1
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Huss NP, Majeed ST, Wills BM, Tarakanova VL, Brockman KL, Jondle CN. Nontypeable Haemophilus influenzae challenge during gammaherpesvirus infection enhances viral reactivation and latency. Virology 2024; 597:110153. [PMID: 38941745 PMCID: PMC11257779 DOI: 10.1016/j.virol.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.
Collapse
Affiliation(s)
- Nicholas P Huss
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Sheikh Tahir Majeed
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Brandon M Wills
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kenneth L Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christopher N Jondle
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| |
Collapse
|
3
|
Sánchez-Ponce Y, Murillo-Eliosa JR, Morales-Sanchez A, Fuentes-Pananá EM. Cytokine Dynamics and Herpesvirus Interactions in Pediatric Liver and Kidney Transplant Recipients: The Distinct Behavior of HCMV, HHV6, HHV7 and EBV. Viruses 2024; 16:1067. [PMID: 39066229 PMCID: PMC11281388 DOI: 10.3390/v16071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric solid organ transplant (SOT) recipients face a challenging balance between immunosuppression and graft rejection. While Epstein-Barr Virus (EBV) and cytomegalovirus (HCMV) are known contributors to post-transplant lymphoproliferative disease and graft rejection, respectively, the roles of herpesvirus 6 and 7 (HHV6 and HHV7) and the impact of these herpesviruses on cytokine levels remain unclear, leading to gaps in clinical practice. In this associative study, we measured 17 cytokines using a Bio-Plex assay in a meticulously curated plasma sample pool (N = 158) from pediatric kidney and liver transplant recipients over a one-year follow-up period. The samples included virus-negative and virus-positive cases, either individually or in combination, along with episodes of graft rejection. We observed that the elevation of IL-4, IL-8, and IL-10 correlated with graft rejection. These cytokines were elevated in samples where HCMV or HHV6 were detected alone or where EBV and HHV7 were co-detected. Interestingly, latent EBV, when detected independently, exhibited an immunomodulatory effect by downregulating cytokine levels. However, in co-detection scenarios with β-herpesviruses, EBV transitioned to a lytic state, also associating with heightened cytokinemia and graft rejection. These findings highlight the complex interactions between the immune response and herpesviruses in transplant recipients. The study advocates for enhanced monitoring of not only EBV and HCMV but also HHV6 and HHV7, providing valuable insights for improved risk assessment and targeted interventions in pediatric SOT recipients.
Collapse
Affiliation(s)
- Yessica Sánchez-Ponce
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico; (Y.S.-P.); (A.M.-S.)
- Postgraduate Program in Biological Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | - Abigail Morales-Sanchez
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico; (Y.S.-P.); (A.M.-S.)
| | | |
Collapse
|
4
|
Burgess MO, Janas P, Berry K, Mayr H, Mack M, Jenkins SJ, Bain CC, McSorley HJ, Schwarze J. Helminth induced monocytosis conveys protection from respiratory syncytial virus infection in mice. Allergy 2024. [PMID: 38924546 DOI: 10.1111/all.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in infants is a major cause of viral bronchiolitis and hospitalisation. We have previously shown in a murine model that ongoing infection with the gut helminth Heligmosomoides polygyrus protects against RSV infection through type I interferon (IFN-I) dependent reduction of viral load. Yet, the cellular basis for this protection has remained elusive. Given that recruitment of mononuclear phagocytes to the lung is critical for early RSV infection control, we assessed their role in this coinfection model. METHODS Mice were infected by oral gavage with H. polygyrus. Myeloid immune cell populations were assessed by flow cytometry in lung, blood and bone marrow throughout infection and after secondary infection with RSV. Monocyte numbers were depleted by anti-CCR2 antibody or increased by intravenous transfer of enriched monocytes. RESULTS H. polygyrus infection induces bone marrow monopoiesis, increasing circulatory monocytes and lung mononuclear phagocytes in a IFN-I signalling dependent manner. This expansion causes enhanced lung mononuclear phagocyte counts early in RSV infection that may contribute to the reduction of RSV load. Depletion or supplementation of circulatory monocytes prior to RSV infection confirms that these are both necessary and sufficient for helminth induced antiviral protection. CONCLUSIONS H. polygyrus infection induces systemic monocytosis contributing to elevated mononuclear phagocyte numbers in the lung. These cells are central to an anti-viral effect that reduces the peak viral load in RSV infection. Treatments to promote or modulate these cells may provide novel paths to control RSV infection in high risk individuals.
Collapse
Affiliation(s)
- Matthew O Burgess
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Piotr Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Karla Berry
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hannah Mayr
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Henry J McSorley
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Bogza A, King IL, Maurice CF. Worming into infancy: Exploring helminth-microbiome interactions in early life. Cell Host Microbe 2024; 32:639-650. [PMID: 38723604 DOI: 10.1016/j.chom.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.
Collapse
Affiliation(s)
- Andrei Bogza
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|
6
|
Nalwoga A, Sabourin KR, Miley W, Jackson C, Maktabi M, Labo N, Mugisha J, Whitby D, Rochford R, Newton R. Plasmodium falciparum Malaria Is Associated With Increased Kaposi Sarcoma-Associated Herpesvirus (KSHV) Seropositivity and Higher KSHV Antibody Breadth and Magnitude: Results of a Case-Control Study From Rural Uganda. J Infect Dis 2024; 229:432-442. [PMID: 37536670 PMCID: PMC10873168 DOI: 10.1093/infdis/jiad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Previously, we showed that children with asymptomatic Plasmodium falciparum (Pf) malaria infection had higher Kaposi sarcoma-associated herpesvirus (KSHV) viral load, increased risk of KSHV seropositivity, and higher KSHV antibody levels. We hypothesize that clinical malaria has an even larger association with KSHV seropositivity. In the current study, we investigated the association between clinical malaria and KSHV seropositivity and antibody levels. METHODS Between December 2020 and March 2022, sick children (aged 5-10 years) presenting at a clinic in Uganda were enrolled in a case-control study. Pf was detected using malaria rapid diagnostic tests (RDTs) and subsequently with quantitative real-time polymerase chain reaction (qPCR). Children with malaria were categorized into 2 groups: RDT+/PfPCR+ and RDT-/PfPCR+. RESULTS The seropositivity of KSHV was 60% (47/78) among Pf-uninfected children, 79% (61/77) among children who were RDT-/PfPCR+ (odds ratio [OR], 2.41 [95% confidence interval {CI}, 1.15-5.02]), and 95% (141/149) in children who were RDT+/PfPCR+ (OR, 10.52 [95% CI, 4.17-26.58]; Ptrend < .001). Furthermore, RDT+/PfPCR+ children followed by RDT-/PfPCR+ children had higher KSHV IgG and IgM antibody levels and reacted to more KSHV antigens compared to uninfected children. CONCLUSIONS Clinical malaria is associated with both increased KSHV seropositivity and antibody magnitude, suggesting that Pf is affecting KSHV immunity.
Collapse
Affiliation(s)
- Angela Nalwoga
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Katherine R Sabourin
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Conner Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado
| | - Mahdi Maktabi
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joseph Mugisha
- Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Robert Newton
- Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Health Sciences, University of York, York, United Kingdom
| |
Collapse
|
7
|
Chen H, Cao Z, Liu M, Diamond MS, Jin X. The impact of helminth-induced immunity on infection with bacteria or viruses. Vet Res 2023; 54:87. [PMID: 37789420 PMCID: PMC10548622 DOI: 10.1186/s13567-023-01216-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Different human and animal pathogens trigger distinct immune responses in their hosts. The infection of bacteria or viruses can trigger type I pro-inflammatory immune responses (e.g., IFN-γ, TNF-α, TH1 cells), whereas infection by helminths typically elicits a type II host resistance and tolerizing immune response (e.g., IL-4, IL-5, IL-13, TH2 cells). In some respects, the type I and II immune responses induced by these different classes of pathogens are antagonistic. Indeed, recent studies indicate that infection by helminths differentially shapes the response and outcome of subsequent infection by viruses and bacteria. In this review, we summarize the current knowledge on how helminth infections influence concurrent or subsequent microbial infections and also discuss the implications for helminth-mediated immunity on the outcome of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Zarek CM, Dende C, Coronado J, Pendse M, Dryden P, Hooper LV, Reese TA. Preexisting helminth challenge exacerbates infection and reactivation of gammaherpesvirus in tissue resident macrophages. PLoS Pathog 2023; 19:e1011691. [PMID: 37847677 PMCID: PMC10581490 DOI: 10.1371/journal.ppat.1011691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.
Collapse
Affiliation(s)
- Christina M. Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chaitanya Dende
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jaime Coronado
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mihir Pendse
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Phillip Dryden
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
9
|
Zhang Y, Wu G, Yang Y, Niu L, Zhao Y. Interleukin-4 Promotes Human Metapneumovirus Replication Through the JAK/STAT6 Pathway. Viral Immunol 2023; 36:449-457. [PMID: 37406292 DOI: 10.1089/vim.2023.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Respiratory virus infections are the main causes of pediatric diseases. Human metapneumovirus (hMPV) is an enveloped RNA virus similar to severe acute respiratory syndrome coronavirus type 2, both of which have emerged as important new respiratory viruses. Recent studies have found that interleukin-4 (IL-4) is involved in the replication of a variety of viruses, and its role differs in different viruses. The purpose of this study was to investigate the effect of IL-4 on hMPV and to elucidate its mechanism of action. We found that hMPV infection promoted the expression of IL-4 in human bronchial epithelial cells. The replication of the virus was reduced using small interfering RNA knockdown of IL-4 expression, while the addition of exogenous recombinant human IL-4 to IL-4 knockdown cells restored viral replication ability. These results demonstrate that the expression of IL-4 is closely related to the replication of hMPV; moreover, further experiments revealed that IL-4 promotes the replication of hMPV through a mechanism dependent on the Janus kinase/signal transductor and transcription activator 6 signaling pathway. Therefore, anti-IL-4 strategies may be a promising avenue for the treatment of hMPV infection, representing an important breakthrough for children at risk from hMPV infection.
Collapse
Affiliation(s)
- Yueyan Zhang
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guojin Wu
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Yang
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Niu
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Zhao
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Chinna P, Bratl K, Lambarey H, Blumenthal MJ, Schäfer G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int J Mol Sci 2023; 24:13066. [PMID: 37685871 PMCID: PMC10487760 DOI: 10.3390/ijms241713066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.
Collapse
Affiliation(s)
- Prishanta Chinna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katrin Bratl
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
11
|
Oyesola OO, Hilligan KL, Namasivayam S, Howard N, Clancy CS, Zhao M, Oland SD, Kiwanuka KN, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. Sci Immunol 2023; 8:eadf8161. [PMID: 37566678 DOI: 10.1126/sciimmunol.adf8161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kasalina N Kiwanuka
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P'ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Vragel G, Gomez BD, Kostelecky RE, Noell KS, Tseng A, Cohen S, Dalwadi M, Medina EM, Nail EA, Goodspeed A, Clambey ET, van Dyk LF. Murine Gammaherpesvirus 68 Efficiently Infects Myeloid Cells Resulting In An Atypical, Restricted Form Of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545948. [PMID: 37425871 PMCID: PMC10327065 DOI: 10.1101/2023.06.21.545948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The gammaherpesviruses (γHVs) establish a lifelong infection in their hosts, with the cellular outcome of infection intimately regulated by target cell type. Murine gammaherpesvirus 68 (MHV68), a small animal model of γHV infection, infects macrophages in vivo, resulting in a range of outcomes, from lytic replication to latent infection. Here, we have further investigated the nature of MHV68 macrophage infection using reductionist and primary in vivo infection studies. While MHV68 readily infected the J774 macrophage cell line, viral gene expression and replication were significantly impaired relative to a fully permissive fibroblast cell line. Lytic replication only occurred in a small subset of MHV68-infected J774 cells, despite the fact that these cells were fully competent to support lytic replication following pre-treatment with interleukin-4, a known potentiator of replication in macrophages. In parallel, we harvested virally-infected macrophages at 16 hours after MHV68 infection in vivo and analyzed gene expression by single cell RNA-sequencing. Among virally infected macrophages, only rare (0.25%) cells had lytic cycle gene expression, characterized by detection of multiple lytic cycle RNAs. In contrast, ~50% of virally-infected macrophages were characterized by expression of ORF75A, ORF75B and/or ORF75C, in the absence of other detectable viral RNAs. Selective transcription of the ORF75 locus also occurred in MHV68-infected J774 cells. In total, these studies indicate that MHV68 efficiently infects macrophages, with the majority of cells characterized by an atypical state of restricted viral transcription, and only rare cells undergoing lytic replication.
Collapse
Affiliation(s)
- Gabrielle Vragel
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Brittany D. Gomez
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Rachael E. Kostelecky
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Kyra S. Noell
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Ashley Tseng
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Manaal Dalwadi
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Eva M. Medina
- Department of Neurology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Elizabeth A. Nail
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Linda F. van Dyk
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
13
|
Seguel M, Budischak SA, Jolles AE, Ezenwa VO. Helminth-associated changes in host immune phenotype connect top-down and bottom-up interactions during co-infection. Funct Ecol 2023; 37:860-872. [PMID: 37214767 PMCID: PMC10195069 DOI: 10.1111/1365-2435.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
1. Within-host parasite interactions can be mediated by the host and changes in host phenotypes often serve as indicators of the presence or intensity of parasite interactions. 2. Parasites like helminths induce a range of physiological, morphological, and immunological changes in hosts that can drive bottom-up (resource-mediated) or top-down (immune-mediated) interactions with co-infecting parasites. Although top-down and bottom-up interactions are typically studied in isolation, the diverse phenotypic changes induced by parasite infection may serve as a useful tool for understanding if, and when, these processes act in concert. 3. Using an anthelmintic treatment study of African buffalo (Syncerus caffer), we tracked changes in host immunological and morphological phenotypes during helminth-coccidia co-infection to investigate their role in driving independent and combinatorial bottom-up and top-down parasite interactions. We also examined repercussions for host fitness. 4. Clearance of a blood-sucking helminth, Haemonchus, from the host gastrointestinal tract induced a systemic Th2 immune phenotype, while clearance of a tissue-feeding helminth, Cooperia, induced a systemic Th1 phenotype. Furthermore, the Haemonchus-associated systemic Th2 immune phenotype drove simultaneous top-down and bottom-up effects that increased coccidia shedding by changing the immunological and morphological landscapes of the intestine. 5. Higher coccidia shedding was associated with lower host body condition, a lower chance of pregnancy, and older age at first pregnancy, suggesting that coccidia infection imposed significant condition and reproductive costs on the host. 6. Our findings suggest that top-down and bottom-up interactions may commonly co-occur and that tracking key host phenotypes that change in response to infection can help uncover complex pathways by which parasites interact.
Collapse
Affiliation(s)
- Mauricio Seguel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah A. Budischak
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, USA
| | - Anna E. Jolles
- Department of Biomedical Sciences and Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Vanessa O. Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
15
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
16
|
Pham K, Mtalitinya GS, Aristide C, Airewele EA, Nyakaru DK, McMahon P, Mulaki GM, Corstjens PLAM, J de Dood C, van Dam GJ, Changalucha JM, Mazigo HD, Lee MH, Jaka H, Downs JA. Effects of Schistosoma mansoni and praziquantel treatment on the lower gastrointestinal mucosa: A cohort study in Tanzania. Acta Trop 2023; 238:106752. [PMID: 36410422 PMCID: PMC9884117 DOI: 10.1016/j.actatropica.2022.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/20/2022]
Abstract
Schistosomes infect over 200 million people worldwide, but few studies have characterized the effects of Schistosoma mansoni infection and effective treatment on the lower gastrointestinal mucosa. In this prospective cohort study, we compared the clinical findings on sigmoidoscopy and laboratory measures in Tanzanian adults with and without S. mansoni infection at baseline and 6 months after praziquantel treatment. Grading of the endoscopic findings was done using the Mayo Scoring System for Assessment of Ulcerative Colitis Activity. Schistosome infection was confirmed by stool microscopy and serum circulating anodic antigen (CAA). Baseline comparisons were performed in Stata using Fisher's exact and Wilcoxon rank-sum tests, and pre- and post-treatment comparisons using Wilcoxon matched-pairs signed-rank and McNemar's tests. We investigated the clinical characteristics of 48 individuals: 32 with and 16 without S. mansoni infection. Infected individuals had greater severity of sigmoid and rectal mucosal abnormalities and higher Mayo scores and serum eosinophils (all p < 0.05) than uninfected individuals at initial evaluation. At 6 months, 28 individuals completed repeat blood tests and sigmoidoscopy. Of these, 14 cleared their baseline infection (n = 7) or experienced a greater than 7-fold decrease in serum CAA (n = 7). Follow-up sigmoidoscopies revealed some improvements in sigmoid and rectal mucosal findings, although Mayo scores were not significantly lower. Both the median erythrocyte sedimentation rates (32.5→12.5 mm/hr) and percent of eosinophils (7.1→3.1%) decreased in this group from baseline to follow-up. S. mansoni infection was associated with mild-to-moderate lower gastrointestinal mucosal abnormalities that were grossly visible during sigmoidoscopy, and these improved partially 6 months after effective treatment with praziquantel. Additional studies, of longer duration and focused on both clinical and mucosal immunologic effects of S. mansoni, could provide additional insight.
Collapse
Affiliation(s)
- Khanh Pham
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.
| | | | | | | | | | - Paige McMahon
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA
| | | | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Claudia J de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Humphrey D Mazigo
- Department of Parasitology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Myung Hee Lee
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA
| | - Hyasinta Jaka
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania; Department of Internal Medicine, Mwanza College of Health and Allied Sciences, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, NY, USA; Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
17
|
Tao L, Dryden P, Lowe A, Wang G, Achuthkumar A, Chang T, Reese TA. WY14643 Increases Herpesvirus Replication and Inhibits IFNβ Production Independently of PPARα Expression. Microbiol Spectr 2023; 11:e0233722. [PMID: 36715509 PMCID: PMC10100363 DOI: 10.1128/spectrum.02337-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
Peroxisome proliferator activated receptor (PPAR) agonists are commonly used to treat metabolic disorders in humans because they regulate fatty acid oxidation and cholesterol metabolism. In addition to their roles in controlling metabolism, PPAR agonists also regulate inflammation and are immunosuppressive in models of autoimmunity. We aimed to test whether activation of PPARα with clinically relevant ligands could impact gammaherpesvirus infection using murine gammaherpesvirus-68 (MHV68, MuHV-4). We found that PPAR agonists WY14643 and fenofibrate increased herpesvirus replication in vitro. In vivo, WY14643 increased viral replication and caused lethality in mice. Unexpectedly, these effects proved independent of PPARα. We found that WY14643 suppressed production of type I interferon after MHV68 infection in vitro and in vivo. Taken together, our data indicate that caution should be employed when using PPARα agonists in immuno-metabolic studies, as they can have off-target effects on viral replication through the inhibition of type I interferon production. IMPORTANCE PPAR agonists are used clinically to treat both metabolic and inflammatory disorders. Because viruses are known to rewire host metabolism to their own benefit, the intersection of immunity, metabolism, and virology is an important research area. Our article is an important contribution to this field for two reasons. First, it shows a role for PPARα agonists in altering virus replication. Second, it shows that PPARα agonists can affect virus replication in a manner independent of their predicted target. This knowledge is valuable for anyone seeking to use PPARα agonists as a research tool.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Phillip Dryden
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amritha Achuthkumar
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Kingery JR, Chalem A, Mukerebe C, Shigella PS, Miyaye D, Magawa RG, Ward M, Kalluvya SE, McCormick J, Maganga JK, Colombe S, Aristide C, Corstjens PLAM, Lee MH, Changalucha JM, Downs JA. Schistosoma mansoni Infection Is Associated With Increased Monocytes and Fewer Natural Killer T Cells in the Female Genital Tract. Open Forum Infect Dis 2022; 9:ofac657. [PMID: 36601557 PMCID: PMC9801228 DOI: 10.1093/ofid/ofac657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Schistosoma mansoni infection may impair genital mucosal antiviral immunity, but immune cell populations have not been well characterized. We characterized mononuclear cells from cervical brushings of women with and without S mansoni infection. We observed lower frequencies of natural killer T cells and higher frequencies of CD14+ monocytes in infected women.
Collapse
Affiliation(s)
| | | | | | | | - Donald Miyaye
- National Institute for Medical Research, Mwanza, Tanzania
| | - Ruth G Magawa
- National Institute for Medical Research, Mwanza, Tanzania
| | - Maureen Ward
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Samuel E Kalluvya
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Jason McCormick
- Flow Cytometry Core Laboratory, Weill Cornell Medicine, New York, New York, USA
| | - Jane K Maganga
- National Institute for Medical Research, Mwanza, Tanzania,Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Soledad Colombe
- Outbreak Research Team, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christine Aristide
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, TheNetherlands
| | - Myung Hee Lee
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Jennifer A Downs
- Correspondence: Jennifer A. Downs, MD, MSc, PhD, Center for Global Health, Weill Cornell Medicine, 402 E 67th St, Second Floor, New York, NY, 10065, USA ()
| |
Collapse
|
19
|
Hilligan KL, Oyesola OO, Namasivayam S, Howard N, Clancy CS, Oland SD, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Helminth exposure protects against murine SARS-CoV-2 infection through macrophage dependent T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.09.515832. [PMID: 36380767 PMCID: PMC9665339 DOI: 10.1101/2022.11.09.515832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses. Abstract Figure
Collapse
Affiliation(s)
- Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Oyebola O. Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sandra D. Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P’ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Alomari N, Totonchy J. Host-Level Susceptibility and IRF1 Expression Influence the Ability of IFN-γ to Inhibit KSHV Infection in B Lymphocytes. Viruses 2022; 14:2295. [PMID: 36298850 PMCID: PMC9607942 DOI: 10.3390/v14102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with vascular endothelial cell tumor, Kaposi's sarcoma (KS) and lymphoproliferative disorder, multicentric Castleman's disease (MCD), primary effusion lymphoma (PEL) and KSHV inflammatory cytokine syndrome (KICS). Dysregulation of proinflammatory cytokines is found in most KSHV associated diseases. However, little is known about the role of host microenvironment in the regulation of KSHV establishment in B cells. In the present study, we demonstrated that IFN-γ has a strong inhibitory effect on KSHV infection but only in a subset of tonsil-derived lymphocyte samples that are intrinsically more susceptible to infection, contain higher proportions of naïve B cells, and display increased levels of IRF1 and STAT1-pY701. The effect of IFN-γ in responsive samples was associated with increased frequencies of germinal center B cells (GCB) and decreased infection of plasma cells, suggesting that IFN-γ-mediated modulation of viral dynamics in GC can inhibit the establishment of KSHV infection.
Collapse
Affiliation(s)
| | - Jennifer Totonchy
- Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
| |
Collapse
|
21
|
Omondi MA, Kamassa EH, Katawa G, Tchopba CN, Vogelbusch C, Parcina M, Tchadié EP, Amessoudji OM, Arndts K, Karou SD, Ameyapoh Y, Kolou M, Hoerauf A, Layland LE, Horsnell WGC, Ritter M. Hookworm infection associates with a vaginal Type 1/Type 2 immune signature and increased HPV load. Front Immunol 2022; 13:1009968. [PMID: 36330509 PMCID: PMC9623172 DOI: 10.3389/fimmu.2022.1009968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infection-driven changes to immunity in the female reproductive tract (FRT) is an immune axis that is currently understudied but can have major implications for the control of FRT infections. Here we address how human hookworm infection associates with vaginal immune profile and risk of Human papillomavirus (HPV) infection. Stool, blood, cervical swabs and vaginal flushes were collected from women from the Central region of Togo to screen for hookworms (Ancylostoma duodenale) and high carcinogenic risk HPV types, via Kato Katz and PCR, respectively. Cytokine, chemokine and immunoglobulin levels were analysed in cervicovaginal lavages and plasma samples. A pronounced mixed Type 1/Type 2 immune response was detected in the vaginal fluids of women with hookworm infection and this immune signature was a notable feature in hookworm-HPV co-infected women. Moreover, hookworm infection is positively associated with increased risk and load of HPV infection. These findings highlight helminth infection as a significant risk factor for acquiring a sexually transmitted viral infection and potentially raising the risk of subsequent pathology.
Collapse
Affiliation(s)
- Millicent A. Omondi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Eya H. Kamassa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| | - Christèle N. Tchopba
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Celina Vogelbusch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Edlom P. Tchadié
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Oukoe M. Amessoudji
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Simplice D. Karou
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Yaovi Ameyapoh
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Malewé Kolou
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner site Bonn-Cologne, Bonn, Germany
| | - Laura E. Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner site Bonn-Cologne, Bonn, Germany
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| | - William G. C. Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| |
Collapse
|
22
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
23
|
Pugh JL, Coplen CP, Sukhina AS, Uhrlaub J, Padilla‐Torres J, Hayashi T, Nikolich‐Žugich J. Lifelong cytomegalovirus and early-LIFE irradiation synergistically potentiate age-related defects in response to vaccination and infection. Aging Cell 2022; 21:e13648. [PMID: 35657768 PMCID: PMC9282846 DOI: 10.1111/acel.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
While whole-body irradiation (WBI) can induce some hallmarks of immune aging, (re)activation of persistent microbial infection also occurs following WBI and may contribute to immune effects of WBI over the lifespan. To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent murine cytomegalovirus (MCMV) and of early-life WBI over the course of the lifespan. In late life, we then measured the response to a West Nile virus (WNV) live attenuated vaccine, and lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non-lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system, despite widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub-lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV-infected animals experiencing 4Gy, but not lower, dose of sub-lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV-infected, but not irradiated, mice were both protected to the same high level as the old non-irradiated, uninfected controls. Analysis of the quality and quantity of anti-WNV immunity showed that higher mortality in MCMV-positive WBI mice correlated with increased levels of MCMV-specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late-life mortality following early-life irradiation and late-life acute infection.
Collapse
Affiliation(s)
- Jason L. Pugh
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
| | - Christopher P. Coplen
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Alona S. Sukhina
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jennifer L. Uhrlaub
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jose Padilla‐Torres
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | | | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
- BIO5 Institute University of ArizonaTucsonArizonaUSA
| |
Collapse
|
24
|
Vichi G, Porcellato I, Mechelli L, Fantauzzo G, Razzuoli E, Modesto P, Mecocci S, Brachelente C. Co‐occurrence of papillomas related to
Equus caballus
papillomavirus type 2 and cutaneous habronemiasis. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Vichi
- BiEsseA Veterinary Laboratory MilanoItaly
| | | | - L. Mechelli
- Department of Veterinary Medicine PerugiaItaly
| | | | - E. Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC) Genoa Italy
| | - P. Modesto
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC) Genoa Italy
| | - S. Mecocci
- Department of Veterinary Medicine PerugiaItaly
| | | |
Collapse
|
25
|
Oyesola OO, Souza COS, Loke P. The Influence of Genetic and Environmental Factors and Their Interactions on Immune Response to Helminth Infections. Front Immunol 2022; 13:869163. [PMID: 35572520 PMCID: PMC9103684 DOI: 10.3389/fimmu.2022.869163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Helminth infection currently affect over 2 billion people worldwide, with those with the most pathologies and morbidities, living in regions with unequal and disproportionate access to effective healthcare solutions. Host genetics and environmental factors play critical roles in modulating and regulating immune responses following exposure to various pathogens and insults. However, the interplay of environment and genetic factors in influencing who gets infected and the establishment, persistence, and clearance of helminth parasites remains unclear. Inbred strains of mice have long been used to investigate the role of host genetic factors on pathogenesis and resistance to helminth infection in a laboratory setting. This review will discuss the use of ecological and environmental mouse models to study helminth infections and how this could be used in combination with host genetic variation to explore the relative contribution of these factors in influencing immune response to helminth infections. Improved understanding of interactions between genetics and the environment to helminth immune responses would be important for efforts to identify and develop new prophylactic and therapeutic options for the management of helminth infections and their pathogenesis.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
26
|
PrayGod G, Filteau S, Range N, Ramaiya K, Jeremiah K, Rehman AM, Krogh-Madsen R, Friis H, Faurholt-Jepsen D. The association of Schistosoma and geohelminth infections with β-cell function and insulin resistance among HIV-infected and HIV-uninfected adults: A cross-sectional study in Tanzania. PLoS One 2022; 17:e0262860. [PMID: 35077485 PMCID: PMC8789133 DOI: 10.1371/journal.pone.0262860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 01/06/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Data on the role of helminths on diabetes in Africa are limited. We investigated whether Schistosoma and geohelminth infections are associated with β-cell function and insulin resistance among adults. Methods A cross-sectional study was conducted among adults during 2016–2017. Demography, Schistosoma and geohelminth infections, HIV and insulin data were collected. Insulin during an oral glucose tolerance test (fasting, 30, and 120-min), overall insulin secretion index, insulinogenic index, HOMA-β, and HOMA-IR were main outcome measures for β-cell function and insulin resistance, respectively. Generalized estimating equations and generalized linear models assessed the association of Schistosoma and geohelminth infections with outcome measures separately by HIV status. Outcomes were presented as marginal means with 95% CI. Results Data were obtained for 1718 participants. Schistosoma infection was associated with higher 30-min insulin (24.2 mU/L, 95% CI: 6.9, 41.6) and overall insulin secretion index (13.3 pmol/L/mmol/L; 3.7, 22.9) among HIV-uninfected participants but with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-12.0 mU/L; -18.9, -5.1), and HOMA-IR (-0.3 mmol/L; -0.6, -0.05) among HIV-infected participants not yet on antiretroviral therapy (ART). Among HIV-infected participants not on ART, geohelminth infection was associated with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-9.1 mU/L; -17.3, -1.0), HOMA-β (-8.9 mU/L)/(mmol/L; -15.3, -2.6) and overall insulin release index (-5.1 pmol/L/mmol/L; -10.3, 0.02), although this was marginally significant. There was no association among those on ART. Conclusions Schistosoma infection was associated with higher β-cell function among HIV-uninfected participants whereas Schistosoma and geohelminth infections were associated with reduced β-cell function among HIV-infected participants not on ART.
Collapse
Affiliation(s)
- George PrayGod
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
- * E-mail:
| | - Suzanne Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nyagosya Range
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Saalam, Tanzania
| | | | - Kidola Jeremiah
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrea M. Rehman
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Hardisty GR, Knipper JA, Fulton A, Hopkins J, Dutia BM, Taylor MD. Concurrent Infection With the Filarial Helminth Litomosoides sigmodontis Attenuates or Worsens Influenza A Virus Pathogenesis in a Stage-Dependent Manner. Front Immunol 2022; 12:819560. [PMID: 35140712 PMCID: PMC8818685 DOI: 10.3389/fimmu.2021.819560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Filarial helminths infect approximately 120 million people worldwide initiating a type 2 immune response in the host. Influenza A viruses stimulate a virulent type 1 pro-inflammatory immune response that in some individuals can cause uncontrolled immunopathology and fatality. Although coinfection with filariasis and influenza is a common occurrence, the impact of filarial infection on respiratory viral infection is unknown. The aim of this study was to determine the impact of pre-existing filarial infection on concurrent infection with influenza A virus. A murine model of co-infection was established using the filarial helminth Litomosoides sigmodontis and the H1N1 (A/WSN/33) influenza A virus (IAV). Co-infection was performed at 3 different stages of L. sigmodontis infection (larval, juvenile adult, and patency), and the impact of co-infection was determined by IAV induced weight loss and clinical signs, quantification of viral titres, and helminth counts. Significant alterations of IAV pathogenesis, dependent upon stage of infection, was observed on co-infection with L. sigmodontis. Larval stage L. sigmodontis infection alleviated clinical signs of IAV co-infection, whilst more established juvenile adult infection also significantly delayed weight loss. Viral titres remained unaltered at either infection stage. In contrast, patent L. sigmdodontis infection led to a reversal of age-related resistance to IAV infection, significantly increasing weight loss and clinical signs of infection as well as increasing IAV titre. These data demonstrate that the progression of influenza infection can be ameliorated or worsened by pre-existing filarial infection, with the outcome dependent upon the stage of filarial infection.
Collapse
Affiliation(s)
- Gareth R. Hardisty
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna A. Knipper
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Fulton
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - John Hopkins
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Matthew D. Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Matthew D. Taylor,
| |
Collapse
|
28
|
Abstract
Viral infections are often studied in model mammalian organisms under specific pathogen-free conditions. However, in nature, coinfections are common, and infection with one organism can alter host susceptibility to infection with another. Helminth parasites share a long coevolutionary history with mammalian hosts and have shaped host physiology, metabolism, immunity, and the composition of the microbiome. Published studies suggest that helminth infection can either be beneficial or detrimental during viral infection. Here, we discuss coinfection studies in mouse models and use them to define key determinants that impact outcomes, including the type of antiviral immunity, the tissue tropism of both the helminth and the virus, and the timing of viral infection in relation to the helminth lifecycle. We also explore the current mechanistic understanding of how helminth-virus coinfection impacts host immunity and viral pathogenesis. While much attention has been placed on the impact of the gut bacterial microbiome on immunity to infection, we suggest that enteric helminths, as a part of the eukaryotic macrobiome, also represent an important modulator of disease pathogenesis and severity following virus infection.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, United States,Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States,The Andrew M. And Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,CONTACT Larissa B. Thackray Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110, United States
| |
Collapse
|
29
|
Vacca F, Le Gros G. Tissue-specific immunity in helminth infections. Mucosal Immunol 2022; 15:1212-1223. [PMID: 35680972 PMCID: PMC9178325 DOI: 10.1038/s41385-022-00531-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
A characteristic feature of host responses to helminth infections is the development of profound systemic and tissue-localised Type 2 immune responses that play critical roles in immunity, tissue repair and tolerance of the parasite at tissue sites. These same Type 2 responses are also seen in the tissue-associated immune-pathologies seen in asthma, atopic dermatitis and many forms of allergies. The recent identification of new subtypes of immune cells and cytokine pathways that influence both immune and non-immune cells and tissues creates the opportunity for reviewing helminth parasite-host responses in the context of tissue specific immunity. This review focuses on the new discoveries of the cells and cytokines involved in tissue specific immune responses to helminths and how these contribute to host immunity against helminth infection and allow the host to accommodate the presence of parasites when they cannot be eliminated.
Collapse
Affiliation(s)
- Francesco Vacca
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
30
|
Popple SJ, Burrows K, Mortha A, Osborne LC. Remote regulation of type 2 immunity by intestinal parasites. Semin Immunol 2021; 53:101530. [PMID: 34802872 DOI: 10.1016/j.smim.2021.101530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Collapse
Affiliation(s)
- S J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - L C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Ademe M, Girma F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect Drug Resist 2021; 14:4421-4426. [PMID: 34737582 PMCID: PMC8558425 DOI: 10.2147/idr.s335447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Immunologically, chronic worm infections prevent themselves from strong immune responses by skewing the host response towards a T helper 2 (Th2) type. The regulatory response initiated by helminth infections is supposed to temper responses to non-helminth antigens including viral infections which will, in turn, alter the clinical outcomes of infections. In view of this, recent reports highlighted the possible negative associations of severe COVID-19 and helminth co-infections in helminth-endemic regions. As the pathology of COVID-19 is primarily mediated by an excessive immune response and subsequent cytokine storm, which contributes to the poor prognosis of COVID-19, helminth-driven immune modulation will hypothetically contribute to the less severe outcomes of COVID-19. Nevertheless, emerging reports also stated that COVID-19 and helminth co-infections may have more hidden outcomes than predictable ones. Herein, the current knowledge on the interaction of COVID-19 and helminth co-infections will be discussed.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Friehiwot Girma
- Department of Pediatrics and Child Health Nursing, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
32
|
Karpathiou G, Habougit C, Peoc'h M. STAT6 is not expressed in Kaposi sarcoma. Ann Diagn Pathol 2021; 55:151836. [PMID: 34626935 DOI: 10.1016/j.anndiagpath.2021.151836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Affiliation(s)
| | - Cyril Habougit
- Pathology Department, University Hospital of Saint-Etienne, France
| | - Michel Peoc'h
- Pathology Department, University Hospital of Saint-Etienne, France
| |
Collapse
|
33
|
STAT1-Dependent Recruitment of Ly6C hiCCR2 + Inflammatory Monocytes and M2 Macrophages in a Helminth Infection. Pathogens 2021; 10:pathogens10101287. [PMID: 34684235 PMCID: PMC8540143 DOI: 10.3390/pathogens10101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 1 signaling is critical for IFN-γ-mediated immune responses and resistance to protozoan and viral infections. However, its role in immunoregulation during helminth parasitic infections is not fully understood. Here, we used STAT1-/- mice to investigate the role of this transcription factor during a helminth infection caused by the cestode Taenia crassiceps and show that STAT1 is a central molecule favoring susceptibility to this infection. STAT1-/- mice displayed lower parasite burdens at 8 weeks post-infection compared to STAT1+/+ mice. STAT1 mediated the recruitment of inflammatory monocytes and the development of alternatively activated macrophages (M2) at the site of infection. The absence of STAT1 prevented the recruitment of CD11b+Ly6ChiLy6G- monocytic cells and therefore their suppressive activity. This failure was associated with the defective expression of CCR2 on CD11b+Ly6ChiLy6G- cells. Importantly, CD11b+Ly6ChiLy6G- cells highly expressed PDL-1 and suppressed T-cell proliferation elicited by anti-CD3 stimulation. PDL-1+ cells were mostly absent in STAT1-/- mice. Furthermore, only STAT1+/+ mice developed M2 macrophages at 8 weeks post-infection, although macrophages from both T. crassiceps-infected STAT1+/+ and STAT1-/- mice responded to IL-4 in vitro, and both groups of mice were able to produce the Th2 cytokine IL-13. This suggests that CD11b+CCR2+Ly6ChiLy6G- cells give rise to M2 macrophages in this infection. In summary, a lack of STAT1 resulted in impaired recruitment of CD11b+CCR2+Ly6ChiLy6G- cells, failure to develop M2 macrophages, and increased resistance against T. crassiceps infection.
Collapse
|
34
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
35
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|
36
|
Kusejko K, Neofytos D, Hirsch HH, Meylan P, Boggian K, Hirzel C, Garzoni C, Kouyos RD, Mueller NJ, Schreiber PW. Differences Between Infectious Disease Events in First Liver Transplant Versus Retransplantation in the Swiss Transplant Cohort Study. Liver Transpl 2021; 27:1283-1290. [PMID: 33838077 DOI: 10.1002/lt.26068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
Retransplantation after graft failure is increasingly performed, and inferior graft survival, patient survival, and quality of life has been reported. The role of infectious disease (ID) events in this less favorable outcome is unknown. We analyzed ID events after first liver transplantation (FLTpx) and retransplantation (reLTpx) in the Swiss Transplant Cohort Study. Clinical factors were compared after FLTpx and reLTpx, and survival analysis was applied to compare the time to ID events after FLTpx and after reLTpx, adjusted for age, sex, Model for End-Stage Liver Disease score, donor type, liver transplant type (whole versus split liver), and duration of transplant surgery. In total, 60 patients were included (65.0% male, median age of 56 years). Overall, 343 ID events were observed: 204 (59.5%) after the FLTpx and 139 (40.5%) after reLTpx. Bacterial infections were most frequent (193/343, 56.3%), followed by viral (43/343, 12.5%) and fungal (28/343, 8.2%) infections, with less infections by Candida spp. but more by Aspergillus spp. after reLTpx (P = 0.01). The most frequent infection site was bloodstream infection (86, 21.3%), followed by liver and biliary tract (83, 20.5%) and intraabdominal (63, 15.6%) infections. After reLTpx, more respiratory tract and surgical site infections were observed (P < 0.001). The time to first infection was shorter after FLTpx (adjusted hazard ratio [HR], 0.5; 95%-confidence interval [CI], 0.3-1.0; P = 0.04). Reduced hazards for ID events after reLTpx were also observed when modelling recurrent events (adjusted HR, 0.5; CI, 0.3-0.8; P = 0.003). The number of infections was comparable after FLTpx and reLTpx; however, differences regarding infection sites and fungal species were observed. Hazards were reduced for infection after reLTpx.
Collapse
Affiliation(s)
- Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine / Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Pascal Meylan
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Katia Boggian
- Infectious Diseases Department, Cantonal Hospital of Sankt Gallen, St. Gallen, Switzerland
| | - Cedric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Garzoni
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Internal Medicine, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Peter W Schreiber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
37
|
T cell-intrinsic Interferon Regulatory Factor-1 expression suppresses differentiation of CD4 + T cell populations that support chronic gammaherpesvirus infection. J Virol 2021; 95:e0072621. [PMID: 34346769 DOI: 10.1128/jvi.00726-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.
Collapse
|
38
|
Springer LE, Patton JB, Zhan T, Rabson AB, Lin HC, Manser T, Lok JB, Hess JA, Abraham D. Strongyloides stercoralis and HTLV-1 coinfection in CD34+ cord blood stem cell humanized mice: Alteration of cytokine responses and enhancement of larval growth. PLoS Negl Trop Dis 2021; 15:e0009559. [PMID: 34314415 PMCID: PMC8315519 DOI: 10.1371/journal.pntd.0009559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Viral and parasitic coinfections are known to lead to both enhanced disease progression and altered disease states. HTLV-1 and Strongyloides stercoralis are co-endemic throughout much of their worldwide ranges resulting in a significant incidence of coinfection. Independently, HTLV-1 induces a Th1 response and S. stercoralis infection induces a Th2 response. However, coinfection with the two pathogens has been associated with the development of S. stercoralis hyperinfection and an alteration of the Th1/Th2 balance. In this study, a model of HTLV-1 and S. stercoralis coinfection in CD34+ umbilical cord blood hematopoietic stem cell engrafted humanized mice was established. An increased level of mortality was observed in the HTLV-1 and coinfected animals when compared to the S. stercoralis infected group. The mortality was not correlated with proviral loads or total viral RNA. Analysis of cytokine profiles showed a distinct shift towards Th1 responses in HTLV-1 infected animals, a shift towards Th2 cytokines in S. stercoralis infected animals and elevated TNF-α responses in coinfected animals. HTLV-1 infected and coinfection groups showed a significant, yet non-clonal expansion of the CD4+CD25+ T-cell population. Numbers of worms in the coinfection group did not differ from those of the S. stercoralis infected group and no autoinfective larvae were found. However, infective larvae recovered from the coinfection group showed an enhancement in growth, as was seen in mice with S. stercoralis hyperinfection caused by treatment with steroids. Humanized mice coinfected with S. stercoralis and HTLV-1 demonstrate features associated with human infection with these pathogens and provide a unique opportunity to study the interaction between these two infections in vivo in the context of human immune cells.
Collapse
Affiliation(s)
- Lauren E Springer
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - John B Patton
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Arnold B Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Tim Manser
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James B Lok
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica A Hess
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Sabourin KR, Daud I, Ogolla S, Labo N, Miley W, Lamb M, Newton R, Whitby D, Rochford R. Malaria Is Associated With Kaposi Sarcoma-Associated Herpesvirus Seroconversion in a Cohort of Western Kenyan Children. J Infect Dis 2021; 224:303-311. [PMID: 33249494 PMCID: PMC8280487 DOI: 10.1093/infdis/jiaa740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We aimed to determine whether Plasmodium falciparum infection affects age of Kaposi sarcoma-associated herpesvirus (KSHV) seroconversion in Kenyan children. METHODS Kenyan children (n = 144) enrolled at age 1 month, from 2 sites with different levels of malaria transmission (stable/high vs unstable/low) were followed to age 24 months. Plasma was tested for KSHV antibodies using enzyme-linked immunosorbent assay (ELISA; K8.1 and LANA) and a multiplex bead-based assay (K8.1, K10.5, ORF38, ORF50, and LANA) and whole blood tested for P. falciparum DNA using quantitative PCR. Cox proportional hazards models were used to assess associations between P. falciparum DNA detection, malaria annualized rate (P. falciparum detections/person-years), and enrollment site (malaria-high vs malaria-low) with time to KSHV seroconversion. RESULTS KSHV seroprevalence was 63% by age 2 years when assessed by multiplex assay. Children with P. falciparum were at increased hazards of earlier KSHV seroconversion and, among children with malaria, the hazard of becoming KSHV seropositive increased significantly with increasing malaria annualized rate. Children from the malaria-high transmission region had no significant difference in hazards of KSHV seroconversion at 12 months but were more likely to become KSHV seropositive by age 24 months. DISCUSSION Malaria exposure increases the risk for KSHV seroconversion early in life.
Collapse
Affiliation(s)
- Katherine R Sabourin
- Department of Epidemiology, Colorado School of Public Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, USA
| | - Ibrahim Daud
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sidney Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Nazzarena Labo
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Wendell Miley
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Molly Lamb
- Department of Epidemiology, Colorado School of Public Health, Denver, Colorado, USA
| | - Robert Newton
- Department of Health Sciences, University of York, York, United Kingdom
| | - Denise Whitby
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
40
|
Runge S, Rosshart SP. The Mammalian Metaorganism: A Holistic View on How Microbes of All Kingdoms and Niches Shape Local and Systemic Immunity. Front Immunol 2021; 12:702378. [PMID: 34276696 PMCID: PMC8278200 DOI: 10.3389/fimmu.2021.702378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The field of microbiome research has developed rapidly over the past decades and has become a topic of major interest to basic, preclinical, and clinical research, the pharmaceutical industry as well as the general public. The microbiome is a complex and diverse ecosystem and defined as the collection of all host-associated microorganisms and their genes. It is acquired through vertical transmission and environmental exposure and includes microbes of all kingdoms: bacteria, archaea, prokaryotic and eukaryotic viruses, fungi, protozoa, and the meiofauna. These microorganisms co-evolved with their respective hosts over millions of years, thereby establishing a mutually beneficial, symbiotic relationship on all epithelial barriers. Thus, the microbiome plays a pivotal role in virtually every aspect of mammalian physiology, particularly in the development, homeostasis, and function of the immune system. Consequently, the combination of the host genome and the microbial genome, together referred to as the metagenome, largely drives the mammalian phenotype. So far, the majority of studies have unilaterally focused on the gastrointestinal bacterial microbiota. However, recent work illustrating the impact of viruses, fungi, and protozoa on host immunity urges us towards a holistic view of the mammalian microbiome and the appreciation for its non-bacterial kingdoms. In addition, the importance of microbiota on epithelial barriers other than the gut as well as their systemic effects via microbially-derived biologically active compounds is increasingly recognized. Here, we want to provide a brief but comprehensive overview of the most important findings and the current knowledge on how microbes of all kingdoms and microbial niches shape local and systemic immunity in health and disease.
Collapse
Affiliation(s)
- Solveig Runge
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan Patrick Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
41
|
Bullington BW, Klemperer K, Mages K, Chalem A, Mazigo HD, Changalucha J, Kapiga S, Wright PF, Yazdanbakhsh MM, Downs JA. Effects of schistosomes on host anti-viral immune response and the acquisition, virulence, and prevention of viral infections: A systematic review. PLoS Pathog 2021; 17:e1009555. [PMID: 34015063 PMCID: PMC8172021 DOI: 10.1371/journal.ppat.1009555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022] Open
Abstract
Although a growing number of studies suggest interactions between Schistosoma parasites and viral infections, the effects of schistosome infections on the host response to viruses have not been evaluated comprehensively. In this systematic review, we investigated how schistosomes impact incidence, virulence, and prevention of viral infections in humans and animals. We also evaluated immune effects of schistosomes in those coinfected with viruses. We screened 4,730 studies and included 103. Schistosomes may increase susceptibility to some viruses, including HIV and Kaposi’s sarcoma-associated herpesvirus, and virulence of hepatitis B and C viruses. In contrast, schistosome infection may be protective in chronic HIV, Human T-cell Lymphotropic Virus-Type 1, and respiratory viruses, though further research is needed. Schistosome infections were consistently reported to impair immune responses to hepatitis B and possibly measles vaccines. Understanding the interplay between schistosomes and viruses has ramifications for anti-viral vaccination strategies and global control of viral infections. Many studies have described the effects of parasitic Schistosoma worm infections on the way that humans and animals respond to a variety of viral infections. Our goal was to evaluate, in a systematic manner, how having a schistosome parasitic infection affects a host’s susceptibility to viral infections, the clinical disease course of viral infections, and prevention of viral infections by vaccines. We also assessed the effects of schistosome infection on the host immune response to viruses. We screened 4,730 studies for potential relevance and included 103 of them in this review. Overall, our analysis showed that schistosome infection impairs the host response to many viruses. This includes increasing host susceptibility to HIV and possibly Kaposi’s sarcoma-associated herpesvirus, worsening the severity of clinical disease in hepatitis B and C infections, and decreasing immune responses to vaccines for hepatitis B and possibly measles. The studies that we analyzed also suggested that schistosome infection may protect the host against poor clinical outcomes from some viral infections including Human T-cell Lymphotropic Virus-Type 1, respiratory viruses, and chronic HIV. We discuss how these findings might be interpreted, and the additional research needed, in order to improve anti-viral vaccination strategies and control of viral infections globally.
Collapse
Affiliation(s)
- Brooke W. Bullington
- Center for Global Health, Weill Cornell Medicine, New York, NY, United States of America
- * E-mail:
| | | | - Keith Mages
- Samuel J. Wood Library Weill Cornell Medicine, New York, NY, United States of America
| | - Andrea Chalem
- Center for Global Health, Weill Cornell Medicine, New York, NY, United States of America
| | - Humphrey D. Mazigo
- Mwanza Intervention Trials Unit, National Institute for Medical Research Mwanza, Tanzania
| | - John Changalucha
- Mwanza Intervention Trials Unit, National Institute for Medical Research Mwanza, Tanzania
| | - Saidi Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research Mwanza, Tanzania
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter F. Wright
- Department of Pediatrics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | | | - Jennifer A. Downs
- Center for Global Health, Weill Cornell Medicine, New York, NY, United States of America
| |
Collapse
|
42
|
Banete A, Gee K, Basta S. Sustained IL-4 priming of macrophages enhances the inflammatory response to TLR7/8 ligand R848. J Leukoc Biol 2021; 111:401-413. [PMID: 34013552 DOI: 10.1002/jlb.3a0520-293rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophages (Mϕ) are highly plastic, and can acquire a variety of functional phenotypes depending on the presence of different stimuli in their local environment. Mφ stimulated by interleukin (IL)-4 induce an alternative activation state and function as anti-inflammatory cells and promote tissue repair. However, there is overwhelming evidence that IL-4 can play a role in promoting inflammation. In asthma and allergic inflammation, IL-4 mediates proinflammatory responses that lead to tissue damage. Thus the effect of IL-4 on the outcome of the immune responses is greatly influenced by other cofactors and cytokines present in the microenvironment. R848 (resiquimod), a TLR7/8 agonist is a novel vaccine adjuvant, triggering a strong Th1-skewed response but its efficacy as a vaccine adjuvant shows variable results. It is not currently known whether the presence of IL-4 can dampen or enhance immunity in response to TLR7 agonists. In the present study, we sought to investigate the impact of IL-4-induced Mφ polarization on the outcome of R848 stimulation. The activation marker expression and production of cytokines were measured in murine spleen-derived Mφ. Protein expression levels of innate recognition molecules and transcription factors involved, including retinoic-acid inducible gene I, mitochondrial antiviral signaling protein, stimulator of interferon genes (STING), and IFN regulatory factors were evaluated in activated Mφ. These play a crucial role in the control of viral replication and optimal CD8+ T cell priming. We report that sustained priming with IL-4 alone promotes an antiviral response in Mφ, and enhances proinflammatory responses to R848 treatment. This highlights the need for better understanding of IL-4 proinflammatory functions and its potential use as a broad-acting antiviral in combination with R848 may be used in combination with other therapies to target the innate arm of immunity against emerging infections.
Collapse
Affiliation(s)
- Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Zarek C, Reese TA. Helminth virus co-infection: Implications for women's health. Cell Host Microbe 2021; 29:543-545. [PMID: 33857416 DOI: 10.1016/j.chom.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In many parts of the world, women are co-infected with intestinal helminths and sexually transmitted pathogens. In this issue of Cell Host & Microbe, Chetty et al. demonstrate that intestinal helminth infection increases epithelial damage and pathology associated with herpes virus infection.
Collapse
Affiliation(s)
- Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Chetty A, Darby MG, Vornewald PM, Martín-Alonso M, Filz A, Ritter M, McSorley HJ, Masson L, Smith K, Brombacher F, O'Shea MK, Cunningham AF, Ryffel B, Oudhoff MJ, Dewals BG, Layland LE, Horsnell WGC. Il4ra-independent vaginal eosinophil accumulation following helminth infection exacerbates epithelial ulcerative pathology of HSV-2 infection. Cell Host Microbe 2021; 29:579-593.e5. [PMID: 33857419 PMCID: PMC8062792 DOI: 10.1016/j.chom.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
How helminths influence the pathogenesis of sexually transmitted viral infections is not comprehensively understood. Here, we show that an acute helminth infection (Nippostrongylus brasiliensis [Nb]) induced a type 2 immune profile in the female genital tract (FGT). This leads to heightened epithelial ulceration and pathology in subsequent herpes simplex virus (HSV)-2 infection. This was IL-5-dependent but IL-4 receptor alpha (Il4ra) independent, associated with increased FGT eosinophils, raised vaginal IL-33, and enhanced epithelial necrosis. Vaginal eosinophil accumulation was promoted by IL-33 induction following targeted vaginal epithelium damage from a papain challenge. Inhibition of IL-33 protected against Nb-exacerbated HSV-2 pathology. Eosinophil depletion reduced IL-33 release and HSV-2 ulceration in Nb-infected mice. These findings demonstrate that Nb-initiated FGT eosinophil recruitment promotes an eosinophil, IL-33, and IL-5 inflammatory circuit that enhances vaginal epithelial necrosis and pathology following HSV-2 infection. These findings identify a mechanistic framework as to how helminth infections can exacerbate viral-induced vaginal pathology.
Collapse
Affiliation(s)
- Alisha Chetty
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
| | - Matthew G Darby
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
| | - Pia M Vornewald
- CEMIR - Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Mara Martín-Alonso
- CEMIR - Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anna Filz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53105 Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53105 Bonn, Germany
| | - Henry J McSorley
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow St, Dundee DD1 5EH, UK
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa; Life Sciences Discipline, Burnet Institute, Department of Infectious Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Katherine Smith
- Institute of Infection and Immunity, University of Cardiff, Cardiff CF14 3XN, UK
| | - Frank Brombacher
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa
| | - Matthew K O'Shea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orléans, 45000 Orléans, France
| | - Menno J Oudhoff
- CEMIR - Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Liège, Belgium
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53105 Bonn, Germany; German Centre for Infection Research (DZIF), partner site, Bonn-Cologne, Bonn, Germany.
| | - William G C Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orléans, 45000 Orléans, France; Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
45
|
Wang G, Zarek C, Chang T, Tao L, Lowe A, Reese TA. Th2 Cytokine Modulates Herpesvirus Reactivation in a Cell Type Specific Manner. J Virol 2021; 95:JVI.01946-20. [PMID: 33536178 PMCID: PMC8103696 DOI: 10.1128/jvi.01946-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus (EBV), Kaposi's sarcoma associated virus (KSHV), and murine γ-herpesvirus 68 (MHV68), establish latent infection in B cells, macrophages, and non-lymphoid cells, and can induce both lymphoid and non-lymphoid cancers. Research on these viruses has relied heavily on immortalized B cell and endothelial cell lines. Therefore, we know very little about the cell type specific regulation of virus infection. We have previously shown that treatment of MHV68-infected macrophages with the cytokine interleukin-4 (IL-4) or challenge of MHV68-infected mice with an IL-4-inducing parasite leads to virus reactivation. However, we do not know if all latent reservoirs of the virus, including B cells, reactivate the virus in response to IL-4. Here we used an in vivo approach to address the question of whether all latently infected cell types reactivate MHV68 in response to a particular stimulus. We found that IL-4 receptor expression on macrophages was required for IL-4 to induce virus reactivation, but that it was dispensable on B cells. We further demonstrated that the transcription factor, STAT6, which is downstream of the IL-4 receptor and binds virus gene 50 N4/N5 promoter in macrophages, did not bind to the virus gene 50 N4/N5 promoter in B cells. These data suggest that stimuli that promote herpesvirus reactivation may only affect latent virus in particular cell types, but not in others.Importance Herpesviruses establish life-long quiescent infections in specific cells in the body, and only reactivate to produce infectious virus when precise signals induce them to do so. The signals that induce herpesvirus reactivation are often studied only in one particular cell type infected with the virus. However, herpesviruses establish latency in multiple cell types in their hosts. Using murine gammaherpesvirus-68 (MHV68) and conditional knockout mice, we examined the cell type specificity of a particular reactivation signal, interleukin-4 (IL-4). We found that IL-4 only induced herpesvirus reactivation from macrophages, but not from B cells. This work indicates that regulation of virus latency and reactivation is cell type specific. This has important implications for therapies aimed at either promoting or inhibiting reactivation for the control or elimination of chronic viral infections.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Desai P, Janova H, White JP, Reynoso GV, Hickman HD, Baldridge MT, Urban JF, Stappenbeck TS, Thackray LB, Diamond MS. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 2021; 184:1214-1231.e16. [PMID: 33636133 PMCID: PMC7962748 DOI: 10.1016/j.cell.2021.01.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Hana Janova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - James P White
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | | | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Nkurunungi G, Zirimenya L, Natukunda A, Nassuuna J, Oduru G, Ninsiima C, Zziwa C, Akello F, Kizindo R, Akello M, Kaleebu P, Wajja A, Luzze H, Cose S, Webb E, Elliott AM. Population differences in vaccine responses (POPVAC): scientific rationale and cross-cutting analyses for three linked, randomised controlled trials assessing the role, reversibility and mediators of immunomodulation by chronic infections in the tropics. BMJ Open 2021; 11:e040425. [PMID: 33593767 PMCID: PMC7893603 DOI: 10.1136/bmjopen-2020-040425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/01/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Vaccine-specific immune responses vary between populations and are often impaired in low income, rural settings. Drivers of these differences are not fully elucidated, hampering identification of strategies for optimising vaccine effectiveness. We hypothesise that urban-rural (and regional and international) differences in vaccine responses are mediated to an important extent by differential exposure to chronic infections, particularly parasitic infections. METHODS AND ANALYSIS Three related trials sharing core elements of study design and procedures (allowing comparison of outcomes across the trials) will test the effects of (1) individually randomised intervention against schistosomiasis (trial A) and malaria (trial B), and (2) Bacillus Calmette-Guérin (BCG) revaccination (trial C), on a common set of vaccine responses. We will enrol adolescents from Ugandan schools in rural high-schistosomiasis (trial A) and rural high-malaria (trial B) settings and from an established urban birth cohort (trial C). All participants will receive BCG on day '0'; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. Primary outcomes are BCG-specific IFN-γ responses (8 weeks after BCG) and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine effects of interventions on correlates of protective immunity, vaccine response waning, priming versus boosting immunisations, and parasite infection status and intensity. Overarching analyses will compare outcomes between the three trial settings. Sample archives will offer opportunities for exploratory evaluation of the role of immunological and 'trans-kingdom' mediators in parasite modulation of vaccine-specific responses. ETHICS AND DISSEMINATION Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBERS ISRCTN60517191, ISRCTN62041885, ISRCTN10482904.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Christopher Zziwa
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Florence Akello
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Robert Kizindo
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Mirriam Akello
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Anne Wajja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Henry Luzze
- Uganda National Expanded Program on Immunisation, Ministry of Health, Kampala, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, London
| | - Emily Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, London
| |
Collapse
|
48
|
Xu N, Bai X, Liu Y, Yang Y, Tang B, Shi HN, Vallee I, Boireau P, Liu X, Liu M. The Anti-Inflammatory Immune Response in Early Trichinella spiralis Intestinal Infection Depends on Serine Protease Inhibitor-Mediated Alternative Activation of Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 206:963-977. [PMID: 33495238 DOI: 10.4049/jimmunol.2000290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
Trichinella spiralis is recognized for its ability to regulate host immune responses via excretory/secretory (ES) products. Serine protease inhibitors (serpins) play an important role in ES product-mediated immunoregulatory effects during T. spiralis infection. In this study, the immunoregulatory properties of a serpin derived from T. spiralis (Ts-serpin) were explored in BALB/c mice. The results showed that naturally occurring Ts-serpin was detected in the stichosomes of muscle larvae and adult worms. Moreover, enhancing (by injection of a soluble-expressed recombinant Ts-serpin [rTs-serpin]) or blocking (by passive immunization with anti-rTs-serpin serum) the effects of Ts-serpin changed the levels of cytokines related to inflammation induced by T. spiralis infection in the serum, mesenteric lymph nodes, and peritoneal cavity, which then led to a change in the adult worm burden in early T. spiralis infection. Moreover, the phenotypic changes in peritoneal macrophages were found to be related to Ts-serpin-mediated immunoregulation. Furthermore, a STAT6 activation mechanism independent of IL-4Rα has been found to regulate protein-mediated alternative activation of bone marrow-derived macrophages and mimic the immunoregulatory role of Ts-serpin in T. spiralis infection. Finally, the anti-inflammatory properties of rTs-serpin and bone marrow-derived macrophage alternative activation by rTs-serpin were demonstrated using a trinitrobenzene sulfonic acid-induced inflammatory bowel disease model. In summary, a protein-triggered anti-inflammatory mechanism was found to favor the survival of T. spiralis in the early stage of infection and help to elucidate the immunoregulatory effects of T. spiralis on the host immune response.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Pu'er City, Yunnan 665000, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129; and
| | - Isabelle Vallee
- UMR de Biologie Moléculaire et d'Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, École Nationale Vétérinaire d'Alfort, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Est, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Pascal Boireau
- UMR de Biologie Moléculaire et d'Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, École Nationale Vétérinaire d'Alfort, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Est, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| |
Collapse
|
49
|
Brosschot TP, Lawrence KM, Moeller BE, Kennedy MHE, FitzPatrick RD, Gauthier CM, Shin D, Gatti DM, Conway KME, Reynolds LA. Impaired host resistance to Salmonella during helminth co-infection is restored by anthelmintic treatment prior to bacterial challenge. PLoS Negl Trop Dis 2021; 15:e0009052. [PMID: 33471793 PMCID: PMC7850471 DOI: 10.1371/journal.pntd.0009052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/01/2021] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Intestinal helminth infection can impair host resistance to co-infection with enteric bacterial pathogens. However, it is not known whether helminth drug-clearance can restore host resistance to bacterial infection. Using a mouse helminth-Salmonella co-infection system, we show that anthelmintic treatment prior to Salmonella challenge is sufficient to restore host resistance to Salmonella. The presence of the small intestine-dwelling helminth Heligmosomoides polygyrus at the point of Salmonella infection supports the initial establishment of Salmonella in the small intestinal lumen. Interestingly, if helminth drug-clearance is delayed until Salmonella has already established in the small intestinal lumen, anthelmintic treatment does not result in complete clearance of Salmonella. This suggests that while the presence of helminths supports initial Salmonella colonization, helminths are dispensable for Salmonella persistence in the host small intestine. These data contribute to the mechanistic understanding of how an ongoing or prior helminth infection can affect pathogenic bacterial colonization and persistence in the mammalian intestine. In regions where helminth infection is common and sanitation standards are poor, people are at a high risk of exposure to bacterial pathogens. Previous work in animal models has shown that helminth infection can impair host resistance to bacterial infection. The current treatment for helminth infection is the administration of helminth-clearing drugs, yet it is not known whether drug clearance of helminths restores helminth-impaired host resistance to bacterial infection. In this report we use a mouse helminth-Salmonella co-infection model system, where we find that the presence of small intestinal helminths at the point of Salmonella infection aids the establishment of Salmonella in the small intestinal lumen. We show that helminth drug clearance prior to Salmonella infection is sufficient to restore host resistance to Salmonella. However, if helminth drug clearance is delayed until after Salmonella had already established in the small intestinal lumen, helminth elimination does not result in complete clearance of Salmonella from this site. Our work suggests that helminth drug clearance may be beneficial in reducing susceptibility to subsequent intestinal bacterial infections, but that helminth drug clearance after co-infection may not result in clearance of bacterial populations that have firmly established in the intestinal lumen.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Katherine M Lawrence
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Mia H E Kennedy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Courtney M Gauthier
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Dongju Shin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Dominique M Gatti
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Kate M E Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
50
|
Nishimoto A, Wohlgemuth N, Rosch J, Schultz-Cherry S, Cortez V, Rowe HM. Transkingdom Interactions Important for the Pathogenesis of Human Viruses. J Infect Dis 2020; 223:S201-S208. [PMID: 33330907 DOI: 10.1093/infdis/jiaa735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The bacterial, fungal, and helminthic species that comprise the microbiome of the mammalian host have profound effects on health and disease. Pathogenic viruses must contend with the microbiome during infection and likely have evolved to exploit or evade the microbiome. Both direct interactions between the virions and the microbiota and immunomodulation and tissue remodeling caused by the microbiome alter viral pathogenesis in either host- or virus-beneficial ways. Recent insights from in vitro and murine models of viral pathogenesis have highlighted synergistic and antagonistic, direct and indirect interactions between the microbiome and pathogenic viruses. This review will focus on the transkingdom interactions between human gastrointestinal and respiratory viruses and the constituent microbiome of those tissues.
Collapse
Affiliation(s)
- Andrew Nishimoto
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hannah M Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|