1
|
Asano H, Tian YS, Hatabu A, Takagi T, Ueda M, Ikeda K. Safety comparisons among monoamine oxidase inhibitors against Parkinson's disease using FDA adverse event reporting system. Sci Rep 2023; 13:19272. [PMID: 37935702 PMCID: PMC10630381 DOI: 10.1038/s41598-023-44142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Monoamine oxidase B (MAO-B) inhibitors are used to control Parkinson's disease (PD). Selegiline, rasagiline, and safinamide are widely used as MAO-B inhibitors worldwide. Although these drugs inhibit MAO-B, there are pharmacological and chemical differences, such as the inhibitory activity, the non-dopaminergic properties in safinamide, and the amphetamine-like structure in selegiline. MAO-B inhibitors may differ in adverse events (AEs). However, differences in actual practical clinics are not fully investigated. A retrospective study was conducted using FAERS, the largest database of spontaneous adverse events. AE signals for MAO-B inhibitors, including selegiline, rasagiline, and safinamide, were detected using the reporting odds ratio method and compared. Hypocomplementemia, hepatic cyst, hepatic function abnormal, liver disorder and cholangitis were detected for selegiline as drug-specific signals. The amphetamine effect was not confirmed for any of the three MAO-B inhibitors. The tyramine reaction was detected as an AE signal only for rasagiline. Moreover, the REM sleep behavior disorder was not detected as an AE signal for safinamide, suggesting that non-dopaminergic effects might be beneficial. Considering the differences in AEs for MAO-B inhibitors will assist with the appropriate PD medication.
Collapse
Affiliation(s)
- Hiroto Asano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Asuka Hatabu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikiko Ueda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Ikeda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Misuse and dependence of dimenhydrinate: A mixed studies systematic review. J Psychiatr Res 2021; 136:581-588. [PMID: 33153760 DOI: 10.1016/j.jpsychires.2020.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dimenhydrinate (DMH) is an antihistamine used to treat nausea and vomiting. Although widely available in pharmacies as an over the counter medication, there have been reports of potential DMH tolerance and dependence and a possible euphoric potential accompanying heavy use (>100 mg/day). Despite the potential for misuse, there is a gap in the literature concerning patterns, characteristics, and potential mechanisms of DMH misuse. AIMS This review aimed to synthesize evidence on the pharmacology, clinical effects, and management of DMH misuse and dependence to inform clinical decision making and relevant drug policy. METHODS We conducted a systematic review in accordance with the PRISMA guidelines and using Cochrane collaboration methods. We searched seven databases from their inception through July 2019. To be included in the review, studies needed to measure or focus on one or more dimensions of morbidity or mortality related to the misuse of DMH. Quantitative, qualitative and mixed-method studies were included in order to capture the breadth of possible studies. Studies were excluded if they did not fit into the conceptual framework of the study of if they focused primarily on the misuse of other substances. A narrative synthesis of study findings was pursued given the limited capacity for a quantitative meta-analysis. FINDINGS We identified 24 studies, which described a range of neuropsychiatric sequelae related to DMH consumption, including seizures, psychosis, depression, intoxication (resembling anticholinergic syndrome) and withdrawal. The sedative and euphoric properties, readily available nature, and low cost of DMH appear to facilitate DMH dependence, which were more commonly reported among individuals who had concurrent psychiatric disorders, displaying symptoms such as low motivation, poor concentration, and delirium. The overall quality of studies identified by this review was low-largely because the majority of studies were case reports or review articles, with few intervention or cohort studies. CONCLUSIONS There is some evidence to suggest the existence of DMH-related syndromes involving intoxication, withdrawal, and dependence, more commonly among long-term, heavy DMH consumers. However, higher quality studies are needed to confirm preliminary findings that there may be a biological basis for such syndromes.
Collapse
|
4
|
Bhattacharjee M, Perumal E. Potential plant-derived catecholaminergic activity enhancers for neuropharmacological approaches: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:148-164. [PMID: 30668425 DOI: 10.1016/j.phymed.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Catecholamines (CAs) have been reported to be involved in numerous functions including central nervous system. CA release from the intra neuronal storage vesicles aid in the therapy of various neurological and neuropsychiatric disorders where the catecholaminergic neurotransmission is compromised. Bioavailability of CA at the synapse can be increased through stimulated neurotransmitter release, monoamine oxidase and CA reuptake inhibition. Plant based galenicals are reported to have similar CA enhancement activities and have been used for the management of neurological disorders. AIM To review evidence-based literature with plant extracts, bioactive compounds, and composite extracts that modulate central catecholaminergic system, thereby enhancing CA activity for beneficial neurological effect. METHODS Electronic databases such as PubMed, Scopus, and ScienceDirect were used to search scientific contributions until January 2018, using relevant keywords. Literature focusing plant-derived CA enhancing compounds, extracts and/or composite extracts were identified and summarized. In all cases, dose, route of administration, the model system and type of extract were accounted. RESULTS A total of 49 plant extracts, 31 compounds and 16 herbal formulations have shown CA activity enhancement. Stimulated CA release from the storage vesicles, monoamine oxidase and CA reuptake inhibition were the major mechanisms involved in the increase of CA bioavailability by these phytoconstituents. CONCLUSION This review provides an overview on the phytoconstituents with CA enhancement property that have been used for neuropsychiatric disorders. Such herbal remedies will provide an avenue for cost effective and easily available medication which have holistic approach towards disease management. There is also scope for alternate medicines or prototype drug development utilizing these phytomedicines for treating neurodegenerative diseases. However, hurdles are to be met for analyzing the mode and mechanism of action associated with these phytomedicines and their proper scientific documentation.
Collapse
Affiliation(s)
- Monojit Bhattacharjee
- Defence Research and Development Organisation - Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu 641046, India
| | - Ekambaram Perumal
- Defence Research and Development Organisation - Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu 641046, India; Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
5
|
Sharpe MJ, Stalnaker T, Schuck NW, Killcross S, Schoenbaum G, Niv Y. An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making. Annu Rev Psychol 2019; 70:53-76. [PMID: 30260745 PMCID: PMC9333553 DOI: 10.1146/annurev-psych-010418-102824] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Making decisions in environments with few choice options is easy. We select the action that results in the most valued outcome. Making decisions in more complex environments, where the same action can produce different outcomes in different conditions, is much harder. In such circumstances, we propose that accurate action selection relies on top-down control from the prelimbic and orbitofrontal cortices over striatal activity through distinct thalamostriatal circuits. We suggest that the prelimbic cortex exerts direct influence over medium spiny neurons in the dorsomedial striatum to represent the state space relevant to the current environment. Conversely, the orbitofrontal cortex is argued to track a subject's position within that state space, likely through modulation of cholinergic interneurons.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA; ,
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA; ,
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia;
| | - Thomas Stalnaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA; ,
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany;
| | - Simon Killcross
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia;
| | - Geoffrey Schoenbaum
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA; ,
- Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA; ,
- Psychology Department, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
6
|
Park SJ, Yang H, Lee SH, Song HS, Park CS, Bae J, Kwon OS, Park TH, Jang J. Dopamine Receptor D1 Agonism and Antagonism Using a Field-Effect Transistor Assay. ACS NANO 2017; 11:5950-5959. [PMID: 28558184 DOI: 10.1021/acsnano.7b01722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The field-effect transistor (FET) has been used in the development of diagnostic tools for several decades, leading to high-performance biosensors. Therefore, the FET platform can provide the foundation for the next generation of analytical methods. A major role of G-protein-coupled receptors (GPCRs) is in the transfer of external signals into the cell and promoting human body functions; thus, their principle application is in the screening of new drugs. The research community uses efficient systems to screen potential GPCR drugs; nevertheless, the need to develop GPCR-conjugated analytical devices remains for next-generation new drug screening. In this study, we proposed an approach for studying receptor agonism and antagonism by combining the roles of FETs and GPCRs in a dopamine receptor D1 (DRD1)-conjugated FET system, which is a suitable substitute for conventional cell-based receptor assays. DRD1 was reconstituted and purified to mimic native binding pockets that have highly discriminative interactions with DRD1 agonists/antagonists. The real-time responses from the DRD1-nanohybrid FET were highly sensitive and selective for dopamine agonists/antagonists, and their maximal response levels were clearly different depending on their DRD1 affinities. Moreover, the equilibrium constants (K) were estimated by fitting the response levels. Each K value indicates the variation in the affinity between DRD1 and the agonists/antagonists; a greater K value corresponds to a stronger DRD1 affinity in agonism, whereas a lower K value in antagonism indicates a stronger dopamine-blocking effect.
Collapse
Affiliation(s)
- Seon Joo Park
- Harzards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Heehong Yang
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Hyun Seok Song
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) , Daejeon 34133, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology , Daejeon 34114, Republic of Korea
| | - Chul Soon Park
- Harzards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, Republic of Korea
| | - Joonwon Bae
- Department of Applied Chemistry, Dongduk Women's University , Seoul 02748, Republic of Korea
| | - Oh Seok Kwon
- Harzards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Abstract
Development of scientific creativity is often tied closely to mentorship. In my case, two years with Julius Axelrod, the sum total of my research training, was transformative. My mentoring generations of graduate students and postdoctoral fellows has been as nurturing for me as it has been for them. Work in our lab over fifty years has covered the breadth of neurotransmitters and related substances, focusing on the discovery and characterization of novel messenger molecules. I can't conceptualize a more rewarding professional life.
Collapse
Affiliation(s)
- Solomon H. Snyder
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
8
|
Hallmarks of Treatment Aspects: Parkinson's Disease Throughout Centuries Including l -Dopa. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017. [DOI: 10.1016/bs.irn.2017.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
9
|
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol 2016; 7:340. [PMID: 27803666 PMCID: PMC5067815 DOI: 10.3389/fphar.2016.00340] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023] Open
Abstract
Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines (“cheese effect”). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs.
Collapse
Affiliation(s)
- John P M Finberg
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology Haifa, Israel
| | - Jose M Rabey
- Assaf Harofe Medical Center, Affiliated to Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
10
|
Coyle JT. My Life in Clinical Neuroscience: The Beginning. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:1-12. [PMID: 27288071 DOI: 10.1016/bs.apha.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter recounts the author's life from childhood until he opened his research laboratory as an Assistant Professor in the Department of Pharmacology and Experimental Therapeutics at Johns Hopkins School of Medicine in 1976. It emphasizes the importance of chance opportunities and generous mentoring in the initiation of his career in neuroscience and psychiatric research.
Collapse
Affiliation(s)
- J T Coyle
- McLean Hospital and Harvard Medical School, Belmont, MA, United States.
| |
Collapse
|
11
|
Snyder SH. Foreword. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:xiii-xv. [PMID: 27288083 DOI: 10.1016/s1054-3589(16)30043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
12
|
Simms SL, Huettner DP, Kortagere S. In vivo characterization of a novel dopamine D3 receptor agonist to treat motor symptoms of Parkinson's disease. Neuropharmacology 2015; 100:106-15. [PMID: 25896768 DOI: 10.1016/j.neuropharm.2015.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Synthetic dopaminergic agents have found utility in treating neurological and neuropsychiatric disorders since the beginning of 19th century. The discovery of Levodopa (l-dopa) to effectively treat motor symptoms of Parkinson's disease (PD) revolutionized the therapy and remains a gold standard for treating PD. However, l-dopa therapy has been implicated in worsening of the non-motor symptoms including cognition and long-term therapy leads to plasticity and development of abnormal involuntary movements (AIMs) that are collectively called l-dopa induced dyskinesias (LID). Studies in rodents and non-human primates with PD have supported a role for dopamine D3 receptors in the etiology of both the motor symptoms and LID. We have recently developed SK609, a selective dopamine D3 receptor agonist with atypical signaling properties. In this study, we further characterized this novel small molecule using the unilateral lesioned rodent model of PD. In the forepaw stepping test paradigm, SK609 significantly improved the performance of the impaired paw and also normalized the bilateral asymmetry associated with the hemiparkinson rat. In addition, a chronic treatment of SK609 did not induce any AIMs and when used adjuvantly with l-dopa significantly reduced AIMs induced by l-dopa. Further, an optimal dose combination of SK609 with l-dopa was determined by dose dependent titrations of both SK609 and l-dopa that produced minimal AIMs and maximized the effect on improving motor symptoms. Results from this study suggest that SK609 is a novel dopaminergic agent that has the therapeutic potential to treat PD and LID. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Sherise L Simms
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Daniel P Huettner
- Department of Microbiology and Immunology, Centers for Molecular Parasitology, Virology and Translational Neuroscience, Institute for Molecular Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Centers for Molecular Parasitology, Virology and Translational Neuroscience, Institute for Molecular Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
13
|
Zhao Y, Xiong N, Liu Y, Zhou Y, Li N, Qing H, Lin Z. Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics 2014; 14:1481-94. [PMID: 24024899 DOI: 10.2217/pgs.13.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Since previous functional studies of short haplotypes and polymorphic sites of SLC6A3 have shown variant-dependent and drug-sensitive promoter activity, this study aimed to understand whether a large SLC6A3 regulatory region, containing these small haplotypes and polymorphic sites, can display haplotype-dependent promoter activity in a drug-sensitive and pathway-related manner. MATERIALS & METHODS By creating and using a single copy number luciferase-reporter vector, we examined regulation of two different SLC6A3 haplotypes (A and B) of the 5´ 18-kb promoter and two known downstream regulatory variable number tandem repeats by 17 drugs in four different cellular models. RESULTS The two regulatory haplotypes displayed up to 3.2-fold difference in promoter activity. The regulations were drug selective (37.5% of the drugs showed effects), and both haplotype and cell type dependent. Pathway analysis revealed at least 13 main signaling hubs targeting SLC6A3, including histone deacetylation, AKT, PKC and CK2 α-chains. CONCLUSION SLC6A3 may be regulated via either its promoter or the variable number tandem repeats independently by specific signaling pathways and in a haplotype-dependent manner. Furthermore, we have developed the first pathway map for SLC6A3 regulation. These findings provide a framework for understanding complex and variant-dependent regulations of SLC6A3.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Psychiatry, Harvard Medical School & Laboratory of Psychiatric Neurogenomics, Division of Alcohol & Drug Abuse, McLean Hospital, Mailstop 318, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen TY, Yeh YW, Kuo SC, Chen CY, Lin TP, Chang CC. Diphenhydramine dependence through deep intramuscular injection resulting in myonecrosis and prolonged QT interval. J Clin Pharm Ther 2014; 39:325-7. [PMID: 24597640 DOI: 10.1111/jcpt.12142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Diphenhydramine (DPH) is a first-generation antihistamine, which is useful in treating allergic reaction, and is usually considered innocuous. We describe a retired nurse with history of depression, who began to develop drug-seeking behaviour after her first receiving of an intramuscular (IM) DPH injection due to urticaria. CASE SUMMARY The 49-year-old patient had developed IM DPH dependence within 4 months. She needed to receive psychiatric inpatient treatment because of depressive mood, serious myonecrosis over injected sites, and prolongation of QT interval. WHAT IS NEW AND CONCLUSION This is the first reported case of DPH dependence through the IM route. Second-generation antihistamines might be better choices for patients with psychiatric illness by reason of their lower effects on central nervous system and lower risk of abuse.
Collapse
Affiliation(s)
- T-Y Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Baracz SJ, Cornish JL. Oxytocin modulates dopamine-mediated reward in the rat subthalamic nucleus. Horm Behav 2013; 63:370-5. [PMID: 23238104 DOI: 10.1016/j.yhbeh.2012.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
The subthalamic nucleus (STh) is increasingly recognized as an important region involved in the motivation for drug reward. It is not yet known if dopamine, the neurotransmitter primarily responsible for reward signaling, is also involved in mediating reward-related activity in the STh. The neuropeptide oxytocin acts within the STh to reduce the rewarding effects of the psychostimulant methamphetamine, through a proposed interaction with dopamine. However, the mechanisms of this interaction are unclear. The current study aimed to determine whether (i) dopamine microinjected into the STh would result in a significant place preference following a single-trial conditioning session, (ii) co-administered dopamine receptor antagonist would block the formation of a conditioned place preference (CPP) for dopamine, (iii) co-administered oxytocin would prevent CPP for dopamine and (iv) whether the selective oxytocin antagonist desGly-NH(2),d(CH(2))(5)[D-Tyr(2),Thr(4)]OVT, when co-administered with oxytocin and dopamine, would reverse the effects of oxytocin and result in a CPP for dopamine. Results showed that male Sprague Dawley rats i) formed a preference for the context paired with dopamine (100 nmol/side) administration into the STh, which was prevented by co-administration of ii) the mixed dopamine receptor antagonist fluphenazine (10 nmol/side) or iii) oxytocin (0.6 pmol/side), [corrected] with the oxytocin effect on dopamine CPP reversed by the co-administration of the oxytocin receptor antagonist (3 nmol/side). These data suggest that dopamine neurotransmission in the STh produces rewarding effects that can be reduced by activation of local oxytocin receptors.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, Sydney, Australia
| | | |
Collapse
|
16
|
Oleson EB, Ferris MJ, España RA, Harp J, Jones SR. Effects of the histamine H₁ receptor antagonist and benztropine analog diphenylpyraline on dopamine uptake, locomotion and reward. Eur J Pharmacol 2012; 683:161-5. [PMID: 22445882 DOI: 10.1016/j.ejphar.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/22/2012] [Accepted: 03/04/2012] [Indexed: 11/28/2022]
Abstract
Diphenylpyraline hydrochloride (DPP) is an internationally available antihistamine that produces therapeutic antiallergic effects by binding to histamine H₁ receptors. The complete neuropharmacological and behavioral profile of DPP, however, remains uncharacterized. Here we describe studies that suggest DPP may fit the profile of a potential agonist replacement medication for cocaine addiction. Aside from producing the desired histamine reducing effects, many antihistamines can also elicit psychomotor activation and reward, both of which are associated with increased dopamine concentrations in the nucleus accumbens (NAc). The primary aim of this study was to investigate the potential ability of DPP to inhibit the dopamine transporter, thereby leading to elevated dopamine concentrations in the NAc in a manner similar to cocaine and other psychostimulants. The psychomotor activating and rewarding effects of DPP were also investigated. For comparative purposes cocaine, a known dopamine transporter inhibitor, psychostimulant and drug of abuse, was used as a positive control. As predicted, both cocaine (15 mg/kg) and an equimolar dose of DPP (14 mg/kg) significantly inhibited dopamine uptake in the NAc in vivo and produced locomotor activation, although the time-course of pharmacological effects of the two drugs was different. In comparison to cocaine, DPP showed a prolonged effect on dopamine uptake and locomotion. Furthermore, cocaine, but not DPP, produced significant conditioned place preference, a measure of drug reward. The finding that DPP functions as a potent dopamine uptake inhibitor without producing significant rewarding effects suggests that DPP merits further study as a potential candidate as an agonist pharmacotherapy for cocaine addiction.
Collapse
Affiliation(s)
- Erik B Oleson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius "Julie" Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the "high" that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes.
Collapse
Affiliation(s)
- Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
18
|
Riederer P, Laux G. MAO-inhibitors in Parkinson's Disease. Exp Neurobiol 2011; 20:1-17. [PMID: 22110357 PMCID: PMC3213739 DOI: 10.5607/en.2011.20.1.1] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/17/2011] [Indexed: 01/27/2023] Open
Abstract
Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatic and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | | |
Collapse
|
19
|
Snyder SH. Molecules of madness. Cell 2009; 139:1212-5. [PMID: 20064363 DOI: 10.1016/j.cell.2009.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
My professional life over five decades meandered from a high school ambition to be a psychiatrist and understand the "mind" to biochemical studies of neurotransmitters and drugs. Hopefully, the tale of my quirky impatient curiosity about "too many" different areas will be useful for young scientists embarking on their own careers.
Collapse
Affiliation(s)
- Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Waldeck B. Effect of caffeine on locomotor activity and central catecholamine mechanisms: a study with special reference to drug interaction. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 36:1-23. [PMID: 1080339 DOI: 10.1111/j.1600-0773.1975.tb03090.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
|
22
|
John CE, Jones SR. Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices. Neuropharmacology 2007; 52:1596-605. [PMID: 17459426 PMCID: PMC2041899 DOI: 10.1016/j.neuropharm.2007.03.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 02/28/2007] [Accepted: 03/07/2007] [Indexed: 11/23/2022]
Abstract
Fast scan cyclic voltammetry is an electrochemical technique used to measure dynamics of transporter-mediated monoamine uptake in real time and provides a tool to evaluate the detailed effects of monoamine uptake inhibitors and releasers on dopamine and serotonin transporter function. We measured the effects of cocaine, methylphenidate, 2beta-propanoyl-3beta-(4tolyl) tropane (PTT), fluoxetine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), phentermine and fenfluramine on dopamine and serotonin uptake following electrically stimulated release in mouse caudate-putamen and substantia nigra pars reticulata slices. We determined rank orders of uptake inhibition effects based on two variables; increases in apparent K(m) for dopamine and serotonin uptake and inhibition constant (K(i)) values. For example, the rank order of uptake inhibition based on apparent K(m) values at the dopamine transporter was amphetamine>or=PTT>or=methylphenidate>>methamphetamine=phentermine=MDMA>cocaine>>fluoxetine=fenfluramine, and at the serotonin transporter was fluoxetine=methamphetamine=fenfluramine=MDMA > amphetamine=cocaine=PTT>or=methylphenidate>phentermine. Additionally, changes in electrically stimulated release were documented. This is the first study using voltammetry to measure the effects of a wide range of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse brain slices. These studies also highlight methodological considerations for comparison of effects between heterogeneous brain regions.
Collapse
Affiliation(s)
- Carrie E. John
- Wake Forest University School of Medicine, Department of Physiology and Pharmacology, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Sara R. Jones
- Wake Forest University School of Medicine, Department of Physiology and Pharmacology, Medical Center Boulevard, Winston-Salem, NC 27157
| |
Collapse
|
23
|
Madras BK, Fahey MA, Goulet M, Lin Z, Bendor J, Goodrich C, Meltzer PC, Elmaleh DR, Livni E, Bonab AA, Fischman AJ. Dopamine Transporter (DAT) Inhibitors Alleviate Specific Parkinsonian Deficits in Monkeys: Association with DAT Occupancy in Vivo. J Pharmacol Exp Ther 2006; 319:570-85. [PMID: 16885433 DOI: 10.1124/jpet.106.105312] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Viable dopamine neurons in Parkinson's disease express the dopamine transporter (DAT) and release dopamine (DA). We postulated that potent DAT inhibitors, with low affinity for the serotonin transporter (SERT), may elevate endogenously released extracellular dopamine levels to provide therapeutic benefit. The therapeutic potential of eight DAT inhibitors was investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated cynomolgus monkeys (Macaca fascicularis), with efficacy correlated with DAT occupancy as determined by positron emission tomography imaging in striatum. Four potent DAT inhibitors, with relatively high norepinephrine transporter, but low SERT affinities, that occupied the DAT improved activity in parkinsonian monkeys, whereas three high-affinity DAT inhibitors with low DAT occupancy did not. 2beta-Carbomethoxy-3alpha-(3,4-dichlorophenyl)-7beta-hydroxy-8-methyl-8-azabicyclo[3.2.1.]octane (O-1163) occupied the DAT but had short-lived pharmacological effects. The benztropine analog difluoropine increased general activity, improved posture, reduced body freeze, and produced sleep disturbances at high doses. (1R)-2beta-(1-Propanoyl)-3alpha-(4-fluorophenyl)tropane (O-1369) alleviated parkinsonian signs in advanced parkinsonian monkeys, by increasing general activity, improving posture, reducing body freeze, and sedation, but not significantly reducing bradykinesia or increasing locomotor activity. In comparison with the D(2)-D(3) DA receptor agonist quinelorane, O-1369 elicited oral/facial dyskinesias, whereas quinelorane did not improve posture or reduce balance and promoted stereotypy. In conclusion, DAT inhibitors with therapeutic potential combine high DAT affinity in vitro and high DAT occupancy of brain striatum in vivo with enduring day-time effects that do not extend into the nighttime. Advanced parkinsonian monkeys (80% DAT loss) respond more effectively to DAT inhibitors than mild parkinsonian monkeys (46% DAT loss). The therapeutic potential of dopamine transport inhibitors for Parkinson's disease warrants preclinical investigation.
Collapse
Affiliation(s)
- Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Division of Neurochemistry, New England Primate Research Center, 1 Pine Hill Dr., Southborough, MA 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem 2006; 49:1420-32. [PMID: 16480278 PMCID: PMC2602954 DOI: 10.1021/jm050797a] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine, serotonin, and norepinephrine are essential for neurotransmission in the mammalian system. These three neurotransmitters have been the focus of considerable research because the modulation of their production and their interaction at monoamine receptors has profound effects upon a multitude of pharmacological outcomes. Our interest has focused on neurotransmitter reuptake mechanisms in a search for medications for cocaine abuse. Herein we describe the synthesis and biological evaluation of an array of 2-aminopentanophenones. This array has yielded selective inhibitors of the dopamine and norepinephrine transporters with little effect upon serotonin trafficking. A subset of compounds had no significant affinity at 5HT1A, 5HT1B, 5HT1C, D1, D2, or D3 receptors. The lead compound, racemic 1-(4-methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one 4a, was resolved into its enantiomers and the S isomer was found to be the most biologically active enantiomer. Among the most potent of these DAT/NET selective compounds are the 1-(3,4-dichlorophenyl)- (4u) and the 1-naphthyl- (4t) 2-pyrrolidin-1-yl-pentan-1-one analogues.
Collapse
Affiliation(s)
- Peter C Meltzer
- Organix Inc., 240 Salem Street, Woburn, Massachusetts 01801, USA.
| | | | | | | |
Collapse
|
25
|
Snyder SH. Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology 2004; 47 Suppl 1:274-85. [PMID: 15464143 DOI: 10.1016/j.neuropharm.2004.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/19/2004] [Accepted: 06/01/2004] [Indexed: 11/30/2022]
Abstract
Identification of opiate receptors some 30 years ago provided tools that brought major new insights into how these drugs act and led to the discovery of a novel group of atypical neurotransmitters, the peptide enkephalins being the first. The ligand binding techniques that were used to identify opiate receptors were employed to characterize receptors for all of the major neurotransmitters in the brain leading to additional insights into the actions of many drugs, such as neuroleptics. These techniques also permitted characterization of intracellular signaling systems such as the IP3 receptor and immunophilins. Even more novel than the enkephalins have been the gaseous neurotransmitters NO and CO and D-serine.
Collapse
Affiliation(s)
- Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 813, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Abstract
Advances have been made in characterizing the relationship between Na+ and the substrate permeation pathway in the dopamine transporter. This review covers the role of Na+ in co-transport with dopamine as well as in the recognition of dopamine. Apparent recognition depends on the preparation studied: it differs between intact cells heterologously expressing the dopamine transporter and membranes prepared from these cells. In our search for amino acid residues in the transporter involved in Na+ action, W84 and D313 were found to play a special role in cation interaction, with evidence for regulation of both Na+ and H+ sensitivity. Mutation of D313 to N appeared to decrease the affinity for the dopamine transporter in intact cells, not by altering recognition per se. A model is proposed in which access of dopamine, not recognition itself, is regulated by D313 and Na+. Thus, the role of external Na+ in intact cell preparations is to turn dopamine transporters to the externally facing form, allowing access of dopamine to its binding site.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Box 1649, Peoria, IL 61656-1649, USA
| | | |
Collapse
|
27
|
Abstract
Dimenhydrinate (DMH; trade names Gravol and Dramamine) is a compound of diphenhydramine (DP) and 8-chlorotheophylline in equimolar ratios. DMH has been reported to be abused by humans for its euphoric and hallucinogenic properties but few studies have evaluated its reinforcing effects in animals. To evaluate the hypothesis that DMH and its constituents DP and 8-chlorotheophylline are rewarding in animals, rats were tested for conditioned place preference (CPP). The paradigm consisted of pre-exposure (three 15-min sessions of access to both sides of the chamber), conditioning [eight 30-min pairings of one side with drug (four sessions) and, on alternate days, the other side with vehicle (four sessions)] and test phases (three 15-min sessions of access to both sides of the chamber). Significant preferences for the drug-paired location were found on test session one after conditioning with 60.0, but not 25.0, 40.0 or 50.0 mg/kg of DMH, and after conditioning with 37.8 but not 27.0 or 32.4 mg/kg of DP. No preference was found after conditioning with 23.0, 27.6 or 32.2 mg/kg of 8-chlorotheophylline. All three drugs stimulated locomotor activity during conditioning sessions and DMH and DP showed sensitization over conditioning sessions. DMH doses that showed sensitization (25.0 and 40.0 mg/kg) were lower than the dose (60.0 mg/kg) that produced a CPP revealing a dissociation of locomotor stimulating versus rewarding effects. Results reveal that DMH and DP have rewarding properties, although the molar equivalent dose-response curve for DP appeared to be further to the right than that for DMH. Future investigations into the neurotransmitter systems modulating this effect are awaited.
Collapse
Affiliation(s)
- Alison G Halpert
- Department of Psychology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
28
|
Kamei J, Morita K, Miyata S, Onodera K. Effects of second generation of histamine H1 antagonists, cetirizine and ebastine, on the antitussive and rewarding effects of dihydrocodeine in mice. Psychopharmacology (Berl) 2003; 166:176-80. [PMID: 12536265 DOI: 10.1007/s00213-002-1359-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Accepted: 11/17/2002] [Indexed: 11/25/2022]
Abstract
RATIONALE Little information is available about the interaction between dihydrocodeine and second-generation antihistamine drugs such as cetirizine and ebastine, with particular reference to the rewarding effect of dihydrocodeine. OBJECTIVE The effects of second generation histamine H(1) antagonists, such as cetirizine and ebastine on the antitussive and rewarding effect of dihydrocodeine were examined in mice. METHODS Mice were exposed to a nebulized solution of capsaicin (30 micromol/l) under conscious and identical conditions, using a body plethysmograph. The coughs produced during a 3-min exposure period were counted. Effects of H(1) antagonists on the reinforcing effect of dihydrocodeine were assessed by using the conditioned place preference procedure in mice. RESULTS The antitussive effect of dihydrocodeine was enhanced by the simultaneous administration of either cetirizine or ebastine. There was no statistical difference between the ED(50) of dihydrocodeine in combination with ebastine and that of dihydrocodeine in combination with cetirizine. Concurrent dosing of dihydrocodeine and ebastine produced a significant place preference. This behavioral potentiation was antagonized by SCH23390, a dopamine D(1) antagonist. Moreover, ebastine enhanced the central dopamine turnover ratio, but cetirizine could not, in this study. CONCLUSION Taken together, the potentiation of place preference of dihydrocodeine with ebastine may be due, at least in part, to stimulation of the central dopaminergic system via D(1) receptors. However, combination of dihydrocodeine with cetirizine does not potentiate place preference at all, nor does it potentiate the central dopaminergic system. Thus, it is likely that cetirizine may be a useful constituent in opioid-containing, antitussive preparations that would not potentiate the development of psychological dependence.
Collapse
Affiliation(s)
- Junzo Kamei
- Department of Pathophysiology & Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, 142-8501, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Drouin C, Blanc G, Villégier AS, Glowinski J, Tassin JP. Critical role of alpha1-adrenergic receptors in acute and sensitized locomotor effects of D-amphetamine, cocaine, and GBR 12783: influence of preexposure conditions and pharmacological characteristics. Synapse 2002; 43:51-61. [PMID: 11746733 DOI: 10.1002/syn.10023] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Psychostimulant-induced locomotor hyperactivity is commonly associated with an inhibition of dopamine reuptake. However, a physiological coupling between noradrenergic and dopaminergic neurons occurring through the stimulation of alpha1-adrenergic receptors has recently been proposed. This possibility was tested on locomotor responses induced either by D-amphetamine and cocaine, which both interfere with noradrenergic and dopaminergic transmissions, or by GBR 12783, a specific dopamine reuptake inhibitor. In an attempt to control the effects of stress and novelty on noradrenergic neurons activity, rats were submitted to habituation procedures consisting of either a 15-h period of habituation to the experimental environment ("long-habituation") or to repeated exposure to intraperitoneal saline injections for 3 consecutive days ("three-session"). Three-session-exposed animals exhibited a pronounced locomotor reactivity to saline injection which did not occur after noradrenergic depletion, clonidine (20 microg/kg) or prazosin (0.5 mg/kg) pretreatments, or in long-habituation-preexposed animals. Cocaine and GBR 12783 locomotor hyperactivities were doubled in three-session vs. long-habituation-preexposed rats, whereas D-amphetamine responses were similar in both conditions. Prazosin (0.5 mg/kg) pretreatment reduced the acute locomotor effects of the three psychostimulants in both procedures and blocked the behavioral sensitization induced by repeated injections of D-amphetamine (0.75 mg/kg) or cocaine (5 mg/kg). GBR 12783 (5 mg/kg) failed to induce significant behavioral sensitization. In addition to their role in the acute and sensitized locomotor responses to psychostimulants possessing different pharmacological characteristics, alpha1-adrenergic receptors are involved in animal reactivity to previously experimented procedures. This suggests an implication of noradrenergic neurons in the vulnerability to psychostimulants.
Collapse
Affiliation(s)
- Candice Drouin
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, 75005 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA. Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 2001; 112:119-33. [PMID: 11716947 DOI: 10.1016/s0165-0270(01)00459-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantifying mechanisms underlying extracellular signaling by the neurotransmitter dopamine (DA) is a difficult task, particularly in the complex extracellular microenvironment of the intact brain. In this study, two methods for evaluating release and uptake from DA dynamics monitored by real-time voltammetry are described. Both are based on a neurochemical model characterizing electrically evoked levels of DA as a balance between these opposing mechanisms. The theoretical basis of what is called here nonlinear regression and single curve analyses is given. Fitting simulated data tests the reliability of the methods. The two analyses are also compared with an experimental data set describing the effects of pharmacologically inhibiting the DA transporter in the caudate-putamen (CP) and nucleus accumbens (NAc). The results indicate that nonlinear regression and single curve analyses are suitable for quantifying release and uptake mechanisms underlying DA neurotransmission. Additionally, the most important experimental finding of this technical study was the independent confirmation of high affinity (approximately 0.2 microM) DA uptake in the intact striatum.
Collapse
Affiliation(s)
- Q Wu
- Department of Biological Sciences, Cellular and Integrative Physiology Section, Illinois State University, 244 SLB, Normal, IL 61790, USA
| | | | | | | | | |
Collapse
|
31
|
Kanbayashi T, Honda K, Kodama T, Mignot E, Nishino S. Implication of dopaminergic mechanisms in the wake-promoting effects of amphetamine: a study of D- and L-derivatives in canine narcolepsy. Neuroscience 2001; 99:651-9. [PMID: 10974428 DOI: 10.1016/s0306-4522(00)00239-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a canine model of narcolepsy and selective DA and NE uptake inhibitors, we have recently shown that DA uptake inhibition promotes wakefulness, while NE uptake inhibition inhibits rapid eye movement sleep and cataplexy. In order to further delineate the respective roles of the dopaminergic and noradrenergic systems in the pharmacological control of symptoms of narcolepsy, we compared the potency of amphetamine isomers (D- and L-amphetamines) and a derivative (L-methamphetamine) on wakefulness and cataplexy. Their respective effects on these narcolepsy symptoms were then compared with their in vivo effects on extracellular DA levels in the caudate and NE levels in the frontal cortex during local drug perfusion in narcoleptic dogs. Polygraphic recordings demonstrated that D-amphetamine was about twice as potent as L-amphetamine, and was six times more potent than L-methamphetamine in increasing wakefulness and reducing slow-wave sleep. D-Amphetamine and L-amphetamine were equipotent in reducing rapid eye movement sleep and cataplexy, and L-methamphetamine was about half as potent as L- and D-amphetamines. D-Amphetamine was found to be more potent in increasing DA efflux than L-amphetamine, and L-methamphetamine was found to have little effect on DA efflux; there was no significant difference in the potencies of the three derivatives on NE efflux. The potencies of these amphetamines on wakefulness correlated well with DA, but not NE, efflux in the brain of narcoleptic dogs during local drug perfusion. Our current results further exemplify the importance of the DA system for the pharmacological control of electroencephalogram arousal and suggest that increased DA transmission mediates the wake-promoting effects of amphetamine-like stimulants.
Collapse
Affiliation(s)
- T Kanbayashi
- Sleep Research Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
32
|
Cholinergic neuronal modulation alters dopamine D2 receptor availability in vivo by regulating receptor affinity induced by facilitated synaptic dopamine turnover: positron emission tomography studies with microdialysis in the conscious monkey brain. J Neurosci 2000. [PMID: 10995853 DOI: 10.1523/jneurosci.20-18-07067.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To evaluate the cholinergic and dopaminergic neuronal interaction in the striatum, the effects of scopolamine, a muscarinic cholinergic antagonist, on the striatal dopaminergic system were evaluated multi-parametrically in the conscious monkey brain using high-resolution positron emission tomography in combination with microdialysis. l-3,4-Dihydroxyphenylalanine (l-[beta-(11)C]DOPA) and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane ([beta-(11)C]CFT) were used to measure dopamine synthesis rate and dopamine transporter (DAT) availability, respectively. For assessment of dopamine D(2) receptor binding in vivo, [(11)C]raclopride was applied because this labeled compound, which has relatively low affinity to dopamine D(2) receptors, was hypothesized to be sensitive to the striatal synaptic dopamine concentration. Systemic administration of scopolamine at doses of 10 and 100 microg/kg dose-dependently increased both dopamine synthesis and DAT availability as measured by l-[beta-(11)C]DOPA and [beta-(11)C]CFT, respectively. Scopolamine decreased the binding of [(11)C]raclopride in a dose-dependent manner. Scopolamine induced no significant changes in dopamine concentration in the striatal extracellular fluid (ECF) as determined by microdialysis. However, scopolamine dose-dependently facilitated the striatal ECF dopamine induced by the DAT inhibitor GBR12909 at a dose of 0.5 mg/kg. Scatchard plot analysis in vivo of [(11)C]raclopride revealed that scopolamine reduced the apparent affinity of dopamine D(2) receptors. These results suggested that the inhibition of muscarinic cholinergic neuronal activity modulates dopamine turnover in the striatum by simultaneous enhancement of the dynamics of dopamine synthesis and DAT availability, resulting in no significant changes in apparent "static" ECF dopamine level but showing a decrease in [(11)C]raclopride binding in vivo attributable to the reduction of affinity of dopamine D(2) receptors.
Collapse
|
33
|
Robarge MJ, Agoston GE, Izenwasser S, Kopajtic T, George C, Katz JL, Newman AH. Highly selective chiral N-substituted 3alpha-[bis(4'-fluorophenyl)methoxy]tropane analogues for the dopamine transporter: synthesis and comparative molecular field analysis. J Med Chem 2000; 43:1085-93. [PMID: 10737741 DOI: 10.1021/jm990265s] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a continuing effort to further characterize the role of the dopamine transporter in the pharmacological effects of cocaine, a series of chiral and achiral N-substituted analogues of 3alpha-[bis(4'-fluorophenyl)methoxy]tropane (5) has been prepared as potential selective dopamine transporter ligands. These novel compounds displaced [(3)H]WIN 35,428 binding from the dopamine transporter in rat caudate putamen with K(i) values ranging from 13. 9 to 477 nM. Previously, it was reported that 5 demonstrated a significantly higher affinity for the dopamine transporter than the parent drug, 3alpha-(diphenylmethoxy)tropane (3; benztropine). However, 5 remained nonselective over muscarinic m(1) receptors (dopamine transporter, K(i) = 11.8 nM; m(1), K(i) = 11.6 nM) which could potentially confound the interpretation of behavioral data, for this compound and other members of this series. Thus, significant effort has been directed toward developing analogues that retain high affinity at the dopamine transporter but have decreased affinity at muscarinic sites. Recently, it was discovered that by replacing the N-methyl group of 5 with the phenyl-n-butyl substituent (6) retention of high binding affinity at the dopamine transporter (K(i) = 8.51 nM) while decreasing affinity at muscarinic receptors (K(i) = 576 nM) was achieved, resulting in 68-fold selectivity. In the present series, a further improvement in the selectivity for the dopamine transporter was accomplished, with the chiral analogue (S)-N-(2-amino-3-methyl-n-butyl)-3alpha-[bis(4'-fluorophenyl)metho xy] tropane (10b) showing a 136-fold selectivity for the dopamine transporter versus muscarinic m(1) receptors (K(i) = 29.5 nM versus K(i) = 4020 nM, respectively). In addition, a comparative molecular field analysis (CoMFA) model was derived to correlate the binding affinities of all the N-substituted 3alpha-[bis(4'-fluorophenyl)methoxy]tropane analogues that we have prepared with their 3D-structural features. The best model (q(2) = 0. 746) was used to accurately predict binding affinities of compounds in the training set and in a test set. The CoMFA coefficient contour plot for this model, which provides a visual representation of the chemical environment of the binding domain of the dopamine transporter, can now be used to design and/or predict the binding affinities of novel drugs within this class of dopamine uptake inhibitors.
Collapse
Affiliation(s)
- M J Robarge
- Medicinal Chemistry and Psychobiology Sections, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Singh S. Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem Rev 2000; 100:925-1024. [PMID: 11749256 DOI: 10.1021/cr9700538] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S Singh
- Department of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190
| |
Collapse
|
35
|
Schrag A, Schelosky L, Scholz U, Poewe W. Reduction of Parkinsonian signs in patients with Parkinson's disease by dopaminergic versus anticholinergic single-dose challenges. Mov Disord 1999; 14:252-5. [PMID: 10091618 DOI: 10.1002/1531-8257(199903)14:2<252::aid-mds1009>3.0.co;2-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the effect of an anticholinergic (biperiden) and a dopamine agonist (apomorphine) on tremor, rigidity, and akinesia in patients with idiopathic Parkinson's disease. In a standardized, crossover study design 17 patients received single-dose challenges of 5 mg biperiden intravenously and a previously determined dose of apomorphine subcutaneously on 2 consecutive days. Resting (RT), postural (PT), and action tremor (AT) were assessed using spectral analysis of accelerometer data, and Unified Parkinson's Disease Rating Scale (UPDRS) scores for rigidity and akinesia were determined before and after administration of the study drug. Both single-dose challenges significantly reduced the amplitude of RT, PT, and AT, but only apomorphine significantly reduced UPDRS scores for rigidity and akinesia. In only one patient was tremor reduced by the dopamine agonist but not by the anticholinergic. We found that anticholinergic and dopaminergic agents are both effective in reducing tremor in IPD, and there was no evidence for a selective anticholinergic responsiveness of parkinsonian tremor. Akinesia and rigidity, on the other hand, were not improved by biperiden. We therefore conclude that dopaminergic substances are as effective as anticholinergics in patients with parkinsonian tremor and additionally improve other parkinsonian signs.
Collapse
Affiliation(s)
- A Schrag
- Department of Clinical Neurology, Institute of Neurology, London, UK
| | | | | | | |
Collapse
|
36
|
Matsunaga K, Sato T, Shuto H, Tsuruta Y, Suemaru K, Gomita Y, Oishi R. Inhibition of neuronal dopamine uptake by some antiallergic drugs. Eur J Pharmacol 1998; 350:165-9. [PMID: 9696404 DOI: 10.1016/s0014-2999(98)00253-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of 10 antiallergic drugs (astemizole, azelastine, ebastine, emedastine, epinastine, ketotifen, oxatomide, terfenadine, pemirolast and tranilast) on neuronal dopamine uptake were examined. Some drugs examined showed a concentration-dependent inhibition of [3H]dopamine uptake into synaptosomal preparations of the rat striatum. The inhibition constant (Ki) values were 231-876 nM for ebastine, terfenadine, oxatomide and astemizole. The specific binding of [3H] (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine) (GBR12935) to the rat striatal membranes was also inhibited by these antiallergic drugs. There was a good correlation between the degrees of inhibition of [3H]dopamine uptake and [3H]GBR12935 binding. Then, the behavioral excitement induced by L-DOPA (100 mg/kg, s.c.) plus pargyline hydrochloride (80 mg/kg, i.p.) in mice was significantly enhanced by i.p. treatment with ebastine (10 mg/kg) and astemizole (5 mg/kg). These results suggest that the neuronal dopamine uptake is inhibited by some antiallergic drugs, especially ebastine.
Collapse
Affiliation(s)
- K Matsunaga
- Department of Hospital Pharmacy, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Katz JL, Newman AH, Izenwasser S. Relations between heterogeneity of dopamine transporter binding and function and the behavioral pharmacology of cocaine. Pharmacol Biochem Behav 1997; 57:505-12. [PMID: 9218275 DOI: 10.1016/s0091-3057(96)00441-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Both in vitro binding studies and studies of dopamine uptake have indicated that there is a heterogeneity of action of cocaine and cocaine analogs. Both high- and low-affinity binding sites have been identified. Some drugs that bind to the dopamine transporter show both high- and low-affinity components whereas others do not. Behavioral studies have indicated that the high-affinity component appears to be the one most directly involved in the actions of cocaine related to abuse. These conclusions are based on correlations of affinities and psychomotor stimulant effects. In addition, tolerance to the psychomotor stimulant effects of cocaine occurs with a concomitant change in only the high-affinity component for dopamine uptake. Certain dopamine uptake inhibitors may have only actions mediated by the low-affinity component. These drugs bind to the dopamine transporter and inhibit dopamine uptake; however, they do not have behavioral effects like those of cocaine. This finding is a critical point of inquiry for the dopamine hypothesis because, based on the neurochemical data, these drugs should have behavioral actions like those of cocaine. In contrast, some of these drugs antagonize the behavioral effects of cocaine, suggesting that the low-affinity site somehow modulates the actions mediated by the high-affinity site. Recently, some benztropine analogs have been discovered that bind to the dopamine transporter and inhibit dopamine uptake monophasically but have behavioral effects that are dissimilar to those of cocaine. These compounds may prove useful in determining the behavioral significance of heterogeneity of actions at the dopamine transporter. Further, these studies may provide leads to novel therapeutics for the treatment of cocaine abuse.
Collapse
Affiliation(s)
- J L Katz
- Psychobiology Section, NIDA Addiction Research Center, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
38
|
Kline RH, Izenwasser S, Katz JL, Joseph DB, Bowen WD, Newman AH. 3'-Chloro-3 alpha-(diphenylmethoxy)tropane but not 4'-chloro-3 alpha-(diphenylmethoxy)tropane produces a cocaine-like behavioral profile. J Med Chem 1997; 40:851-7. [PMID: 9083473 DOI: 10.1021/jm950782k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of 2'- and 3'-substituted and 3',3"-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs were designed and synthesized as novel probes for the dopamine transporter. All the analogs were evaluated for displacement of [3H]WIN 35,428 binding at the dopamine transporter and for inhibition of [3H]dopamine uptake in rat caudate putamen. Compounds were observed to monophasically displace [3H]WIN 35,428 binding to the dopamine transporter with affinities of 21.6-1836 nM (Ki). Generally, meta-substituted compounds were more potent than benztropine and equipotent to or slightly less potent than their previously reported para-substituted homologs in inhibiting [3H]WIN 35,428 binding. However, these same meta-substituted analogs were typically less potent than the 4'-substituted analogs in inhibiting [3H]dopamine uptake. Ortho-substituted analogs were generally less potent in both binding and inhibition of uptake at the dopamine transporter than either benztropine or other aryl-substituted homologs. The analogs were also tested for binding at norepinephrine and serotonin transporters as well as muscarinic m1 receptors. None of the compounds in the present study bound with high affinity to either the norepinephrine or serotonin transporters, but all bound to muscarinic m1 receptors with high affinity (K1 = 0.41-2.52 nM). Interestingly, 3'-chloro-3 alpha-(diphenylmethoxy)tropane (5c) produced effects like cocaine in animals trained to discriminate 10 mg/kg cocaine from saline, unlike its 4'-Cl homolog and all of the previously evaluated benztropine analogs. Further evaluation of compound 5c and the other benztropine analogs will undoubtedly prove useful in the elucidation of the role of the dopamine transporter in the reinforcing effects of cocaine and the ultimate identification of a cocaine-abuse treatment.
Collapse
Affiliation(s)
- R H Kline
- Psychobiology Section, National Institutes of Health, National Institute on Drug Abuse-Division of Intramural Research, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
39
|
Houlihan WJ, Boja JW, Parrino VA, Kopajtic TA, Kuhar MJ. Halogenated mazindol analogs as potential inhibitors of the cocaine binding site at the dopamine transporter. J Med Chem 1996; 39:4935-41. [PMID: 8960553 DOI: 10.1021/jm960288w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of halogenated (F, Cl, Br, I), pyrimido and diazepino homologs of mazindol were prepared and evaluated for their ability to displace [3H]WIN 35,428 binding and to inhibit uptake of [3H]dopamine (DA) in rat striatal tissue. All of the compounds except for the 2'-chloro (6) and 2'-bromo (16) analogs of mazindol displaced [3H]WIN 35,428 binding and inhibited [3H]DA uptake more effectively than (R)-cocaine. Structure-activity studies indicated that best inhibition of [3H]WIN 35,428 binding occurred in the imidazo series with compounds containing one or two Cl or Br atoms in the 3'- or 4'-position of the free phenyl group. Replacement of the imidazo ring by a pyrimido or diazepino ring enhanced binding inhibition. The most potent inhibitors of [3H]WIN 35,428 binding and [3H]DA uptake were 6-(3'-chlorophenyl)-2,3,4,6-tetrahydropyrimido[2,1-alpha]isoind ol-6-ol (23; IC50 1.0 nM; 8 x mazindol) and 7-(3',4'-dichlorophenyl)-2,3,4,5-tetrahydro-7H-diazepino[2,1-alpha ]isoindol-7-ol (28; IC50 0.26 nM; 32 x mazindol), respectively. No significant differences was found between binding and uptake inhibition. Mazindol and the pyrimido and diazepino homologs 24 and 27 showed a selectivity for the DA uptake over the serotonin (5-HT) uptake site of 5-, 250-, and 465-fold, respectively, and displayed weak or no affinity for a variety of neurotransmitter receptor sites.
Collapse
Affiliation(s)
- W J Houlihan
- Charles A. Dana Research Institute, Drew University, Madison, New Jersey 07940, USA.
| | | | | | | | | |
Collapse
|
40
|
Sato T, Suemaru K, Matsunaga K, Hamaoka S, Gomita Y, Oishi R. Potentiation of L-dopa-induced behavioral excitement by histamine H1-receptor antagonists in mice. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 71:81-4. [PMID: 8791174 DOI: 10.1254/jjp.71.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Effects of histamine H1-receptor antagonists on L-dopa-induced behavioral excitement were examined in mice to confirm behaviorally the inhibition of dopamine uptake by these compounds. L-Dopa (100-300 mg/kg, s.c.) combined with pargyline hydrochloride (80 mg/kg, i.p.) caused a dose-dependent behavioral excitement. The marked excitement induced by L-dopa (300 mg/kg) plus pargyline was significantly inhibited by pimozide (0.1 - 1 mg/kg, s.c.), a selective dopamine antagonist. Tripelennamine (10 mg/kg, s.c.), d-chlorpheniramine (1 and 2 mg/kg, s.c.), homochlorcyclizine (2 and 5 mg/kg, s.c.), diphenhydramine (2 and 5 mg/kg, s.c.) and mepyramine (2 and 5 mg/kg, s.c.) each markedly enhanced the moderate behavioral excitement induced by L-dopa (150 mg/kg) plus pargyline. These findings are behavioral evidence for inhibition of dopamine uptake by H1 antagonists, which has been suggested by neurochemical studies.
Collapse
Affiliation(s)
- T Sato
- Department of Hospital Pharmacy, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
41
|
San-Martin-Clark O, Cuellar B, Leza JC, Lizasoain I, Lorenzo P. Effects of trepelennamine on brain monoamine turnover in morphine dependent and abstinent mice. Psychopharmacology (Berl) 1996; 123:297-302. [PMID: 8833423 DOI: 10.1007/bf02246584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have reported that the histamine H1 receptor blocker tripelennamine potentiates morphine withdrawal. In this paper, the in vivo effects produced by tripelennamine on the turnover of serotonin (5-HT), dopamine (DA) and noradrenaline (NA) in the whole brain, excluding the cerebellum, were studied in control, morphine-dependent (by SC implantation of a 75 mg morphine pellet) and morphine-dependent male CD1 mice just before naloxone-precipitated withdrawal. Tripelennamine (1-10 mg/kg) was administered SC 45 min. before the animals were killed. Serotonin, 5-hydroxyindole-3-acetic acid (5-HIAA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and noradrenaline were measured by high performance liquid chromatography coupled with electrochemical detection (HPLC-ECD) and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) was measured by HPLC coupled with fluorimetric detection. Ratios 5-HIAA/ 5-HT, DOPAC + HVA/DA and MHPG/NA were taken as an index of serotonin, dopamine and noradrenaline turnovers, respectively. Tripelennamine (1 and 10 mg/kg) significantly reduced serotonin turnover in control and morphine-dependent mice, and potentiated the serotonin turnover reduction when it was administered 30 min before naloxone injection. The dopamine turnover was diminished by tripelennamine (1 and 10 mg/kg) in the morphine-dependent group. Tripelennamine (10 mg/kg) reduced noradrenaline turnover during abstinence. These results suggest that the potentiation of opiate abstinence by tripelennamine could be related to its antiserotonergic profile.
Collapse
Affiliation(s)
- O San-Martin-Clark
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Dean B, Sundram S, Hill C, Copolov DL. Platelet [3H]dopamine uptake is differentially affected by neuroleptic drug treatment in schizophrenia and schizophreniform disorder. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20:45-55. [PMID: 8861176 DOI: 10.1016/0278-5846(95)00291-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. The uptake of [3H] dopamine was measured using platelet-rich plasma (PRP) from neuroleptic-free subjects and again, in some cases, after the subject had been treated with neuroleptic drugs. 2. There were no differences in [3H]dopamine uptake by PRP in subjects who were or were not mentally ill. 3. After treatment with neuroleptic drugs the Km for platelet [3H] dopamine uptake had increased in 76% of subjects with schizophrenia and 87% of subjects with schizophreniform disorder. Similarly, the Vmax for platelet [3H]dopamine uptake had increased in 81% of the subjects with schizophrenia and 86% of the subjects with schizophreniform disorder. 4. By contrast, the Km for platelet [3H]dopamine uptake had decreased in 94% of subjects who had a psychoses associated with an illness other than schizophrenia or schizophreniform-disorder whilst the Vmax for platelet [3H]dopamine uptake also decreased by 94% in these subjects. 5. In subjects with psychoses, platelet [(3)H] dopamine uptake is differentially altered during neuroleptic drug treatment depending on diagnosis.
Collapse
Affiliation(s)
- B Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Victoria, Australia
| | | | | | | |
Collapse
|
43
|
Maziere M. Cholinergic neurotransmission studied in vivo using positron emission tomography or single photon emission computerized tomography. Pharmacol Ther 1995; 66:83-101. [PMID: 7630931 DOI: 10.1016/0163-7258(95)00003-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the past decade, considerable efforts have been made in the development of radiopharmaceuticals for the in vivo study of the cholinergic neurotransmission using positron emission tomography or single photon emission computerized tomography. The main cholinergic radioligands, labelled with positron- or gamma-photon-emitting radionuclides, are reviewed with respect to use as in vivo markers of either acetylcholinesterase, vesicular acetylcholine transporter, brain and heart muscarinic receptors, or cholinergic nicotinic receptors. The main results obtained in the in vivo study of the physiology, pharmacology or pathology of the different steps of the cholinergic neurotransmission using single photon emission computerized tomography and positron emission tomography are discussed.
Collapse
Affiliation(s)
- M Maziere
- CNRS URA 1285, Service Hospitalier Frédéric Joliot, DRIPP, CEA, Orsay, France
| |
Collapse
|
44
|
Mitsui T, Kawai H, Sakoda S, Miyata M, Saito S. Hereditary parkinsonism with multiple system degeneration: beneficial effect of anticholinergics, but not of levodopa. J Neurol Sci 1994; 125:153-7. [PMID: 7807160 DOI: 10.1016/0022-510x(94)90028-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two siblings who exhibited hereditary parkinsonism with pyramidal signs and cerebellar ataxia are reported. Anticholinergics had a dramatic beneficial effect in both cases, but levodopa did not. This responsiveness, which is similar to that reported in patients with Joseph's disease, suggests dysfunction of an "indirect pathway" involving the globus pallidus and the subthalamic nucleus, in addition to that of the nigrostriatal system. We propose a new hereditary variant of early onset Parkinson's disease distinct from the levodopa sensitive forms of juvenile Parkinson's disease.
Collapse
Affiliation(s)
- T Mitsui
- First Department of Internal Medicine, School of Medicine, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
45
|
Fowler JS, Ding YS, Volkow ND, Martin T, MacGregor RR, Dewey S, King P, Pappas N, Alexoff D, Shea C. PET studies of cocaine inhibition of myocardial norepinephrine uptake. Synapse 1994; 16:312-7. [PMID: 8059340 DOI: 10.1002/syn.890160407] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Positron emission tomography (PET), [11C]cocaine, and (-)-6-[18F]fluoronorepinephrine [(-)-6-[18F]NE] were used to determine the extent to which the binding of labeled cocaine in the baboon heart represents binding to the norepinephrine transporter and to characterize the functional consequences of cocaine administration on the norepinephrine transporter. Peak heart binding of [11C]cocaine was high (0.038-0.055%/g) and clearance was rapid (t1/2 from peak: 2.5-9 min) for both tracer doses and a pharmacological dose. The binding of a tracer dose of labeled cocaine could not be inhibited by desipramine, tomoxetine, cocaine, nomifensine, or benztropine. The behavior of a pharmacological dose of [11C]cocaine could not be distinguished from a tracer dose and also could not be inhibited by tomoxetine. However, pretreatment with cocaine profoundly inhibited norepinephrine uptake as assessed by (-)-6-[18F]NE. Recovery was slow with only 48% of the baseline (-)-6-[18F]NE uptake being recovered by 78 minutes after cocaine administration. [11C]Benzoylecgonine, a vasoactive metabolite of cocaine, showed negligible retention in heart. The results of this study (i.e., the rapid clearance of cocaine from the heart, the inability to inhibit cocaine binding with desipramine and tomoxetine, and its relatively long-lasting effects on norepinephrine uptake) reinforce the need to understand the link between cocaine pharmacokinetics and norepinephrine transporter function and its relationship to cardiotoxicity.
Collapse
Affiliation(s)
- J S Fowler
- Brookhaven National Laboratory, Upton, New York 11973
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dewey SL, Smith GS, Logan J, Brodie JD, Simkowitz P, MacGregor RR, Fowler JS, Volkow ND, Wolf AP. Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proc Natl Acad Sci U S A 1993; 90:11816-20. [PMID: 8265632 PMCID: PMC48075 DOI: 10.1073/pnas.90.24.11816] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previously we demonstrated that positron emission tomography (PET) can be used to measure changes in the concentrations of synaptic dopamine and acetylcholine. Whether induced directly or indirectly through interactions with other neurotransmitters, these studies support the use of PET for investigating the functional responsiveness of a specific neurotransmitter to a pharmacologic challenge. In an extension of these findings to the human brain, PET studies designed to measure the responsiveness of striatal dopamine release to central cholinergic blockade were conducted in normal male volunteers using high-resolution PET and [11C]raclopride, a D2-dopamine receptor antagonist. [11C]Raclopride scans were performed prior to and 30 min after systemic administration of the potent muscarinic cholinergic antagonist, scopolamine (0.007 mg/kg). After scopolamine administration, [11C]raclopride binding decreased in the striatum (specific binding) but not in the cerebellum (nonspecific binding) resulting in a significant decrease, exceeding the test/retest variability of this ligand (5%), in the ratio of the distribution volumes of the striatum to the cerebellum (17%). Furthermore, scopolamine administration did not alter the systemic rate of [11C]raclopride metabolism or the metabolite-corrected plasma input function. These results are consistent not only with the known inhibitory influence that acetylcholine exerts on striatal dopamine release but also with our initial 18F-labeled N-methylspiroperidol and benztropine studies. Thus these data support the use of PET for measuring the functional responsiveness of an endogenous neurotransmitter to an indirect pharmacologic challenge in the living human brain.
Collapse
Affiliation(s)
- S L Dewey
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Giladi N, Sutton M, Lo B, Przedborski S, Fahn S, Cadet JL. Toxicity of the specific antimuscarinic agent methoctramine and other non-specific anticholinergic drugs in human neuroblastoma cell lines in vitro. Toxicol In Vitro 1993; 7:595-603. [PMID: 20732256 DOI: 10.1016/0887-2333(93)90093-k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1992] [Revised: 03/22/1993] [Indexed: 10/27/2022]
Abstract
The highly selective cardiac-M(2) muscarinic acetylcholine receptor (mAChR) antagonist methoctramine shows a number of concentration-dependent biochemical responses. At micromolar concentrations it interacts allosterically with the mAChR and has 'agonist-like' effects on the phosphoinositide and cyclic AMP second messenger systems. Direct stimulation or inhibition of second messenger systems has been reported to modulate cellular homoeostasis and differentiation. This study showed that methoctramine was toxic, in micromolar concentrations, to the human neuroblastoma cell lines SK-N-SH, LAN-5 and SH-EP1, the last being a clone that does not contain muscarinic receptors. The selective M2 mAChR antagonists 11-{2-[(diethylamino)methyl]-1-piperidinyl}-5,11-dihydro-6H-pyrido(2,3-6)(1-4)benzodiazepine-6-on (AF-DX 116) and gallamine, as well as the selective M1 and M3 antagonists pirenzepine and 4-diphenylacetoxy-n-methylpiperidine (4-DAMP), had no toxic effects. Lithium provided significant protection against methoctramine toxicity, whereas carbamylcholine, pertussis toxin and forskolin had no influence on its toxicity. At micromolar concentrations, the clinically used, non-selective mAChR antagonists ethopropazine, benztropine, trihexyphenidyl and orphenadrine displayed toxicity similar to that of methoctramine. Methoctramine, ethopropazine, benztropine and trihexyphenidyl enhanced significantly [(3)H]thymidine uptake at subtoxic concentrations. These results demonstrate that (a) the toxicity of methoctramine is by way of non-muscarinic mechanism, (b) some anticholinergic drugs commonly used in clinical medicine have toxic properties similar to those of methoctramine and (c) at subtoxic micromolar concentrations anti-muscarinic drugs have some trophic properties.
Collapse
Affiliation(s)
- N Giladi
- Department of Neurology, Laboratory of Preclinical Neuroscience, Black Building, Room 310, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
48
|
Marey-Semper I, Gelman M, Lévi-Strauss M. The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur J Neurosci 1993; 5:1029-34. [PMID: 7904221 DOI: 10.1111/j.1460-9568.1993.tb00955.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The toxicity of the 1-methyl-4-phenylpyridinium ion (MPP+), an inhibitor of complex I of the respiratory chain, on nigrostriatal dopaminergic neurons contrasts with its relative inefficiency towards other catecholaminergic cell populations in spite of their ability to accumulate this neurotoxin through their high-affinity uptake system. A constitutive metabolic deficiency of the nigrostriatal dopaminergic neurons could account for their particular vulnerability to MPP+. In order to substantiate this hypothesis, we compared the inhibitory effects of rotenone, an inhibitor of mitochondrial oxidative phosphorylation, on the uptake of dopamine, serotonin, noradrenaline and GABA in mouse striatal synaptosomes, and of dopamine, serotonin and GABA in cultured mesencephalic neurons. In both preparations, the uptake of dopamine was much more affected than that of other neurotransmitters by rotenone. This result was confirmed using two other unrelated inhibitors of oxidative phosphorylation. Moreover, dopamine uptake in synaptosomes from the dorsolateral striatum was more sensitive to rotenone than uptake in synaptosomes from the nucleus accumbens. This indicates that intrinsic metabolic properties of the nigrostriatal dopaminergic neurons may explain the strong inhibition by rotenone of striatal dopamine uptake. Altogether, these results suggest that a constitutive metabolic deficiency could account, at least in part, for the selective vulnerability of the nigrostriatal dopaminergic pathway to the action of the neurotoxin MPP+.
Collapse
Affiliation(s)
- I Marey-Semper
- INSERM U114, Chaire de Neuropharmacologie, Collège de France, Paris
| | | | | |
Collapse
|
49
|
Eshleman AJ, Calligaro DO, Eldefrawi ME. Allosteric regulation by sodium of the binding of [3H]cocaine and [3H]GBR 12935 to rat and bovine striata. MEMBRANE BIOCHEMISTRY 1993; 10:129-44. [PMID: 8231896 DOI: 10.3109/09687689309150260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sodium regulation of ligand binding to the dopamine transporter of rat and/or bovine striata was investigated using a filtration binding assay. In low Na+ phosphate or bicarbonate-buffered sucrose (300 mOsm), the tissue exhibited high affinity for [3H]cocaine which was reduced by the addition of Na+ in a dose-dependent manner. However, [3H]GBR 12935 binding was insensitive to Na+ in these physiological buffers. Although binding of [3H]GBR 12935 was displaced by cocaine in a manner consistent with competitive displacement, a non-linear affinity shift of the displacement of [3H]GBR 12935 by cocaine suggests that the two ligands bind to distinct sites. Binding of both radioligands was suppressed when measured in sodium-free 50 nM Tris-sucrose and increased with the addition of Na+. Scatchard analysis indicated that Bmax for [3H]cocaine binding in Tris plus 120 mM NaCl reached the same level as in the physiological buffers. In Krebs-Ringer buffer with phosphate, bicarbonate or Tris, which contained 120 nM NaCl, both [3H]cocaine and [3H]WIN 35428 binding exhibited lower affinities than in Na(+)-deficient phosphate buffer. It is suggested that the cation form of Tris binds to the dopamine transporter and that the Tris-receptor complex does not bind [3H]cocaine or [3H]GBR 12935. Na+ displaces Tris, forming a Na(+)-receptor complex which binds these ligands. Thus, it is suggested that the Na(+)-dependent binding of cocaine to the dopamine transporter is observed only in Tris.
Collapse
Affiliation(s)
- A J Eshleman
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | | | |
Collapse
|
50
|
Simmons KE, Jones DJ. 6-Hydroxydopamine treatment of neonatal rats. I. Effects on the development of the spinal cord noradrenergic system. Brain Res 1993; 611:222-30. [PMID: 7687504 DOI: 10.1016/0006-8993(93)90506-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The spinal cord contains noradrenergic (NA) pathways which descend from cell bodies in the medulla oblongata and pons to terminate at all levels in the spinal gray matter. The present studies sought to determine the patterns of postnatal development of pre- and postsynaptic elements of NA transmission in the spinal cord. Significant presynaptic development is evident at birth as reflected by substantial high-affinity uptake of norepinephrine (NE) into synaptosomes (0.65-0.90 pmol/mg protein). There is a subsequent increase in uptake on postnatal day (PND) 5, followed by a decrease in 5-10 days to essentially adult levels, starting on PND 20 (0.30-0.35 pmol/mg protein). This decrease in NE uptake occurs coincident with increases in the density of postsynaptic alpha 1 and beta adrenergic receptors and also NE-stimulated accumulation of 3',5'-cyclic adenosine monophosphate (cAMP). Peaks in the development of alpha 1 receptors (PND 10) and beta receptors (PND 20) and NE-stimulated cAMP accumulation (PND 15) were also followed by decreases to adult levels. The neurotoxin 6-hydroxydopamine (6-OHDA) was administered at birth to determine the effects of denervation on the development of the spinal NA systems. At each day following 6-OHDA, synaptosomal uptake of [3H]NE was reduced by two-thirds compared with control values. alpha 1 and beta adrenergic receptor binding are uniformly increased along with a parallel increase in NE-stimulated accumulation of cAMP. While uniformly increased over control, the pattern of postnatal increases and decreases in receptors and cAMP accumulation is maintained.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K E Simmons
- Department of Pharmacology, University of Texas Health Science Center, San Antonio 78284-7838
| | | |
Collapse
|