1
|
Wang F, Morsali M, Rižikovs J, Pylypchuk I, Mathew AP, Sipponen MH. Fully bio-based water-resistant wood coatings derived from tree bark. MATERIALS HORIZONS 2024; 11:6504-6515. [PMID: 39420846 DOI: 10.1039/d4mh01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Surface protection is essential when using wood as a construction material. However, the industry lacks sustainable alternatives to replace the presently dominant fossil-based synthetic water-resistant coatings. Here, we show a fully bio-based wood surface protection system using components sourced from birch bark and spruce bark, inspired by the natural barrier function of bark in trees. The coating formulation contains suberinic acids and spruce bark polyphenols, resulting in a waterborne suspension that is safe and easy to apply to wood. The polyphenols play a dual role in the formulation as they stabilize the water-insoluble suberinic acids and serve as nanofillers in the thermally cured coating, enabling the adjustment of the mechanical properties of the resulting coating. When applied to spruce wood, the coating formulation with 10% polyphenol and 90% suberinic acids achieved a water absorption value of 100 g m-2 after 72 hours of water exposure, demonstrating superior performance compared to an alkyd emulsion coating. We conclude that instead of combusting tree bark, it can serve as a valuable resource for wood protection, closing the circle in the wood processing industry.
Collapse
Affiliation(s)
- Fengyang Wang
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Mohammad Morsali
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
- Department of Materials and Environmental Chemistry, Wallenberg Wood Science Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Jānis Rižikovs
- Latvian State Institute of Wood Chemistry, Biorefinery Laboratory, Latvia
| | - Ievgen Pylypchuk
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
- Department of Materials and Environmental Chemistry, Wallenberg Wood Science Center, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
2
|
Wu J, Zhong K, Yang H, Zhang P, Yu N, Chen W, Zhang N, Gui S, Han L, Peng D. A holistic visualization for quality of Chinese materia medica: Structural and metabolic visualization by magnetic resonance imaging. J Pharm Anal 2024; 14:101019. [PMID: 39759970 PMCID: PMC11696849 DOI: 10.1016/j.jpha.2024.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 01/07/2025] Open
Abstract
The quality of Chinese materia medica (CMM) is a challenging and focused topic in the modernization of traditional Chinese medicine (TCM). A profound comprehension of the morphology, structure, active constituents, and dynamic changes during the whole process of CMM growth is essential, which needs highly precise contemporary techniques for in-depth elucidation. Magnetic resonance imaging (MRI) is a cutting-edge tool integrating the benefits of both nuclear magnetic resonance (NMR) spectroscopy and imaging technology. With real-time, non-destructive, and in situ detection capabilities, MRI has been previously used for monitoring internal and external structures of plants alongside compounds during physiological processes in vivo. Here, factors involved in the holistic quality evaluation of CMMs were investigated. Given the applications of MRI in various plants, several representative CMMs were used as examples to demonstrate a methodology of quality visualization by MRI, embodying holistically monitoring the real-time macroscopic morphology, mesoscopic structure, and microscopic metabolites non-destructively in situ. Taken together, the review not only presents a pioneering application mode for utilizing MRI for CMM quality visualization but also holds promise for advancing the quality control and evaluation of CMMs.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Kai Zhong
- Department of Biomedical Engineering, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Hongyi Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230012, China
| | - Peiliang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Na Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lan Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
3
|
Chen K, Bhunia RK, Wendt MM, Campidilli G, McNinch C, Hassan A, Li L, Nikolau BJ, Yandeau-Nelson MD. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6500-6522. [PMID: 39031128 PMCID: PMC11522977 DOI: 10.1093/jxb/erae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The plant cuticle is a complex extracellular lipid barrier that has multiple protective functions. This study investigated cuticle deposition by integrating metabolomics and transcriptomics data gathered from six different maize seedling organs of four genotypes, the inbred lines B73 and Mo17, and their reciprocal hybrids. These datasets captured the developmental transition of the seedling from heterotrophic skotomorphogenic growth to autotrophic photomorphogenic growth, a transition that is highly vulnerable to environmental stresses. Statistical interrogation of these data revealed that the predominant determinant of cuticle composition is seedling organ type, whereas the seedling genotype has a smaller effect on this phenotype. Gene-to-metabolite associations assessed by integrated statistical analyses identified three gene networks associated with the deposition of different elements of the cuticle: cuticular waxes; monomers of lipidized cell wall biopolymers, including cutin and suberin; and both of these elements. These gene networks reveal three metabolic programs that appear to support cuticle deposition, including processes of chloroplast biogenesis, lipid metabolism, and molecular regulation (e.g. transcription factors, post-translational regulators, and phytohormones). This study demonstrates the wider physiological metabolic context that can determine cuticle deposition and lays the groundwork for new targets for modulating the properties of this protective barrier.
Collapse
Affiliation(s)
- Keting Chen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Rupam Kumar Bhunia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Matthew M Wendt
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
| | - Grace Campidilli
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Genetics Major, Iowa State University, Ames, IA, USA
| | - Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Ahmed Hassan
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Data Science Major, Iowa State University, Ames, IA, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Balla ED, Klonos PA, Kyritsis A, Bertoldo M, Guigo N, Bikiaris DN. Novel Biobased Copolymers Based on Poly(butylene succinate) and Cutin: In Situ Synthesis and Structure Properties Investigations. Polymers (Basel) 2024; 16:2270. [PMID: 39204490 PMCID: PMC11360701 DOI: 10.3390/polym16162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The present work describes the synthesis of poly(butylene succinate) (PBSu)-cutin copolymers by the two-stage melt polycondensation method, esterification and polycondensation. Cutin was added in four different concentrations, 2.5, 5, 10, and 20 wt%, in respect to succinic acid. The obtained copolymers were studied using a variety of techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy (PLM), as well as diffuse reflectance spectroscopy (DRS). A series of results, in agreement between different techniques, revealed the formation of PBSu-cutin interactions, confirming indirectly the successful in situ synthetic route of copolymers. DSC and XRD combined with PLM results provided indications that the crystallization temperature increases with the addition of small amounts of cutin and gradually decreases with increasing concentration. The crystallization process was easier and faster at 2.5%, 5%, and 10% concentrations, whereas at 20%, it was comparable to neat PBSu. The presence of cutin, in general, leads to the facilitated crystallizability of PBSu (direct effect), whereas a moderate drop in the glass transition temperature is recorded, the latter being an indirect effect of cutin via crystallization. The thermal stability improved in the copolymers compared to neat PBSu. Water contact angle measurements confirmed that the addition of cutin decreased the hydrophilicity. The local and segmental relaxation mapping is demonstrated for PBSu/cutin here for the first time. Enzymatic hydrolysis and soil degradation tests showed that, overall, cutin accelerated the decomposition of the polymers. The copolymers may be proven useful in several applications.
Collapse
Affiliation(s)
- Evangelia D. Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis A. Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Nathanael Guigo
- Institute of Chemistry, Université Côte d’Azur, UMR 7272, 06108 Nice, France;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
6
|
Zhang H, Xue F, Guo L, Cheng J, Jabbour F, DuPasquier PE, Xie Y, Zhang P, Wu Y, Duan X, Kong H, Zhang R. The mechanism underlying asymmetric bending of lateral petals in Delphinium (Ranunculaceae). Curr Biol 2024; 34:755-768.e4. [PMID: 38272029 DOI: 10.1016/j.cub.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
During the process of flower opening, most petals move downward in the direction of the pedicel (i.e., epinastic movement). In most Delphinium flowers, however, their two lateral petals display a very peculiar movement, the mirrored helical rotation, which requires the twist of the petal stalk. However, in some lineages, their lateral petals also exhibit asymmetric bending that increases the degree of mirrored helical rotation, facilitating the formation of a 3D final shape. Notably, petal asymmetric bending is a novel trait that has not been noticed yet, so its morphological nature, developmental process, and molecular mechanisms remain largely unknown. Here, by using D. anthriscifolium as a model, we determined that petal asymmetric bending was caused by the localized expansion of cell width, accompanied by the specialized array of cell wall nano-structure, on the adaxial epidermis. Digital gene analyses, gene expression, and functional studies revealed that a class I homeodomain-leucine zipper family transcription factor gene, DeanLATE MERISTEM IDENTITY1 (DeanLMI1), contributes to petal asymmetric bending; knockdown of it led to the formation of explanate 2D petals. Specifically, DeanLMI1 promotes cell expansion in width and influences the arrangement of cell wall nano-structure on the localized adaxial epidermis. These results not only provide a comprehensive portrait of petal asymmetric bending for the first time but also shed some new insights into the mechanisms of flower opening and helical movement in plants.
Collapse
Affiliation(s)
- Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Xue
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris 75005, France
| | | | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijia Wu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoshan Duan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Berry KR, Roper DK, Dopp MA, Moore J. Transfer Printing of Ordered Plasmonic Nanoparticles at Hard and Soft Interfaces with Increased Fidelity and Biocompatibility Supports a Surface Lattice Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:439-449. [PMID: 38154131 PMCID: PMC11209850 DOI: 10.1021/acs.langmuir.3c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Transfer printing, the relocation of structures assembled on one surface to a different substrate by adjusting adhesive forces at the surface-substrate interface, is widely used to print electronic circuits on biological substrates like human skin and plant leaves. The fidelity of original structures must be preserved to maintain the functionality of transfer-printed circuits. This work developed new biocompatible methods to transfer a nanoscale square lattice of plasmon resonant nanoparticles from a lithographed surface onto leaf and glass substrates. The fidelity of the ordered nanoparticles was preserved across a large area in order to yield, for the first time, an optical surface lattice resonance on glass substrates. To effect the transfer, interfacial adhesion was adjusted by using laser induction of plasmons or unmounted adhesive. Optical and confocal laser scanning microscopy showed that submicron spacing of the square lattice was preserved in ≥90% of transfer-printed areas up to 4 mm2. Up to 90% of ordered nanoparticles were transferred, yielding a surface lattice resonance measured by transmission UV-vis spectroscopy.
Collapse
Affiliation(s)
- Keith R. Berry
- Nanocellutions LLC, Fayetteville, Arkansas 72701, United States; Division of Research and Innovation, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Donald Keith Roper
- Department of Biological Engineering, Utah State University, Logan, Utah 84322, United States
| | - Michelle A. Dopp
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - John Moore
- Nanocellutions LLC, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
8
|
Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, Kawamura K, Fu P. Hydroxy fatty acids in the surface Earth system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167358. [PMID: 37793460 DOI: 10.1016/j.scitotenv.2023.167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Lipids are ubiquitous and highly abundant in a wide range of organisms and have been found in various types of environmental media. These molecules play a crucial role as organic tracers by providing a chemical perspective on viewing the material world, as well as offering a wealth of information on metabolic activities. Among the diverse lipid compounds, hydroxy fatty acids (HFAs) with one to multiple hydroxyl groups attached to the carbon chain stand out as important biomarkers for different sources of organic matter. HFAs are widespread in nature and are involved in biotransformation and oxidation processes in living organisms. The unique chemical and physical properties attributed to the hydroxyl group make HFAs ideal biomarkers in biomedicine and environmental toxicology, as well as organic geochemistry. The molecular distribution patterns of HFAs can be unique and diagnostic for a given class of organisms, including animals, plants, and microorganisms. Thus, HFAs can act as a valuable proxy for understanding the ecological relationships between different organisms and their environment. Furthermore, HFAs have numerous industrial applications due to their higher reactivity, viscosity, and solvent miscibility. This review paper integrates the latest research on the sources and chemical analyses of HFAs, as well as their applications in industrial/medicinal production and as biomarkers in environmental studies. This review article also provides insights into the biogeochemical cycles of HFAs in the surface Earth system, highlighting the importance of these compounds in understanding the complex interactions between living organisms and the environment.
Collapse
Affiliation(s)
- Wenxin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Su Y, Feng T, Liu CB, Huang H, Wang YL, Fu X, Han ML, Zhang X, Huang X, Wu JC, Song T, Shen H, Yang X, Xu L, Lü S, Chao DY. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. NATURE PLANTS 2023; 9:1968-1977. [PMID: 37932483 DOI: 10.1038/s41477-023-01555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.
Collapse
Affiliation(s)
- Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
| | - Xianpeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Sharma P, Lakra N, Goyal A, Ahlawat YK, Zaid A, Siddique KHM. Drought and heat stress mediated activation of lipid signaling in plants: a critical review. FRONTIERS IN PLANT SCIENCE 2023; 14:1216835. [PMID: 37636093 PMCID: PMC10450635 DOI: 10.3389/fpls.2023.1216835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Alisha Goyal
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)—Central Soil Salinity Research Institute, Karnal, India
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Gandhi Memorial (GGM) Science College, Cluster University Jammu, Jammu, India
| | | |
Collapse
|
11
|
Watanabe D, Hashimoto W. Adaptation of yeast Saccharomyces cerevisiae to grape-skin environment. Sci Rep 2023; 13:9279. [PMID: 37340058 DOI: 10.1038/s41598-023-35734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Saccharomyces cerevisiae, an essential player in alcoholic fermentation during winemaking, is rarely found in intact grapes. Although grape-skin environment is unsuitable for S. cerevisiae's stable residence, Saccharomycetaceae-family fermentative yeasts can increase population on grape berries after colonization during raisin production. Here, we addressed adaptation of S. cerevisiae to grape-skin ecosystem. The yeast-like fungus Aureobasidium pullulans, a major grape-skin resident, exhibited broad spectrum assimilation of plant-derived carbon sources, including ω-hydroxy fatty acid, arising from degradation of plant cuticles. In fact, A. pullulans encoded and secreted possible cutinase-like esterase for cuticle degradation. When intact grape berries were used as a sole carbon source, such grape-skin associated fungi increased the accessibility to fermentable sugars by degrading and assimilating the plant cell wall and cuticle compounds. Their ability seems also helpful for S. cerevisiae to obtain energy through alcoholic fermentation. Thus, degradation and utilization of grape-skin materials by resident microbiota may account for their residence on grape-skin and S. cerevisiae's possible commensal behaviors. Conclusively, this study focused on the symbiosis between grape-skin microbiota and S. cerevisiae from the perspective of winemaking origin. Such plant-microbe symbiotic interaction may be a prerequisite for triggering spontaneous food fermentation.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
- Laboratory of Applied Stress Microbiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan.
| |
Collapse
|
12
|
Carriço CM, Tiritan ME, Cidade H, Afonso C, Silva JRE, Almeida IF. Added-Value Compounds in Cork By-Products: Methods for Extraction, Identification, and Quantification of Compounds with Pharmaceutical and Cosmetic Interest. Molecules 2023; 28:molecules28083465. [PMID: 37110699 PMCID: PMC10144513 DOI: 10.3390/molecules28083465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the foundation of environmental protection and safeguarding for future generations. A natural product that has been used for centuries is cork, resulting from the outer bark of Quercus suber L. Currently, its major application is the production of cork stoppers for the wine industry, a process that, although considered sustainable, generates by-products in the form of cork powder, cork granulates, or waste such as black condensate, among others. These residues possess constituents of interest for the cosmetic and pharmaceutical industries, as they exhibit relevant bioactivities, such as anti-inflammatory, antimicrobial, and antioxidant. This interesting potential brings forth the need to develop methods for their extraction, isolation, identification, and quantification. The aim of this work is to describe the potential of cork by-products for the cosmetic and pharmaceutical industry and to assemble the available extraction, isolation, and analytical methods applied to cork by-products, as well the biological assays. To our knowledge, this compilation has never been done, and it opens new avenues for the development of new applications for cork by-products.
Collapse
Affiliation(s)
- Carolina Morais Carriço
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Carlos Afonso
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Rocha E Silva
- Dimas & Silva, Lda. Industry, Rua Central de Goda 345, 4535-167 Mozelos, Portugal
| | - Isabel F Almeida
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Zosso CU, Ofiti NOE, Torn MS, Wiesenberg GLB, Schmidt MWI. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming. NATURE GEOSCIENCE 2023; 16:344-348. [PMID: 37064011 PMCID: PMC10089920 DOI: 10.1038/s41561-023-01142-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
Subsoils contain more than half of soil organic carbon (SOC) and are expected to experience rapid warming in the coming decades. Yet our understanding of the stability of this vast carbon pool under global warming is uncertain. In particular, the fate of complex molecular structures (polymers) remains debated. Here we show that 4.5 years of whole-soil warming (+4 °C) resulted in less polymeric SOC (sum of specific polymers contributing to SOC) in the warmed subsoil (20-90 cm) relative to control, with no detectable change in topsoil. Warming stimulated the subsoil loss of lignin phenols (-17 ± 0%) derived from woody plant biomass, hydrolysable lipids cutin and suberin, derived from leaf and woody plant biomass (-28 ± 3%), and pyrogenic carbon (-37 ± 8%) produced during incomplete combustion. Given that these compounds have been proposed for long-term carbon sequestration, it is notable that they were rapidly lost in warmed soils. We conclude that complex polymeric carbon in subsoil is vulnerable to decomposition and propose that molecular structure alone may not protect compounds from degradation under future warming.
Collapse
Affiliation(s)
- Cyrill U. Zosso
- Department of Geography, University of Zurich, Zurich, Switzerland
| | | | - Margaret S. Torn
- Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Energy Resources Group, University of California, Berkeley, CA USA
| | | | | |
Collapse
|
14
|
Hamilton K, Rahman T, Sadowski J, Karunakaran C, Tanino K. Identification of ultrastructural and biochemical cuticular markers influencing temperature of ice nucleation in selected genotypes of corn. PHYSIOLOGIA PLANTARUM 2023; 175:e13902. [PMID: 36999192 DOI: 10.1111/ppl.13902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Corn is an economically important yet frost-sensitive crop, injured at the moment of ice nucleation. However, the influence of autumn temperatures on subsequent ice nucleation temperature is unknown. A 10-day chilling treatment under phytotron conditions ("mild", 18/6°C) or ("extreme", 10/5°C) generated no-visible damage but induced changes in the cuticle of the four genotypes in this study. The putatively more cold hardy Genotypes 884 and 959 leaves nucleated at colder temperatures compared to the more sensitive Genotypes 675 and 275. After chilling treatment, all four genotypes displayed warmer ice nucleation temperatures, with Genotype 884 expressing the largest shift to warmer nucleation temperatures. Cuticular hydrophobicity reduced while cuticular thickness remained unchanged under the chilling treatment. By contrast, under five-week field conditions, cuticle thickness increased in all genotypes, with Genotype 256 expressing a significantly thinner cuticle. FTIR spectroscopy revealed increases in the spectral regions of cuticular lipids in all genotypes after phytotron chilling treatment, while those spectral regions decreased under field conditions. A total of 142 molecular compounds were detected, with 28 compounds significantly induced under either phytotron or field conditions. Of these, seven compounds were induced under both conditions (Alkanes C31-C33, Ester C44, C46, β-amyrin, and triterpene). While clear differential responses were observed, chilling conditions preceding a frost modified physical and biochemical properties of the leaf cuticle under both phytotron and field conditions indicating this response is dynamic and could be a factor in selecting corn genotypes better adapted to avoiding frost with lower ice nucleation temperature.
Collapse
Affiliation(s)
- Kaila Hamilton
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| | - Tawhidur Rahman
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| | - Jason Sadowski
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| | | | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| |
Collapse
|
15
|
Germination Development of Powdery Mildew on Natural and Artificial Wheat Leaf Surfaces: A Study to Investigate Plant Wax Signals. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
16
|
Liu Q, Huang H, Chen Y, Yue Z, Wang Z, Qu T, Xu D, Lü S, Hu H. Two Arabidopsis MYB-SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional suppression on DEWAX. THE NEW PHYTOLOGIST 2022; 236:2115-2130. [PMID: 36110041 DOI: 10.1111/nph.18498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB-SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor-associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX-SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle-regulated wax biosynthesis.
Collapse
Affiliation(s)
- Qing Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Qu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Why do some funneliform flowers have petal folds accompanied with hierarchical surface microstructure? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
19
|
Liu LL, Deng YQ, Dong XX, Wang CF, Yuan F, Han GL, Wang BS. ALDH2C4 regulates cuticle thickness and reduces water loss to promote drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111405. [PMID: 35914575 DOI: 10.1016/j.plantsci.2022.111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, ALDH2C4 encodes coniferaldehyde dehydrogenase, which oxidizes coniferaldehyde to ferulic acid. Drought stress is one of the important abiotic stresses affecting plant growth. However, the role of ferulic acid in drought resistance is unknown. To investigate the contribution of ferulic acid to cuticle composition and drought resistance, we used two Arabidopsis aldh2c4 mutant lines. Compared with wild-type (WT) leaves, ferulic acid contents were significantly lower (by more than 50 %) in mutants. The mutants also had lower amounts of cutin and wax, primarily due to reductions in C18:2 dioic acid and alkanes, respectively. Furthermore, the leaves of the mutant plants exhibited greater rates of water loss and released chlorophyll faster than WT leaves when immersed in 80 % ethanol, indicating a defective cuticle barrier. The growth of aldh2c4 mutants was severely inhibited, and their leaves showed a higher degree of wilting relative to the WT plants under drought conditions. In aldh2c4 complementation lines, the growth inhibition of the mutant plants under drought stress was alleviated. Taken together, our results demonstrate that ferulic acid plays an important role in the composition and structural properties of the cuticle and that a ferulic acid deficiency in the cutin leads to reduced drought tolerance.
Collapse
Affiliation(s)
- Li-Li Liu
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Yun-Quan Deng
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin-Xiu Dong
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Cheng-Feng Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Fang Yuan
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Guo-Liang Han
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bao-Shan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
21
|
Wang X, He M, Liu H, Ding H, Liu K, Li Y, Cheng P, Li Q, Wang B. Functional Characterization of the M36 Metalloprotease FgFly1 in Fusarium graminearum. J Fungi (Basel) 2022; 8:jof8070726. [PMID: 35887481 PMCID: PMC9316299 DOI: 10.3390/jof8070726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Fungalysin metallopeptidase (M36), a hydrolase, catalyzes the hydrolysis of alanine, glycine, etc. Normally, it is considered to play an important role in the progress of fungal infection. However, the function of fungalysin metallopeptidase (M36) in Fusarium graminearum has not been reported. In this study, we explored the biological functions of FgFly1, a fungalysin metallopeptidase (M36) of F. graminearum. We found that ΔFgFly1 did not affect the ability to produce DON toxin, although it inhibited spore germination during asexual reproduction and reduction in pathogenicity compared with PH-1. Therefore, we speculated that FgFly1 affects the pathogenicity of F.graminearum by affecting pathways related to wheat disease resistance. Target protein TaCAMTA (calmodulin-binding transcription activator) was selected by a yeast two-hybrid (Y2H) system. Then, the interaction between FgFly1 and TaCAMTA was verified by bimolecular fluorescent complimentary (BiFC) and luciferase complementation assay (LCA). Furthermore, compared with wild-type Arabidopsis thaliana, the morbidity level of ΔAtCAMTA was increased after infection with F.graminearum, and the expression level of NPR1 was significantly reduced. Based on the above results, we concluded that FgFly1 regulated F. graminearum pathogenicity by interacting with host cell CAMTA protein.
Collapse
|
22
|
Dittrich J, Brethauer C, Goncharenko L, Bührmann J, Zeisler-Diehl V, Pariyar S, Jakob F, Kurkina T, Schreiber L, Schwaneberg U, Gohlke H. Rational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28412-28426. [PMID: 35604777 DOI: 10.1021/acsami.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.
Collapse
Affiliation(s)
- Jonas Dittrich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Christin Brethauer
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Liudmyla Goncharenko
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Jens Bührmann
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | | | - Shyam Pariyar
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn 53115, Germany
| | - Felix Jakob
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Tetiana Kurkina
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Schwaneberg
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Holger Gohlke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
23
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|
24
|
Vázquez-Alcántara L, Oliart-Ros RM, García-Bórquez A, Peña-Montes C. Expression of a Cutinase of Moniliophthora roreri with Polyester and PET-Plastic Residues Degradation Activity. Microbiol Spectr 2021; 9:e0097621. [PMID: 34730414 PMCID: PMC8567236 DOI: 10.1128/spectrum.00976-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Cutinases are enzymes produced by phytopathogenic fungi like Moniliophthora roreri. The three genome-located cutinase genes of M. roreri were amplified from cDNA of fungi growing in different induction culture media for cutinase production. The mrcut1 gene was expressed in the presence of a cacao cuticle, while the mrcut2 and mrcut3 genes were expressed when an apple cuticle was used as the inducer. The sequences of all genes were obtained and analyzed by bioinformatics tools to determine the presence of signal peptides, introns, glycosylation, and regulatory sequences. Also, the theoretical molecular weight and pI were obtained and experimentally confirmed. Finally, cutinase 1 from M. roreri (MRCUT1) was selected for heterologous expression in Escherichia coli. Successful overexpression of MRCUT1 was observed with the highest enzyme activity of 34,036 U/mg under the assay conditions at 40°C and pH 8. Furthermore, the degradation of different synthetic polyesters was evaluated; after 21 days, 59% of polyethylene succinate (PES), 43% of polycaprolactone (PCL), and 31% of polyethylene terephthalate (PET) from plastic residues were degraded. IMPORTANCE Plastic pollution is exponentially increasing; even the G20 has recognized an urgent need to implement actions to reduce it. In recent years, searching for enzymes that can degrade plastics, especially those based on polyesters such as PET, has been increasing as they can be a green alternative to the actual plastic degradation process. A promising option in recent years refers to biological tools such as enzymes involved in stages of partial and even total degradation of some plastics. In this context, the MRCUT1 enzyme can degrade polyesters contained in plastic residues in a short time. Besides, there is limited knowledge about the biochemical properties of cutinases from M. roreri. Commonly, fungal enzymes are expressed as inclusion bodies in E. coli with reduced activity. Interestingly, the successful expression of one cutinase of M. roreri in E. coli with enhanced activity is described.
Collapse
Affiliation(s)
- Laura Vázquez-Alcántara
- Tecnológico Nacional de México/IT Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México
| | - Rosa María Oliart-Ros
- Tecnológico Nacional de México/IT Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México
| | - Arturo García-Bórquez
- Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, UPALM, Mexico City, México
| | - Carolina Peña-Montes
- Tecnológico Nacional de México/IT Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México
| |
Collapse
|
25
|
Chen D, Sun Z, Wu K, Zhang Q, Song Y, Wang T, Fu D, Cao J, Luo Y, Qu G. Dynamic changes in wax and cutin compounds and the relationship with water loss in 'Red Fuji' and 'Golden Delicious' apples during shelf life. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Di Chen
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Zongyan Sun
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Kunsheng Wu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Qiaoli Zhang
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yanping Song
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Tingyu Wang
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
26
|
Nakakuni M, Watanabe K, Kaminaka K, Mizuno Y, Takehara K, Kuwae T, Yamamoto S. Seagrass contributes substantially to the sedimentary lignin pool in an estuarine seagrass meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148488. [PMID: 34174596 DOI: 10.1016/j.scitotenv.2021.148488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Shallow coastal ecosystems are reservoirs of carbon derived from allochthonous organic matter and autochthonous organic matter produced by microalgae and macrophytes. Carbon stored in vegetated coastal ecosystems has attracted broad attention as an important component of carbon sinks. Characterizing the source of carbon in sediments is essential for quantifying the carbon-sequestration function of shallow coastal ecosystems. In this study, we investigated the origins of organic matter using organic biomarkers (lignin phenols, fatty acids, cutin acids, diacids, and ω-hydroxy acids) in surface sediments in a seagrass-dominated lagoon (Furen Lagoon, Japan). Biomarkers derived from allochthonous vascular plants, such as long-chain fatty acids, showed higher concentrations near river mouths. Furthermore, biomarker signals indicated that sedimentary organic carbon originated in large part from degraded allochthonous vascular plants including roots. A Bayesian mixing model using the ratios of syringyl phenols to vanillyl phenols and cinnamyl phenols to vanillyl phenols indicated that up to about 65% of lignin in the sediments was derived from seagrass. This result indicates a substantial contribution of seagrass to the sedimentary lignin pool in an estuarine seagrass meadow. However, the percent contribution of seagrass to the lignin pool varied, with higher values near a tidal inlet and relatively low values near river mouths. Vertical profiles of organic biomarkers varied with the differences in degradability of organic compounds. Specifically, long-chain fatty acids decreased with increasing depth more than the other compounds, suggesting that they degraded more easily. Conversely, we observed a tendency for lignin phenols to be selectively preserved in the vertical sediment profiles. Our results show that sediment organic biomarkers can provide diverse information such as the composition and origins of organic carbon, the contribution of seagrass derived lignin, and the varying degrees of decomposition. This approach should bring new insights to the estimation of carbon in future blue carbon studies.
Collapse
Affiliation(s)
- Masatoshi Nakakuni
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University, 1-236 Tangicho, Hachioji, Tokyo 192-8577, Japan; Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kita-Gun, Kagawa 761-0795, Japan.
| | - Kenta Watanabe
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka 239-0826, Japan
| | - Khoki Kaminaka
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University, 1-236 Tangicho, Hachioji, Tokyo 192-8577, Japan
| | - Yukiko Mizuno
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University, 1-236 Tangicho, Hachioji, Tokyo 192-8577, Japan
| | - Keiko Takehara
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University, 1-236 Tangicho, Hachioji, Tokyo 192-8577, Japan; Graduate School of Integrated Arts and Sciences, Kochi University, 200 Monobe Otsu, Nankoku City, Kochi 783-8502, Japan
| | - Tomohiro Kuwae
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka 239-0826, Japan
| | - Shuichi Yamamoto
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University, 1-236 Tangicho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
27
|
Si Y, Khanal BP, Schlüter OK, Knoche M. Direct Evidence for a Radial Gradient in Age of the Apple Fruit Cuticle. FRONTIERS IN PLANT SCIENCE 2021; 12:730837. [PMID: 34745165 PMCID: PMC8567170 DOI: 10.3389/fpls.2021.730837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/21/2021] [Indexed: 05/29/2023]
Abstract
The pattern of cuticle deposition plays an important role in managing strain buildup in fruit cuticles. Cuticular strain is the primary trigger for numerous fruit-surface disorders in many fruit crop species. Recent evidence indicates a strain gradient may exist within the apple fruit cuticle. The outer layers of the cuticle are more strained and thus more susceptible to microcracking than the inner layers. A radial gradient in cuticle age is the most likely explanation. Our study aimed to establish whether (or not) deposition of new cutin in a developing apple fruit occurs on the inner surface of the cuticle, i.e., immediately abutting the outward-facing epidermal cell wall. Developing apples were fed with 13C oleic acid through the skin. Following a 14-d period for incorporation, the fruit was harvested and the cuticular membranes (CMs) isolated enzymatically. The CMs were then ablated to varying extents from the inner or the outer surfaces, using a cold atmospheric pressure plasma (CAPP). Afterwards, the ablated CMs were dewaxed and the 13C contents were determined by mass spectrometry. The incorporation of 13C in the cutin fraction was higher than in the wax fraction. The 13C content was highest in non-ablated, dewaxed CM (DCM) and decreased as ablation depth from the inner surface increased. There was no change in 13C content when ablation was carried out from the outer surface. As fruit development proceeded, more 13C label was found towards the middle of the DCM. These results offered direct evidence for deposition of cutin being on the inner surface of the cuticle, resulting in a radial gradient in cuticular age-the most recent deposition (youngest) being on the inner cuticle surface (abutting the epidermal cell wall) and the earliest deposition (oldest) being on the outer surface (abutting the atmosphere).
Collapse
Affiliation(s)
- Yiru Si
- Fruit Science Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Bishnu P. Khanal
- Fruit Science Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Oliver K. Schlüter
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Moritz Knoche
- Fruit Science Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
28
|
Dou J, Evtuguin DV, Vuorinen T. Structural Elucidation of Suberin from the Bark of Cultivated Willow ( Salix sp.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10848-10855. [PMID: 34514798 DOI: 10.1021/acs.jafc.1c04112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although extractives have been symbolized as major bioactive pharmacological compounds from Salix (Salicaceae) bark, we speculated that these pharmaceutical effects cannot be solely attributed to phenolic components and their derivatives, but the long-chain suberin acids also contribute to their therapeutic effects. Hence, isolation and deconstruction of suberin were conducted, for the first time, to enrich our knowledge about the macromolecular components at the cell wall of willow bark. Saponification was adopted to obtain suberin extracts at a yield of approximately 5 wt % based on the bark of the studied hybrids. Gas chromatography-mass spectrometry allowed qualification and quantification of 23 compounds from the released suberin monomers, from which fatty acids represented majority of the isolated suberin, namely, fatty acid methyl esters (C17-C19); mono-carboxylic acid (C7-C16); alpha, omega-dicarboxylic acid (C7-C16); and omega-hydroxy long-chain fatty acids (C16-C22). Additionally, the lipophilic extractive was dominated by piceol, heptacosane, β-sitosterol, and fatty acids (C16-C28) from the studied hybrids. These findings could boost our integrative approach toward full valorization of willow bark.
Collapse
Affiliation(s)
- Jinze Dou
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland
| | - Dmitry V Evtuguin
- CICECO/Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Tapani Vuorinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
29
|
Huth MA, Huth A, Koch K. Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:939-949. [PMID: 34497741 PMCID: PMC8381832 DOI: 10.3762/bjnano.12.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Eucalyptus trees and many plants from the grass family (Poaceae) and the heather family (Ericaceae) have a protective multifunctional wax coating on their surfaces made of branched ß-diketone tubules. ß-diketone tubules have a different size, shape, and chemical composition than the well-described nonacosanol tubules of the superhydrophobic leaves of lotus (Nelumbo nucifera). Until now the formation process of ß-diketone tubules is unknown. In this study, extracted wax of E. gunnii leaves and pure ß-diketone were recrystallized on two different artificial materials and analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to study their formation process. Both the wax mixture and pure ß-diketone formed tubules similar to those on E. gunnii leaves. Deviating platelet-shaped and layered structures not found on leaves were also formed, especially on areas with high mass accumulation. High-resolution AFM images of recrystallized ß-diketone tubules are presented for the first time. The data showed that ß-diketone tubules are formed by self-assembly and confirmed that ß-diketone is the shape-determining component for this type of tubules.
Collapse
Affiliation(s)
- Miriam Anna Huth
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Axel Huth
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Kerstin Koch
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
30
|
Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala VKR, Lü S, Hammerschmidt R, Douches D, Yim WC, Santos P, Kosma DK. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:77-99. [PMID: 33860574 DOI: 10.1111/tpj.15275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.
Collapse
Affiliation(s)
- Zachary Wahrenburg
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Elizabeth Benesch
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Catherine Lowe
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Jazmin Jimenez
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ray Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Patricia Santos
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
31
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
32
|
Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana. Appl Environ Microbiol 2021; 87:AEM.00091-21. [PMID: 33608298 DOI: 10.1128/aem.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biosurfactant production is a common trait in leaf surface-colonizing bacteria that has been associated with increased survival and movement on leaves. At the same time, the ability to degrade aliphatics is common in biosurfactant-producing leaf colonizers. Pseudomonads are common leaf colonizers and have been recognized for their ability to produce biosurfactants and degrade aliphatic compounds. In this study, we investigated the role of biosurfactants in four non-plant-pathogenic Pseudomonas strains by performing a series of experiments to characterize their surfactant properties and their role during leaf colonization and diesel degradation. The biosurfactants produced were identified using mass spectrometry. Two strains produced viscosin-like biosurfactants, and the other two produced massetolide A-like biosurfactants, which aligned with the phylogenetic relatedness between the strains. To further investigate the role of surfactant production, random Tn5 transposon mutagenesis was performed to generate knockout mutants. The knockout mutants were compared to their respective wild types with regard to their ability to colonize gnotobiotic Arabidopsis thaliana and to degrade diesel or dodecane. It was not possible to detect negative effects during plant colonization in direct competition or individual colonization experiments. When grown on diesel, knockout mutants grew significantly slower than their respective wild types. When grown on dodecane, knockout mutants were less impacted than during growth on diesel. By adding isolated wild-type biosurfactants, it was possible to complement the growth of the knockout mutants.IMPORTANCE Many leaf-colonizing bacteria produce surfactants and are able to degrade aliphatic compounds; however, whether surfactant production provides a competitive advantage during leaf colonization is unclear. Furthermore, it is unclear if leaf colonizers take advantage of the aliphatic compounds that constitute the leaf cuticle and cuticular waxes. Here, we tested the effect of surfactant production on leaf colonization, and we demonstrate that the lack of surfactant production decreases the ability to degrade aliphatic compounds. This indicates that leaf surface-dwelling, surfactant-producing bacteria contribute to degradation of environmental hydrocarbons and may be able to utilize leaf surface waxes. This has implications for plant-microbe interactions and future studies.
Collapse
|
33
|
Arya M, Prakash S, Sougrakpam Y, Deswal R. Brassica juncea leaf cuticle proteome analysis shows myrosinase protein, antifreeze activity, and post-translationally modified secretory proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:234-247. [PMID: 33647583 DOI: 10.1016/j.plaphy.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Plant cuticle, the site of perception of stress signals, is an extracellular hydrophobic barrier that covers the epidermis of the above-ground parts. This lipidic layer has been explored for its cutin and wax composition. However, reports on the cuticle proteins are scanty. Therefore, leaf cuticle proteins of Brassica juncea isolated using organic solvents (chloroform-methanol, 2:1(v/v)) were analyzed using gel based and quantitative shotgun proteomics. Out of 615 proteins identified, 27% (169) had signal peptides supporting extracellular localization. Bioinformatics tool, QuickGO predicted the involvement of these proteins in catabolism (21%), peptidase activity (13%), oxidoreductase (12%), defense response (9%), fatty acid binding (9%), nutrient reservoir activity (8%), chitin binding (7%) and lipid transport (2%). Myrosinase-catalyzed glucosinolate hydrolysis releases bioactive compounds, which contribute to plant defense. This system is termed as "mustard oil bomb". Myrosinase and its associating protein, GDSL esterase/lipase ESM1 (involved in cuticle structuring and defense) were detected in the cuticle. GDSL-esterase/lipase ESM1 and β-glucanase (an antifreeze protein) showed in vitro activity. Analysis of cuticle extract by nanoliter osmometer-phase contrast microscopy detected antifreeze activity due to non-protein component. Post-translational modification analysis using PTM viewer predicted N-glycosylation (66%), N-terminal proteolysis (40%), and phosphorylation (32%) to be the dominant modification in the classical secretory proteins. N-glycosylation of myrosinase and GDSL esterase/lipase, ESM1 was confirmed by Con A affinoblotting. This study not only identified leaf cuticle proteins, but also laid the foundation for exploring the extracellular glucosinolate-myrosinase system, PTM crosstalk, and antifreeze activity as stress adaptive strategies in B. juncea.
Collapse
Affiliation(s)
- Meenakshi Arya
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Satya Prakash
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
34
|
Harman-Ware AE, Sparks S, Addison B, Kalluri UC. Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:75. [PMID: 33743797 PMCID: PMC7981814 DOI: 10.1186/s13068-021-01892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Suberin is a hydrophobic biopolymer of significance in the production of biomass-derived materials and in biogeochemical cycling in terrestrial ecosystems. Here, we describe suberin structure and biosynthesis, and its importance in biological (i.e., plant bark and roots), ecological (soil organic carbon) and economic (biomass conversion to bioproducts) contexts. Furthermore, we highlight the genomics and analytical approaches currently available and explore opportunities for future technologies to study suberin in quantitative and/or high-throughput platforms in bioenergy crops. A greater understanding of suberin structure and production in lignocellulosic biomass can be leveraged to improve representation in life cycle analysis and techno-economic analysis models and enable performance improvements in plant biosystems as well as informed crop system management to achieve economic and environmental co-benefits.
Collapse
Affiliation(s)
- Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Samuel Sparks
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Udaya C Kalluri
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
35
|
Si Y, Khanal BP, Sauheitl L, Knoche M. Cutin Synthesis in Developing, Field-Grown Apple Fruit Examined by External Feeding of Labelled Precursors. PLANTS (BASEL, SWITZERLAND) 2021; 10:497. [PMID: 33807966 PMCID: PMC8000455 DOI: 10.3390/plants10030497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/01/2023]
Abstract
An intact skin is essential in high-quality apples. Ongoing deposition of cuticular material during fruit development may decrease microcracking. Our objective was to establish a system for quantifying cutin and wax deposition in developing apple fruit. Oleic acid (13C and 14C labelled) and palmitic acid (14C labelled) were fed to developing apples and the amounts incorporated in the cutin and wax fractions were quantified. The incorporation of 14C oleic acid (C18) was significantly higher than that of 14C palmitic acid (C16) and the incorporation in the cutin fraction exceeded that in the wax fraction. The amount of precursor incorporated in the cutin increased asymptotically with time, but the amount in the wax fraction remained about constant. Increasing the concentration of the precursor applied generally increased incorporation. Incorporation in the cutin fraction was high during early development (43 days after full bloom) and decreased towards maturity. Incorporation was higher from a dilute donor solution (infinite dose feeding) than from a donor solution subjected to drying (finite dose feeding) or from perfusion of the precursor by injection. Feeding the skin of a developing apple with oleic acid resulted in significant incorporation in the cutin fraction under both laboratory and field conditions.
Collapse
Affiliation(s)
- Yiru Si
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.S.); (B.P.K.)
| | - Bishnu P. Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.S.); (B.P.K.)
| | - Leopold Sauheitl
- Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.S.); (B.P.K.)
| |
Collapse
|
36
|
Kamtsikakis A, Baales J, Zeisler-Diehl VV, Vanhecke D, Zoppe JO, Schreiber L, Weder C. Asymmetric water transport in dense leaf cuticles and cuticle-inspired compositionally graded membranes. Nat Commun 2021; 12:1267. [PMID: 33627645 PMCID: PMC7904774 DOI: 10.1038/s41467-021-21500-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
Most of the aerial organs of vascular plants are covered by a protective layer known as the cuticle, the main purpose of which is to limit transpirational water loss. Cuticles consist of an amphiphilic polyester matrix, polar polysaccharides that extend from the underlying epidermal cell wall and become less prominent towards the exterior, and hydrophobic waxes that dominate the surface. Here we report that the polarity gradient caused by this architecture renders the transport of water through astomatous olive and ivy leaf cuticles directional and that the permeation is regulated by the hydration level of the cutin-rich outer cuticular layer. We further report artificial nanocomposite membranes that are inspired by the cuticles' compositionally graded architecture and consist of hydrophilic cellulose nanocrystals and a hydrophobic polymer. The structure and composition of these cuticle-inspired membranes can easily be varied and this enables a systematic investigation of the water transport mechanism.
Collapse
Affiliation(s)
| | - Johanna Baales
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Dimitri Vanhecke
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Justin O Zoppe
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Bonn, Germany.
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
37
|
Xu B, Taylor L, Pucker B, Feng T, Glover BJ, Brockington SF. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. THE NEW PHYTOLOGIST 2021; 229:2324-2338. [PMID: 33051877 DOI: 10.1111/nph.16997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Lin Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Genetics and Genomics of Plants, Center for Biotechnology & Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße, Bochum, 44801, Germany
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430047, China
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
38
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled cutin and suberin monomeric dicarboxylic acids of the general formula HO 213 C-(CH 2 ) n - 13 CO 2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28). J Labelled Comp Radiopharm 2021; 64:14-29. [PMID: 33063895 DOI: 10.1002/jlcr.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
39
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 PMCID: PMC7754373 DOI: 10.1111/nph.16837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Richard Bourgault
- Department of BiologyAlgoma UniversitySault Ste. MarieONP6A 2G4Canada
| | - Mary Galli
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Josh Strable
- School of Integrative Plant SciencePlant Biology SectionCornell UniversityIthacaNY14853USA
| | - Zongliang Chen
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Fan Feng
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Jiaqiang Dong
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Isabel Molina
- Department of BiologyAlgoma UniversitySault Ste. MarieONP6A 2G4Canada
| | - Andrea Gallavotti
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
- Department of Plant BiologyRutgers UniversityNew BrunswickNJ08901USA
| |
Collapse
|
40
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 DOI: 10.1101/2020.02.11.943787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/27/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Josh Strable
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
41
|
Straube J, Chen YH, Khanal BP, Shumbusho A, Zeisler-Diehl V, Suresh K, Schreiber L, Knoche M, Debener T. Russeting in Apple is Initiated after Exposure to Moisture Ends: Molecular and Biochemical Evidence. PLANTS (BASEL, SWITZERLAND) 2020; 10:plants10010065. [PMID: 33396789 PMCID: PMC7824318 DOI: 10.3390/plants10010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/01/2023]
Abstract
Exposure of the fruit surface to moisture during early development is causal in russeting of apple (Malus × domestica Borkh.). Moisture exposure results in formation of microcracks and decreased cuticle thickness. Periderm differentiation begins in the hypodermis, but only after discontinuation of moisture exposure. Expressions of selected genes involved in cutin, wax and suberin synthesis were quantified, as were the wax, cutin and suberin compositions. Experiments were conducted in two phases. In Phase I (31 days after full bloom) the fruit surface was exposed to moisture for 6 or 12 d. Phase II was after moisture exposure had been discontinued. Unexposed areas on the same fruit served as unexposed controls. During Phase I, cutin and wax synthesis genes were down-regulated only in the moisture-exposed patches. During Phase II, suberin synthesis genes were up-regulated only in the moisture-exposed patches. The expressions of cutin and wax genes in the moisture-exposed patches increased slightly during Phase II, but the levels of expression were much lower than in the control patches. Amounts and compositions of cutin, wax and suberin were consistent with the gene expressions. Thus, moisture-induced russet is a two-step process: moisture exposure reduces cutin and wax synthesis, moisture removal triggers suberin synthesis.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Bishnu P. Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Alain Shumbusho
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Viktoria Zeisler-Diehl
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| |
Collapse
|
42
|
Elucidating esterification reaction during deposition of cutin monomers from classical molecular dynamics simulations. J Mol Model 2020; 26:280. [PMID: 32970227 DOI: 10.1007/s00894-020-04544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
The structural behavior of some cutin monomers, when deposited on mica support, was extensively investigated by our research group. However, other events, such as esterification reaction (ER), are still a way to explore. In this paper, we explore possible ER that could occur when these monomers adsorb on support. Although classical molecular dynamics simulations are not able to capture reactive effects, here, we show that they become valuable strategies to analyze the initial structural configurations to predict the most favorable reaction routes. Thus, when depositing aleuritic acid (ALE), it is observed that the loss of capacity to form self-assembled (SA) systems favors different routes to occur ER. In pure ALE bilayers systems, an ER is given exclusively through the -COOH and primary -OH groups. In pure ALE monolayers systems, the ER does not happen when the system is self-assembled. However, for disorganized systems, it is able to occur by two possible routes: -COOH and primary -OH (route 1) and -COOH and secondary -OH (route 2). When palmitic acid (PAL) is added in small quantities, ALE SAMs can now form an ER. In this case, ER occurs mostly through the -COOH and secondary -OH groups. However, when the presence of PAL is dominant, ER can occur with either of both possibilities, that is, routes 1 and 2. Graphical abstract.
Collapse
|
43
|
Stojanovski D, Živaljević I, Dimitrijević V, Dunne J, Evershed RP, Balasse M, Dowle A, Hendy J, McGrath K, Fischer R, Speller C, Jovanović J, Casanova E, Knowles T, Balj L, Naumov G, Putica A, Starović A, Stefanović S. Living off the land: Terrestrial-based diet and dairying in the farming communities of the Neolithic Balkans. PLoS One 2020; 15:e0237608. [PMID: 32817620 PMCID: PMC7444498 DOI: 10.1371/journal.pone.0237608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
The application of biomolecular techniques to archaeological materials from the Balkans is providing valuable new information on the prehistory of the region. This is especially relevant for the study of the neolithisation process in SE Europe, which gradually affected the rest of the continent. Here, to answer questions regarding diet and subsistence practices in early farming societies in the central Balkans, we combine organic residue analyses of archaeological pottery, taxonomic and isotopic study of domestic animal remains and biomolecular analyses of human dental calculus. The results from the analyses of the lipid residues from pottery suggest that milk was processed in ceramic vessels. Dairy products were shown to be part of the subsistence strategies of the earliest Neolithic communities in the region but were of varying importance in different areas of the Balkan. Conversely, milk proteins were not detected within the dental calculus. The molecular and isotopic identification of meat, dairy, plants and beeswax in the pottery lipids also provided insights into the diversity of diet in these early Neolithic communities, mainly based on terrestrial resources. We also present the first compound-specific radiocarbon dates for the region, obtained directly from absorbed organic residues extracted from pottery, identified as dairy lipids.
Collapse
Affiliation(s)
| | | | - Vesna Dimitrijević
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Beograd, Serbia
| | - Julie Dunne
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Richard P. Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Marie Balasse
- Archéozoologie, archéobotanique: Sociétés, Pratiques Environnements (AASPE), CNRS - Muséum national d’Histoire Naturelle, Paris, France
| | - Adam Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, United Kingdom
| | - Jessica Hendy
- BioArch, Department of Archaeology, University of York, York, United Kingdom
| | - Krista McGrath
- BioArch, Department of Archaeology, University of York, York, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Camilla Speller
- BioArch, Department of Archaeology, University of York, York, United Kingdom
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Jelena Jovanović
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Beograd, Serbia
| | - Emmanuelle Casanova
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Timothy Knowles
- BRAMS Facility, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | - Sofija Stefanović
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Beograd, Serbia
| |
Collapse
|
44
|
Jiang H, Wang Y, Li C, Wang B, Ma L, Ren Y, Bi Y, Li Y, Xue H, Prusky D. The effect of benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) treatment on regulation of reactive oxygen species metabolism involved in wound healing of potato tubers during postharvest. Food Chem 2020; 309:125608. [DOI: 10.1016/j.foodchem.2019.125608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/15/2019] [Accepted: 09/26/2019] [Indexed: 01/31/2023]
|
45
|
Bourgault R, Matschi S, Vasquez M, Qiao P, Sonntag A, Charlebois C, Mohammadi M, Scanlon MJ, Smith LG, Molina I. Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. ANNALS OF BOTANY 2020; 125:79-91. [PMID: 31504131 PMCID: PMC6948203 DOI: 10.1093/aob/mcz143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Prior work has examined cuticle function, composition and ultrastructure in many plant species, but much remains to be learned about how these features are related. This study aims to elucidate relationships between these features via analysis of cuticle development in adult maize (Zea mays L.) leaves, while also providing the most comprehensive investigation to date of the composition and ultrastructure of adult leaf cuticles in this important crop plant. METHODS We examined water permeability, wax and cutin composition via gas chromatography, and ultrastructure via transmission electron microscopy, along the developmental gradient of partially expanded adult maize leaves, and analysed the relationships between these features. KEY RESULTS The water barrier property of the adult maize leaf cuticle is acquired at the cessation of cell expansion. Wax types and chain lengths accumulate asynchronously over the course of development, while overall wax load does not vary. Cutin begins to accumulate prior to establishment of the water barrier and continues thereafter. Ultrastructurally, pavement cell cuticles consist of an epicuticular layer, and a thin cuticle proper that acquires an inner, osmiophilic layer during development. CONCLUSIONS Cuticular waxes of the adult maize leaf are dominated by alkanes and alkyl esters. Unexpectedly, these are localized mainly in the epicuticular layer. Establishment of the water barrier during development coincides with a switch from alkanes to esters as the major wax type, and the emergence of an osmiophilic (likely cutin-rich) layer of the cuticle proper. Thus, alkyl esters and the deposition of the cutin polyester are implicated as key components of the water barrier property of adult maize leaf cuticles.
Collapse
Affiliation(s)
- Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada
| | - Susanne Matschi
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Miguel Vasquez
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Pengfei Qiao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Annika Sonntag
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada
| | - Caleb Charlebois
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada
| | - Marc Mohammadi
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Laurie G Smith
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada
| |
Collapse
|
46
|
Wang G, Xu J, Li L, Guo Z, Si Q, Zhu G, Wang X, Guo W. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:222-238. [PMID: 31207065 PMCID: PMC6920168 DOI: 10.1111/pbi.13190] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/06/2023]
Abstract
Suberin acts as stress-induced antipathogen barrier in the root cell wall. CYP86A1 encodes cytochrome P450 fatty acid ω-hydroxylase, which has been reported to be a key enzyme for suberin biosynthesis; however, its role in resistance to fungi and the mechanisms related to immune responses remain unknown. Here, we identified a disease resistance-related gene, GbCYP86A1-1, from Gossypium barbadense cv. Hai7124. There were three homologs of GbCYP86A1 in cotton, which are specifically expressed in roots and induced by Verticillium dahliae. Among them, GbCYP86A1-1 contributed the most significantly to resistance. Silencing of GbCYP86A1-1 in Hai7124 resulted in severely compromised resistance to V. dahliae, while heterologous overexpression of GbCYP86A1-1 in Arabidopsis improved tolerance. Tissue sections showed that the roots of GbCYP86A1-1 transgenic Arabidopsis had more suberin accumulation and significantly higher C16-C18 fatty acid content than control. Transcriptome analysis revealed that overexpression of GbCYP86A1-1 not only affected lipid biosynthesis in roots, but also activated the disease-resistant immune pathway; genes encoding the receptor-like kinases (RLKs), receptor-like proteins (RLPs), hormone-related transcription factors, and pathogenesis-related protein genes (PRs) were more highly expressed in the GbCYP86A1-1 transgenic line than control. Furthermore, we found that when comparing V. dahliae -inoculated and noninoculated plants, few differential genes related to disease immunity were detected in the GbCYP86A1-1 transgenic line; however, a large number of resistance genes were activated in the control. This study highlights the role of GbCYP86A1-1 in the defence against fungi and its underlying molecular immune mechanisms in this process.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lechen Li
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Qingxin Si
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
47
|
Correia VG, Bento A, Pais J, Rodrigues R, Haliński ŁP, Frydrych M, Greenhalgh A, Stepnowski P, Vollrath F, King AWT, Silva Pereira C. The molecular structure and multifunctionality of the cryptic plant polymer suberin. Mater Today Bio 2019; 5:100039. [PMID: 32211605 PMCID: PMC7083753 DOI: 10.1016/j.mtbio.2019.100039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
Suberin, a plant polyester, consists of polyfunctional long-chain fatty acids and glycerol and is an intriguing candidate as a novel antimicrobial material. We purified suberin from cork using ionic-liquid catalysis during which the glycerol bonds that ensure the polymeric nature of suberin remained intact or were only partially cleaved—yielding the closest to a native configuration reported to date. The chemistry of suberin, both in situ (in cryogenically ground cork) and ex situ (ionic-liquid extracted), was elucidated using high-resolution one- and two-dimensional solution-state NMR analyses. Centrifugation was used to isolate suberin particles of distinct densities and their monomeric composition, assembly, and bactericidal effect, inter alia, were assessed. Analysis of the molecular structure of suberin revealed the relative abundance of linear aliphatic vs. acylglycerol esters, comprising all acylglycerol configurations and the amounts of total carbonyls (C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O), free acid end groups (COOH), OH aliphatics, and OH aromatics. Suberin centrifuged fractions revealed generic physiochemical properties and monomeric composition and self-assemble into polygonal structures that display distinct degrees of compactness when lyophilized. Suberin particles—suberinsomes—display bactericidal activity against major human pathogenic bacteria. Fingerprinting the multifunctionality of complex (plant) polyesters such as suberin allows for the identification of novel polymer assemblies with significant value-added properties.
Collapse
Affiliation(s)
- V G Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - A Bento
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - J Pais
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - R Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Ł P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - M Frydrych
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - A Greenhalgh
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - P Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - F Vollrath
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - A W T King
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (Chemicum), PL 55, 00014, Finland
| | - C Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
48
|
Staiger S, Seufert P, Arand K, Burghardt M, Popp C, Riederer M. The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds. PEST MANAGEMENT SCIENCE 2019; 75:3405-3412. [PMID: 31436379 DOI: 10.1002/ps.5589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The barrier to diffusion of organic solutes across the plant cuticle is composed of waxes consisting of very long-chain aliphatic (VLCA) and, to varying degrees, cyclic compounds like pentacyclic triterpenoids. The roles of both fractions in controlling cuticular penetration by organic solutes, e.g. the active ingredients (AI) of pesticides, are unknown to date. We studied the permeability of isolated leaf cuticular membranes from Garcinia xanthochymus and Prunus laurocerasus for lipophilic azoxystrobin and theobromine as model compounds for hydrophilic AIs. RESULTS The wax of P. laurocerasus consists of VLCA (12%) and cyclic compounds (88%), whereas VLCAs make up 97% of the wax of G. xanthochymus. We show that treating isolated cuticles with methanol almost quantitatively releases the cyclic fraction while leaving the VLCA fraction essentially intact. All VLCAs were subsequently removed using chloroform. In both species, the permeance of the two model compounds did not change significantly after methanol treatment, whereas chloroform extraction had a large effect on organic solute permeability. CONCLUSION The VLCA wax fraction makes up the permeability barrier for organic solutes, whereas cyclic compounds even in high amounts have a negligible role. This is of significance when optimizing the foliar uptake of pesticides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Simona Staiger
- University of Würzburg, Julius von Sachs Institute of Biosciences, Chair of Botany II - Ecophysiology and Vegetation Ecology, Würzburg, Germany
| | - Pascal Seufert
- University of Würzburg, Julius von Sachs Institute of Biosciences, Chair of Botany II - Ecophysiology and Vegetation Ecology, Würzburg, Germany
| | - Katja Arand
- University of Würzburg, Julius von Sachs Institute of Biosciences, Chair of Botany II - Ecophysiology and Vegetation Ecology, Würzburg, Germany
| | - Markus Burghardt
- University of Würzburg, Julius von Sachs Institute of Biosciences, Chair of Botany II - Ecophysiology and Vegetation Ecology, Würzburg, Germany
| | - Christian Popp
- Syngenta Crop Protection, Application Technology Group, Münchwilen, Switzerland
| | - Markus Riederer
- University of Würzburg, Julius von Sachs Institute of Biosciences, Chair of Botany II - Ecophysiology and Vegetation Ecology, Würzburg, Germany
| |
Collapse
|
49
|
Characterization of Agricultural and Food Processing Residues for Potential Rubber Filler Applications. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3040102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large volumes of agricultural and food processing residues are generated daily around the world. Despite the various potential uses reported for this biomass, most are still treated as waste that requires disposal and negatively impacts the environmental footprint of the primary production process. Increasing attention has been paid toward the use of these residues as alternative fillers for rubber and other large-scale commodity polymers to reduce dependence on petroleum. Nevertheless, characterization of these alternative fillers is required to define compatibility with the specific polymer, identify filler limitations, understand the properties of the resulting composites, and modify the materials to enable the engineering of composites to exploit all the potential advantages of these residue-derived fillers.
Collapse
|
50
|
Guarino C, Zuzolo D, Marziano M, Conte B, Baiamonte G, Morra L, Benotti D, Gresia D, Stacul ER, Cicchella D, Sciarrillo R. Investigation and Assessment for an effective approach to the reclamation of Polycyclic Aromatic Hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci Rep 2019; 9:11522. [PMID: 31395938 PMCID: PMC6687822 DOI: 10.1038/s41598-019-48005-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023] Open
Abstract
Native plant species were screened for their remediation potential for the removal of Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil of Bagnoli brownfield site (Southern Italy). Soils at this site contain all of the PAHs congeners at concentration levels well above the contamination threshold limits established by Italian environmental legislation for residential/recreational land use, which represent the remediation target. The concentration of 13 High Molecular Weight Polycyclic Aromatic Hydrocarbons in soil rhizosphere, plants roots and plants leaves was assessed in order to evaluate native plants suitability for a gentle remediation of the study area. Analysis of soil microorganisms are provides important knowledge about bioremediation approach. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria are the main phyla of bacteria observed in polluted soil. Functional metagenomics showed changes in dioxygenases, laccase, protocatechuate, and benzoate-degrading enzyme genes. Indolacetic acid production, siderophores release, exopolysaccharides production and ammonia production are the key for the selection of the rhizosphere bacterial population. Our data demonstrated that the natural plant-bacteria partnership is the best strategy for the remediation of a PAHs-contaminated soil.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Mario Marziano
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Barbara Conte
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Giuseppe Baiamonte
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | | | | | | | | | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy.
| |
Collapse
|