1
|
Williams JC, Tubiolo PN, Gil RB, Zheng ZJ, Silver-Frankel EB, Haubold NK, Abeykoon SK, Pham DT, Ojeil N, Bobchin K, Slifstein M, Weinstein JJ, Perlman G, Horga G, Abi-Dargham A, Van Snellenberg JX. Auditory and Visual Thalamocortical Connectivity Alterations in Unmedicated People with Schizophrenia: An Individualized Sensory Thalamic Localization and Resting-State Functional Connectivity Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.18.24319241. [PMID: 39763546 PMCID: PMC11702713 DOI: 10.1101/2024.12.18.24319241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background Converging evidence from clinical neuroimaging and animal models has strongly implicated dysfunction of thalamocortical circuits in the pathophysiology of schizophrenia. Preclinical models of genetic risk for schizophrenia have shown reduced synaptic transmission from auditory thalamus to primary auditory cortex, which may represent a correlate of auditory disturbances such as hallucinations. Human neuroimaging studies, however, have found a generalized increase in resting state functional connectivity (RSFC) between whole thalamus and sensorimotor cortex in people with schizophrenia (PSZ). We aimed to more directly translate preclinical findings by specifically localizing auditory and visual thalamic nuclei in unmedicated PSZ and measuring RSFC to primary sensory cortices. Methods In this case-control study, 82 unmedicated PSZ and 55 matched healthy controls (HC) completed RSFC functional magnetic resonance imaging (fMRI). Auditory and visual thalamic nuclei were localized for 55 unmedicated PSZ and 46 HC who additionally completed a sensory thalamic nuclei localizer fMRI task (N = 101). Using localized nuclei as RSFC seeds we assessed group differences in auditory and visual thalamocortical connectivity and associations with positive symptom severity. Results Auditory thalamocortical connectivity was not significantly different between PSZ and HC, but hyperconnectivity was associated with greater positive symptom severity in bilateral superior temporal gyrus. Visual thalamocortical connectivity was significantly greater in PSZ relative to HC in secondary and higher-order visual cortex, but not predictive of positive symptom severity. Conclusion These results indicate that visual thalamocortical hyperconnectivity is a generalized marker of schizophrenia, while hyperconnectivity in auditory thalamocortical circuits relates more specifically to positive symptom severity.
Collapse
Affiliation(s)
- John C. Williams
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Philip N. Tubiolo
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Scholars in BioMedical Sciences Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Roberto B. Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Zu Jie Zheng
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- College of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203
| | - Eilon B. Silver-Frankel
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Natalka K. Haubold
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Sameera K. Abeykoon
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Dathy T. Pham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Najate Ojeil
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Kelly Bobchin
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Jodi J. Weinstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
2
|
Reid MJ, Rogdaki M, Dutan L, Hanger B, Sabad K, Nagy R, Adhya D, Baron-Cohen S, McAlonan G, Price J, Vernon AC, Howes OD, Srivastava DP. Cell line specific alterations in genes associated with dopamine metabolism and signaling in midbrain dopaminergic neurons derived from 22q11.2 deletion carriers with elevated dopamine synthesis capacity. Schizophr Res 2024; 273:98-106. [PMID: 35701280 PMCID: PMC11586776 DOI: 10.1016/j.schres.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
Microdeletions at the 22q11.2 locus are associated with increased risk for schizophrenia. Recent work has demonstrated that antipsychotic naïve 22q11.2 carriers display elevated levels of dopamine synthesis capacity (DSC) as assessed by 18F-DOPA PET imaging. While this is consistent with a role for abnormal dopamine function in schizophrenia, it is unclear what molecular changes may be associated with this neuro-imaging endophenotype, and moreover, if these alterations occur independently of clinical presentation. We therefore conducted a pilot study in which we generated human induced pluripotent stem cells (hiPSCs) from two 22q11.2 deletion carriers with elevated DSC in vivo, but distinct clinical presentations. From these and neurotypical control lines we were able to robustly generate midbrain dopaminergic neurons (mDA-neurons). We then assessed whether genes associated with dopamine synthesis, metabolism or signaling show altered expression between genotypes and further between the 22q11.2 deletion lines. Our data showed alterations in expression of genes associated with dopamine metabolism and signaling that differed between the two 22q11.2 hiPSC lines with distinct clinical presentations. This reinforces the importance of considering clinical, genetic and molecular information, when possible, when choosing which donors to generate hiPSCs from, to carry out mechanistic studies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Maria Rogdaki
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Bjørn Hanger
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kaarin Sabad
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dwaipayan Adhya
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oliver D Howes
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
3
|
Williams JC, Tubiolo PN, Zheng ZJ, Silver-Frankel EB, Pham DT, Haubold NK, Abeykoon SK, Abi-Dargham A, Horga G, Van Snellenberg JX. Functional Localization of the Human Auditory and Visual Thalamus Using a Thalamic Localizer Functional Magnetic Resonance Imaging Task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591516. [PMID: 38746171 PMCID: PMC11092475 DOI: 10.1101/2024.04.28.591516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Functional magnetic resonance imaging (fMRI) of the auditory and visual sensory systems of the human brain is an active area of investigation in the study of human health and disease. The medial geniculate nucleus (MGN) and lateral geniculate nucleus (LGN) are key thalamic nuclei involved in the processing and relay of auditory and visual information, respectively, and are the subject of blood-oxygen-level-dependent (BOLD) fMRI studies of neural activation and functional connectivity in human participants. However, localization of BOLD fMRI signal originating from neural activity in MGN and LGN remains a technical challenge, due in part to the poor definition of boundaries of these thalamic nuclei in standard T1-weighted and T2-weighted magnetic resonance imaging sequences. Here, we report the development and evaluation of an auditory and visual sensory thalamic localizer (TL) fMRI task that produces participant-specific functionally-defined regions of interest (fROIs) of both MGN and LGN, using 3 Tesla multiband fMRI and a clustered-sparse temporal acquisition sequence, in less than 16 minutes of scan time. We demonstrate the use of MGN and LGN fROIs obtained from the TL fMRI task in standard resting-state functional connectivity (RSFC) fMRI analyses in the same participants. In RSFC analyses, we validated the specificity of MGN and LGN fROIs for signals obtained from primary auditory and visual cortex, respectively, and benchmark their performance against alternative atlas- and segmentation-based localization methods. The TL fMRI task and analysis code (written in Presentation and MATLAB, respectively) have been made freely available to the wider research community.
Collapse
Affiliation(s)
- John C. Williams
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Philip N. Tubiolo
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Zu Jie Zheng
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- State University of New York Downstate Health Sciences University College of Medicine, Brooklyn, NY 11203
| | - Eilon B. Silver-Frankel
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Dathy T. Pham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Natalka K. Haubold
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Sameera K. Abeykoon
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 1003
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 1003
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 1003
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
4
|
Ma S, Chen T, Jia W, Liu J, Ding S, Li P, Gan H, Zhang D, Shao S, Poo MM, Zhao M, Sun B, Jiang J. Enhanced Beta2-band Oscillations Denote Auditory Hallucination in Schizophrenia Patients and a Monkey Model of Psychosis. Neurosci Bull 2024; 40:325-338. [PMID: 37612582 PMCID: PMC10912066 DOI: 10.1007/s12264-023-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 08/25/2023] Open
Abstract
An electroencephalographic (EEG) signature of auditory hallucinations (AHs) is important for facilitating the diagnosis and treatment of AHs in schizophrenia. We recorded EEG from 25 schizophrenia patients with recurrent AHs. During the period of AHs, EEG recordings exhibited significantly elevated beta2-band power in the temporal region, as compared to those recorded in the absence of AHs or during stimulation with verbal sounds. We further generated methamphetamine-treated rhesus monkeys exhibiting psychosis-like behaviors, including repetitive sudden searching actions in the absence of external intrusion, suggesting the occurrence of AHs. Epidural EEG beta2-band power in the temporal region of these monkeys was enhanced immediately after methamphetamine treatment and positively correlated with the frequency of sudden searching actions. Thus, the enhancement of temporal beta2-band oscillations represents a signature for AHs in both patients and a monkey model of psychosis, and this monkey model can be used for developing closed-loop neuromodulation approaches for the treatment of refractory AHs in schizophrenia.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wenjun Jia
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai, 201602, China
| | - Jie Liu
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China
| | - Shihan Ding
- University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Puzhe Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Hong Gan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dapeng Zhang
- Fuyang Third People's Hospital, Fuyang Mental Health Center, Fuyang, 236052, China
| | - Shuxin Shao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Mu-Ming Poo
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai, 201602, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China.
| | - Jian Jiang
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai, 201602, China.
- Shanghai Quanlan Technology Co., Ltd, Shanghai, 201602, China.
| |
Collapse
|
5
|
Nakamura T, Ueda J, Mizuno S, Honda K, Kazuno AA, Yamamoto H, Hara T, Takata A. Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk. CELL GENOMICS 2024; 4:100488. [PMID: 38280381 PMCID: PMC10879036 DOI: 10.1016/j.xgen.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Whole-genome sequencing (WGS) studies of autism spectrum disorder (ASD) have demonstrated the roles of rare promoter de novo variants (DNVs). However, most promoter DNVs in ASD are not located immediately upstream of known ASD genes. In this study analyzing WGS data of 5,044 ASD probands, 4,095 unaffected siblings, and their parents, we show that promoter DNVs within topologically associating domains (TADs) containing ASD genes are significantly and specifically associated with ASD. An analysis considering TADs as functional units identified specific TADs enriched for promoter DNVs in ASD and indicated that common variants in these regions also confer ASD heritability. Experimental validation using human induced pluripotent stem cells (iPSCs) showed that likely deleterious promoter DNVs in ASD can influence multiple genes within the same TAD, resulting in overall dysregulation of ASD-associated genes. These results highlight the importance of TADs and gene-regulatory mechanisms in better understanding the genetic architecture of ASD.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Junko Ueda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shota Mizuno
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kurara Honda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - An-A Kazuno
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirona Yamamoto
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tomonori Hara
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
6
|
Schleifer CH, O'Hora KP, Jalbrzikowski M, Bondy E, Kushan-Wells L, Lin A, Uddin LQ, Bearden CE. Longitudinal Development of Thalamocortical Functional Connectivity in 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:156-163. [PMID: 37709253 PMCID: PMC10956688 DOI: 10.1016/j.bpsc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22qDel) is a genetic copy number variant that strongly increases risk for schizophrenia and other neurodevelopmental disorders. Disrupted functional connectivity between the thalamus and the somatomotor/frontoparietal cortex has been implicated in cross-sectional studies of 22qDel, idiopathic schizophrenia, and youths at clinical high risk for psychosis. Here, we used a novel functional atlas approach to investigate longitudinal age-related changes in network-specific thalamocortical functional connectivity (TCC) in participants with 22qDel and typically developing (TD) control participants. METHODS TCC was calculated for 9 functional networks derived from resting-state functional magnetic resonance imaging scans collected from 65 participants with 22qDel (63.1% female) and 69 demographically matched TD control participants (49.3% female) ages 6 to 23 years. Analyses included 86 longitudinal follow-up scans. Nonlinear age trajectories were characterized with generalized additive mixed models. RESULTS In participants with 22qDel, TCC in the frontoparietal network increased until approximately age 13, while somatomotor TCC and cingulo-opercular TCC decreased from age 6 to 23. In contrast, no significant relationships between TCC and age were found in TD control participants. Somatomotor connectivity was significantly higher in participants with 22qDel than in TD control participants in childhood, but lower in late adolescence. Frontoparietal TCC showed the opposite pattern. CONCLUSIONS 22qDel is associated with aberrant development of functional network connectivity between the thalamus and cortex. Younger individuals with 22qDel have lower frontoparietal connectivity and higher somatomotor connectivity than control individuals, but this phenotype may normalize or partially reverse by early adulthood. Altered maturation of this circuitry may underlie elevated neuropsychiatric disease risk in this syndrome.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Bondy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
7
|
Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol 2024; 84:102820. [PMID: 38091860 DOI: 10.1016/j.conb.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
8
|
Cui Y, Qi Y, Ding L, Ding S, Han Z, Wang Y, Du P. miRNA dosage control in development and human disease. Trends Cell Biol 2024; 34:31-47. [PMID: 37419737 DOI: 10.1016/j.tcb.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/09/2023]
Abstract
In mammals, miRNAs recognize target mRNAs via base pairing, which leads to a complex 'multiple-to-multiple' regulatory network. Previous studies have focused on the regulatory mechanisms and functions of individual miRNAs, but alterations of many individual miRNAs do not strongly disturb the miRNA regulatory network. Recent studies revealed the important roles of global miRNA dosage control events in physiological processes and pathogenesis, suggesting that miRNAs can be considered as a 'cellular buffer' that controls cell fate. Here, we review the current state of research on how global miRNA dosage is tightly controlled to regulate development, tumorigenesis, neurophysiology, and immunity. We propose that methods of controlling global miRNA dosage may serve as effective therapeutic tools to cure human diseases.
Collapse
Affiliation(s)
- Yingzi Cui
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ye Qi
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Zonglin Han
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased Central Auditory Gain and Decreased Parvalbumin-Positive Cortical Interneuron Density in the Df1/+ Mouse Model of Schizophrenia Correlate With Hearing Impairment. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:386-397. [PMID: 37519460 PMCID: PMC10382707 DOI: 10.1016/j.bpsgos.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.
Collapse
Affiliation(s)
- Fhatarah A. Zinnamon
- Ear Institute, University College London, London, United Kingdom
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Freya G. Harrison
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Sandra S. Wenas
- Ear Institute, University College London, London, United Kingdom
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Jennifer F. Linden
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
11
|
D'Antoni C, Mautone L, Sanchini C, Tondo L, Grassmann G, Cidonio G, Bezzi P, Cordella F, Di Angelantonio S. Unlocking Neural Function with 3D In Vitro Models: A Technical Review of Self-Assembled, Guided, and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10762. [PMID: 37445940 DOI: 10.3390/ijms241310762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara D'Antoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lorenza Mautone
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Greta Grassmann
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., 00165 Rome, Italy
| |
Collapse
|
12
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
13
|
Li HY, Zhu MZ, Yuan XR, Guo ZX, Pan YD, Li YQ, Zhu XH. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell 2023; 186:1352-1368.e18. [PMID: 37001500 DOI: 10.1016/j.cell.2023.02.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.
Collapse
|
14
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
15
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety. Front Psychiatry 2023; 14:1078779. [PMID: 36741115 PMCID: PMC9892902 DOI: 10.3389/fpsyt.2023.1078779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of schizophrenia (SCH) is related to the dysfunction of monoamine neurotransmitters, and the habenula participates in regulating the synthesis and release of dopamine. We examined the static functional connectivity (sFC) and dynamic functional connectivity (dFC) of habenula in first-episode schizophrenia patients using resting state functional magnetic resonance imaging (rs-fMRI) in this study. METHODS A total of 198 first-Episode, drug-Naïve schizophrenia patients and 199 healthy controls (HC) underwent rs-fMRI examinations. The sFC and dFC analysis with habenula as seed was performed to produce a whole-brain diagram initially, which subsequently were compared between SCH and HC groups. Finally, the correlation analysis of sFC and dFC values with the Positive and Negative Symptom Scale (PANSS) were performed. RESULTS Compared with the HC groups, the left habenula showed increased sFC with the bilateral middle temporal gyrus, bilateral superior temporal gyrus, and right temporal pole in the SCH group, and the right habenula exhibited increased sFC with the left middle temporal gyrus, left superior temporal gyrus, and left angular gyrus. Additionally, compared with the HC group, the left habenula showed decreased dFC with the bilateral cuneus gyrus and bilateral calcarine gyrus in the SCH group. The PANSS negative sub-scores were positively correlated with the sFC values of the bilateral habenula with the bilateral middle temporal gyrus, superior temporal gyrus and angular gyrus. The PANSS general sub-scores were positively correlated with the sFC values of the right habenula with the left middle temporal gyrus and left superior temporal gyrus. The hallucination scores of PANSS were negatively correlated with the sFC values of the left habenula with the bilateral cuneus gyrus and bilateral calcarine gyrus; The anxiety scores of PANSS were positively correlated with the dFC values of the left habenula with the right temporal pole. CONCLUSION This study provides evidence that the habenula of the first-episode schizophrenia patients presented abnormal static functional connectivity with temporal lobe and angular gyrus, and additionally showed weakened stability of functional connectivity in occipital lobe. This abnormality is closely related to the symptoms of hallucination and anxiety in schizophrenia, which may indicate that the habenula involved in the pathophysiology of schizophrenia by affecting the dopamine pathway.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Govek KW, Chen S, Sgourdou P, Yao Y, Woodhouse S, Chen T, Fuccillo MV, Epstein DJ, Camara PG. Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome profiling and Shh perturbation. Cell Rep 2022; 41:111768. [PMID: 36476860 PMCID: PMC9880597 DOI: 10.1016/j.celrep.2022.111768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.
Collapse
Affiliation(s)
- Kiya W. Govek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Sixing Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA 30602, USA
| | - Steven Woodhouse
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Correspondence: (D.J.E.), (P.G.C.)
| | - Pablo G. Camara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Lead contact,Correspondence: (D.J.E.), (P.G.C.)
| |
Collapse
|
17
|
Wei Y, Xue K, Yang M, Wang H, Chen J, Han S, Wang X, Li H, Zhang Y, Song X, Cheng J. Aberrant Cerebello-Thalamo-Cortical Functional and Effective Connectivity in First-Episode Schizophrenia With Auditory Verbal Hallucinations. Schizophr Bull 2022; 48:1336-1343. [PMID: 36029238 PMCID: PMC9673260 DOI: 10.1093/schbul/sbab142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thalamus is known to be impaired in schizophrenia patients with auditory verbal hallucinations (AVHs). Abnormal filtering function of the thalamus has been found in schizophrenia patients with AVHs. However, a whole-structure approach has commonly been adopted when investigating thalamic dysconnectivity in patients with AVHs, and it remains unclear which thalamic nucleus is the critical structure underlying AVHs. Here, we investigated voxel-wise resting-state functional connectivity (rsFC) of the thalamic nucleus in drug-naïve patients with first-episode schizophrenia (FES) with AVHs. In addition, dynamic causal modeling was applied to compute effective connectivity and estimate causal relationships that could explain aberrant rsFC. Compared with the FES patients without AVH (NAVH) and normal controls, patients with AVHs had weaker rsFC of the bilateral medial pulvinar (PuM) nucleus-cerebellum. Moreover, compared with the normal control group, the AVH and NAVH groups had significantly stronger rsFC of the bilateral PuM nucleus-cerebral cortex, as well as weaker rsFC of the right medial geniculate nucleus-cerebral cortex. Compared with the NAVH and normal control groups, dynamic causal modeling revealed significantly stronger effective connectivity from the left PuM nucleus to the right inferior frontal gyrus in the AVH group. These findings indicate that the critical structure in the thalamus underlying AVHs is the PuM nucleus, and provide direct evidence that the cerebello-thalamo-cortical circuit is associated with AVHs.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meng Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huan Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxiao Wang
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027,China
| | - Hong Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
18
|
Buck SA, Quincy Erickson-Oberg M, Logan RW, Freyberg Z. Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 2022; 27:3583-3591. [PMID: 35681081 PMCID: PMC9712151 DOI: 10.1038/s41380-022-01649-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M Quincy Erickson-Oberg
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Kragness S, Clark Z, Mullin A, Guidry J, Earls LR. An Rtn4/Nogo-A-interacting micropeptide modulates synaptic plasticity with age. PLoS One 2022; 17:e0269404. [PMID: 35771867 PMCID: PMC9246188 DOI: 10.1371/journal.pone.0269404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Micropeptides, encoded from small open reading frames of 300 nucleotides or less, are hidden throughout mammalian genomes, though few functional studies of micropeptides in the brain are published. Here, we describe a micropeptide known as the Plasticity–Associated Neural Transcript Short (Pants), located in the 22q11.2 region of the human genome, the microdeletion of which conveys a high risk for schizophrenia. Our data show that Pants is upregulated in early adulthood in the mossy fiber circuit of the hippocampus, where it exerts a powerful negative effect on long-term potentiation (LTP). Further, we find that Pants is secreted from neurons, where it associates with synapses but is rapidly degraded with stimulation. Pants dynamically interacts with Rtn4/Nogo-A, a well-studied regulator of adult plasticity. Pants interaction with Nogo-A augments its influence over postsynaptic AMPA receptor clustering, thus gating plasticity at adult synapses. This work shows that neural micropeptides can act as architectural modules that increase the functional diversity of the known proteome.
Collapse
Affiliation(s)
- S. Kragness
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Z. Clark
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - A. Mullin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane University Transgenic Core Facility, New Orleans, LA, United States of America
| | - J. Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine and Health Sciences Center, New Orleans, LA, United States of America
- The Proteomics Core Facility, LSUHSC, New Orleans, LA, United States of America
| | - L. R. Earls
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
21
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered dynamic functional connectivity of auditory cortex and medial geniculate nucleus in first-episode, drug-naïve schizophrenia patients with and without auditory verbal hallucinations. Front Psychiatry 2022; 13:963634. [PMID: 36159925 PMCID: PMC9489854 DOI: 10.3389/fpsyt.2022.963634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE As a key feature of schizophrenia, auditory verbal hallucination (AVH) is causing concern. Altered dynamic functional connectivity (dFC) patterns involving in auditory related regions were rarely reported in schizophrenia patients with AVH. The goal of this research was to find out the dFC abnormalities of auditory related regions in first-episode, drug-naïve schizophrenia patients with and without AVH using resting state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 107 schizophrenia patients with AVH, 85 schizophrenia patients without AVH (NAVH) underwent rs-fMRI examinations, and 104 healthy controls (HC) were matched. Seed-based dFC of the primary auditory cortex (Heschl's gyrus, HES), auditory association cortex (AAC, including Brodmann's areas 22 and 42), and medial geniculate nucleus (MGN) was conducted to build a whole-brain dFC diagram, then inter group comparison and correlation analysis were performed. RESULTS In comparison to the NAVH and HC groups, the AVH group showed increased dFC from left ACC to the right middle temporal gyrus and right middle occipital gyrus, decreased dFC from left HES to the left superior occipital gyrus, left cuneus gyrus, left precuneus gyrus, decreased dFC from right HES to the posterior cingulate gyrus, and decreased dFC from left MGN to the bilateral calcarine gyrus, bilateral cuneus gyrus, bilateral lingual gyrus. The Auditory Hallucination Rating Scale (AHRS) was significantly positively correlated with the dFC values of cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus, and posterior cingulate gyrus) using left AAC seed, cluster 2 (right middle temporal gyrus and right middle occipital gyrus) using left AAC seed, cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus and posterior cingulate gyrus) using right AAC seed and cluster 2 (posterior cingulate gyrus) using right HES seed in the AVH group. In both AVH and NAVH groups, a significantly negative correlation is also found between the dFC values of cluster 2 (posterior cingulate gyrus) using the right HES seed and the PANSS negative sub-scores. CONCLUSIONS The present findings demonstrate that schizophrenia patients with AVH showed multiple abnormal dFC regions using auditory related cortex and nucleus as seeds, particularly involving the occipital lobe, default mode network (DMN), and middle temporal lobe, implying that the different dFC patterns of auditory related areas could provide a neurological mechanism of AVH in schizophrenia.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits 2021; 15:769969. [PMID: 34955759 PMCID: PMC8693383 DOI: 10.3389/fncir.2021.769969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | - Stanislav S. Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
24
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
25
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
26
|
Musiek FE, Morris S, Ichiba K, Clark L, Davidson AJ. Auditory Hallucinations: An Audiological Horizon? J Am Acad Audiol 2021; 32:195-210. [PMID: 34062609 DOI: 10.1055/s-0041-1722989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Interesting data and theories have emerged regarding auditory hallucinations (AHs) in patients with schizophrenia. The possibility that these patients may have changes in the anatomy of the auditory cortex and/or subcortical structures of the central auditory nervous system and present with deficits on audiological tests is important information to the audiology community. However, it seems clear that, in general, audiologists are not sufficiently aware of these findings. PURPOSE There are two main purposes of this article: (1) to educate audiologists about AHs related to schizophrenia and related issues, and (2) to encourage audiologists and hearing scientists to become involved in the evaluation and research of AHs. This fascinating disorder is one in which audiologists/hearing scientists are well suited to make a significant contribution. RESEARCH DESIGN A review and synthesis of the literature was conducted. Relevant literature was identified through PubMed, Google Scholar, as well as independent book chapters and article searches. Keywords driving the searches were AHs, auditory illusions, verbal and musical hallucinations, schizophrenia, and central auditory disorders. Given the currency of the topic, the information collected was primarily between 1990 and 2020. STUDY SAMPLE The review is organized around categorization, prevalence, models, mechanisms, anatomy, pathophysiology, and audiological correlates related to AHs. DATA COLLECTION AND ANALYSIS Searches were conducted using well-known search engines and manual searches by each author. This information on AHs was then analyzed collectively by the authors for useful background and relevance, as well as important for the field of audiology. RESULTS Several anatomical, physiological, and functional imaging studies have shown compromise of the auditory cortex in those with schizophrenia and AHs. Potentially related to this, are studies that demonstrated sub-par performance on behavioral audiologic measures for this unique clinical population. These findings align well with the kind of hearing disorder for which audiologists are well-trained to make significant contributions. CONCLUSION Neurobiological and audiological evidence is accumulating on patients with schizophrenia and AH potentially rendering it as both an auditory and psychiatric disorder. Audiologists should consider expanding their horizon and playing a role in the clinical investigation of this disorder.
Collapse
Affiliation(s)
- Frank E Musiek
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Sarah Morris
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Kayla Ichiba
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Liza Clark
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona
| | - Alyssa J Davidson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| |
Collapse
|
27
|
Yu H, Ying W, Li G, Lin X, Jiang D, Chen G, Chen S, Sun X, Xu Y, Ye J, Zhuo C. Exploring concomitant neuroimaging and genetic alterations in patients with and patients without auditory verbal hallucinations: A pilot study and mini review. J Int Med Res 2021; 48:300060519884856. [PMID: 32696690 PMCID: PMC7376300 DOI: 10.1177/0300060519884856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective To explore concomitant neuroimaging and genetic alterations in patients with
schizophrenia with or without auditory verbal hallucinations (AVHs), and to
discuss the use of pattern recognition techniques in the development of an
objective index that may improve diagnostic accuracy and treatment outcomes
for schizophrenia. Methods The pilot study included patients with schizophrenia with AVHs (SCH-AVH
group) and without AVHs (SCH-no AVH group). High throughput sequencing (HTS)
was performed to explore RNA networks. Global functional connectivity
density (gFCD) analysis was performed to assess functional connectivity (FC)
alterations of the default mode network (DMN). Quantitative long noncoding
(lnc) RNA and mRNA expression data were related to peak T values of gFCDs
using Pearson’s correlation coefficient analysis. Results Compared with the SCH-no AVH group (n = 5), patients in the
SCH-AVH group (n = 5) exhibited differences in RNA
expression in RNA networks that were related to AVH severity, and displayed
alterations in FC (reflected by gFCD differences) within the DMN (posterior
cingulate and dorsal-medial prefrontal cortex), and in the right parietal
lobe, left occipital lobe, and left temporal lobe. Peak lncRNA expression
values were significantly related to peak gFCD T values within the DMN. Conclusion Among patients with schizophrenia, there are concomitant FC and genetic
expression alterations associated with AVHs. Data from pattern recognition
studies may inform the development of an objective index aimed at improving
early diagnostic accuracy and treatment planning for patients with
schizophrenia with and without AVHs.
Collapse
Affiliation(s)
- Haiping Yu
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Wang Ying
- Psychiatric Neuroimaging-Genetic and Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Tianjin, China
| | - Gang Li
- Department of Psychiatry, Tianshui Third Hospital, Gansu, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Deguo Jiang
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Guangdong Chen
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Suling Chen
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Xiuhai Sun
- Department of Neurology, Zoucheng People's Hospital, Jining Medical University Affiliated Zoucheng Hospital, Shandong, China
| | - Yong Xu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Shanxi, China
| | - Jiaen Ye
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China.,Psychiatric Neuroimaging-Genetic and Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatry, Tianjin Fourth Centre Hospital, Tianjin, China.,Department of Psychiatric-Neuro-Imaging-Genetics Laboratory, School of Mental Health of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
28
|
Saito R, Miyoshi C, Koebis M, Kushima I, Nakao K, Mori D, Ozaki N, Funato H, Yanagisawa M, Aiba A. Two novel mouse models mimicking minor deletions in 22q11.2 deletion syndrome revealed the contribution of each deleted region to psychiatric disorders. Mol Brain 2021; 14:68. [PMID: 33845872 PMCID: PMC8042712 DOI: 10.1186/s13041-021-00778-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/03/2021] [Indexed: 12/02/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by the segmental deletion of human chromosome 22. This chromosomal deletion is known as high genetic risk factors for various psychiatric disorders. The different deletion types are identified in 22q11.2DS patients, including the most common 3.0-Mb deletion, and the less-frequent 1.5-Mb and 1.4-Mb deletions. In previous animal studies of psychiatric disorders associated with 22q11.2DS mainly focused on the 1.5-Mb deletion and model mice mimicking the human 1.5-Mb deletion have been established with diverse genetic backgrounds, which resulted in the contradictory phenotypes. On the other hand, the contribution of the genes in 1.4-Mb region to psychiatric disorders is poorly understood. In this study, we generated two mouse lines that reproduced the 1.4-Mb and 1.5-Mb deletions of 22q11.2DS [Del(1.4 Mb)/+ and Del(1.5 Mb)/+] on the pure C57BL/6N genetic background. These mutant mice were analyzed comprehensively by behavioral tests, such as measurement of locomotor activity, sociability, prepulse inhibition and fear-conditioning memory. Del(1.4 Mb)/+ mice displayed decreased locomotor activity, but no abnormalities were observed in all other behavioral tests. Del(1.5 Mb)/+ mice showed reduction of prepulse inhibition and impairment of contextual- and cued-dependent fear memory, which is consistent with previous reports. Furthermore, apparently intact social recognition in Del(1.4 Mb)/+ and Del(1.5 Mb)/+ mice suggests that the impaired social recognition observed in Del(3.0 Mb)/+ mice mimicking the human 3.0-Mb deletion requires mutations both in 1.4-Mb and 1.5 Mb regions. Our previous study has shown that Del(3.0 Mb)/+ mice presented disturbance of behavioral circadian rhythm. Therefore, we further evaluated sleep/wakefulness cycles in Del(3.0 Mb)/+ mice by electroencephalogram (EEG) and electromyogram (EMG) recording. EEG/EMG analysis revealed the disturbed wakefulness and non-rapid eye moving sleep (NREMS) cycles in Del(3.0 Mb)/+ mice, suggesting that Del(3.0 Mb)/+ mice may be unable to maintain their wakefulness. Together, our mouse models deepen our understanding of genetic contributions to schizophrenic phenotypes related to 22q11.2DS.
Collapse
Affiliation(s)
- Ryo Saito
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
- Medical Genomics Center, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
29
|
Fiksinski AM, Schneider M, Zinkstok J, Baribeau D, Chawner SJRA, Vorstman JAS. Neurodevelopmental Trajectories and Psychiatric Morbidity: Lessons Learned From the 22q11.2 Deletion Syndrome. Curr Psychiatry Rep 2021; 23:13. [PMID: 33625600 PMCID: PMC7904715 DOI: 10.1007/s11920-021-01225-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The 22q11.2 deletion syndrome (22q11DS) is associated with a broad spectrum of neurodevelopmental phenotypes and is the strongest known single genetic risk factor for schizophrenia. Compared to other rare structural pathogenic genetic variants, 22q11DS is relatively common and one of the most extensively studied. This review provides a state-of-the-art overview of current insights regarding associated neurodevelopmental phenotypes and potential implications for 22q11DS and beyond. RECENT FINDINGS We will first discuss recent findings with respect to neurodevelopmental phenotypic expression associated with 22q11DS, including psychotic disorders, intellectual functioning, autism spectrum disorders, as well as their interactions. Second, we will address considerations that are important in interpreting these data and propose potential implications for both the clinical care for and the empirical study of individuals with 22q11DS. Third, we will highlight variable penetrance and pleiotropy with respect to neurodevelopmental phenotypes in 22q11DS. We will discuss how these phenomena are consistently observed in the context of virtually all rare pathogenic variants and that they pose substantial challenges from both a clinical and a research perspective. We outline how 22q11DS could be viewed as a genetic model for studying neurodevelopmental phenotypes. In addition, we propose that 22q11DS research can help elucidate mechanisms underlying variable expression and pleiotropy of neurodevelopmental phenotypes, insights that are likely relevant for 22q11DS and beyond, including for individuals with other rare pathogenic genetic variants and for individuals with idiopathic neurodevelopmental conditions.
Collapse
Affiliation(s)
- Ania M. Fiksinski
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Maude Schneider
- Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Department of Neurosciences, Center for Contextual Psychiatry, KU Leuven, Leuven, Belgium
| | - Janneke Zinkstok
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Danielle Baribeau
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Samuel J. R. A. Chawner
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jacob A. S. Vorstman
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
30
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Khan TA, Revah O, Gordon A, Yoon SJ, Krawisz AK, Goold C, Sun Y, Kim CH, Tian Y, Li MY, Schaepe JM, Ikeda K, Amin ND, Sakai N, Yazawa M, Kushan L, Nishino S, Porteus MH, Rapoport JL, Bernstein JA, O'Hara R, Bearden CE, Hallmayer JF, Huguenard JR, Geschwind DH, Dolmetsch RE, Paşca SP. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med 2020; 26:1888-1898. [PMID: 32989314 PMCID: PMC8525897 DOI: 10.1038/s41591-020-1043-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Abstract
22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids. Transcriptional profiling across 100 days showed high reliability of differentiation and revealed changes in neuronal excitability-related genes. Using electrophysiology and live imaging, we identified defects in spontaneous neuronal activity and calcium signaling in both organoid- and 2D-derived cortical neurons. The calcium deficit was related to resting membrane potential changes that led to abnormal inactivation of voltage-gated calcium channels. Heterozygous loss of DGCR8 recapitulated the excitability and calcium phenotypes and its overexpression rescued these defects. Moreover, the 22q11DS calcium abnormality could also be restored by application of antipsychotics. Taken together, our study illustrates how stem cell derived models can be used to uncover and rescue cellular phenotypes associated with genetic forms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Themasap A Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Program in Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Anna K Krawisz
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carleton Goold
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Yishan Sun
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Chul Hoon Kim
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuan Tian
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Interdepartmental PhD Program in Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Julia M Schaepe
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kazuya Ikeda
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Masayuki Yazawa
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Judith L Rapoport
- National Institute of Mental Health, Child Psychiatry Branch, Bethesda, MD, USA
| | | | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Abstract
Hallucinations are important diagnostic symptoms in schizophrenia, but also occur in other medical and neuropsychiatric conditions. Not all patients with hallucinations are psychotic. There has been a surge of interest in the topic of hallucinations, as new research data have begun to reveal their neurobiology. Hallucinogenic molecules may also serve as new scaffolds for the development of new psychotropic drugs. We searched and reviewed recent literature, focusing on the refinement of clinical management, which was inspired by new data regarding the neurobiology of hallucination subtypes. We concluded that the successful management of hallucinations depends on accurate differential diagnosis to identify subtypes, which would then determine the most appropriate treatment.
Collapse
|
33
|
Tanigaki K. Thalamocortical Circuit Dysfunctions in Schizophrenia: Insights From 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:842-843. [PMID: 32896297 DOI: 10.1016/j.bpsc.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
34
|
Cantonas LM, Mancini V, Rihs TA, Rochas V, Schneider M, Eliez S, Michel CM. Abnormal Auditory Processing and Underlying Structural Changes in 22q11.2 Deletion Syndrome. Schizophr Bull 2020; 47:189-196. [PMID: 32747926 PMCID: PMC7825015 DOI: 10.1093/schbul/sbaa104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2 DS), one of the highest genetic risk for the development of schizophrenia, offers a unique opportunity to understand neurobiological and functional changes preceding the onset of the psychotic illness. Reduced auditory mismatch negativity response (MMN) has been proposed as a promising index of abnormal sensory processing and brain pathology in schizophrenia. However, the link between the MMN response and its underlying cerebral mechanisms in 22q11.2 DS remains unexamined. We measured auditory-evoked potentials to frequency deviant stimuli with high-density electroencephalogram and volumetric estimates of cortical and thalamic auditory areas with structural T1-weighted magnetic resonance imaging in a sample of 130 individuals, 70 with 22q11.2 DS and 60 age-matched typically developing (TD) individuals. Compared to TD group, the 22q11.2 deletion carriers reveal reduced MMN response and significant changes in topographical maps and decreased gray matter volumes of cortical and subcortical auditory areas, however, without any correlations between MMN alteration and structural changes. Furthermore, exploratory research on the presence of hallucinations (H+\H-) reveals no change in MMN response in 22q11.2DS (H+ and H-) as compared to TD individuals. Nonetheless, we observe bilateral volume reduction of the superior temporal gyrus and left medial geniculate in 22q11.2DSH+ as compared to 22q11.2DSH- and TD participants. These results suggest that the mismatch response might be a promising neurophysiological marker of functional changes within the auditory pathways that might underlie elevated risk for the development of psychotic symptoms.
Collapse
Affiliation(s)
- Lucia-Manuela Cantonas
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland,To whom correspondence should be addressed; tel: 0041 (0) 22 37 908 88, e-mail:
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland,Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland,Fondation Pôle Autisme, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland,EEG Brain Mapping Core, Center for Biomedical Imaging of Lausanne and Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Wang X, Li Y, Chen J, Li Z, Li J, Qin L. Aberrant Auditory Steady-State Response of Awake Mice After Single Application of the NMDA Receptor Antagonist MK-801 Into the Medial Geniculate Body. Int J Neuropsychopharmacol 2020; 23:459-468. [PMID: 32725129 PMCID: PMC7387767 DOI: 10.1093/ijnp/pyaa022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Systemic administration of noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists such as MK-801 is widely used to model psychosis of schizophrenia (SZ). Acute systemic MK-801 in rodents caused an increase of the auditory steady-state responses (ASSRs), the oscillatory neural responses to periodic auditory stimulation, while most studies in patients with SZ reported a decrease of ASSRs. This inconsistency may be attributable to the comprehensive effects of systemic administration of MK-801. Here, we examined how the ASSR is affected by selectively blocking NMDAR in the thalamus. METHODS We implanted multiple electrodes in the auditory cortex (AC) and prefrontal cortex to simultaneously record the local field potential and spike activity (SA) of multiple sites from awake mice. Click-trains at a 40-Hz repetition rate were used to evoke the ASSR. We compared the mean trial power and phase-locking factor and the firing rate of SA before and after microinjection of MK-801 (1.5 µg) into the medial geniculate body (MGB). RESULTS We found that both the AC and prefrontal cortex showed a transient local field potential response at the onset of click-train stimulus, which was less affected by the application of MK-801 in the MGB. Following the onset response, the AC also showed a response continuing throughout the stimulus period, corresponding to the ASSR, which was suppressed by the application of MK-801. CONCLUSION Our data suggest that the MGB is one of the generators of ASSR, and NMDAR hypofunction in the thalamocortical projection may account for the ASSR deficits in SZ.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
| | - Yingzhuo Li
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
| | - Zijie Li
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
| | - Jinhong Li
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China,Correspondence: Ling Qin, MD, PhD, Department of Physiology, China Medical University, Shenyang, 110122, People’s Republic of China ()
| |
Collapse
|
36
|
Mancini V, Zöller D, Schneider M, Schaer M, Eliez S. Abnormal Development and Dysconnectivity of Distinct Thalamic Nuclei in Patients With 22q11.2 Deletion Syndrome Experiencing Auditory Hallucinations. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:875-890. [PMID: 32620531 DOI: 10.1016/j.bpsc.2020.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several studies in patients with schizophrenia have demonstrated an abnormal thalamic volume and thalamocortical connectivity. Specifically, hyperconnectivity with somatosensory areas has been related to the presence of auditory hallucinations (AHs). The 22q11.2 deletion syndrome is a neurogenetic disorder conferring proneness to develop schizophrenia, and deletion carriers (22qdel carriers) experience hallucinations to a greater extent than the general population. METHODS We acquired 442 consecutive magnetic resonance imaging scans from 120 22qdel carriers and 110 control subjects every 3 years (age range: 8-35 years). The volume of thalamic nuclei was obtained with FreeSurfer and was compared between 22qdel carriers and control subjects and between 22qdel carriers with and without AHs. In a subgroup of 76 22qdel carriers, we evaluated the functional connectivity between thalamic nuclei affected in patients experiencing AHs and cortical regions. RESULTS As compared with control subjects, 22qdel carriers had lower and higher volumes of nuclei involved in sensory processing and cognitive functions, respectively. 22qdel carriers with AHs had a smaller volume of the medial geniculate nucleus, with deviant trajectories showing a steeper volume decrease from childhood with respect to those without AHs. Moreover, we showed an aberrant development of nuclei intercalated between the prefrontal cortex and hippocampus (the anteroventral and medioventral reuniens nuclei) and hyperconnectivity of the medial geniculate nucleus and anteroventral nucleus with the auditory cortex and Wernicke's area. CONCLUSIONS The increased connectivity of the medial geniculate nucleus and anteroventral nucleus to the auditory cortex might be interpreted as a lack of maturation of thalamocortical connectivity. Overall, our findings point toward an aberrant development of thalamic nuclei and an immature pattern of connectivity with temporal regions in relation to AHs.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
37
|
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020; 14:13. [PMID: 32296311 PMCID: PMC7137737 DOI: 10.3389/fncir.2020.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
Collapse
Affiliation(s)
- Jordan M Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States.,Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
38
|
Abstract
Perceptual disturbances in psychosis, such as auditory verbal hallucinations, are associated with increased baseline activity in the associative auditory cortex and increased dopamine transmission in the associative striatum. Perceptual disturbances are also associated with perceptual biases that suggest increased reliance on prior expectations. We review theoretical models of perceptual inference and key supporting physiological evidence, as well as the anatomy of associative cortico-striatal loops that may be relevant to auditory perceptual inference. Integrating recent findings, we outline a working framework that bridges neurobiology and the phenomenology of perceptual disturbances via theoretical models of perceptual inference.
Collapse
|
39
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
40
|
Eom TY, Han SB, Kim J, Blundon JA, Wang YD, Yu J, Anderson K, Kaminski DB, Sakurada SM, Pruett-Miller SM, Horner L, Wagner B, Robinson CG, Eicholtz M, Rose DC, Zakharenko SS. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun 2020; 11:912. [PMID: 32060266 PMCID: PMC7021727 DOI: 10.1038/s41467-020-14628-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Progressive ventricular enlargement, a key feature of several neurologic and psychiatric diseases, is mediated by unknown mechanisms. Here, using murine models of 22q11-deletion syndrome (22q11DS), which is associated with schizophrenia in humans, we found progressive enlargement of lateral and third ventricles and deceleration of ciliary beating on ependymal cells lining the ventricular walls. The cilia-beating deficit observed in brain slices and in vivo is caused by elevated levels of dopamine receptors (Drd1), which are expressed in motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 results in Drd1 elevation, which is brought about by a reduction in Drd1-targeting microRNAs miR-382-3p and miR-674-3p. Replenishing either microRNA in 22q11DS mice normalizes ciliary beating and ventricular size. Knocking down the microRNAs or deleting their seed sites on Drd1 mimicked the cilia-beating and ventricular deficits. These results suggest that the Dgcr8-miR-382-3p/miR-674-3p-Drd1 mechanism contributes to deceleration of ciliary motility and age-dependent ventricular enlargement in 22q11DS.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jing Yu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kara Anderson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Damian B Kaminski
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sadie Miki Sakurada
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Linda Horner
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ben Wagner
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew Eicholtz
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Computer Science, Florida Southern College, Lakeland, FL, 33801, USA
| | - Derek C Rose
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
41
|
Saito R, Koebis M, Nagai T, Shimizu K, Liao J, Wulaer B, Sugaya Y, Nagahama K, Uesaka N, Kushima I, Mori D, Maruyama K, Nakao K, Kurihara H, Yamada K, Kano M, Fukada Y, Ozaki N, Aiba A. Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome: a model with the most common 3.0-Mb deletion at the human 22q11.2 locus. Transl Psychiatry 2020; 10:35. [PMID: 32066675 PMCID: PMC7026107 DOI: 10.1038/s41398-020-0723-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is associated with an increased risk for psychiatric disorders. Although most of the 22q11.2DS patients have a 3.0-Mb deletion, existing mouse models only mimic a minor mutation of 22q11.2DS, a 1.5-Mb deletion. The role of the genes existing outside the 1.5-Mb deletion in psychiatric symptoms of 22q11.2DS is unclear. In this study, we generated a mouse model that reproduced the 3.0-Mb deletion of the 22q11.2DS (Del(3.0 Mb)/ +) using the CRISPR/Cas9 system. Ethological and physiological phenotypes of adult male mutants were comprehensively evaluated by visual-evoked potentials, circadian behavioral rhythm, and a series of behavioral tests, such as measurement of locomotor activity, prepulse inhibition, fear-conditioning memory, and visual discrimination learning. As a result, Del(3.0 Mb)/ + mice showed reduction of auditory prepulse inhibition and attenuated cue-dependent fear memory, which is consistent with the phenotypes of existing 22q11.2DS models. In addition, Del(3.0 Mb)/ + mice displayed an impaired early visual processing that is commonly seen in patients with schizophrenia. Meanwhile, unlike the existing models, Del(3.0 Mb)/ + mice exhibited hypoactivity over several behavioral tests, possibly reflecting the fatigability of 22q11.2DS patients. Lastly, Del(3.0 Mb)/ + mice displayed a faster adaptation to experimental jet lag as compared with wild-type mice. Our results support the validity of Del(3.0 Mb)/ + mice as a schizophrenia animal model and suggest that our mouse model is a useful resource to understand pathogenic mechanisms of schizophrenia and other psychiatric disorders associated with 22q11.2DS.
Collapse
Affiliation(s)
- Ryo Saito
- grid.26999.3d0000 0001 2151 536XLaboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Koebis
- grid.26999.3d0000 0001 2151 536XLaboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Nagai
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kimiko Shimizu
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Jingzhu Liao
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Bolati Wulaer
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuki Sugaya
- grid.26999.3d0000 0001 2151 536XDepartment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kenichiro Nagahama
- grid.26999.3d0000 0001 2151 536XDepartment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- grid.26999.3d0000 0001 2151 536XDepartment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Itaru Kushima
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.437848.40000 0004 0569 8970Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi Japan
| | - Daisuke Mori
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kazuaki Maruyama
- grid.26999.3d0000 0001 2151 536XDepartment of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuki Nakao
- grid.26999.3d0000 0001 2151 536XLaboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kurihara
- grid.26999.3d0000 0001 2151 536XDepartment of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyofumi Yamada
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Masanobu Kano
- grid.26999.3d0000 0001 2151 536XDepartment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Norio Ozaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
43
|
Zhuo C, Zhou C, Lin X, Tian H, Wang L, Chen C, Ji F, Xu Y, Jian D. Common and distinct global functional connectivity density alterations in drug-naïve patients with first-episode major depressive disorder with and without auditory verbal hallucination. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109738. [PMID: 31442554 DOI: 10.1016/j.pnpbp.2019.109738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/12/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
Abstract
Auditory verbal hallucination (AVH), defined as the auditory perception of speech in the absence of a real external stimulus, occurs in individuals with and without mental illness. The distribution of functional abnormalities in patients with AVH suggests aberrant brain network connectivity. However, no study has measured the global functional connectivity density (gFCD) associated with AVH in patients with major depressive disorder (MDD); gFCD is used widely to examine the density distribution of whole-brain resting-state functional connectivity and can serve as an index reflecting brain metabolism disturbance. In this study, we involved drug-naïve patients with first-episode MDD with (n = 35) and without (n = 40) AVH and healthy controls (n = 50).Whole-brain resting-state functional magnetic resonance imaging data were acquired and gFCD was calculated and compared among groups. We found the following gFCD alterations that were shared by both MDD groups: (1) decreased gFCD in the bilateral postcentral gyrus, precentral gyrus, insular cortices and occipital lobe; and (2) increased gFCD in the left middle cingulate cortex. More importantly, we found AVH-specific gFCD changes in patients with MDD: increased gFCD in the left Wernicke's brain regions and bilateral hippocampus and thalamus, and decreased gFCD in the bilateral lateral prefrontal lobule. These findings reflect the disturbance of brain information communication and metabolism in patients with MDD and AVH, related mainly to the language and memory processing circuits, and to some extent provide further support for the "VOICE" model of AVH.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining University, Jining, Shandong Province 272191, China; Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China; Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining University, Jining, Shandong Province 272191, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Deguo Jian
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| |
Collapse
|
44
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
45
|
Wei Y, Wang X, Wang Y, Qiu B, Xia H, Zhang X, Li H, Wang M, Chen L. Functional magnetic resonance imaging in a single schizophrenia patient with voluntary control over auditory verbal hallucinations. Schizophr Res 2020; 215:465-466. [PMID: 31522866 DOI: 10.1016/j.schres.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Yarui Wei
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Yanming Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China.
| | - Haisen Xia
- Department of Psychiatry, Mengcheng Mental Hospital, Mengcheng 233500, China
| | - Xulai Zhang
- Hefei Fourth People's Hospital, Hefei 230022, China
| | - Huawei Li
- Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Ming Wang
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lin Chen
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
46
|
Tian X, Richard A, El-Saadi MW, Bhandari A, Latimer B, Van Savage I, Holmes K, Klein RL, Dwyer D, Goeders NE, Yang XW, Lu XH. Dosage sensitivity intolerance of VIPR2 microduplication is disease causative to manifest schizophrenia-like phenotypes in a novel BAC transgenic mouse model. Mol Psychiatry 2019; 24:1884-1901. [PMID: 31444475 DOI: 10.1038/s41380-019-0492-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified copy number variations (CNVs) at chromosomal locus 7q36.3 that significantly contribute to the risk of schizophrenia, with all of the microduplications occurring within a single gene: vasoactive intestinal peptide receptor 2 (VIPR2). To confirm disease causality and translate such a genetic vulnerability into mechanistic and pathophysiological insights, we have developed a series of conditional VIPR2 bacterial artificial chromosome (BAC) transgenic mouse models of VIPR2 CNV. VIPR2 CNV mouse model recapitulates gene expression and signaling deficits seen in human CNV carriers. VIPR2 microduplication in mice elicits prominent dorsal striatal dopamine dysfunction, cognitive, sensorimotor gating, and social behavioral deficits preceded by an increase of striatal cAMP/PKA signaling and the disrupted early postnatal striatal development. Genetic removal of VIPR2 transgene expression via crossing with Drd1a-Cre BAC transgenic mice rescued the dopamine D2 receptor abnormality and multiple behavioral deficits, implicating a pathogenic role of VIPR2 overexpression in dopaminoceptive neurons. Thus, our results provide further evidence to support the GWAS studies that the dosage sensitivity intolerance of VIPR2 is disease causative to manifest schizophrenia-like dopamine, cognitive, and social behavioral deficits in mice. The conditional BAC transgenesis offers a novel strategy to model CNVs with a gain-of -copies and facilitate the genetic dissection of when/where/how the genetic vulnerabilities affect development, structure, and function of neural circuits. Our findings have important implications for therapeutic development, and the etiology-relevant mouse model provides a useful preclinical platform for drug discovery.
Collapse
Affiliation(s)
- Xinli Tian
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Adam Richard
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Madison Wynne El-Saadi
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Aakriti Bhandari
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Isabella Van Savage
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Kevlyn Holmes
- California Lutheran University, Thousand Oaks, CA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Human Behaviors, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
47
|
Zinkstok JR, Boot E, Bassett AS, Hiroi N, Butcher NJ, Vingerhoets C, Vorstman JAS, van Amelsvoort TAMJ. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019; 6:951-960. [PMID: 31395526 PMCID: PMC7008533 DOI: 10.1016/s2215-0366(19)30076-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
22q11.2 deletion syndrome is characterised by a well defined microdeletion that is associated with a high risk of neuropsychiatric disorders, including intellectual disability, schizophrenia, attention-deficit hyperactivity disorder, autism spectrum disorder, anxiety disorders, seizures and epilepsy, and early-onset Parkinson's disease. Preclinical and clinical data reveal substantial variability of the neuropsychiatric phenotype despite the shared underlying deletion in this genetic model. Factors that might explain this variability include genetic background effects, additional rare pathogenic variants, and potential regulatory functions of some genes in the 22q11.2 deletion region. These factors might also be relevant to the pathophysiology of these neuropsychiatric disorders in the general population. We review studies that might provide insight into pathophysiological mechanisms underlying the expression of neuropsychiatric disorders in 22q11.2 deletion syndrome, and potential implications for these common disorders in the general (non-deleted) population. The recurrent hemizygous 22q11.2 deletion, associated with 22q11.2 deletion syndrome, has attracted attention as a genetic model for common neuropsychiatric disorders because of its association with substantially increased risk of such disorders.1 Studying such a model has many advantages. First, 22q11.2 deletion has been genetically well characterised.2 Second, most genes present in the region typically deleted at the 22q11.2 locus are expressed in the brain.3-5 Third, genetic diagnosis might be made early in life, long before recognisable neuropsychiatric disorders have emerged. Thus, this genetic condition offers a unique opportunity for early intervention, and monitoring individuals with 22q11.2 deletion syndrome throughout life could provide important information on factors contributing to disease risk and protection. Despite the commonly deleted region being shared by about 90% of individuals with 22q11.2 deletion syndrome, neuropsychiatric outcomes are highly variable between individuals and across the lifespan. A clear link remains to be established between genotype and phenotype.3,5 In this Review, we summarise preclinical and clinical studies investigating biological mechanisms in 22q11.2 deletion syndrome, with a focus on those that might provide insight into mechanisms underlying neuropsychiatric disorders in 22q11.2 deletion syndrome and in the general population.
Collapse
Affiliation(s)
- Janneke R Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center, Utrecht, Netherlands.
| | - Erik Boot
- 's Heeren Loo Zorggroep, Amersfoort, Netherlands; The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Anne S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Division of Cardiology & Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Noboru Hiroi
- Department of Pharmacology, Department of Cellular and Integrative Physiology, Department of Cell Systems and Anatomy, and Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nancy J Butcher
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jacob A S Vorstman
- Sick Children Research Institute, Genetics & Genome Biology Program, Toronto, ON, Canada
| | | |
Collapse
|
48
|
Canetta S, Kellendonk C. When Time Matters: An Adolescent Intervention to Prevent Adult Brain Dysfunction. Cell 2019; 178:1282-1284. [PMID: 31474365 DOI: 10.1016/j.cell.2019.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Can we one day prevent mental disorders? Mukherjee et al. (2019) use a genetic mouse model of schizophrenia-risk with established abnormalities in adult hippocampal-prefrontal circuit function and cognitive behaviors to identify circuit-specific treatments during adolescence that prevent the onset of the adult deficits.
Collapse
Affiliation(s)
- Sarah Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
49
|
Hiroi N, Yamauchi T. Modeling and Predicting Developmental Trajectories of Neuropsychiatric Dimensions Associated With Copy Number Variations. Int J Neuropsychopharmacol 2019; 22:488-500. [PMID: 31135887 PMCID: PMC6672556 DOI: 10.1093/ijnp/pyz026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Copy number variants, such as duplications and hemizygous deletions at chromosomal loci of up to a few million base pairs, are highly associated with psychiatric disorders. Hemizygous deletions at human chromosome 22q11.2 were found to be associated with elevated instances of schizophrenia and autism spectrum disorder in 1992 and 2002, respectively. Following these discoveries, many mouse models have been developed and tested to analyze the effects of gene dose alterations in small chromosomal segments and single genes of 22q11.2. Despite several limitations to modeling mental illness in mice, mouse models have identified several genes on 22q11.2-Tbx1, Dgcr8, Comt, Sept5, and Prodh-that contribute to dimensions of autism spectrum disorder and schizophrenia, including working memory, social communication and interaction, and sensorimotor gating. Mouse studies have identified that heterozygous deletion of Tbx1 results in defective social communication during the neonatal period and social interaction deficits during adolescence/adulthood. Overexpression of Tbx1 or Comt in adult neural progenitor cells in the hippocampus delays the developmental maturation of working memory capacity. Collectively, mouse models of variants of these 4 genes have revealed several potential neuronal mechanisms underlying various aspects of psychiatric disorders, including adult neurogenesis, microRNA processing, catecholamine metabolism, and synaptic transmission. The validity of the mouse data would be ultimately tested when therapies or drugs based on such potential mechanisms are applied to humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Takahira Yamauchi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
50
|
Huang J, Zhuo C, Xu Y, Lin X. Auditory verbal hallucination and the auditory network: From molecules to connectivity. Neuroscience 2019; 410:59-67. [PMID: 31082536 DOI: 10.1016/j.neuroscience.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Auditory verbal hallucinations (AVHs) frequently occur across multiple psychiatric diseases especially in schizophrenia (SCZ) patients. Functional imaging studies have revealed the hyperactivity of the auditory cortex and disrupted auditory-verbal network activity underlying AVH etiology. This review will firstly summarize major findings from both human AVH patients and animal models, with focuses on the auditory cortex and associated cortical/sub-cortical areas. Besides mesoscale connectivity or activity data, structure and functions at synaptic level will be discussed, in conjunction with molecular mechanisms. We have summarized major findings for the pathogenesis of AVH in SCZ patients, with focuses in the auditory cortex and prefrontal cortex (PFC). Those discoveries provide explanations for AVH from different perspectives including inter-regional connectivity, local activity in specific areas, structure and functions of synapse, and potentially molecular targets. Due to the uniqueness of AVH in humans, full replica using animals seems impossible. However, we can still extract useful information from animal SCZ models based on the disruption of auditory pathway during AVH episodes. Therefore, we will further interpolate the synaptic structures and molecular targets, whose dysregulation in SCZ models may be highly related with AVH episodes. As the last part, implications for future development of treatment strategies will be discussed.
Collapse
Affiliation(s)
- Jianjie Huang
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Department of Psychiatry, Institute of Mental Health, Jining University, Jining Shandong Province, 272191, China; Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin, 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|