1
|
Stubbs DB, Ruzicka JA, Taylor EW. Modular Polymerase Synthesis and Internal Protein Domain Swapping via Dual Opposed Frameshifts in the Ebola Virus L Gene. Pathogens 2024; 13:829. [PMID: 39452701 PMCID: PMC11510084 DOI: 10.3390/pathogens13100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA. This process would allow the -1 frame UGA codons to be recoded as selenocysteine, forming part of a C-terminal module in a low abundance truncated isoform of the viral polymerase, potentially functioning in a redox role. Remarkably, 90 bases downstream of the -1 FS site, an active +1 FS site can be demonstrated, which, via a return to the zero frame, would enable the attachment of the entire C-terminal of the polymerase protein. Using a construct with upstream and downstream reporter genes, spanning a wildtype or mutated viral insert, we show significant +1 ribosomal frameshifting at this site. Acting singly or together, frameshifting at these sites (both of which are highly conserved in EBOV strains) could enable the expression of several modified isoforms of the polymerase. The 3D modeling of the predicted EBOV polymerase FS variants using the AI tool, AlphaFold, reveals a peroxiredoxin-like active site with arginine and threonine residues adjacent to a putative UGA-encoded selenocysteine, located on the back of the polymerase "hand". This module could serve to protect the viral RNA from peroxidative damage.
Collapse
Affiliation(s)
| | | | - Ethan W. Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA; (D.B.S.); (J.A.R.)
| |
Collapse
|
2
|
Zorec TM, Skubic L, Poljak M. A novel digital PCR assay for detection and comprehensive characterization of Molluscum contagiosum virus genotypes MOCV1, MOCV2, and MOCV3 and recombinant lineages. J Virol Methods 2024; 329:114993. [PMID: 38960327 DOI: 10.1016/j.jviromet.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Molluscum contagiosum virus (MOCV) is an important human pathogen causing a high disease burden worldwide. It is the last exclusively human-infecting poxvirus still circulating in its natural reservoir-a valuable model of poxviral evolution. Unfortunately, MOCV remains neglected, and little is known about its evolutionary history and circulating genomic variants, especially in non-privileged countries. The design weaknesses of available MOCV detection/genotyping assays surfaced with recent accumulation of abundant sequence information: all existing MOCV assays fail at accurate genotyping and capturing sub-genotype level diversity. Because complete MOCV genome characterization is an expensive and labor-intensive task, it makes sense to prioritize samples for whole-genome sequencing by diversity triage screening. To meet this demand, we developed a novel assay for accurate MOCV detection and genotyping, and comprehensive sub-genotype qualification to the level of phylogenetic groups (PGs). The assay included a novel set of oligonucleotide primers and probes, and it was implemented using digital polymerase chain reaction (dPCR). It offers sensitive, specific, and accurate detection, genotyping (MOCV1-MOCV3), and PG qualification (PG1-6) of MOCV DNA from clinical samples. The novel dPCR assay is suitable for MOCV diversity triage screening and prioritization of samples for complete MOCV genome characterization.
Collapse
Affiliation(s)
- Tomaž M Zorec
- Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, Ljubljana, Slovenia; Celica Biomedical, Tehnološki park 24, Ljubljana, Slovenia
| | - Lucijan Skubic
- Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Wang D, Yang X, Ren Z, Hu B, Zhao H, Yang K, Shi P, Zhang Z, Feng Q, Nawenja CV, Obanda V, Robert K, Nalikka B, Waruhiu CN, Ochola GO, Onyuok SO, Ochieng H, Li B, Zhu Y, Si H, Yin J, Kristiansen K, Jin X, Xu X, Xiao M, Agwanda B, Ommeh S, Li J, Shi ZL. Substantial viral diversity in bats and rodents from East Africa: insights into evolution, recombination, and cocirculation. MICROBIOME 2024; 12:72. [PMID: 38600530 PMCID: PMC11005217 DOI: 10.1186/s40168-024-01782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Lab, Wuhan, 430071, China
| | - Zirui Ren
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Hailong Zhao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Kaixin Yang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Peibo Shi
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Zhipeng Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Qikai Feng
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Carol Vannesa Nawenja
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Kityo Robert
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Cecilia Njeri Waruhiu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Harold Ochieng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Minfeng Xiao
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya.
| | - Sheila Ommeh
- Center for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Junhua Li
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
4
|
Santacroce L, Magrone T. Molluscum Contagiosum Virus: Biology and Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:151-170. [PMID: 38801577 DOI: 10.1007/978-3-031-57165-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molluscum contagiosum virus is a poxvirus belonging to the Poxviridae family, which includes Orthopoxvirus, Parapoxvirus, Yantapoxvirus, Molluscipoxvirus, Smallpox virus, Cowpox virus and Monkeypox virus. MCV belongs to the genus Molluscipoxvirus and has a tropism for skin tissue. MCV infects keratinocytes and, after an incubation period of 2 weeks to 6 weeks, causes a breakdown of the skin barrier with the development of papules of variable size depending on the proper functioning of the immune response (both adaptive and acquired). MCV only infects humans and does not cause viraemia. MCV encodes for several inhibitory proteins responsible to circumvent the immune response through different signalling pathways. Individuals who can be infected with MCV are children, immunocompromised individuals such as organ transplant recipients and Human Immunodeficiency Virus (HIV)-infected individuals. Current treatments to manage MCV-induced lesions are different and include the use of immunomodulators, which, however, do not provide an effective response.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy.
| | - Thea Magrone
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Zorec TM, Alm E, Lind Karlberg M, Advani R, Hošnjak L, Poljak M. Comprehensive analysis of 66 complete molluscum contagiosum virus (MOCV) genomes: characterization and functional annotation of 47 novel complete MOCV genomes, including the first genome of MOCV genotype 3, and a proposal for harmonized MOCV genotyping indexing. mBio 2023; 14:e0222423. [PMID: 37947415 PMCID: PMC10746250 DOI: 10.1128/mbio.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Four molluscum contagiosum virus (MOCV) genotypes (MOCV1-4) and four subtype variants were partially characterized using restriction enzyme profiling in the 1980s/1990s, but complete genome sequences of only MOCV1 and MOCV2 are available. The evolutionary pathways whereby genotypes/subtype variants with unavailable sequences emerged and whether all MOCVs can be detected using current diagnostic approaches remain unclear. We fully characterized 47 novel complete MOCV genomes, including the first complete MOCV3 genome, expanding the number of fully characterized genomes to 66. For reliably classifying the novel non-MOCV1/2 genomes, we developed and validated a framework for matching sequence-derived restriction maps with those defining MOCV subtypes in pioneering studies. Six phylogenetic subgroups (PG1-6) were identified, PG5 representing a novel MOCV2 subtype. The phylogenetic subgroups diverged from the prototype lineages following large-scale recombination events and hinted at partial sequence content of MOCV4 and direction of recombinant transfer in the events spawning PG5 and yet undetected MOCV1vb variant.
Collapse
Affiliation(s)
- Tomaž Mark Zorec
- Laboratory for Molecular Microbiology and Slovenian HIV/AIDS Reference Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erik Alm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | | | - Reza Advani
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Lea Hošnjak
- Laboratory for Molecular Microbiology and Slovenian HIV/AIDS Reference Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Laboratory for Molecular Microbiology and Slovenian HIV/AIDS Reference Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Ward BM, Riccio DA, Cartwright M, Maeda-Chubachi T. The Antiviral Effect of Berdazimer Sodium on Molluscum Contagiosum Virus Using a Novel In Vitro Methodology. Viruses 2023; 15:2360. [PMID: 38140601 PMCID: PMC10747301 DOI: 10.3390/v15122360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Molluscum contagiosum (MC) is characterized by skin lesions containing the highly contagious molluscum contagiosum poxvirus (MCV). MCV primarily infects children, with one US Food and Drug Administration (FDA)-approved drug-device treatment in use but no approved medications. Assessing antivirals is hindered by the inability of MCV to replicate in vitro. Here, we use vaccinia virus as a surrogate to provide evidence of the anti-poxvirus properties of berdazimer sodium, a new chemical entity, and the active substance in berdazimer gel, 10.3%, a nitric oxide-releasing topical in phase 3 development for the treatment of MC. We show that berdazimer sodium reduced poxvirus replication and, through a novel methodology, demonstrate that cells infected with drug-treated MCV virions have reduced early gene expression. Specifically, this is accomplished by studying the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB)-blocking protein MC160 as an example of an early gene. The results provide a plausible unique antiviral mechanism of action supporting increased MCV resolution observed in patients treated with berdazimer gel, 10.3% and describe a novel methodology that overcomes limitations in investigating MCV response in vitro to a potential new MC topical medication.
Collapse
Affiliation(s)
- Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | | | | | | |
Collapse
|
7
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
Sun W. Host-Genome Similarity Characterizes the Adaption of SARS-CoV-2 to Humans. Biomolecules 2022; 12:972. [PMID: 35883528 PMCID: PMC9312508 DOI: 10.3390/biom12070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a high mutation rate and many variants have emerged in the last 2 years, including Alpha, Beta, Delta, Gamma and Omicron. Studies showed that the host-genome similarity (HGS) of SARS-CoV-2 is higher than SARS-CoV and the HGS of open reading frame (ORF) in coronavirus genome is closely related to suppression of innate immunity. Many works have shown that ORF 6 and ORF 8 of SARS-CoV-2 play an important role in suppressing IFN-β signaling pathway in vivo. However, the relation between HGS and the adaption of SARS-CoV-2 variants is still not clear. This work investigates HGS of SARS-CoV-2 variants based on a dataset containing more than 40,000 viral genomes. The relation between HGS of viral ORFs and the suppression of antivirus response is studied. The results show that ORF 7b, ORF 6 and ORF 8 are the top 3 genes with the highest HGS. In the past 2 years, the HGS values of ORF 8 and ORF 7B of SARS-CoV-2 have increased greatly. A remarkable correlation is discovered between HGS and inhibition of antivirus response of immune system, which suggests that the similarity between coronavirus and host gnome may be an indicator of the suppression of innate immunity. Among the five variants (Alpha, Beta, Delta, Gamma and Omicron), Delta has the highest HGS and Omicron has the lowest HGS. This finding implies that the high HGS in Delta variant may indicate further suppression of host innate immunity. However, the relatively low HGS of Omicron is still a puzzle. By comparing the mutations in genomes of Alpha, Delta and Omicron variants, a commonly shared mutation ACT > ATT is identified in high-HGS strain populations. The high HGS mutations among the three variants are quite different. This finding strongly suggests that mutations in high HGS strains are different in different variants. Only a few common mutations survive, which may play important role in improving the adaptability of SARS-CoV-2. However, the mechanism for how the mutations help SARS-CoV-2 escape immunity is still unclear. HGS analysis is a new method to study virus−host interaction and may provide a way to understand the rapid mutation and adaption of SARS-CoV-2.
Collapse
Affiliation(s)
- Weitao Sun
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Zheng L, Liu J, Niu L, Kamran M, Yang AWH, Jolma A, Dai Q, Hughes TR, Patel DJ, Zhang L, Prasanth SG, Yu Y, Ren A, Lai EC. Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes Dev 2022; 36:225-240. [PMID: 35144965 PMCID: PMC8887127 DOI: 10.1101/gad.348993.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.
Collapse
Affiliation(s)
- Luqian Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingjing Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijie Niu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mohammad Kamran
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ally W H Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Arttu Jolma
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Qi Dai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Long Zhang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
10
|
Nair RR, Mohan M, Rudramurthy GR, Vivekanandam R, Satheshkumar PS. Strategies and Patterns of Codon Bias in Molluscum Contagiosum Virus. Pathogens 2021; 10:1649. [PMID: 34959603 PMCID: PMC8703355 DOI: 10.3390/pathogens10121649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Trends associated with codon usage in molluscum contagiosum virus (MCV) and factors governing the evolution of codon usage have not been investigated so far. In this study, attempts were made to decipher the codon usage trends and discover the major evolutionary forces that influence the patterns of codon usage in MCV with special reference to sub-types 1 and 2, MCV-1 and MCV-2, respectively. Three hypotheses were tested: (1) codon usage patterns of MCV-1 and MCV-2 are identical; (2) SCUB (synonymous codon usage bias) patterns of MCV-1 and MCV-2 slightly deviate from that of human host to avoid affecting the fitness of host; and (3) translational selection predominantly shapes the SCUB of MCV-1 and MCV-2. Various codon usage indices viz. relative codon usage value, effective number of codons and codon adaptation index were calculated to infer the nature of codon usage. Correspondence analysis and correlation analysis were performed to assess the relative contribution of silent base contents and significance of codon usage indices in defining bias in codon usage. Among the tested hypotheses, only the second and third hypotheses were accepted.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Vadavalli Post, Coimbatore 641041, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA 30605, USA;
| | | | - Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore 641046, India;
| | | |
Collapse
|
11
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Yue H, Umehara Y, Trujillo-Paez JV, Peng G, Nguyen HLT, Chieosilapatham P, Kiatsurayanon C, Song P, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. Exogenous factors in the pathogenesis of atopic dermatitis: Irritants and cutaneous infections. Clin Exp Allergy 2021; 51:382-392. [PMID: 33394511 DOI: 10.1111/cea.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis (AD) is a chronic relapsing inflammatory cutaneous disease that is often associated with other atopic symptoms, such as food allergy, allergic rhinitis and asthma, leading to significant morbidity and healthcare costs. The pathogenesis of AD is complicated and multifactorial. Although the aetiology of AD remains incompletely understood, recent studies have provided further insight into AD pathophysiology, demonstrating that the interaction among genetic predisposition, immune dysfunction and environmental provocation factors contributes to its development. However, the increasing prevalence of AD suggests that environmental factors such as irritation and cutaneous infection play a crucial role in triggering and/or aggravating the disease. Of note, AD skin is susceptible to bacterial, fungal and viral infections, and microorganisms may colonize the skin and aggravate AD symptoms. Overall, understanding the mechanisms by which these risk factors affect the cutaneous immunity of patients with AD is of great importance for developing a precision medicine approach for treatment. This review summarizes recent developments in exogenous factors involved in the pathogenesis of AD, with special emphasis on irritants and microbial infections.
Collapse
Affiliation(s)
- Hainan Yue
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Ge Peng
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hai Le Thanh Nguyen
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Kiatsurayanon
- Department of Medical Services, Institute of Dermatology, Ministry of Public Health, Bangkok, Thailand
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ko Okumura
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Monticelli SR, Bryk P, Ward BM. The Molluscum Contagiosum Gene MC021L Partially Compensates for the Loss of Its Vaccinia Virus Homolog, F13L. J Virol 2020; 94:e01496-20. [PMID: 32727873 PMCID: PMC7527044 DOI: 10.1128/jvi.01496-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Orthopoxviruses produce two antigenically distinct infectious enveloped virions termed intracellular mature virions and extracellular virions (EV). EV have an additional membrane compared to intracellular mature virions due to a wrapping process at the trans-Golgi network and are required for cell-to-cell spread and pathogenesis. Specific to the EV membrane are a number of proteins highly conserved among orthopoxviruses, including F13, which is required for the efficient wrapping of intracellular mature virions to produce EV and which plays a role in EV entry. The distantly related molluscipoxvirus, molluscum contagiosum virus, is predicted to encode several vaccinia virus homologs of EV-specific proteins, including the homolog of F13L, MC021L. To study the function of MC021, we replaced the F13L open reading frame in vaccinia virus with an epitope-tagged version of MC021L. The resulting virus (vMC021L-HA) had a small-plaque phenotype compared to vF13L-HA but larger than vΔF13L. The localization of MC021-HA was markedly different from that of F13-HA in infected cells, but MC021-HA was still incorporated in the EV membrane. Similar to F13-HA, MC021-HA was capable of interacting with both A33 and B5. Although MC021-HA expression did not fully restore plaque size, vMC021L-HA produced amounts of EV similar to those produced by vF13L-HA, suggesting that MC021 retained some of the functionality of F13. Further analysis revealed that EV produced from vMC021L-HA exhibit a marked reduction in target cell binding and an increase in dissolution, both of which correlated with a small-plaque phenotype.IMPORTANCE The vaccinia virus extracellular virion protein F13 is required for the production and release of infectious extracellular virus, which in turn is essential for the subsequent spread and pathogenesis of orthopoxviruses. Molluscum contagiosum virus infects millions of people worldwide each year, but it is unknown whether EV are produced during infection for spread. Molluscum contagiosum virus contains a homolog of F13L termed MC021L. To study the potential function of this homolog during infection, we utilized vaccinia virus as a surrogate and showed that a vaccinia virus expressing MC021L-HA in place of F13L-HA exhibits a small-plaque phenotype but produces similar levels of EV. These results suggest that MC021-HA can compensate for the loss of F13-HA by facilitating wrapping to produce EV and further delineates the dual role of F13 during infection.
Collapse
Affiliation(s)
- Stephanie R Monticelli
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Peter Bryk
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian M Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Elasifer H, Wang EC, Prod’homme V, Davies J, Forbes S, Stanton RJ, Patel M, Fielding CA, Roberts D, Traherne JA, Gruber N, Bugert JJ, Aicheler RJ, Wilkinson GWG. Downregulation of HLA-I by the molluscum contagiosum virus mc080 impacts NK-cell recognition and promotes CD8 + T-cell evasion. J Gen Virol 2020; 101:863-872. [PMID: 32510303 PMCID: PMC7641395 DOI: 10.1099/jgv.0.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/26/2020] [Indexed: 11/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is a common cause of benign skin lesions in young children and currently the only endemic human poxvirus. Following the infection of primary keratinocytes in the epidermis, MCV induces the proliferation of infected cells and this results in the production of wart-like growths. Full productive infection is observed only after the infected cells differentiate. During this prolonged replication cycle the virus must avoid elimination by the host immune system. We therefore sought to investigate the function of the two major histocompatibility complex class-I-related genes encoded by the MCV genes mc033 and mc080. Following insertion into a replication-deficient adenovirus vector, codon-optimized versions of mc033 and mc080 were expressed as endoglycosidase-sensitive glycoproteins that localized primarily in the endoplasmic reticulum. MC080, but not MC033, downregulated cell-surface expression of endogenous classical human leucocyte antigen (HLA) class I and non-classical HLA-E by a transporter associated with antigen processing (TAP)-independent mechanism. MC080 exhibited a capacity to inhibit or activate NK cells in autologous assays in a donor-specific manner. MC080 consistently inhibited antigen-specific T cells being activated by peptide-pulsed targets. We therefore propose that MC080 acts to promote evasion of HLA-I-restricted cytotoxic T cells.
Collapse
Affiliation(s)
- Hana Elasifer
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Eddie C.Y. Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Virginie Prod’homme
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
- Present address: Centre Méditerranéen de Médecine Moléculaire, University of Nice Sophia, Antipolis, France
| | - James Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Simone Forbes
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Mihil Patel
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Ceri A. Fielding
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Dawn Roberts
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - James A. Traherne
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Nicole Gruber
- DKMS Life Science Lab, St. Petersburger Str. 2, 01069 Dresden, Germany
| | - Joachim J. Bugert
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
- Present address: Institut für Mikrobiologie der Bundeswehr, München, Germany
| | - Rebecca J. Aicheler
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Gavin W. G. Wilkinson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| |
Collapse
|
15
|
Ehmann R, Brandes K, Antwerpen M, Walter M, V Schlippenbach K, Stegmaier E, Essbauer S, Bugert J, Teifke JP, Meyer H. Molecular and genomic characterization of a novel equine molluscum contagiosum-like virus. J Gen Virol 2020; 102. [PMID: 31922947 PMCID: PMC8515872 DOI: 10.1099/jgv.0.001357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of pox-like lesions in horses and donkeys have been associated with poxviruses belonging to different genera of the family Poxviridae. These include the orthopoxviruses vaccinia virus (VACV), horsepoxvirus (HPXV) and cowpoxvirus (CPXV), as well as a potentially novel parapoxvirus and molluscum contagiosum virus (MOCV). However, with the exception of VACV, HPXV and CPXV, the genomic characterization of the causative agents remains largely elusive with only single short genome fragments available. Here we present the first full-length genome sequence of an equine molluscum contagiosum-like virus (EMCLV) directly determined from skin biopsies of a horse with generalized papular dermatitis. Histopathological analysis of the lesions revealed severe epidermal hyperplasia with numerous eosinophilic inclusion bodies within keratinocytes. Virions were detected in the lesions in embedded tissue by transmission electron microscopy. The genome sequence determined by next- and third-generation sequencing comprises 166 843 nt with inverted terminal repeats (ITRs) of 3473 nt. Overall, 20 of the predicted 159 ORFs have no equivalents in other poxviruses. Intriguingly, two of these ORFs were identified to encode homologues of mammalian proteins involved in immune signalling pathways, namely secreted and transmembrane protein 1 (SECTM1) and insulin growth factor-like family receptor 1 (IGFLR1), that were not described in any virus family so far. Phylogenetic analysis with all relevant representatives of the Poxviridae suggests that EMCLV should be nominated as a new species within the genus Molluscipoxvirus.
Collapse
Affiliation(s)
- Rosina Ehmann
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - K Brandes
- Animal Pathology Augsburg, Augsburg, Germany
| | - M Antwerpen
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - M Walter
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - S Essbauer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - J Bugert
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - J P Teifke
- Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - H Meyer
- Bundeswehr Institute of Microbiology, Munich, Germany
| |
Collapse
|
16
|
New Diagnostic Approaches to Viral Sexually Transmitted Infections. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
18
|
Molluscum contagiosum virus MC80 sabotages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLoS Pathog 2019; 15:e1007711. [PMID: 31034515 PMCID: PMC6508746 DOI: 10.1371/journal.ppat.1007711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/09/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
The human specific poxvirus molluscum contagiosum virus (MCV) produces skin lesions that can persist with minimal inflammation, suggesting that the virus has developed robust immune evasion strategies. However, investigations into the underlying mechanisms of MCV pathogenesis have been hindered by the lack of a model system to propagate the virus. Herein we demonstrate that MCV-encoded MC80 can disrupt MHC-I antigen presentation in human and mouse cells. MC80 shares moderate sequence-similarity with MHC-I and we find that it associates with components of the peptide-loading complex. Expression of MC80 results in ER-retention of host MHC-I and thereby reduced cell surface presentation. MC80 accomplishes this by engaging tapasin via its luminal domain, targeting it for ubiquitination and ER-associated degradation in a process dependent on the MC80 transmembrane region and cytoplasmic tail. Tapasin degradation is accompanied by a loss of TAP, which limits MHC-I access to cytosolic peptides. Our findings reveal a unique mechanism by which MCV undermines adaptive immune surveillance.
Collapse
|
19
|
Biswas S, Smith GL, Roy EJ, Ward B, Shisler JL. A comparison of the effect of molluscum contagiosum virus MC159 and MC160 proteins on vaccinia virus virulence in intranasal and intradermal infection routes. J Gen Virol 2019; 99:246-252. [PMID: 29393023 DOI: 10.1099/jgv.0.001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) causes persistent, benign skin neoplasm in children and adults. MCV is refractive to growth in standard tissue culture and there is no relevant animal model of infection. Here we investigated whether another poxvirus (vaccinia virus; VACV) could be used to examine MCV immunoevasion protein properties in vivo. The MCV MC159L or MC160L genes, which encode NF-κB antagonists, were inserted into an attenuated VACV lacking an NF-κB antagonist (vΔA49), creating vMC159 and vMC160. vMC160 slightly increased vΔA49 virulence in the intranasal and intradermal routes of inoculation. vMC159 infection was less virulent than vΔA49 in both inoculation routes. vMC159-infected ear pinnae did not form lesions, but virus replication still occurred. Thus, the lack of lesions was not due to abortive virus replication. This system provides a new approach to examine MCV immunoevasion proteins within the context of a complete and complex immune system.
Collapse
Affiliation(s)
- Sunetra Biswas
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey L Smith
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | - Brian Ward
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Su HC, Jing H, Angelus P, Freeman AF. Insights into immunity from clinical and basic science studies of DOCK8 immunodeficiency syndrome. Immunol Rev 2019; 287:9-19. [PMID: 30565250 PMCID: PMC6350515 DOI: 10.1111/imr.12723] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
DOCK8 immunodeficiency syndrome (DIDS) is a progressive combined immunodeficiency that can be distinguished from other combined immunodeficiencies or hyperimmunoglobulinemia E syndromes in featuring (a) profound susceptibility to virus infections of the skin, with associated skin cancers, and (b) severe food allergies. The DOCK8 locus has many repetitive sequence elements that predispose to the generation of large germline deletions as well as recombination-mediated somatic DNA repair. Residual DOCK8 protein contributes to the variable disease phenotype. The severe virus infections of the skin, and probably also VZV-associated vasculopathy, reflect an important function of DOCK8, which is normally required to maintain lymphocyte shape integrity as the cells migrate through dense tissues. Loss of DOCK8 also causes immune deficits through other mechanisms including a milder generalized cell survival defect and skewing of T helper cell subsets. Recent work has uncovered the roles for DOCK8 in dendritic cell responses that can also help explain the virus susceptibility, as well as in regulatory T cells that might help explain autoimmunity in a minority of patients. Fortunately, hematopoietic stem cell transplantation cures the eczema and infection susceptibility of DIDS, but not necessarily the other disease manifestations including food allergies.
Collapse
Affiliation(s)
- Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Pam Angelus
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| |
Collapse
|
21
|
Trčko K, Hošnjak L, Kušar B, Zorec TM, Kocjan BJ, Križmarić M, Seme K, Miljković J, Luzar B, Poljak M. Clinical, Histopathological, and Virological Evaluation of 203 Patients With a Clinical Diagnosis of Molluscum Contagiosum. Open Forum Infect Dis 2018; 5:ofy298. [PMID: 30539041 PMCID: PMC6284465 DOI: 10.1093/ofid/ofy298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Molluscum contagiosum (MC) manifests as small, umbilicated papules caused by the molluscum contagiosum virus (MCV). The extent of clinical misdiagnosis of MC is unknown. Combined clinical, histopathological, and virological evaluation of 203 consecutive patients with clinical diagnosis of MC treated at a university hospital during a 5-year period showed the correct clinical diagnosis in 188 of 203 (92.6%) patients. All 15 clinically misdiagnosed MC lesions were histopathologically and virologically confirmed as either common or anogenital warts caused by different human papillomaviruses. The MCV1/MCV2 subtypes ratio was 1.54:1, and the distribution of MCV subtypes differed across patients’ age and anatomical location of lesions.
Collapse
Affiliation(s)
- Katarina Trčko
- Department of Dermatovenereology, University Medical Centre Maribor, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Blanka Kušar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Miljenko Križmarić
- Faculty of Medicine, University of Maribor, Slovenia.,Faculty of Health Sciences, University of Maribor, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Boštjan Luzar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| |
Collapse
|
22
|
Novel Class of Viral Ankyrin Proteins Targeting the Host E3 Ubiquitin Ligase Cullin-2. J Virol 2018; 92:JVI.01374-18. [PMID: 30258003 PMCID: PMC6232478 DOI: 10.1128/jvi.01374-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Ankyrin repeat (ANK) domains are among the most abundant motifs in eukaryotic proteins. ANK proteins are rare amongst viruses, with the exception of poxviruses, which presumably acquired them from the host via horizontal gene transfer. The architecture of poxvirus ANK proteins is, however, different from that of their cellular counterparts, and this precludes a direct acquisition event. Here we combine bioinformatics analysis and quantitative proteomics to discover a new class of viral ANK proteins with a domain organization that relates to cellular ANK proteins. These noncanonical viral ANK proteins, termed ANK/BC, interact with host Cullin-2 via a C-terminal BC box resembling that of cellular Cullin-2 substrate adaptors such as the von Hippel-Lindau protein. Mutagenesis of the BC box-like sequence abrogates binding to Cullin-2, whereas fusion of this motif to an ANK-only protein confers Cullin-2 association. We demonstrated that these viral ANK/BC proteins are potent immunomodulatory proteins suppressing the activation of the proinflammatory transcription factors NF-κB and interferon (IFN)-responsive factor 3 (IRF-3) and the production of cytokines and chemokines, including interferon, and that association with Cullin-2 is required for optimal inhibitory activity. ANK/BC proteins exist in several orthopoxviruses and cluster into 2 closely related orthologue groups in a phylogenetic lineage that is separate from that of canonical ANK/F-box proteins. Given the existence of cellular proteins with similar architecture, viral ANK/BC proteins may be closely related to the original ANK gene acquired by an ancestral orthopoxvirus. These findings uncover a novel viral strategy to antagonize innate immunity and shed light on the origin of the poxviral ANK protein family.IMPORTANCE Viruses encode multiple proteins aimed at modulating cellular homeostasis and antagonizing the host antiviral response. Most of these genes were originally acquired from the host and subsequently adapted to benefit the virus. ANK proteins are common in eukaryotes but are unusual amongst viruses, with the exception of poxviruses, where they represent one of the largest protein families. We report here the existence of a new class of viral ANK proteins, termed ANK/BC, that provide new insights into the origin of poxvirus ANK proteins. ANK/BC proteins target the host E3 ubiquitin ligase Cullin-2 via a C-terminal BC box domain and are potent suppressors of the production of inflammatory cytokines, including interferon. The existence of cellular ANK proteins whose architecture is similar suggests the acquisition of a host ANK/BC gene by an ancestral orthopoxvirus and its subsequent duplication and adaptation to widen the repertoire of immune evasion strategies.
Collapse
|
23
|
Zorec TM, Kutnjak D, Hošnjak L, Kušar B, Trčko K, Kocjan BJ, Li Y, Križmarić M, Miljković J, Ravnikar M, Poljak M. New Insights into the Evolutionary and Genomic Landscape of Molluscum Contagiosum Virus (MCV) based on Nine MCV1 and Six MCV2 Complete Genome Sequences. Viruses 2018; 10:v10110586. [PMID: 30373153 PMCID: PMC6266040 DOI: 10.3390/v10110586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and the causative agent of molluscum contagiosum (MC), a common skin disease. Although it is an important and frequent human pathogen, its genetic landscape and evolutionary history remain largely unknown. In this study, ten novel complete MCV genome sequences of the two most common MCV genotypes were determined (five MCV1 and five MCV2 sequences) and analyzed together with all MCV complete genomes previously deposited in freely accessible sequence repositories (four MCV1 and a single MCV2). In comparison to MCV1, a higher degree of nucleotide sequence conservation was observed among MCV2 genomes. Large-scale recombination events were identified in two newly assembled MCV1 genomes and one MCV2 genome. One recombination event was located in a newly identified recombinant region of the viral genome, and all previously described recombinant regions were re-identified in at least one novel MCV genome. MCV genes comprising the identified recombinant segments have been previously associated with viral interference with host T-cell and NK-cell immune responses. In conclusion, the two most common MCV genotypes emerged along divergent evolutionary pathways from a common ancestor, and the differences in the heterogeneity of MCV1 and MCV2 populations may be attributed to the strictness of the constraints imposed by the host immune response.
Collapse
Affiliation(s)
- Tomaž M Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Blanka Kušar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Katarina Trčko
- Department of Dermatovenereology, University Medical Centre Maribor, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia.
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Miljenko Križmarić
- Faculty of Medicine, University of Maribor, Taborska Ulica 6b, SI-2000 Maribor, Slovenia.
| | - Jovan Miljković
- Faculty of Medicine, University of Maribor, Taborska Ulica 6b, SI-2000 Maribor, Slovenia.
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Stuart CA, Zhivkoplias EK, Senkevich TG, Wyatt LS, Moss B. RNA Polymerase Mutations Selected during Experimental Evolution Enhance Replication of a Hybrid Vaccinia Virus with an Intermediate Transcription Factor Subunit Replaced by the Myxoma Virus Ortholog. J Virol 2018; 92:e01089-18. [PMID: 30045995 PMCID: PMC6158416 DOI: 10.1128/jvi.01089-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
High-throughput DNA sequencing enables the study of experimental evolution in near real time. Until now, mutants with deletions of nonessential host range genes were used in experimental evolution of vaccinia virus (VACV). Here, we guided the selection of adaptive mutations that enhanced the fitness of a hybrid virus in which an essential gene had been replaced with an ortholog from another poxvirus genus. Poxviruses encode a complete system for transcription, including RNA polymerase and stage-specific transcription factors. The abilities of orthologous intermediate transcription factors from other poxviruses to substitute for those of VACV, as determined by transfection assays, corresponded with the degree of amino acid identity. VACV in which the A8 or A23 intermediate transcription factor subunit gene was replaced by the myxoma (MYX) virus ortholog exhibited decreased replication. During three parallel serial passages of the hybrid virus with the MYXA8 gene, plaque sizes and virus yields increased. DNA sequencing of virus populations at passage 10 revealed high frequencies of five different single nucleotide mutations in the two largest RNA polymerase subunits, RPO147 and RPO132, and two different Kozak consensus sequence mutations predicted to increase translation of the MYXA8 mRNA. Surprisingly, there were no mutations within either intermediate transcription factor subunit. Based on homology with Saccharomyces cerevisiae RNA polymerase, the VACV mutations were predicted to be buried within the internal structure of the enzyme. By directly introducing single nucleotide substitutions into the genome of the original hybrid virus, we demonstrated that both RNA polymerase and translation-enhancing mutations increased virus replication independently.IMPORTANCE Previous studies demonstrated the experimental evolution of vaccinia virus (VACV) following deletion of a host range gene important for evasion of host immune defenses. We have extended experimental evolution to essential genes that cannot be deleted but could be replaced by a divergent orthologous gene from another poxvirus. Replacement of a VACV transcription factor gene with one from a distantly related poxvirus led to decreased fitness as evidenced by diminished replication. Serially passaging the hybrid virus at a low multiplicity of infection provided conditions for selection of adaptive mutations that improved replication. Notably, these included five independent mutations of the largest and second largest RNA polymerase subunits. This approach should be generally applicable for investigating adaptation to swapping of orthologous genes encoding additional essential proteins of poxviruses as well as other viruses.
Collapse
Affiliation(s)
- Carey A Stuart
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Erik K Zhivkoplias
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Rosner M, Zloto O. Periocular molluscum contagiosum: six different clinical presentations. Acta Ophthalmol 2018; 96:e600-e605. [PMID: 29855150 DOI: 10.1111/aos.13717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/14/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE To describe the different clinical presentations of periocular molluscum contagiosum (MC) lesions and their epidemiological, clinical and histopathological features. METHODS Medical records and histopathological sections of all cases of periocular MC treated at the oculoplastic clinic of the Goldschleger Eye Institute, Sheba Medical Center, Israel, between 1995 and 2016 were retrospectively reviewed. The following data were extracted: gender, age at the time of MC diagnosis, immune competency, location of the periocular lesions, number of lesions, dimensions of the lesions, clinical presentation, histopathological features, suspected clinical diagnosis before histopathological diagnosis and treatment. RESULTS The series was composed of 41 patients (19 males, 22 females) whose mean age at presentation was 20.41 ± 21.10 years (range 1-71 years). Only one patient was immunosuppressed. The cases were classified into six proposed clinical presentations: 'umbilicated nodular', 'big/giant', 'conglomerated', 'erythematous', 'inflamed' and 'pedunculated'. CONCLUSION This is the first time that different clinical types of MC lesions are labelled. The current evidence also indicates that MC lesions should be suspected not only in children and in immunosuppressed adult patients but also in immunocompetent patients of all ages.
Collapse
Affiliation(s)
- Mordechai Rosner
- Goldschleger Eye Institute; Sackler Faculty of Medicine; Tel-Aviv University; Sheba Medical Center; Tel Hashomer Israel
| | - Ofira Zloto
- Goldschleger Eye Institute; Sackler Faculty of Medicine; Tel-Aviv University; Sheba Medical Center; Tel Hashomer Israel
| |
Collapse
|
26
|
Danismazoglu M, Nalcacioglu R, Muratoglu H, Demirbag Z. The protein-protein interactions between Amsacta moorei entomopoxvirus (AMEV) protein kinases (PKs) and all viral proteins. Virus Res 2018; 248:31-38. [PMID: 29471050 DOI: 10.1016/j.virusres.2018.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
Abstract
Entomopoxviruses are an important group of viruses infecting only insects. They belong to Poxviridae which infect both invertebrates and vertebrates, including humans. Protein kinases are known to have roles at virus morphogenesis, host selectivity, the regulation of cell division and apoptosis in some vertebrate poxviruses. In this study, 2 protein kinases (PKs) (AMV153 and AMV197) of Amsacta moorei entomopoxvirus (AMEV) were investigated for the interactions among 230 viral proteins using yeast two-hybrid system (Y2H). For this purpose, two protein kinases and 230 viral genes were cloned into the bait and prey vectors, respectively. Bait vectors were introduced into Saccharomyces cerevisiae AH109. Expression of the bait genes were confirmed by western blot analysis. Both yeast strains of bait were transformed individually with each prey clone and grown on a selective medium (minimal synthetic defined) to determine the protein-protein interactions between bait and prey proteins. Transformations identified totally 16 interactions among AMEV protein kinases and all viral proteins of which 5 belong to AMV153 and 11 belong to AMV197. One of the five interactions detected for AMV153 protein kinase is self-association. Its other four interactions are with two virus entry complex proteins (AMV035 and AMV083), a membrane protein (AMV165) and a subunit of RNA polymerase (AMV230). The other protein kinase, AMV197, interacted with two virus entry complex proteins (AMV035 and AMV083) as AMV153, a caspase-2 enzyme (AMV063), a Holliday junction resolvase (AMV162), a membrane protein (AMV165), a subunit of RNA polymerase (AMV230) and five other hypothetical proteins (AMV026, AMV040, AMV062, AMV069, AMV120) encoded by AMEV genome. Glutathione S-transferase (GST) pull-down assay was used to confirm all interactions described by Y2H analysis. In addition, the theoretical structures of the two of 16 interactions were interpreted by docking analysis. Consistent with Y2H and pull down assays, docking analysis also showed the interactions of AMV063 with AMV153 and AMV197. Detected interactions of the AMEV viral proteins with viral protein kinases could lead to the understanding of the regulation of the viral activities of interacted viral proteins.
Collapse
Affiliation(s)
- Mehtap Danismazoglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey; Artvin Coruh University, Health Services Vocational High School, Department of Medical Laboratory Techniques, Artvin, Turkey
| | - Remziye Nalcacioglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey
| | - Hacer Muratoglu
- Karadeniz Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Trabzon, Turkey.
| | - Zihni Demirbag
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey
| |
Collapse
|
27
|
Sherwani S, Chowdhury M, Bugert JJ. ELISA for Molluscum Contagiosum Virus. CURRENT PROTOCOLS IN MICROBIOLOGY 2017; 47:14A.6.1-14A.6.9. [PMID: 29120484 DOI: 10.1002/cpmc.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molluscum contagiosum virus (MCV) is a common skin pathogen of children and young adults. Infection with MCV causes benign skin tumors in children and young adults and is mostly self-limiting. In contrast to orthopoxviruses, MCV infections tend to take a subacute clinical course but may persist for up to 12 months. Current numbers for MCV seroprevalence in different geographical areas are based on a variety of historical serological methods from complement fixation assays to MCV ELISAs based on purified MCV virions and MC133 antigen expressed in a Semliki Forest Virus expression system. A standardized ELISA for the assessment of MCV seroprevalence would be useful to determine global MCV seroprevalence. The methods described show that polypeptides derived from MCV open reading frames MC084 (residues V123 to R230 and V33 to G117), mc133 (residues M1 to N370), and glutathione S-transferase (GST)-H3L (residues I142 to W251) expressed in E. coli RIL+ as GST fusion proteins can be used to assess antibody binding in a GST capture ELISA. We show how the ELISA can be used to screen a panel of patient sera previously characterized with the mc084 V123-R230 ELISA. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Microbiology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mohammed Chowdhury
- Department of Microbiology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Joachim J Bugert
- Department of Microbiology, Cardiff University School of Medicine, Cardiff, United Kingdom.,Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| |
Collapse
|
28
|
Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A. Prenylation of viral proteins by enzymes of the host: Virus-driven rationale for therapy with statins and FT/GGT1 inhibitors. Bioessays 2017; 39. [DOI: 10.1002/bies.201700014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Birgit Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
- Department of Biological Sciences; National University Singapore; Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
- Department of Biological Sciences; National University Singapore; Singapore
- School of Computer Engineering; Nanyang Technological University; Singapore
| | - Ancha Baranova
- School of Systems Biology; George Mason University; Fairfax VA USA
- Research Centre for Medical Genetics; Russian Academy of Medical Sciences; Moscow Russia
| |
Collapse
|
29
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
30
|
Molluscum Contagiosum Virus MC159 Abrogates cIAP1-NEMO Interactions and Inhibits NEMO Polyubiquitination. J Virol 2017; 91:JVI.00276-17. [PMID: 28515292 DOI: 10.1128/jvi.00276-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is a dermatotropic poxvirus that causes benign skin lesions. MCV lesions persist because of virally encoded immune evasion molecules that inhibit antiviral responses. The MCV MC159 protein suppresses NF-κB activation, a powerful antiviral response, via interactions with the NF-κB essential modulator (NEMO) subunit of the IκB kinase (IKK) complex. Binding of MC159 to NEMO does not disrupt the IKK complex, implying that MC159 prevents IKK activation via an as-yet-unidentified strategy. Here, we demonstrated that MC159 inhibited NEMO polyubiquitination, a posttranslational modification required for IKK and downstream NF-κB activation. Because MCV cannot be propagated in cell culture, MC159 was expressed independent of infection or during a surrogate vaccinia virus infection to identify how MC159 prevented polyubiquitination. Cellular inhibitor of apoptosis protein 1 (cIAP1) is a cellular E3 ligase that ubiquitinates NEMO. Mutational analyses revealed that MC159 and cIAP1 each bind to the same NEMO region, suggesting that MC159 may competitively inhibit cIAP1-NEMO interactions. Indeed, MC159 prevented cIAP1-NEMO interactions. MC159 also diminished cIAP1-mediated NEMO polyubiquitination and cIAP1-induced NF-κB activation. These data suggest that MC159 competitively binds to NEMO to prevent cIAP1-induced NEMO polyubiquitination. To our knowledge, this is the first report of a viral protein disrupting NEMO-cIAP1 interactions to strategically suppress IKK activation. All viruses must antagonize antiviral signaling events for survival. We hypothesize that MC159 inhibits NEMO polyubiquitination as a clever strategy to manipulate the host cell environment to the benefit of the virus.IMPORTANCE Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes persistent skin neoplasms. The persistence of MCV has been attributed to viral downregulation of host cell immune responses such as NF-κB activation. We show here that the MCV MC159 protein interacts with the NEMO subunit of the IKK complex to prevent NEMO interactions with the cIAP1 E3 ubiquitin ligase. This interaction correlates with a dampening of cIAP1 to polyubiquitinate NEMO and to activate NF-κB. This inhibition of cIAP1-NEMO interactions is a new viral strategy to minimize IKK activation and to control NEMO polyubiquitination. This research provides new insights into mechanisms that persistent viruses may use to cause long-term infection of host cells.
Collapse
|
31
|
Nguyen HP, Franz E, Stiegel KR, Hsu S, Tyring SK. Treatment of molluscum contagiosum in adult, pediatric, and immunodeficient populations. J Cutan Med Surg 2017; 18:299-306. [PMID: 25186990 DOI: 10.2310/7750.2013.13133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Molluscum contagiosum is a viral infection of the skin that is widely considered to be a self-resolving disease that can be treated with benign neglect. However, the clinical reality is that the disease can vary widely by anatomic site and by recalcitrance to treatment and remains a significant cause of morbidity worldwide. OBJECTIVE The purpose of this review was to compile an updated resource for clinicians that addresses the management of the broad spectrum of molluscum cases that may be encountered. METHODS A comprehensive PubMed search was performed to identify publications on the treatment of molluscum infection, including presentations that may be rare or difficult. RESULTS The specific clinical scenario of molluscum must be considered when selecting the optimal therapy because certain treatments can be more effective for specific patient subpopulations. CONCLUSION Further attention must be directed toward standardizing treatment for molluscum infection based on patient age and immune status.
Collapse
|
32
|
López-Bueno A, Parras-Moltó M, López-Barrantes O, Belda S, Alejo A. Recombination events and variability among full-length genomes of co-circulating molluscum contagiosum virus subtypes 1 and 2. J Gen Virol 2017; 98:1073-1079. [PMID: 28555548 DOI: 10.1099/jgv.0.000759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | - Marcos Parras-Moltó
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | | | - Sylvia Belda
- Unidad de cuidados intensivos pediátricos, Hospital 12 de Octubre, Madrid 28041, Spain
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
33
|
Beaury M, Velagapudi UK, Weber S, Soto C, Talele TT, Nichols DB. The molluscum contagiosum virus death effector domain containing protein MC160 RxDL motifs are not required for its known viral immune evasion functions. Virus Genes 2017; 53:522-531. [PMID: 28425034 DOI: 10.1007/s11262-017-1456-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
The molluscum contagiosum virus (MCV) uses a variety of immune evasion strategies to antagonize host immune responses. Two MCV proteins, MC159 and MC160, contain tandem death effector domains (DEDs). They are reported to inhibit innate immune signaling events such as NF-κB and IRF3 activation, and apoptosis. The RxDL motif of MC159 is required for inhibition of both apoptosis and NF-κB activation. However, the role of the conserved RxDL motif in the MC160 DEDs remained unknown. To answer this question, we performed alanine mutations to neutralize the arginine and aspartate residues present in the MC160 RxDL in both DED1 and DED2. These mutations were further modeled against the structure of the MC159 protein. Surprisingly, the RxDL motif was not required for MC160's ability to inhibit MAVS-induced IFNβ activation. Further, unlike previous results with the MC159 protein, mutations within the RxDL motif of MC160 had no effect on the ability of MC160 to dampen TNF-α-induced NF-κB activation. Molecular modeling predictions revealed no overall changes to the structure in the MC160 protein when the amino acids of both RxDL motifs were mutated to alanine (DED1 = R67A D69A; DED2 = R160A D162A). Taken together, our results demonstrate that the RxDL motifs present in the MC160 DEDs are not required for known functions of the viral protein.
Collapse
Affiliation(s)
- Michael Beaury
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sarah Weber
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA
| | - Cassandra Soto
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA.
| |
Collapse
|
34
|
Abstract
This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there.
Collapse
Affiliation(s)
- Bernard Moss
- From the Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Molluscum Contagiosum Virus Transcriptome in Abortively Infected Cultured Cells and a Human Skin Lesion. J Virol 2016; 90:4469-4480. [PMID: 26889040 DOI: 10.1128/jvi.02911-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Molluscum contagiosum virus (MOCV), the only circulating human-specific poxvirus, has a worldwide distribution and causes benign skin lesions that may persist for months in young children and severe infections in immunosuppressed adults. Studies of MOCV are restricted by the lack of an efficient animal model or a cell culture replication system. We used next-generation sequencing to analyze and compare polyadenylated RNAs from abortive MOCV infections of several cell lines and a human skin lesion. Viral RNAs were detected for 14 days after MOCV infection of cultured cells; however, there was little change in the RNA species during this time and a similar pattern occurred in the presence of an inhibitor of protein synthesis, indicating a block preventing postreplicative gene expression. Moreover, a considerable number of MOCV RNAs mapped to homologs of orthopoxvirus early genes, but few did so to homologs of intermediate or late genes. The RNAs made during in vitro infections represent a subset of RNAs detected in human skin lesions which mapped to homologs of numerous postreplicative as well as early orthopoxvirus genes. Transfection experiments using fluorescent protein and luciferase reporters demonstrated that vaccinia virus recognized MOCV intermediate and late promoters, indicating similar gene regulation. The specific recognition of the intermediate promoter in MOCV-infected cells provided evidence for the synthesis of intermediate transcription factors, which are products of early genes, but not for late transcription factors. Transcriptome sequencing (RNA-seq) and reporter gene assays may be useful for testing engineered cell lines and conditions that ultimately could provide an in vitro replication system. IMPORTANCE The inability to propagate molluscum contagiosum virus, which causes benign skin lesions in young children and more extensive infections in immunosuppressed adults, has constrained our understanding of the biology of this human-specific virus. In the present study, we characterized the RNAs synthesized in abortively infected cultured cells and a human skin lesion by next-generation sequencing. These studies provided an initial transcription map of the MOCV genome, suggested temporal regulation of gene expression, and indicated that the in vitro replication block occurs prior to intermediate and late gene expression. RNA-seq and reporter assays, as described here, may help to further evaluate MOCV gene expression and define conditions that could enable MOCV replication in vitro.
Collapse
|
36
|
Martin P. Interventions for molluscum contagiosum in people infected with human immunodeficiency virus: a systematic review. Int J Dermatol 2016; 55:956-66. [PMID: 26991246 DOI: 10.1111/ijd.13267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Molluscum contagiosum (MC) is a viral skin disease that presents with white, painless papules with central umbilication. In immunocompent individuals, MC is usually a benign infection that resolves without intervention. In HIV positive people, symptoms of MC can be more severe. OBJECTIVE The aim of this systematic review is to analyze the literature on strategies for treating MC in people concomitantly infected with HIV and subsequently make recommendations on best management strategies for these people. METHOD Searches were conducted of the following electronic databases: MEDLINE, EMBASE, Cochrane Library, PubMed, LILACS, IndMED, Global Health, ClinicalTrials.Gov, and Current Controlled Trials. Grey literature was searched via the New York Academy of Medicine Grey Literature Report and Open Grey. References cited in previous reviews and references cited in studies identified as being possibly relevant were also reviewed. No language restrictions were imposed. Papers from 1980 to present were reviewed. RESULTS & DISCUSSION Thirteen studies were included in this review. Two papers were comparative studies, one of which was randomized and neither of which were blinded. Ten papers were observational studies with heterogeneous populations. One study was a multicentre cohort study. CONCLUSION Given the poor quality of study design, wide array of outcome variables, and lack of objective evidence, no specific recommendation can be made for the treatment of MC in people infected with HIV, other than the initiation of ART. Despite the good impact ART has made on prevalence of dermatologic disease, MC remains an important cause of morbidity in HIV positive populations.
Collapse
Affiliation(s)
- Paul Martin
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
37
|
Abstract
Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections.
Collapse
|
38
|
Sherwani S, Farleigh L, Agarwal N, Loveless S, Robertson N, Hadaschik E, Schnitzler P, Bugert JJ. Seroprevalence of Molluscum contagiosum virus in German and UK populations. PLoS One 2014; 9:e88734. [PMID: 24558417 PMCID: PMC3928281 DOI: 10.1371/journal.pone.0088734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is a significant but underreported skin pathogen for children and adults. Seroprevalence studies can help establish burden of disease. Enzyme linked immunosorbent assay (ELISA) based studies have been published for Australian and Japanese populations and the results indicate seroprevalences between 6 and 22 percent in healthy individuals, respectively. To investigate seroprevalence in Europe, we have developed a recombinant ELISA using a truncated MCV virion surface protein MC084 (V123-R230) expressed in E. coli. The ELISA was found to be sensitive and specific, with low inter- and intra-assay variability. Sera from 289 German adults and children aged 0-40 years (median age 21 years) were analysed for antibodies against MC084 by direct binding ELISA. The overall seropositivity rate was found to be 14.8%. The seropositivity rate was low in children below the age of one (4.5%), peaked in children aged 2-10 years (25%), and fell again in older populations (11-40 years; 12.5%). Ten out of 33 healthy UK individuals (30.3%; median age 27 years) had detectable MC084 antibodies. MCV seroconversion was more common in dermatological and autoimmune disorders, than in immunocompromised patients or in patients with multiple sclerosis. Overall MCV seroprevalence is 2.1 fold higher in females than in males in a UK serum collection. German seroprevalences determined in the MC084 ELISA (14.8%) are at least three times higher than incidence of MC in a comparable Swiss population (4.9%). While results are not strictly comparable, this is lower than Australian seroprevalence in a virion based ELISA (n = 357; 23%; 1999), but higher than the seroprevalence reported in a Japanese study using an N-terminal truncation of MC133 (n = 108, 6%; 2000. We report the first large scale serological survey of MC in Europe (n = 393) and the first MCV ELISA based on viral antigen expressed in E. coli.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Cardiff University School of Medicine, Institute of Infection and Immunity/Medical Microbiology, Cardiff, United Kingdom
| | - Laura Farleigh
- Cardiff University School of Medicine, Institute of Infection and Immunity/Medical Microbiology, Cardiff, United Kingdom
| | - Nidhi Agarwal
- Dr P N Behl Skin Institute and School of Dermatology, New Delhi, India
| | - Samantha Loveless
- Cardiff University Medical School, Institute of Psychological Medicine and Clinical Neuroscience, Cardiff, United Kingdom
| | - Neil Robertson
- Cardiff University Medical School, Institute of Psychological Medicine and Clinical Neuroscience, Cardiff, United Kingdom
| | - Eva Hadaschik
- Universität Heidelberg, Hautklinik, Heidelberg, Germany
| | - Paul Schnitzler
- Universität Heidelberg, Dept.of Infectious Diseases, Heidelberg, Germany
| | - Joachim Jakob Bugert
- Cardiff University School of Medicine, Institute of Infection and Immunity/Medical Microbiology, Cardiff, United Kingdom
| |
Collapse
|
39
|
MyD88-dependent immunity to a natural model of vaccinia virus infection does not involve Toll-like receptor 2. J Virol 2014; 88:3557-67. [PMID: 24403581 DOI: 10.1128/jvi.02776-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although the pattern recognition receptor Toll-like receptor 2 (TLR2) is typically thought to recognize bacterial components, it has been described to alter the induction of both innate and adaptive immunity to a number of viruses, including vaccinia virus (VACV). However, many pathogens that reportedly encode TLR2 agonists may actually be artifactually contaminated during preparation, possibly with cellular debris or merely with molecules that sensitize cells to be activated by authentic TLR2 agonists. In both humans and mice, the most relevant natural route of infection with VACV is through intradermal infection of the skin. Therefore, we examined the requirement for TLR2 and its signaling adaptor MyD88 in protective immunity to VACV after intradermal infection. We find that although TLR2 may recognize virus preparations in vitro and have a minor role in preventing dissemination of VACV following systemic infection with large doses of virus, it is wholly disposable in both control of virus replication and induction of adaptive immunity following intradermal infection. In contrast, MyD88 is required for efficient induction of CD4 T cell and B cell responses and for local control of virus replication following intradermal infection. However, even MyD88 is not required to induce local inflammation, inflammatory cytokine production, or recruitment of cells that restrict virus from spreading systemically after peripheral infection. Thus, an effective antiviral response does require MyD88, but TLR2 is not required for control of a peripheral VACV infection. These findings emphasize the importance of studying relevant routes of infection when examining innate sensing mechanisms. IMPORTANCE Vaccinia virus (VACV) provides the backbone for some of the most widely used and successful viral vaccine vectors and is also related to the human pathogens Cantagalo virus and molluscum contagiosum virus that infect the skin of patients. Therefore, it is vital to understand the mechanisms that induce a strong innate immune response to the virus following dermal infection. Here, we compare the ability of the innate sensing molecule Toll-like receptor 2 (TLR2) and the signaling molecule MyD88 to influence the innate and adaptive immune response to VACV following systemic or dermal infection.
Collapse
|
40
|
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:15-40. [PMID: 24161410 PMCID: PMC3945082 DOI: 10.1016/j.meegid.2013.10.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.
Collapse
Affiliation(s)
- Sherry L Haller
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Chen Peng
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA.
| |
Collapse
|
41
|
Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. Proc Natl Acad Sci U S A 2013; 111:E265-72. [PMID: 24379396 DOI: 10.1073/pnas.1314569111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, NF-κB activation, and IRF3 activation are a triad of intrinsic immune responses that play crucial roles in the pathogenesis of infectious diseases, cancer, and autoimmunity. FLIPs are a family of viral and cellular proteins initially found to inhibit apoptosis and more recently to either up- or down-regulate NF-κB. As such, a broad role for FLIPs in disease regulation is postulated, but exactly how a FLIP performs such multifunctional roles remains to be established. Here we examine FLIPs (MC159 and MC160) encoded by the molluscum contagiosum virus, a dermatotropic poxvirus causing skin infections common in children and immunocompromised individuals, to better understand their roles in viral pathogenesis. While studying their molecular mechanisms responsible for NF-κB inhibition, we discovered that each protein inhibited IRF3-controlled luciferase activity, identifying a unique function for FLIPs. MC159 and MC160 each inhibited TBK1 phosphorylation, confirming this unique function. Surprisingly, MC159 coimmunoprecipitated with TBK1 and IKKε but MC160 did not, suggesting that these homologs use distinct molecular mechanisms to inhibit IRF3 activation. Equally surprising was the finding that the FLIP regions necessary for TBK1 inhibition were distinct from those MC159 or MC160 regions previously defined to inhibit NF-κB or apoptosis. These data reveal previously unappreciated complexities of FLIPs, and that subtle differences within the conserved regions of FLIPs possess distinct molecular and structural fingerprints that define crucial differences in biological activities. A future comparison of mechanistic differences between viral FLIP proteins can provide new means of precisely manipulating distinct aspects of intrinsic immune responses.
Collapse
|
42
|
Chen X, Anstey AV, Bugert JJ. Molluscum contagiosum virus infection. THE LANCET. INFECTIOUS DISEASES 2013; 13:877-88. [PMID: 23972567 DOI: 10.1016/s1473-3099(13)70109-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molluscum contagiosum virus is an important human skin pathogen: it can cause disfigurement and suffering in children, in adults it is less common and often sexually transmitted. Extensive and persistent skin infection with the virus can indicate underlying immunodeficiency. Traditional ablative therapies have not been compared directly with newer immune-modulating and specific antiviral therapies. Advances in research raise the prospect of new approaches to treatment informed by the biology of the virus; in human skin, the infection is localised in the epidermal layers, where it induces a typical, complex hyperproliferative lesion with an abundance of virus particles but a conspicuous absence of immune effectors. Functional studies of the viral genome have revealed effects on cellular pathways involved in the cell cycle, innate immunity, inflammation, and cell death. Extensive lesions caused by molluscum contagiosum can occur in patients with DOCK8 deficiency-a genetic disorder affecting migration of dendritic and specialised T cells in skin. Sudden disappearance of lesions is the consequence of a vigorous immune response in healthy people. Further study of the unique features of infection with molluscum contagiosum virus could give fundamental insight into the nature of skin immunity.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | |
Collapse
|
43
|
Flohé L, Jaeger T, Pilawa S, Sztajer H. Thiol-dependent peroxidases care little about homology-based assignments of function. Redox Rep 2013; 8:256-64. [PMID: 14962360 DOI: 10.1179/135100003225002862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thiol-dependent peroxidase systems are reviewed with special emphasis on their potential use as drug targets. The basic catalytic mechanism of the two major thiol-peroxidase families, the glutathione peroxidases and the peroxiredoxins, are reasonably well understood. Sequence-based predictions of substrate specificities are still unsatisfactory. GPx-type enzymes are not generally specific for GSH but may specifically react with CXXC motifs as present in thioredoxins or tryparedoxins. Inversely, the peroxiredoxin family that was believed to be specific for CXXC-type proteins, also comprises glutathione peroxidases. Since structure-based predictions of function are also limited by small data bases, the increasing number of sequences emerging from genome projects require enzymatic characterization and genetic proof of relevance before they can be classified as drug targets.
Collapse
Affiliation(s)
- L Flohé
- Department of Biochemistry, Technical University of Braunschweig, Braunschweig, Germany.
| | | | | | | |
Collapse
|
44
|
Abstract
The molluscum contagiosum (MC) virus (MCV) is a dermatotropic poxvirus, and the causative agent of MC. Unlike smallpox and human monkeypox diseases, MC is nonlethal, common and worldwide. Additionally, little inflammation is associated with MC papules, and MC can persist for months to years. Such a prolonged infection implies that MCV successfully manipulates the host environment. This review highlights recent findings that reveal how MCV infections manipulate localized host immune responses and which immune response are key for the eventual resolution of MC. Also highlighted here are the MCV proteins that inhibit apoptosis, inflammation and immune cell recruitment or that induce cellular proliferation, with discussion as to how these proteins dampen localized antiviral immune responses. Lastly, this review discusses how the immune evasion tactics of MCV have led to insights about specific functions of the human innate and adaptive immune responses.
Collapse
Affiliation(s)
- Crystal M H Randall
- Department of Microbiology, B103 Chemical & Life Sciences Labs, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical & Life Sciences Labs, 601 S Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
45
|
Amsler L, Malouli D, DeFilippis V. The inflammasome as a target of modulation by DNA viruses. Future Virol 2013; 8:357-370. [PMID: 24955107 DOI: 10.2217/fvl.13.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular innate immune response represents the initial reaction of a host against infecting pathogens. Host cells detect incoming microbes by way of a large and expanding array of receptors that react with evolutionarily conserved molecular patterns exhibited by microbial intruders. These receptors are responsible for initiating signaling that leads to both transcriptional activation of immunologically important genes as well as protease-dependent processing of cellular proteins. The inflammasome refers to a protein complex that functions as an activation platform for the cysteine protease caspase-1, which then processes inflammatory molecules such as IL-1β and IL-18 into functional forms. Assembly of this complex is triggered following receptor-mediated detection of pathogen-associated molecules. Receptors have been identified that are essential to inflammasome activation in response to numerous molecular patterns including virus-associated molecules such as DNA. In fact, the importance of cytoplasmic DNA as an immune stimulus is exemplified by the existence of at least nine distinct cellular receptors capable of initiating innate reactivity in response to this molecule. Viruses that employ DNA as genomic material include herpesviruses, poxviruses and adenoviruses. Each has been described as capable of inducing inflammasome-mediated activity. Interestingly, however, the cellular molecules responsible for these responses appear to vary according to host species, cell type and even viral strain. Secretion of IL-1β and IL-18 are important components of antimicrobial immunity and, as a result, pathogens have evolved factors to evade or counteract this response. This includes DNA-based viruses, many of which encode multiple redundant counteractive molecules. However, it is clear that such phenotypes are only beginning to be uncovered. The purpose of this review is to describe what is known regarding the activation of inflammasome-mediated processes in response to infection with well-examined families of DNA viruses and to discuss characterized mechanisms of manipulation and neutralization of inflammasome-dependent activity. This review aims to shed light on the biologically important phenomena regarding this virus-host interaction and to highlight key areas where important information is lacking.
Collapse
Affiliation(s)
- Lisi Amsler
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Victor DeFilippis
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
46
|
Hošnjak L, Kocjan BJ, Kušar B, Seme K, Poljak M. Rapid detection and typing of Molluscum contagiosum virus by FRET-based real-time PCR. J Virol Methods 2012; 187:431-4. [PMID: 23174165 DOI: 10.1016/j.jviromet.2012.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
Abstract
A fluorescence resonance energy transfer (FRET)-based real-time PCR (RT-PCR) was developed for very sensitive and specific detection of Molluscum contagiosum virus (MCV), as well as reliable differentiation of the two MCV subtype genetic lineages, MCV1 and MCV2, in a single reaction. The assay employs modified primers specific for the viral MC021L gene and uses two novel FRET hybridization probes to detect polymorphisms specific for each of the two subtypes. The sensitivity of the assay at a 95% detection level for both MCV subtypes was 3.3 DNA copies/reaction and the dynamic range was nine orders of magnitude, discriminating 10-10(9) viral genome equivalents/reaction. Post-amplification probe-specific dissociation analysis differentiated the two viral subtypes reliably in all tested concentrations. Testing of 43 tissue specimens clinically diagnosed as MCV lesions showed complete agreement with the results obtained with previously described MCV specific MC080R Taqman RT-PCR and MC021L whole gene sequencing. The novel assay is simple, robust and easy to perform, and may be of great value for clinical and epidemiological studies of MCV infections and related conditions.
Collapse
Affiliation(s)
- Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
47
|
Abstract
Atopic dermatitis (AD) is a clinically defined, highly pruritic, chronic inflammatory skin disease. In AD patients, the combination of a genetic predisposition for skin barrier dysfunction and dysfunctional innate and adaptive immune responses leads to a higher frequency of bacterial and viral skin infections. The innate immune system quickly mobilizes an unspecific, standardized first-line defense against different pathogens. Defects in this system lead to barrier dysfunction which results in increased protein allergen penetration through the epidermis and predisposes to secondary skin infections. Two loss-of-function mutations in the epidermal filaggrin gene are associated with AD. Also, inducible endogenous antibiotics such as the antimicrobial peptides cathelicidin and the beta-defensins may show defective function in lesional AD skin. Eczema herpeticum is a disseminated viral infection almost exclusively diagnosed in AD patients, which is based on unmasking of the viral entry receptor nectin-1, lack of cathelicidin production by keratinocytes, and depletion of Type I IFN-producing plasmacytoid dendritic cells from AD skin. Future therapeutic approaches to AD may include enhancement of impaired innate in addition to downregulation of dysfunctional adaptive immunity.
Collapse
Affiliation(s)
- Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Germany.
| | | | | |
Collapse
|
48
|
Biological characterization and next-generation genome sequencing of the unclassified Cotia virus SPAn232 (Poxviridae). J Virol 2012; 86:5039-54. [PMID: 22345477 DOI: 10.1128/jvi.07162-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cotia virus (COTV) SPAn232 was isolated in 1961 from sentinel mice at Cotia field station, São Paulo, Brazil. Attempts to classify COTV within a recognized genus of the Poxviridae have generated contradictory findings. Studies by different researchers suggested some similarity to myxoma virus and swinepox virus, whereas another investigation characterized COTV SPAn232 as a vaccinia virus strain. Because of the lack of consensus, we have conducted an independent biological and molecular characterization of COTV. Virus growth curves reached maximum yields at approximately 24 to 48 h and were accompanied by virus DNA replication and a characteristic early/late pattern of viral protein synthesis. Interestingly, COTV did not induce detectable cytopathic effects in BSC-40 cells until 4 days postinfection and generated viral plaques only after 8 days. We determined the complete genomic sequence of COTV by using a combination of the next-generation DNA sequencing technologies 454 and Illumina. A unique contiguous sequence of 185,139 bp containing 185 genes, including the 90 genes conserved in all chordopoxviruses, was obtained. COTV has an interesting panel of open reading frames (ORFs) related to the evasion of host defense, including two novel genes encoding C-C chemokine-like proteins, each present in duplicate copies. Phylogenetic analysis revealed the highest amino acid identity scores with Cervidpoxvirus, Capripoxvirus, Suipoxvirus, Leporipoxvirus, and Yatapoxvirus. However, COTV grouped as an independent branch within this clade, which clearly excluded its classification as an Orthopoxvirus. Therefore, our data suggest that COTV could represent a new poxvirus genus.
Collapse
|
49
|
Randall CMH, Jokela JA, Shisler JL. The MC159 protein from the molluscum contagiosum poxvirus inhibits NF-κB activation by interacting with the IκB kinase complex. THE JOURNAL OF IMMUNOLOGY 2012; 188:2371-9. [PMID: 22301546 DOI: 10.4049/jimmunol.1100136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molluscum contagiosum virus (MCV) causes persistent neoplasms in healthy and immunocompromised people. Its ability to persist likely is due to its arsenal of viral immunoevasion proteins. For example, the MCV MC159 protein inhibits TNF-R1-induced NF-κB activation and apoptosis. The MC159 protein is a viral FLIP and, as such, possesses two tandem death effector domains (DEDs). We show in this article that, in human embryonic kidney 293 T cells, the expression of wild-type MC159 or a mutant MC159 protein containing the first DED (MC159 A) inhibited TNF-induced NF-κB, or NF-κB activated by PMA or MyD88 overexpression, whereas a mutant protein lacking the first DED (MC159 B) did not. We hypothesized that the MC159 protein targeted the IκB kinase (IKK) complex to inhibit these diverse signaling events. Indeed, the MC159 protein, but not MC159 B, coimmunoprecipitated with IKKγ. MC159 coimmunoprecipitated with IKKγ when using mouse embryonic fibroblasts that lack either IKKα or IKKβ, suggesting that the MC159 protein interacted directly with IKKγ. MC159-IKKγ coimmunoprecipitations were detected during infection of cells with either MCV isolated from human lesions or with a recombinant MC159-expressing vaccinia virus. MC159 also interacts with TRAF2, a signaling molecule involved in NF-κB activation. However, mutational analysis of MC159 failed to reveal a correlation between MC159-TRAF2 interactions and MC159's inhibitory function. We propose that MC159-IKK interactions, but not MC159-TRAF2 interactions, are responsible for inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Crystal M H Randall
- Department of Microbiology, College of Medicine, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
50
|
Cohen JI, Davila W, Ali MA, Turk SP, Cowen EW, Freeman AF, Wang K. Detection of molluscum contagiosum virus (MCV) DNA in the plasma of an immunocompromised patient and possible reduction of MCV DNA with CMX-001. J Infect Dis 2012; 205:794-7. [PMID: 22262788 DOI: 10.1093/infdis/jir853] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molluscum contagiosum virus (MCV) is a poxvirus that causes localized papules in healthy persons. We evaluated a woman with severe immunodeficiency and disseminated MCV. During treatment with CMX-001, an antiviral with activity against other poxviruses, MCV DNA was detected in 20% of plasma samples. When the patient was not receiving CMX-001, MCV DNA was detected in 50% of samples. We also noted improvement in warts on her fingers during CMX-001 therapy. Although MCV is caused by direct inoculation of virus into skin in healthy persons, in a severely immunocompromised person MCV DNA was present in blood and may spread by viremia.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA
| | | | | | | | | | | | | |
Collapse
|