital food webs, but its importance remains unquantified. We used laboratory-grown 15N-labeled Collembola to trace the incorporation of arthropod rain into soil food webs. Live or euthanized Collembola were supplemented once to field mesocosms in the amount equivalent to the mean daily input of the arthropod rain (19 mg d.w. m-2). After the addition of live Collembola, the isotopic label was found most often in predatory Trombidiformes (83% of samples) and Mesostigmata mites (85%), followed by Araneae (58%), Chilopoda (45%), and Coleoptera (29%). Among non-predatory groups, the isotopic label was recorded in Thysanoptera (27%), Collembola (24%), and Oribatida (18%). The 15N-label was also detected in Symphyla, Formicidae, Diplura, Diplopoda, Opiliones, Diptera, Hemiptera, Oligochaeta, and Nematoda. There was a positive correlation between natural 15N abundance and the frequency of the isotopic label among predators, but not among decomposers. In the non-replicated treatment, in which dead collembolans were added, the label was found in predators and decomposers in approximately equal proportions (21-25%). Unlike other forms of the aboveground subsidy (such as leaf litter, frass, or honeydew) that are primarily processed by microorganisms, arthropod rain is assimilated directly by the animals. The high frequency of consumption of the aboveground subsidy suggests that it plays a significant role in maintaining the abundance of soil predators.
Collapse
Affiliation(s)
- Oksana L Rozanova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Sergey M Tsurikov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Alexey A Kudrin
- Institute of Biology of Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Kommunisticheskaja 28, 167000, Syktyvkar, Russia
| | - Vladislav D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Marina G Krivosheina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Dmitry N Fedorenko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Andrei V Tanasevitch
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Leonid B Rybalov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.
| |
Collapse
|
4
|
Zhang C, De Meester L, Stoks R. Rapid evolution of consumptive and non-consumptive predator effects on prey population densities, bioenergetics and stoichiometry. J Anim Ecol 2024; 93:906-917. [PMID: 38807348 DOI: 10.1111/1365-2656.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 03/12/2024] [Indexed: 05/30/2024]
Abstract
Predators can strongly influence prey populations not only through consumptive effects (CE) but also through non-consumptive effects (NCE) imposed by predation risk. Yet, the impact of NCE on bioenergetic and stoichiometric body contents of prey, traits that are shaping life histories, population and food web dynamics, is largely unknown. Moreover, the degree to which NCE can evolve and can drive evolution in prey populations is rarely studied. A 6-week outdoor mesocosm experiment with Caged-Fish (NCE) and Free-Ranging-Fish (CE and NCE) treatments was conducted to quantify and compare the effects of CE and NCE on population densities, bioenergetic and stoichiometric body contents of Daphnia magna, a keystone species in freshwater ecosystems. We tested for evolution of CE and NCE by using experimental populations consisting of D. magna clones from two periods of a resurrected natural pond population: a pre-fish period without fish and a high-fish period with high predation pressure. Both Caged-Fish and Free-Ranging-Fish treatments decreased the body size and population densities, especially in Daphnia from the high-fish period. Only the Free-Ranging-Fish treatment affected bioenergetic variables, while both the Caged-Fish and Free-Ranging-Fish treatments shaped body stoichiometry. The effects of CE and NCE were different between both periods indicating their rapid evolution in the natural resurrected population. Both the Caged-Fish and Free-Ranging-Fish treatments changed the clonal frequencies of the experimental Daphnia populations of the pre-fish as well as the high-fish period, indicating that not only CE but also NCE induced clonal sorting, hence rapid evolution during the mesocosm experiment in both periods. Our results demonstrate that CE as well as NCE have the potential to change not only the body size and population density but also the bioenergetic and stoichiometric characteristics of prey populations. Moreover, we show that these responses not only evolved in the studied resurrected population, but that CE and NCE also caused differential rapid evolution in a time frame of 6 weeks (ca. four to six generations). As NCE can evolve as well as can drive evolution, they may play an important role in shaping eco-evolutionary dynamics in predator-prey interactions.
Collapse
Affiliation(s)
- Chao Zhang
- Environmental Research Institute, Shandong University, Qingdao, China
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Luc De Meester
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Laboratory of Freshwater Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Srygley RB, Branson DH. Power Bars: Mormon Crickets Get Immunity Boost from Eating Grasshoppers. INSECTS 2023; 14:868. [PMID: 37999067 PMCID: PMC10672412 DOI: 10.3390/insects14110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
In addition to feeding on plants, Mormon crickets Anabrus simplex Haldeman, 1852 predate on invertebrates, including one another, which effectively drives their migration. Carnivory derives from lack of dietary protein, with Mormon crickets deprived of protein having less phenoloxidase (PO) available to combat foreign invaders, such as fungal pathogens. Because Mormon crickets commonly occur with grasshoppers that feed on the same plants, we investigated interactions between grasshoppers and Mormon crickets, and hypothesized that if Mormon crickets are predatory on grasshoppers, grasshopper abundance would influence the protein available to Mormon crickets and their immunity. In a field setting, we varied densities of Mormon crickets (0, 10, or 20 per cage) and grasshoppers Melanoplus borealis (0, 15, 30, or 45) in 68 1-m2 cages. After one month, we measured Mormon cricket dietary preferences and PO activity. As predicted, artificial diet consumption shifted away from protein as grasshopper density increased, and immunocompetence, as measured by PO activity, also increased with grasshopper availability. Although nitrogen availability in the vegetation decreased with increasing insect density, predation became an important source of protein for Mormon crickets that enhanced immunity. Grasshoppers can be an important source of dietary protein for Mormon crickets, with prey availability affecting Mormon cricket immunity to diseases.
Collapse
Affiliation(s)
- Robert B. Srygley
- Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, 1500 N. Central Ave., Sidney, MT 59270, USA;
| | | |
Collapse
|
6
|
Dantzer B, Mabry KE, Bernhardt JR, Cox RM, Francis CD, Ghalambor CK, Hoke KL, Jha S, Ketterson E, Levis NA, McCain KM, Patricelli GL, Paull SH, Pinter-Wollman N, Safran RJ, Schwartz TS, Throop HL, Zaman L, Martin LB. Understanding Organisms Using Ecological Observatory Networks. Integr Org Biol 2023; 5:obad036. [PMID: 37867910 PMCID: PMC10586040 DOI: 10.1093/iob/obad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/07/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales. One well-known example is NEON, the US-based National Ecological Observatory Network. Although NEON and similar networks have informed studies of population, community, and ecosystem ecology for years, they have been minimally used by organismal biologists. NEON provides organismal biologists, in particular those interested in NEON's focal taxa, with an unprecedented opportunity to study phenomena such as range expansions, disease epidemics, invasive species colonization, macrophysiology, and other biological processes that fundamentally involve organismal variation. Here, we use NEON as an exemplar of the promise of observatory networks for understanding the causes and consequences of morphological, behavioral, molecular, and physiological variation among individual organisms.
Collapse
Affiliation(s)
- B Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109,USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
| | - K E Mabry
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,USA
| | - J R Bernhardt
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,USA
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22940,USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407,USA
| | - C D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407,USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N‐7491 Trondheim, Norway
| | - C K Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N‐7491 Trondheim, Norway
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - K L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - S Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712,USA
| | - E Ketterson
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405,USA
| | - N A Levis
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405,USA
| | - K M McCain
- Global Health and Infectious Disease Research Center, College of Public Health, University of South Florida, Tampa, FL 33612,USA
| | - G L Patricelli
- Department of Evolution and Ecology, University of California, Davis, CA 95616,USA
| | - S H Paull
- Battelle, National Ecological Observatory Network, 1685 38th Street, Boulder, CO 80301, USA
| | - N Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - R J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309,USA
| | - T S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - H L Throop
- School of Earth and Space Exploration and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - L Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109,USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
| | - L B Martin
- Global Health and Infectious Disease Research Center and Center for Genomics, College of Public Health, University of South Florida, Tampa, FL 33612,USA
| |
Collapse
|
7
|
Herzog C, Reeves JT, Ipek Y, Jilling A, Hawlena D, Wilder SM. Multi-elemental consumer-driven nutrient cycling when predators feed on different prey. Oecologia 2023; 202:729-742. [PMID: 37552361 DOI: 10.1007/s00442-023-05431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.
Collapse
Affiliation(s)
- Colton Herzog
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA.
| | - Jacob T Reeves
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Yetkin Ipek
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, USA
| | - Dror Hawlena
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| |
Collapse
|
8
|
Wang L, Liu H, Carvalho F, Chen Y, Lai L, Ge J, Tian X, Luo Y. Top-Down Effect of Arthropod Predator Chinese Mitten Crab on Freshwater Nutrient Cycling. Animals (Basel) 2023; 13:2342. [PMID: 37508124 PMCID: PMC10376719 DOI: 10.3390/ani13142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Aquatic litter decomposition is highly dependent on contributions and interactions at different trophic levels. The invasion of alien aquatic organisms like the channeled apple snail (Pomacea canaliculata) might lead to changes in the decomposition process through new species interactions in the invaded wetland. However, it is not clear how aquatic macroinvertebrate predators like the Chinese mitten crab (Eriocheir sinensis) will affect the nutrient cycle in freshwater ecosystems in the face of new benthic invasion. We used the litter bag method to explore the top-down effect of crabs on the freshwater nutrient cycle with the help of soil zymography (a technology previously used in terrestrial ecosystems). The results showed significant feeding effects of crabs and snails on lotus leaf litter and cotton strips. Crabs significantly inhibited the intake of lotus litter and cotton strips and the ability to transform the environment of snails by predation. Crabs promoted the decomposition of various litter substrates by affecting the microbial community structure in the sediment. These results suggest that arthropod predators increase the complexity of detrital food webs through direct and indirect interactions, and consequently have an important impact on the material cycle and stability of freshwater ecosystems. This top-down effect makes macrobenthos play a key role in the biological control and engineering construction of freshwater ecosystems.
Collapse
Affiliation(s)
- Lin Wang
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hongjun Liu
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Francisco Carvalho
- CBMA-Center of Molecular and Environmental Biology, Biology Department, University of Minho, 4710-057 Braga, Portugal
| | - Yunru Chen
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Beijing Municipal Ecological and Environmental Monitoring Center, 14 Chegongzhuangxi Road, Beijing 100048, China
| | - Linshiyu Lai
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jiachun Ge
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Freshwater Fishery Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yunchao Luo
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
9
|
Tian W, Hawlena D, Pagès JF, Zhong Z, Wang D. Fear of predators alters herbivore regulation of soil microbial community function. Ecol Evol 2023; 13:e10207. [PMID: 37396681 PMCID: PMC10311041 DOI: 10.1002/ece3.10207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Fear of predation can affect important ecosystem processes by altering the prey traits expression that, in turn, regulates the quantity and quality of nutritional inputs to soil. Here, we aimed to assist in bridging a knowledge gap in this cascading chain of events by exploring how risk of spider predation may affect grasshopper prey performances, and the activity of various microbial extracellular enzymes in the soil. Using a mesocosms field-experiment, we found that grasshoppers threatened by spider predation ate less, grew slower, and had a higher body carbon to nitrogen ratio. Herbivory increased activity of all microbial extracellular enzymes examined, likely due to higher availability of root exudates. Predation risk had no effect on C-acquiring enzymes but decreased activity of P-acquiring enzymes. We found contrasting results regarding the effect of predation on the activity of N-acetyl-glucosaminidase and leucine arylamidase N-acquiring enzymes, suggesting that predation risk may alter the composition of N-inputs to soil. Our work highlighted the importance of soil microbial enzymatic activity as a way to predict how changes in the aboveground food-web dynamics may alter key ecosystem processes like nutritional-cycling.
Collapse
Affiliation(s)
- Wei Tian
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research StationNortheast Normal UniversityChangchunChina
| | - Dror Hawlena
- Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Jordi F. Pagès
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Zhiwei Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research StationNortheast Normal UniversityChangchunChina
| | - Deli Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research StationNortheast Normal UniversityChangchunChina
| |
Collapse
|
10
|
Gálvez D. Ecology of fear: predator avoidance reduces seed dispersal in an ant. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230530. [PMID: 37476511 PMCID: PMC10354471 DOI: 10.1098/rsos.230530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023]
Abstract
The ecology of fear refers to the non-fatal cost that predators and parasites impose on prey populations. These non-consumptive effects (NCEs) can influence animal-plant interactions, but evidence thereof comes mainly from vertebrate systems with less focus on invertebrates. Here, I investigated whether the foraging behaviour of the ant Ectatomma ruidum was influenced by its primary predator, the forest toad Rhinella alata. In field tests, the probability of seed removal by the ants was 25% for seeds placed with the forest toad compared to 32% for control seeds, suggesting that toads reduce ant foraging rates. A further experiment revealed that ants which had previously encountered the predator and its faeces were more likely (59%) than inexperienced ants (50%) to avoid the exit with the predator faeces. This outcome suggests that ants are capable of learning cues associated with predation risk, possibly leading to NCEs. This indicates that predators can exert NCEs on invertebrate prey with potential cascading effects on seed dispersal, extending results previously seen only in vertebrate seed dispersal systems.
Collapse
Affiliation(s)
- Dumas Gálvez
- Coiba Scientific Station, City of Knowledge, Calle Gustavo Lara, Boulevard 145B, Clayton 0843-01853, Panama
- Smithsonian Tropical Research Institute, Panamá PO Box 0843-03092, Balboa, Ancón, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Estafeta universitaria, Avenida Simón Bolívar, 0824 Panama City, Panama
- Sistema Nacional de Investigación, Panama City, Panama
| |
Collapse
|
11
|
Sommer NR, Alshwairikh YA, Arietta AZA, Skelly DK, Buchkowski RW. Prey metabolic responses to predators depend on predator hunting mode and prey antipredator defenses. OIKOS 2023. [DOI: 10.1111/oik.09664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nathalie R. Sommer
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - Yara A. Alshwairikh
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - A. Z. Andis Arietta
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - David K. Skelly
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - Robert W. Buchkowski
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
- Dept of Biology, Univ. of Western Ontario, Biological and Geological Sciences Building London ON Canada
| |
Collapse
|
12
|
Kane JL, Kotcon JB, Freedman ZB, Morrissey EM. Fungivorous nematodes drive microbial diversity and carbon cycling in soil. Ecology 2023; 104:e3844. [PMID: 35960179 DOI: 10.1002/ecy.3844] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
Soil bacteria and fungi mediate terrestrial biogeochemical cycling, but we know relatively little about how trophic interactions influence their community composition, diversity, and function. Specifically, it is unclear how consumer populations affect the activity of microbial taxa they consume, and therefore the interaction of those taxa with other members of the microbial community. Due to its extreme diversity, studying trophic dynamics in soil is a complex feat. Seeking to address these challenges, we performed a microcosm-based consumer manipulation experiment to determine the impact of a common fungal-feeding nematode (Aphelenchus avenae) on soil microbial community composition, diversity, and activity (e.g., C cycling parameters). Fungivory decreased fungal and bacterial α-diversity and stimulated C and N cycling, possibly via cascading impacts of fungivory on bacterial communities. Our results present experimental evidence that soil trophic dynamics are intimately linked with microbial diversity and function, factors that are key in understanding global patterns in biogeochemical cycling.
Collapse
Affiliation(s)
- Jennifer L Kane
- Division of Plant and Soil Science, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia, USA
| | - James B Kotcon
- Division of Plant and Soil Science, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary B Freedman
- Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ember M Morrissey
- Division of Plant and Soil Science, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Lennox RJ, Brownscombe JW, Darimont C, Horodysky A, Levi T, Raby GD, Cooke SJ. The roles of humans and apex predators in sustaining ecosystem structure and function: Contrast, complementarity and coexistence. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Robert J. Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Norwegian Research Center Bergen Norway
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology Carleton University Ottawa Ontario Canada
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | - Jacob W. Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology Carleton University Ottawa Ontario Canada
- Great Lakes Laboratory for Fisheries and Aquatic Sciences Fisheries and Oceans Canada Burlington Ontario Canada
| | | | - Andrij Horodysky
- Department of Marine and Environmental Science Hampton University Hampton Virginia USA
| | - Taal Levi
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon USA
| | - Graham D. Raby
- Department of Biology Trent University Peterborough Ontario Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology Carleton University Ottawa Ontario Canada
| |
Collapse
|
14
|
Redinger JM, Halvorson HM, Gifford ME. Variable stoichiometric and macronutrient responses to lizard predation in Ozark glade grasshopper communities. Oecologia 2022; 199:757-768. [PMID: 35610326 DOI: 10.1007/s00442-022-05185-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
The General Stress Paradigm (GSP) predicts that prey body compositions should shift under chronic predation as prey increase body carbon and decrease body nitrogen content through dietary changes, heightened metabolism, reduced dietary efficiency, and the breakdown of nitrogen rich tissues to make labile carbohydrates available. In our study, we explored how the elemental and macronutrient content along with the morphology of three abundant Ozark glade grasshopper species differed between glades with and without predatory collared lizard (Crotaphytus collaris) populations. Our results indicated that lichen grasshoppers (Trimerotropis saxatilis) increased body C:N ratios in response to predators. Scudder's short-wing grasshoppers (Melanoplus scudderi) increased both body %C and %protein content, while the handsome grasshoppers (Syrbula admirabilis) did not significantly respond to the presence of collared lizards. None of the three grasshopper species showed morphological responses to predation. We also found that elemental and macronutrient content of grasshoppers was not always significantly correlated and was not associated with the same environmental factors, indicating a need to incorporate both perspectives in future research and utilize more accurate macromolecular assays. Overall, we found support for some aspects of the GSP in field-active animals and add to the growing body of evidence that predator-induced changes in prey body composition are more complex than predicted by the original GSP.
Collapse
Affiliation(s)
- Joseph M Redinger
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Halvor M Halvorson
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Matthew E Gifford
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
15
|
Abstract
AbstractInvertebrates comprise the most diversified animal group on Earth. Due to their long evolutionary history and small size, invertebrates occupy a remarkable range of ecological niches, and play an important role as “ecosystem engineers” by structuring networks of mutualistic and antagonistic ecological interactions in almost all terrestrial ecosystems. Urban forests provide critical ecosystem services to humans, and, as in other systems, invertebrates are central to structuring and maintaining the functioning of urban forests. Identifying the role of invertebrates in urban forests can help elucidate their importance to practitioners and the public, not only to preserve biodiversity in urban environments, but also to make the public aware of their functional importance in maintaining healthy greenspaces. In this review, we examine the multiple functional roles that invertebrates play in urban forests that contribute to ecosystem service provisioning, including pollination, predation, herbivory, seed and microorganism dispersal and organic matter decomposition, but also those that lead to disservices, primarily from a public health perspective, e.g., transmission of invertebrate-borne diseases. We then identify a number of ecological filters that structure urban forest invertebrate communities, such as changes in habitat structure, increased landscape imperviousness, microclimatic changes and pollution. We also discuss the complexity of ways that forest invertebrates respond to urbanisation, including acclimation, local extinction and evolution. Finally, we present management recommendations to support and conserve viable and diverse urban forest invertebrate populations into the future.
Collapse
|
16
|
In defense of elemental currencies: can ecological stoichiometry stand as a framework for terrestrial herbivore nutritional ecology? Oecologia 2022; 199:27-38. [PMID: 35396976 DOI: 10.1007/s00442-022-05160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Nutritional ecologists aim to predict population or landscape-level effects of food availability, but the tools to extrapolate nutrition from small to large extents are often lacking. The appropriate nutritional ecology currencies should be able to represent consumer responses to food while simultaneously be simple enough to expand such responses to large spatial extents and link them to ecosystem functioning. Ecological stoichiometry (ES), a framework of nutritional ecology, can meet these demands, but it is typically associated with ecosystem ecology and nutrient cycling, and less often used to study wildlife nutrition. Despite the emerging zoogeochemical evidence that animals, and thus their diets, play critical roles in nutrient movement, wildlife nutritional ecology has not fully embraced ES, and ES has not incorporated nutrition in many wildlife studies. Here, we discuss how elemental currencies are "nutritionally, organismally, and ecologically explicit" in the context of terrestrial herbivore nutritional ecology. We add that ES and elemental currencies offer a means to measure resource quality across landscapes and compare nutrient availability among regions. Further, we discuss ES shortcomings and solutions, and list future directions to advance the field. As ecological studies increasingly grow in spatial extent, and attempt to link multiple levels of biological organization, integrating more simple and unifying currencies into nutritional studies, like elements, is necessary for nutritional ecology to predict herbivore occurrences and abundances across regions.
Collapse
|
17
|
Chitwood MC, Baruzzi C, Lashley MA. “Ecology of fear” in ungulates: Opportunities for improving conservation. Ecol Evol 2022; 12:e8657. [PMID: 35261746 PMCID: PMC8888265 DOI: 10.1002/ece3.8657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Because ungulates are important contributors to ecosystem function, understanding the “ecology of fear” could be important to the conservation of ecosystems. Although studying ungulate ecology of fear is common, knowledge from ungulate systems is highly contested among ecologists. Here, we review the available literature on the ecology of fear in ungulates to generalize our current knowledge and how we can leverage it for conservation. Four general focus areas emerged from the 275 papers included in our literature search (and some papers were included in multiple categories): behavioral responses to predation risk (79%), physiological responses to predation risk (15%), trophic cascades resulting from ungulate responses to predation risk (20%), and manipulation of predation risk (1%). Of papers focused on behavior, 75% were about movement and habitat selection. Studies were biased toward North America (53%), tended to be focused on elk (Cervus canadensis; 29%), and were dominated by gray wolves (40%) or humans (39%) as predators of interest. Emerging literature suggests that we can utilize predation risk for conservation with top‐down (i.e., increasing predation risk) and bottom‐up (i.e., manipulating landscape characteristics to increase risk or risk perception) approaches. It is less clear whether fear‐related changes in physiology have population‐level fitness consequences or cascading effects, which could be fruitful avenues for future research. Conflicting evidence of trait‐mediated trophic cascades might be improved with better replication across systems and accounting for confounding effects of ungulate density. Improving our understanding of mechanisms modulating the nature of trophic cascades likely is most important to ensure desirable conservation outcomes. We recommend future work embrace the complexity of natural systems by attempting to link together the focal areas of study identified herein.
Collapse
Affiliation(s)
- M. Colter Chitwood
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA
| | - Carolina Baruzzi
- Department of Wildlife, Fisheries, and Aquaculture Mississippi State University Starkville Mississippi USA
- School of Forest, Fisheries, and Geomatics Sciences University of Florida Gainesville Florida USA
| | - Marcus A. Lashley
- Department of Wildlife, Fisheries, and Aquaculture Mississippi State University Starkville Mississippi USA
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| |
Collapse
|
18
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
19
|
Heo CC, Teel PD, OConnor BM, Tomberlin JK. Acari community in association with delayed pig carrion decomposition. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:223-246. [PMID: 34762225 DOI: 10.1007/s10493-021-00676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Acari community structure and function associated with delayed pig carrion decomposition has not been examined. In this study, 18 swine carcasses were studied in central Texas, USA, during two consecutive summers (2013 and 2014). Samples of ca. 400 g soil were collected from beneath, aside, and 5 m away from each pig carcass over 180 days. Mites from soil samples were extracted using Berlese funnels and identified to order and family levels and classified according to ecological function. In total 1565 and 1740 mites were identified from the 2013 and 2014 soil samples, respectively. Significant differences were determined for mite community structure at order and family levels temporally on carrion (e.g., day 0 × day 14) regardless of treatments and between soil regions where mites were collected (e.g., soil beneath vs. soil 5 m away from carrion). However, no significant differences were found in mite community structure at the order level between pig carrion with and without delayed Diptera colonization (i.e., treatments). Analysis at the family level determined a significant difference across treatments for both summers. Ecological function of mites did not change significantly following the delayed decomposition of pig carcasses. However, detritivores and fungivores were significant indicator groups during the pig carrion decomposition process. Furthermore, 13 phoretic mite species associated with eight forensically important beetle species were documented. Data from this study indicated that the rate of nutrient flow into the soil impacted associated arthropod communities; however, detecting such shifts depends on the taxonomic resolution being applied.
Collapse
Affiliation(s)
- C C Heo
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA.
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Selangor, Malaysia.
| | - P D Teel
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - B M OConnor
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| |
Collapse
|
20
|
Buchkowski RW, Schmitz OJ. Weak interactions between strong interactors in an old‐field ecosystem: Control of nitrogen cycling by coupled herbivores and detritivores. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Hey MH, Epstein HE, Haynes KJ. Artificial Light at Night Impacts the Litter Layer Invertebrate Community With No Cascading Effects on Litter Breakdown. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial light at night (ALAN) can impact the trophic structure of assemblages of ground-dwelling invertebrates, and changes in such assemblages can affect decomposition in terrestrial systems due to the various functional roles of these invertebrates, including microbial grazing, comminution of litter, and predation of other invertebrates, that can directly or indirectly affect plant-litter breakdown. Despite this, we are unaware of any studies that have evaluated the effects of ALAN on the breakdown of plant litter in a terrestrial ecosystem. We sought to answer whether ALAN affects litter breakdown via its effects on a community of ground-dwelling arthropods using two field experiments. In one experiment, we manipulated the presence of ALAN and the size classes of soil invertebrates that could enter mesh bags containing plant litter (litterbags). We found that the rate of plant-litter breakdown increased with the mesh size of litterbags but was unaffected by presence of ALAN. In a second field experiment carried out to examine the effects of ALAN on the trophic structure of litter-layer invertebrate communities, while controlling for potential effects of ALAN on vegetation, we again found that ALAN did not affect litter breakdown despite the fact that ALAN increased the abundances of secondary and tertiary consumers. Our finding that larger assemblages of ground-dwelling secondary and tertiary consumer invertebrates under ALAN did not slow litter breakdown through increased top-down control of detritivores suggests ALAN may disrupt predator-prey interactions in litter-layer communities.
Collapse
|
22
|
Monk JD, Schmitz OJ. Landscapes shaped from the top down: predicting cascading predator effects on spatial biogeochemistry. OIKOS 2021. [DOI: 10.1111/oik.08554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia D. Monk
- School of the Environment, Yale Univ. New Haven CT USA
| | | |
Collapse
|
23
|
Zhu D, Delgado-Baquerizo M, Ding J, Gillings MR, Zhu YG. Trophic level drives the host microbiome of soil invertebrates at a continental scale. MICROBIOME 2021; 9:189. [PMID: 34544484 PMCID: PMC8454154 DOI: 10.1186/s40168-021-01144-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Increasing our knowledge of soil biodiversity is fundamental to forecast changes in ecosystem functions under global change scenarios. All multicellular organisms are now known to be holobionts, containing large assemblages of microbial species. Soil fauna is now known to have thousands of species living within them. However, we know very little about the identity and function of host microbiome in contrasting soil faunal groups, across different terrestrial biomes, or at a large spatial scale. Here, we examined the microbiomes of multiple functionally important soil fauna in contrasting terrestrial ecosystems across China. RESULTS Different soil fauna had diverse and unique microbiomes, which were also distinct from those in surrounding soils. These unique microbiomes were maintained within taxa across diverse sampling sites and in contrasting terrestrial ecosystems. The microbiomes of nematodes, potworms, and earthworms were more difficult to predict using environmental data, compared to those of collembolans, oribatid mites, and predatory mites. Although stochastic processes were important, deterministic processes, such as host selection, also contributed to the assembly of unique microbiota in each taxon of soil fauna. Microbial biodiversity, unique microbial taxa, and microbial dark matter (defined as unidentified microbial taxa) all increased with trophic levels within the soil food web. CONCLUSIONS Our findings demonstrate that soil animals are important as repositories of microbial biodiversity, and those at the top of the food web harbor more diverse and unique microbiomes. This hidden source of biodiversity is rarely considered in biodiversity and conservation debates and stresses the importance of preserving key soil invertebrates. Video abstract.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Michael R Gillings
- Department of Biological Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
24
|
Wen J, Ueno T. Predator cue-induced plasticity of morphology and behavior in planthoppers facilitate the survival from predation. Sci Rep 2021; 11:16760. [PMID: 34408199 PMCID: PMC8373946 DOI: 10.1038/s41598-021-96005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Predators can induce phenotypic plasticity in prey through selection driven by predation risk. However, defense plasticity is rarely reported in insects, let alone trans-generational plasticity, meaning the mechanisms underlying plasticity, how it impacts ecosystem evolution and how it might be exploited in pest control are poorly understood. Here we examine the morphological plasticity of small brown planthoppers (SBPHs), Laodelphax striatellus, elicited by caged predators, Paederus fuscipes in the parent or F1 generation and reveal the risk cues mediating these effects. We also uncover the survival outcomes in SBPHs with predator-induced defensive morphological traits by examining their survival probability and behavioral plasticity. Results showed that caged predators or predator odor cue gave rise to a higher proportion of long-winged, female SBPHs in the parent and F1 generations, but the proportion of males and their wing length were unaffected. The visual cue from predators elicited weaker effects. Surprisingly, we discovered these long-winged forms suffered a lower predation rate when attacked by P. fuscipes, owing to an enhanced agility level. Our results suggest the within- and trans-generational plasticity of induced defenses may cause profound effects on SBPH population dynamics and prey-predator interaction. Understanding this interaction and its underlying mechanisms illuminates important aspects of ecosystem evolution and helps predict pest dispersal or migration, which in turn may be exploited for pest control.
Collapse
Affiliation(s)
- Jian Wen
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819- 0395, Japan.
| | - Takatoshi Ueno
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819- 0395, Japan
| |
Collapse
|
25
|
Cates AM, Wills BD, Kim TN, Landis DA, Gratton C, Read HW, Jackson RD. No evidence of top‐down effects by ants on litter decomposition in a temperate grassland. Ecosphere 2021. [DOI: 10.1002/ecs2.3638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna M. Cates
- Department of Soil, Water, and Climate University of Minnesota St. Paul Minnesota 55108 USA
- DOE‐Great Lakes Bioenergy Research Center Madison Wisconsin 53726 USA
| | - Bill D. Wills
- Department of Biological Sciences Auburn University Auburn Alabama 36849 USA
| | - Tania N. Kim
- Department of Entomology Kansas State University Manhattan Kansas 66506 USA
| | - Douglas A. Landis
- DOE‐Great Lakes Bioenergy Research Center Madison Wisconsin 53726 USA
- Department of Entomology Michigan State University East Lansing Michigan 48824 USA
| | - Claudio Gratton
- DOE‐Great Lakes Bioenergy Research Center Madison Wisconsin 53726 USA
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Harry W. Read
- Department of Soil Science University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Randall D. Jackson
- DOE‐Great Lakes Bioenergy Research Center Madison Wisconsin 53726 USA
- Department of Agronomy University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| |
Collapse
|
26
|
Knapp DD, Smith LL, Atkinson CL. Larval anurans follow predictions of stoichiometric theory: implications for nutrient storage in wetlands. Ecosphere 2021. [DOI: 10.1002/ecs2.3466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Daniel D. Knapp
- Department of Biological Sciences The University of Alabama 1325 Science and Engineering Complex Tuscaloosa Alabama 35487 USA
- Jones Center at Ichauway 3988 Jones Center Drive Newton Georgia 39870 USA
| | - Lora L. Smith
- Jones Center at Ichauway 3988 Jones Center Drive Newton Georgia 39870 USA
| | - Carla L. Atkinson
- Department of Biological Sciences The University of Alabama 1325 Science and Engineering Complex Tuscaloosa Alabama 35487 USA
| |
Collapse
|
27
|
McCary MA, Schmitz OJ. Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis. J Anim Ecol 2021; 90:1714-1726. [PMID: 33782983 DOI: 10.1111/1365-2656.13489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
Functional traits are useful for characterizing variation in community and ecosystem dynamics. Most advances in trait-based ecology to date centre on plant functional traits, although there is an increasing recognition that animal traits are also key contributors to processes operating at the community or ecosystem scale. Terrestrial invertebrates are incredibly diverse and ubiquitous animals with important roles in nutrient cycling. Despite their widespread influence on ecosystem processes, we currently lack a synthetic understanding of how invertebrate functional traits affect terrestrial nutrient cycling. We present a meta-analysis of 511 paired observations from 122 papers that examined how invertebrate functional traits affected litter decomposition rates, nitrogen pools and litter C:N ratios. Based on the available data, we specifically assessed the effects of feeding mode (bioturbation, detritus shredding, detritus grazing, leaf chewing, leaf piercing, ambush predators, active hunting predators) and body size (macro- and micro-invertebrates) on nutrient cycling. The effects of invertebrates on terrestrial nutrient cycling varied according to functional trait. The inclusion of both macro- (≥2 mm) and micro-invertebrates (<2 mm) increased litter decomposition by 20% and 19%, respectively. All detritivorous feeding modes enhanced litter decomposition rates, with bioturbators, detritus shredders and detritus grazers increasing decomposition by 28%, 22% and 15%, respectively. Neither herbivore feeding mode (e.g. leaf chewers and leaf piercers) nor predator hunting mode (ambush and active hunting) affected decomposition. We also revealed that bioturbators and detritus grazers increased soil nitrogen availability by 99% and 70%, respectively, and that leaf-chewing herbivores had a weak effect on litterfall stoichiometry via reducing C:N ratios by 11%. Although functional traits might be useful predictors of ecosystem processes, our findings suggest context-dependent effects of invertebrate traits on terrestrial nutrient cycling. Detritivore functional traits (i.e. bioturbators, detritus shredders and detritus grazers) are more consistent with increased rates of nutrient cycling, whereas our currently characterized predator and herbivore traits are less predictive. Future research is needed to identify, standardize and deliberately study the impacts of invertebrate functional traits on nutrient cycling in hopes of revealing the key functional traits governing ecosystem functioning worldwide.
Collapse
|
28
|
Livne-Luzon S, Shemesh H, Osem Y, Carmel Y, Migael H, Avidan Y, Tsafrir A, Glassman SI, Bruns TD, Ovadia O. High resilience of the mycorrhizal community to prescribed seasonal burnings in eastern Mediterranean woodlands. MYCORRHIZA 2021; 31:203-216. [PMID: 33475801 DOI: 10.1007/s00572-020-01010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Fire effects on ecosystems range from destruction of aboveground vegetation to direct and indirect effects on belowground microorganisms. Although variation in such effects is expected to be related to fire severity, another potentially important and poorly understood factor is the effect of fire seasonality on soil microorganisms. We carried out a large-scale field experiment examining the effects of spring (early-dry season) versus autumn (late-dry- season) burns on the community composition of soil fungi in a typical Mediterranean woodland. Although the intensity and severity of our prescribed burns were largely consistent between the two burning seasons, we detected differential fire season effects on the composition of the soil fungal community, driven by changes in the saprotrophic fungal guild. The community composition of ectomycorrhizal fungi, assayed both in pine seedling bioassays and from soil sequencing, appeared to be resilient to the variation inflicted by seasonal fires. Since changes in the soil saprotrophic fungal community can directly influence carbon emission and decomposition rates, we suggest that regardless of their intensity and severity, seasonal fires may cause changes in ecosystem functioning.
Collapse
Affiliation(s)
- Stav Livne-Luzon
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel.
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Hagai Shemesh
- Department of Environmental Sciences, Tel-Hai College, Kiryat Shmona, 1220800, Israel
| | - Yagil Osem
- Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Bet Dagan, Israel
| | - Yohay Carmel
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hen Migael
- Department of Environmental Sciences, Tel-Hai College, Kiryat Shmona, 1220800, Israel
| | - Yael Avidan
- Mitrani Department of Desert Ecology, Ben-Gurion University of the Negev, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, 84990, Israel
| | - Anat Tsafrir
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel
| | - Sydney I Glassman
- Department of Microbiology and Plant Pathology, UC Riverside, Riverside, CA, 92521, USA
| | - Thomas D Bruns
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720-3102, USA
| | - Ofer Ovadia
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel.
| |
Collapse
|
29
|
Yu Q, Zhou R, Wang Y, Feng T, Li H. Corpse decomposition increases nitrogen pollution and alters the succession of nirK-type denitrifying communities in different water types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141472. [PMID: 32795804 DOI: 10.1016/j.scitotenv.2020.141472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Cadaver decomposition as high-quality nutrient inputs may exert strong perturbation on the aquatic environments, such as high nitrogen or nitrate pollution. Denitrifying bacteria may reduce nitrate to nitrogen gas, thereby decreasing the nitrogen pollution and improving self-purification ability of aquatic ecosystem. However, how nirK denitrifying communities in water respond to cadaver decomposition remains unknown. Thus, we employed high-throughput sequencing and chemical analysis to investigate the succession of nirK-type denitrifying communities in tap water and Yellow river water (experimental groups) as well as their corresponding control groups during two important stages of fish corpse decomposition called advanced floating decay and sunken remains. Our data showed that the concentration of NH4+-N in the experimental groups increased approximately 3-4 times compared with the control groups. Proteobacteria was the predominant phylum for nirK denitrifying communities. Several potential pathogenic genera, such as Brucella and Achromobacter, were enriched in the corpse groups. Notably, nirK-type community structures were significantly impacted by cadaver decomposition. Community structures in the corpse groups become more similar with succession, indicating community convergence at the final stage. Water pH, oxidation-reduction potential (ORP) and treatment were three important factors affecting the community structures. However, water type was not a main driving factor determining carcass-associated nirK-type bacterial communities. Four phylogenetic clusters were detected in the denitrifying communities, but showed significantly different distribution between the corpse and control groups. These results provide an in-depth understanding for nirK denitrifying functional bacteria and potential pathogenic bacteria during carrion decomposition process, which offer valuable reference to environmental evaluation and management.
Collapse
Affiliation(s)
- Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
30
|
Le Gall M, Word ML, Beye A, Cease AJ. Physiological status is a stronger predictor of nutrient selection than ambient plant nutrient content for a wild herbivore. CURRENT RESEARCH IN INSECT SCIENCE 2020; 1:100004. [PMID: 36003608 PMCID: PMC9387501 DOI: 10.1016/j.cris.2020.100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/15/2023]
Abstract
There is generally a close relationship between a consumer's food and its optimal nutrients. When there is a mismatch, it is hypothesized that mobile herbivores switch between food items to balance nutrients, however, there are limited data for field populations. In this study, we measured ambient plant nutrient content at two time points and contrasted our results with the nutrient ratio selected by wild female and male grasshoppers (Oedaleus senegalensis). Few plants were near O. senegalensis' optimal protein:carbohydrate ratio (P:C), nor were plants complementary. Grasshoppers collected earlier all regulated for a carbohydrate-biased ratio but females ate slightly more protein. We hypothesized that the long migration undertaken by this species may explain its carbohydrate needs. In contrast to most laboratory studies, grasshoppers collected later did not tightly regulate their P:C. These results suggest that field populations are not shifting their P:C to match seasonal plant nutrient shifts and that mobile herbivores rely on post-ingestive mechanisms in the face of environmental variation. Because this is among the first studies to examine the relationship between ambient nutrient landscape and physiological state our data are a key step in bridging knowledge acquired from lab studies to hypotheses regarding the role ecological factors play in foraging strategies.
Collapse
Affiliation(s)
- Marion Le Gall
- School of Sustainability, Arizona State University, Tempe, AZ, United States
| | - Mira L. Word
- School of Sustainability, Arizona State University, Tempe, AZ, United States
| | - Alioune Beye
- Direction de la Protection des Végétaux, Nganda, Senegal
| | - Arianne J. Cease
- School of Sustainability, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
31
|
Schmitz OJ, Leroux SJ. Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-104730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All species within ecosystems contribute to regulating carbon cycling because of their functional integration into food webs. Yet carbon modeling and accounting still assumes that only plants, microbes, and invertebrate decomposer species are relevant to the carbon cycle. Our multifaceted review develops a case for considering a wider range of species, especially herbivorous and carnivorous wild animals. Animal control over carbon cycling is shaped by the animals’ stoichiometric needs and functional traits in relation to the stoichiometry and functional traits of their resources. Quantitative synthesis reveals that failing to consider these mechanisms can lead to serious inaccuracies in the carbon budget. Newer carbon-cycle models that consider food-web structure based on organismal functional traits and stoichiometry can offer mechanistically informed predictions about the magnitudes of animal effects that will help guide new empirical research aimed at developing a coherent understanding of the interactions and importance of all species within food webs.
Collapse
Affiliation(s)
- Oswald J. Schmitz
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Shawn J. Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
32
|
Schmitt L, Aponte‐Rolón B, Perfecto I. Evaluating community effects of a Keystone Ant,
Azteca sericeasur,
on
Inga micheliana
leaf litter decomposition in a shaded coffee agro‐ecosystem. Biotropica 2020. [DOI: 10.1111/btp.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lauren Schmitt
- School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
| | - Bolívar Aponte‐Rolón
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Ivette Perfecto
- School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
33
|
Fardell LL, Pavey CR, Dickman CR. Fear and stressing in predator-prey ecology: considering the twin stressors of predators and people on mammals. PeerJ 2020; 8:e9104. [PMID: 32391213 PMCID: PMC7196326 DOI: 10.7717/peerj.9104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Predators induce stress in prey and can have beneficial effects in ecosystems, but can also have negative effects on biodiversity if they are overabundant or have been introduced. The growth of human populations is, at the same time, causing degradation of natural habitats and increasing interaction rates of humans with wildlife, such that conservation management routinely considers the effects of human disturbance as tantamount to or surpassing those of predators. The need to simultaneously manage both of these threats is particularly acute in urban areas that are, increasingly, being recognized as global hotspots of wildlife activity. Pressures from altered predator-prey interactions and human activity may each initiate fear responses in prey species above those that are triggered by natural stressors in ecosystems. If fear responses are experienced by prey at elevated levels, on top of responses to multiple environmental stressors, chronic stress impacts may occur. Despite common knowledge of the negative effects of stress, however, it is rare that stress management is considered in conservation, except in intensive ex situ situations such as in captive breeding facilities or zoos. We propose that mitigation of stress impacts on wildlife is crucial for preserving biodiversity, especially as the value of habitats within urban areas increases. As such, we highlight the need for future studies to consider fear and stress in predator-prey ecology to preserve both biodiversity and ecosystem functioning, especially in areas where human disturbance occurs. We suggest, in particular, that non-invasive in situ investigations of endocrinology and ethology be partnered in conservation planning with surveys of habitat resources to incorporate and reduce the effects of fear and stress on wildlife.
Collapse
Affiliation(s)
- Loren L. Fardell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Continuity of chronic predation risk determines changes in prey physiology. Sci Rep 2020; 10:6972. [PMID: 32332831 PMCID: PMC7181678 DOI: 10.1038/s41598-020-64000-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Prey reconfigure their physiology to avoid costs of prolonged predator pressure. However, these changes might not occur under periodic predation risk, with repeating acute phases. To test the effect of predation risk continuity on changes in prey physiology, we exposed amphipods: Dikerogammarus villosus and Gammarus jazdzewskii to periodic and constant predation cue. After one week, we measured: cellular defence systems: total antioxidant status (TAS), heat shock proteins (Hsp70); intracellular damage marker: lipid peroxidation (TBARS); condition index: glycogen concentration. Predator presence reduced TAS level in G. jazdzewskii independent of its continuity and in D. villosus after periodic exposure. Amphipods showed downregulation of Hsp70 when exposed to periodic (D. villosus) or constant (G. jazdzewskii) predation risk. Exposure to predators reduced TBARS level in D. villosus (irrespective of the continuity) and G. jazdzewskii (periodic exposure). Glycogen concentration in both species was not affected by predator presence. Thus, the continuity of the predator cue shaped prey physiology reconfiguration, optimizing costs of physiological adjustments under challenging conditions. Nevertheless, the lack of negative consequences of the prolonged exposure to the predator cue, whether constant or periodic, shows that amphipods can thrive under chronic predation risk, which is a constant part of the wild environment.
Collapse
|
35
|
Rinehart S, Hawlena D. The effects of predation risk on prey stoichiometry: a meta‐analysis. Ecology 2020; 101:e03037. [DOI: 10.1002/ecy.3037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- S. Rinehart
- Department of Ecology, Evolution, and Behavior Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - D. Hawlena
- Department of Ecology, Evolution, and Behavior Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
36
|
Zhang C, De Meester L, Stoks R. Effects of thermal evolution on the stoichiometric responses to nano-ZnO under warming are not general: insights from experimental evolution. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:175-184. [PMID: 31940103 DOI: 10.1007/s10646-020-02165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
A key challenge for ecological risk assessment of contaminants under global warming is to predict effects at higher levels of biological organisation. One approach to reach this goal is to study how contaminants and warming cause changes in body stoichiometry as these may potentially cascade through food webs. Furthermore, though contaminants typically interact with warming, how rapid adaptation to higher temperatures affects these interactions is poorly studied. Here, we examined the effects of an important contaminant (ZnO nanoparticles, nZnO) and mild warming (4 °C) on body stoichiometry (C, N, P and their ratios) of an aquatic keystone species, the water flea Daphnia magna. To evaluate whether thermal evolution impacts the effects of nZnO at higher temperatures, we compared two sets of clones from a thermal selection experiment where Daphnia were kept in outdoor mesocosms at ambient or ambient +4 °C temperatures for 2 years. Exposure to nZnO decreased key body stoichiometric ratios (C:N, C:P and a trend for N:P) while warming increased the body C:N ratio. The stoichiometric changes to nZnO and warming were mostly independent and could be partly explained by changes in the macromolecules sugars and fat. Exposure to nZnO decreased C-rich sugars contributing to a reduced %C. Warming reduced body %C due to decreased C-rich sugars and fat levels, yet warming decreased body N% even more resulting in a higher C:N ratio. The stoichiometric responses to nZnO at the higher temperature did not differ between the two sets of clones, indicating experimental thermal evolution did not change the effects of nZnO under warming. Studying the stoichiometric responses to nZnO and warming of this keystone species may provide novel insights on the toxic effects of contaminants under warming. Moreover, understanding the influence of thermal evolution on the toxicity of contaminants is important for ecological risk assessment especially in a warming world.
Collapse
Affiliation(s)
- Chao Zhang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China.
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, 3000, Belgium.
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, 3000, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
37
|
Van Dievel M, Janssens L, Stoks R. Effects of pesticide exposure and predation risk on nutrient cycling and primary production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135880. [PMID: 31972928 DOI: 10.1016/j.scitotenv.2019.135880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Understanding how pesticides and natural stressors shape ecosystem functions remains a major challenge. A largely overlooked way how stressors may affect nutrient cycling and primary production is through effects on body stoichiometry and the egestion of elements. We investigated how exposure to the pesticide chlorpyrifos and to predation risk, an abundant natural stressor in aquatic systems, altered the stoichiometry of the bodies and the egested faecal pellets of Enallagma cyathigerum damselfly larvae and how this further cascaded into effects on primary production (algae growth). Chlorpyrifos exposure reduced egestion rates while predation risk had no effect. Chlorpyrifos exposure and predation risk affected both elemental composition of bodies and faecal pellets, and this in an additive way. Chlorpyrifos exposure increased body C(carbon), N(nitrogen), and P(phosphorous) contents, and increased the C content of the faecal pellets. Predation risk induced an increase of the N content, resulting in a decreased C:N ratio, of both the bodies and faecal pellets. The changes in the composition of the faecal pellets caused by predation risk but not by chlorpyrifos exposure increased algae growth under control conditions. This indicated that algae growth was N limited. Our results provide an important proof-of-principle how a stressor may shape nutrient cycling and subsequently primary productivity.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
38
|
Benbow ME, Receveur JP, Lamberti GA. Death and Decomposition in Aquatic Ecosystems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
39
|
Muratore M, Prather C, Sun Y. The gut bacterial communities across six grasshopper species from a coastal tallgrass prairie. PLoS One 2020; 15:e0228406. [PMID: 31999781 PMCID: PMC6992175 DOI: 10.1371/journal.pone.0228406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insect microbiomes play an important role in the health and fitness of insect hosts by contributing to nutrient absorption, immune health, and overall ecological fitness. As such, research interests in insect microbiomes have focused on agriculturally and industrially important organisms such as honey bees and termites. Orthopterans, on the other hand, have not been well explored for their resident microbial communities. Grasshoppers are an integral part of grassland ecosystems and provide important ecosystem services. Conversely, grasshoppers can be an agricultural pest requiring management with broad spectrum pesticides. However, little is known about the microbiomes of grasshoppers and their potential contribution to grasshopper biology. Here we examine the gut microbiome of six species of grasshoppers (n = 60) from a coastal tallgrass prairie ecosystem to gain a better understanding of the microbial communities present across the orthopteran order in this ecosystem. We found that there are bacterial phyla common to all six grasshopper species: Actinobacteria, Proteobacteria, Firmicutes, and to a lesser degree, Tenericutes. Although the grasshopper species shared a high relative abundance of these groups, there were notable shifts in dominant phyla depending on the grasshopper species. Moreover, measures of alpha diversity revealed a more diverse microbiome in males than females. Our observations support the hypothesis that there is a "core" group of bacterial families in these grasshopper species and factors such as trophic behaviors and the evolution of the host may contribute to the shifts in prevalence among these core microbial groups.
Collapse
Affiliation(s)
- Melani Muratore
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Chelse Prather
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Van Dievel M, Tüzün N, Stoks R. Latitude-associated evolution and drivers of thermal response curves in body stoichiometry. J Anim Ecol 2019; 88:1961-1972. [PMID: 31408526 DOI: 10.1111/1365-2656.13088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
Trait-based studies are needed to understand the plastic and genetic responses of organisms to warming. A neglected organismal trait is elemental composition, despite its potential to cascade into effects on the ecosystem level. Warming is predicted to shape elemental composition through shifts in storage molecules associated with responses in growth, body size and metabolic rate. Our goals were to quantify thermal response patterns in body composition and to obtain insights into their underlying drivers and their evolution across latitudes. We reconstructed the thermal response curves (TRCs) for body elemental composition [C (carbon), N (nitrogen) and the C:N ratio] of damselfly larvae from high- and low-latitude populations. Additionally, we quantified the TRCs for survival, growth and development rates and body size to assess local thermal adaptation, as well as the TRCs for metabolic rate and key macromolecules (proteins, fat, sugars and cuticular melanin and chitin) as these may underlie the elemental TRCs. All larvae died at 36°C. Up to 32°C, low-latitude larvae increased growth and development rates and did not suffer increased mortality. Instead, growth and development rates of high-latitude larvae were lower and levelled off at 24°C, and mortality increased at 32°C. This latitude-associated thermal adaptation pattern matched the 'hotter-is-better' hypothesis. With increasing temperatures, low-latitude larvae decreased C:N, while high-latitude larvae increased C:N. These patterns were driven by associated changes in N contents, while C contents did not respond to temperature. Consistent with the temperature-size rule and the thermal melanism hypothesis, body size and melanin levels decreased with warming. While all traits and associated macromolecules (except for metabolic rate that showed thermal compensation) assumed to underlie thermal responses in elemental composition showed thermal plasticity, these were largely independent and none could explain the stoichiometric TRCs. Our results highlight that thermal responses in elemental composition cannot be explained by traditionally assumed drivers, asking for a broader perspective including the thermal dependence of elemental fluxes. Another key implication is that thermal evolution can reverse the plastic stoichiometric thermal responses and hence reverse how warming may shape food web dynamics through changes in body composition at different latitudes.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Barton PS, Evans MJ, Foster CN, Pechal JL, Bump JK, Quaggiotto MM, Benbow ME. Towards Quantifying Carrion Biomass in Ecosystems. Trends Ecol Evol 2019; 34:950-961. [PMID: 31256926 DOI: 10.1016/j.tree.2019.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
The decomposition of animal biomass (carrion) contributes to the recycling of energy and nutrients through ecosystems. Whereas the role of plant decomposition in ecosystems is broadly recognised, the significance of carrion to ecosystem functioning remains poorly understood. Quantitative data on carrion biomass are lacking and there is no clear pathway towards improved knowledge in this area. Here, we present a framework to show how quantities derived from individual carcasses can be scaled up using population metrics, allowing for comparisons among ecosystems and other forms of biomass. Our framework facilitates the generation of new data that is critical to building a quantitative understanding of the contribution of carrion to trophic processes and ecosystem stocks and flows.
Collapse
Affiliation(s)
- Philip S Barton
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, 2601, Australia.
| | - Maldwyn J Evans
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Claire N Foster
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph K Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - M-Martina Quaggiotto
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, UK
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
42
|
Warne RW, Baer SG, Boyles JG. Community Physiological Ecology. Trends Ecol Evol 2019; 34:510-518. [DOI: 10.1016/j.tree.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
|
43
|
Burkepile DE, Thurber RV. The Long Arm of Species Loss: How Will Defaunation Disrupt Ecosystems Down to the Microbial Scale? Bioscience 2019. [DOI: 10.1093/biosci/biz047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, and with the Marine Science Institute, both at the University of California, in Santa Barbara
| | | |
Collapse
|
44
|
Rosenblatt AE, Wyatt KS, Schmitz OJ. Will like replace like? Linking thermal performance to ecological function across predator and herbivore populations. Ecology 2019; 100:e02643. [PMID: 30714131 DOI: 10.1002/ecy.2643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022]
Abstract
The inability of species to adapt to changing climate may cause ecological communities to disassemble and lose ecological functioning. However, theory suggests that communities may be resilient whenever populations within species exhibit variation in thermal plasticity or adaptation whereby thermally tolerant populations replace thermally sensitive ones. But will they maintain the functional roles of the populations being replaced? This study evaluated whether "like replaces like" functionally by measuring how four populations of a grasshopper herbivore and its co-occurring spider predator cope with environmental warming. The study occurred across a latitudinal gradient bounded by southerly, warmer Connecticut and northerly, cooler New Hampshire, USA. The study compared the survival rates, thermal performance, habitat usage, and food chain interactions of each grasshopper and spider population between its home field site (field of origin) and a Connecticut transplant site, and the native Connecticut population. Three grasshopper populations exhibited physiological plasticity by adjusting metabolic rates. The fourth population selected cooler habitat locations. Spider populations did not alter their metabolism and instead selected cooler habitat locations, thereby altering spatial overlap with their prey and food chain interactions. Grasshopper populations that coped physiologically consumed plants in different ratios than the fourth population and the Connecticut population. Hence, "like may not replace like" whenever populations adapt physiologically to warming.
Collapse
Affiliation(s)
- Adam E Rosenblatt
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Katherine S Wyatt
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Oswald J Schmitz
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
45
|
Barnes CL, Hawlena D, Wilder SM. Predators buffer the effects of variation in prey nutrient content for nutrient deposition. OIKOS 2018. [DOI: 10.1111/oik.05685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cody L. Barnes
- Dept of Integrative Biology; Oklahoma State Univ.; 501 Life Sciences West Stillwater OK 74075 USA
| | - Dror Hawlena
- Risk-Management Ecology Lab, Dept of Ecology, Evolution and Behavior, The Alexander Silberman Inst. of Life Sciences; The Hebrew Univ. of Jerusalem; Israel
| | - Shawn M. Wilder
- Dept of Integrative Biology; Oklahoma State Univ.; 501 Life Sciences West Stillwater OK 74075 USA
| |
Collapse
|
46
|
Liu S, Hu J, Behm JE, He X, Gan J, Yang X. Nitrogen addition changes the trophic cascade effects of spiders on a detrital food web. Ecosphere 2018. [DOI: 10.1002/ecs2.2466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shengjie Liu
- CAS key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies; Chinese Ecosystem Research Net; Jingdong Yunnan 676200 China
| | - Jing Hu
- CAS key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
- Environmental Protection Agency of Hohhot; Hohhot Inner Mongolia 010011 China
| | - Jocelyn E. Behm
- Center for Biodiversity; Department of Biology; Temple University; Philadelphia Pennsylvania 19122 USA
| | - Xinxing He
- CAS key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
| | - Jianmin Gan
- CAS key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies; Chinese Ecosystem Research Net; Jingdong Yunnan 676200 China
| | - Xiaodong Yang
- CAS key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies; Chinese Ecosystem Research Net; Jingdong Yunnan 676200 China
| |
Collapse
|
47
|
Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev Camb Philos Soc 2018; 94:648-661. [PMID: 30294844 DOI: 10.1111/brv.12472] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Frédéric Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Julien Cucherousset
- CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Simon Blanchet
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
48
|
Leroux SJ. Ecological, evolutionary, and geographical correlates of variation in consumer elemental composition. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shawn J. Leroux
- Department of Biology Memorial University of Newfoundland St. John’s Newfoundland and Labrador Canada
| |
Collapse
|
49
|
Zaguri M, Zohar Y, Hawlena D. Considerations Used by Desert Isopods to Assess Scorpion Predation Risk. Am Nat 2018; 192:630-643. [PMID: 30332584 DOI: 10.1086/699840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Animals adjust behaviors to balance changes in predation risk against other vital needs. Animals must therefore collect sensory information and use a complex risk-assessment process that estimates risks and weighs costs and benefits entailed in different reactions. Studying this cognitive process is challenging, especially in nature, because it requires inferring sensory abilities and conscious decisions from behavioral reactions. Our goal was to address this empirical challenge by implementing psychophysical principles to field research that explores considerations used by desert isopods (Hemilepistus reaumuri) to assess the risk of scorpions that hunt exclusively from within their burrows. We introduced various combinations of chemical and physical cues to the vicinity of isopod burrows and recorded their detailed reactions on first encountering the cues. The isopods reacted defensively to scorpion odor but only when accompanied with excavated soil or other odors typically found near scorpion burrows. Isopods also reacted defensively to piles of excavated soil without scorpion olfactory cues, suggesting that isopods take precautions even against physical disturbances that do not necessarily reflect predator activity. Simultaneous presence of different cues provoked graded responses, possibly reflecting an additive increase in risk estimation. We conclude that wild isopods use defensive reactions toward environmental signals only when the integrated perceptual information implies an active scorpion burrow or when they lack data to refute this possibility.
Collapse
|
50
|
Benbow ME, Barton PS, Ulyshen MD, Beasley JC, DeVault TL, Strickland MS, Tomberlin JK, Jordan HR, Pechal JL. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1331] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M. Eric Benbow
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
- Department of Osteopathic Medical Specialties; Michigan State University; East Lansing Michigan 48824 USA
- Ecology, Evolutionary Biology and Behavior Program; Michigan State University; East Lansing Michigan 48824 USA
| | - Philip S. Barton
- Fenner School of Environment and Society; Australian National University; Canberra Australian Capital Territory 2601 Australia
| | | | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural Resources; University of Georgia; Aiken South Carolina 29802 USA
| | - Travis L. DeVault
- U.S. Department of Agriculture; National Wildlife Research Center; Sandusky Ohio 44870 USA
| | | | | | - Heather R. Jordan
- Department of Biological Sciences; Mississippi State University; Mississippi Mississippi 39762 USA
| | - Jennifer L. Pechal
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
| |
Collapse
|