1
|
Cheng TY, Praveena T, Govindarajan S, Almeida CF, Pellicci DG, Arkins WC, Van Rhijn I, Venken K, Elewaut D, Godfrey DI, Rossjohn J, Moody DB. Lipidomic scanning of self-lipids identifies headless antigens for natural killer T cells. Proc Natl Acad Sci U S A 2024; 121:e2321686121. [PMID: 39141352 PMCID: PMC11348285 DOI: 10.1073/pnas.2321686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024] Open
Abstract
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Srinath Govindarajan
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Catarina F. Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Wellington C. Arkins
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Koen Venken
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CardiffCF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| |
Collapse
|
2
|
Anitha M, Kumar SM, Koo I, Perdew GH, Srinivasan S, Patterson AD. Modulation of Ceramide-Induced Apoptosis in Enteric Neurons by Aryl Hydrocarbon Receptor Signaling: Unveiling a New Pathway beyond ER Stress. Int J Mol Sci 2024; 25:8581. [PMID: 39201268 PMCID: PMC11354200 DOI: 10.3390/ijms25168581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3β levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Mallappa Anitha
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Supriya M. Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| |
Collapse
|
3
|
Iezhitsa I, Agarwal R, Agarwal P. Unveiling enigmatic essence of Sphingolipids: A promising avenue for glaucoma treatment. Vision Res 2024; 221:108434. [PMID: 38805893 DOI: 10.1016/j.visres.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Treatment of glaucoma, the leading cause of irreversible blindness, remains challenging. The apoptotic loss of retinal ganglion cells (RGCs) in glaucoma is the pathological hallmark. Current treatments often remain suboptimal as they aim to halt RGC loss secondary to reduction of intraocular pressure. The pathophysiological targets for exploring direct neuroprotective approaches, therefore are highly relevant. Sphingolipids have emerged as significant target molecules as they are not only the structural components of various cell constituents, but they also serve as signaling molecules that regulate molecular pathways involved in cell survival and death. Investigations have shown that a critical balance among various sphingolipid species, particularly the ceramide and sphingosine-1-phosphate play a role in deciding the fate of the cell. In this review we briefly discuss the metabolic interconversion of sphingolipid species to get an insight into "sphingolipid rheostat", the dynamic balance among metabolites. Further we highlight the role of sphingolipids in the key pathophysiological mechanisms that lead to glaucomatous loss of RGCs. Lastly, we summarize the potential drug candidates that have been investigated for their neuroprotective effects in glaucoma via their effects on sphingolipid axis.
Collapse
|
4
|
Kumar S, Singh A, Pandey P, Khopade A, Sawant KK. Application of sphingolipid-based nanocarriers in drug delivery: an overview. Ther Deliv 2024; 15:619-637. [PMID: 39072358 PMCID: PMC11412150 DOI: 10.1080/20415990.2024.2377066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sphingolipids (SL) are well recognized for their cell signaling through extracellular and intracellular pathways. Based on chemistry different types of SL are biosynthesized in mammalian cells and have specific function in cellular activity. SL has an ampiphilic structure with have hydrophobic body attached to the polar head enables their use as a drug delivery agent in the form of nanocarriers. SL-based liposomes can improve the solubility of lipophilic drugs through host and drug complexes and are more stable than conventional liposomal formulations. Preclinical studies of SL nanocarriers are reported on topical delivery, oral delivery, ocular delivery, chemotherapeutic delivery, cardiovascular delivery and Alzheimer's disease. The commercial challenges and patents related to SL nanoformulations are highlighted in this article.
Collapse
Affiliation(s)
- Samarth Kumar
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ajit Singh
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Prachi Pandey
- Krishna School of Pharmacy & Research, KPGU, Vadodara, Gujarat, 391243, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Krutika K Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| |
Collapse
|
5
|
Nădăban A, Frame CO, El Yachioui D, Gooris GS, Dalgliesh RM, Malfois M, Iacovella CR, Bunge AL, McCabe C, Bouwstra JA. The Sphingosine and Phytosphingosine Ceramide Ratio in Lipid Models Forming the Short Periodicity Phase: An Experimental and Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13794-13809. [PMID: 38917358 PMCID: PMC11238587 DOI: 10.1021/acs.langmuir.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The lipids located in the outermost layer of the skin, the stratum corneum (SC), play a crucial role in maintaining the skin barrier function. The primary components of the SC lipid matrix are ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). They form two crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). In inflammatory skin conditions like atopic dermatitis and psoriasis, there are changes in the SC CER composition, such as an increased concentration of a sphingosine-based CER (CER NS) and a reduced concentration of a phytosphingosine-based CER (CER NP). In the present study, a lipid model was created exclusively forming the SPP, to examine whether alterations in the CER NS:CER NP molar ratio would affect the lipid organization. Experimental data were combined with molecular dynamics simulations of lipid models containing CER NS:CER NP at ratios of 1:2 (mimicking a healthy SC ratio) and 2:1 (observed in inflammatory skin diseases), mixed with CHOL and lignoceric acid as the FFA. The experimental findings show that the acyl chains of CER NS and CER NP and the FFA are in close proximity within the SPP unit cell, indicating that CER NS and CER NP adopt a linear conformation, similarly as observed for the LPP. Both the experiments and simulations indicate that the lamellar organization is the same for the two CER NS:CER NP ratios while the SPP NS:NP 1:2 model had a slightly denser hydrogen bonding network than the SPP NS:NP 2:1 model. The simulations show that this might be attributed to intermolecular hydrogen bonding with the additional hydroxide group on the headgroup of CER NP compared with CER NS.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
6
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Medrano M, Contreras M, Caballero-Velázquez T, Martínez L, Bejarano-García JA, Calderón-Ruiz R, García-Calderón CB, Rosado IV, Pérez-Simón JA. Cannabinoids induce cell death in leukaemic cells through Parthanatos and PARP-related metabolic disruptions. Br J Cancer 2024; 130:1529-1541. [PMID: 38461169 PMCID: PMC11058274 DOI: 10.1038/s41416-024-02618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Several studies have described a potential anti-tumour effect of cannabinoids (CNB). CNB receptor 2 (CB2) is mostly present in hematopoietic stem cells (HSC). The present study evaluates the anti-leukaemic effect of CNB. METHODS Cell lines and primary cells from acute myeloid leukaemia (AML) patients were used and the effect of the CNB derivative WIN-55 was evaluated in vitro, ex vivo and in vivo. RESULTS We demonstrate a potent antileukemic effect of WIN-55 which is abolished with CB antagonists. WIN-treated mice, xenografted with AML cells, had better survival as compared to vehicle or cytarabine. DNA damage-related genes were affected upon exposure to WIN. Co-incubation with the PARP inhibitor Olaparib prevented WIN-induced cell death, suggesting PARP-mediated apoptosis which was further confirmed with the translocation of AIF to the nucleus observed in WIN-treated cells. Nicotinamide prevented WIN-related apoptosis, indicating NAD+ depletion. Finally, WIN altered glycolytic enzymes levels as well as the activity of G6PDH. These effects are reversed through PARP1 inhibition. CONCLUSIONS WIN-55 exerts an antileukemic effect through Parthanatos, leading to translocation of AIF to the nucleus and depletion of NAD+, which are reversed through PARP1 inhibition. It also induces metabolic disruptions. These effects are not observed in normal HSC.
Collapse
Affiliation(s)
- M Medrano
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
| | - M Contreras
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
| | - T Caballero-Velázquez
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
- Department of Hematology, University Hospital Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - L Martínez
- Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - J A Bejarano-García
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
| | - R Calderón-Ruiz
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
| | - C B García-Calderón
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
| | - I V Rosado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - J A Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Universidad de Sevilla, Seville, Spain.
- Department of Hematology, University Hospital Virgen del Rocío, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
8
|
Vijayaraghavan CS, Raman LS, Surenderan S, Kaur H, Chinambedu MD, Thyagarajan SP, Gnanambal Krishnan ME. A Novel Non-Psychoactive Fatty Acid from a Marine Snail, Conus inscriptus, Signals Cannabinoid Receptor 1 (CB1) to Accumulate Apoptotic C16:0 and C18:0 Ceramides in Teratocarcinoma Cell Line PA1. Molecules 2024; 29:1737. [PMID: 38675558 PMCID: PMC11052367 DOI: 10.3390/molecules29081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 04/28/2024] Open
Abstract
The cannabinoid-type I (CB1) receptor functions as a double-edged sword to decide cell fate: apoptosis/survival. Elevated CB1 receptor expression is shown to cause acute ceramide accumulation to meet the energy requirements of fast-growing cancers. However, the flip side of continual CB1 activation is the initiation of a second ceramide peak that leads to cell death. In this study, we used ovarian cancer cells, PA1, which expressed CB1, which increased threefold when treated with a natural compound, bis(palmitoleic acid) ester of a glycerol (C2). This novel compound is isolated from a marine snail, Conus inscriptus, using hexane and the structural details are available in the public domain PubChem database (ID: 14275348). The compound induced two acute ceramide pools to cause G0/G1 arrest and killed cells by apoptosis. The compound increased intracellular ceramides (C:16 to 7 times and C:18 to 10 times), both of which are apoptotic inducers in response to CB1 signaling and thus the compound is a potent CB1 agonist. The compound is not genotoxic because it did not induce micronuclei formation in non-cancerous Chinese hamster ovarian (CHO) cells. Since the compound induced the cannabinoid pathway, we tested if there was a psychotropic effect in zebrafish models, however, it was evident that there were no observable neurobehavioral changes in the treatment groups. With the available data, we propose that this marine compound is safe to be used in non-cancerous cells as well as zebrafish. Thus, this anticancer compound is non-toxic and triggers the CB1 pathway without causing psychotropic effects.
Collapse
Affiliation(s)
- Christina Sathyanathan Vijayaraghavan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | - Lakshmi Sundaram Raman
- Faculty of Pharmacy, SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | | | - Harpreet Kaur
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India; (H.K.); (M.D.C.)
| | - Mohanapriya Dandapani Chinambedu
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India; (H.K.); (M.D.C.)
| | - Sadras Panchatcharam Thyagarajan
- Distinguished Professor and Advisor to Chancellor, Vellore Institute of technology (VIT), Vellore Campus, Tiruvalam Rd, Katpadi, Vellore 632014, Tamil Nadu, India;
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India;
| |
Collapse
|
9
|
Maekawa M, Sato T, Kanno C, Sakamoto I, Kawasaki Y, Ito A, Mano N. Wide-Targeted Semi-Quantitative Analysis of Acidic Glycosphingolipids in Cell Lines and Urine to Develop Potential Screening Biomarkers for Renal Cell Carcinoma. Int J Mol Sci 2024; 25:4098. [PMID: 38612906 PMCID: PMC11012862 DOI: 10.3390/ijms25074098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Glycosphingolipids (GSLs), mainly located in the cell membrane, play various roles in cancer cell function. GSLs have potential as renal cell carcinoma (RCC) biomarkers; however, their analysis in body fluids is challenging because of the complexity of numerous glycans and ceramides. Therefore, we applied wide-targeted lipidomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring (SRM) based on theoretical mass to perform a comprehensive measurement of GSLs and evaluate their potency as urinary biomarkers. In semi-quantitative lipidomics, 240 SRM transitions were set based on the reported/speculated structures. We verified the feasibility of measuring GSLs in cells and medium and found that disialosyl globopentaosylceramide (DSGb5 (d18:1/16:0)) increased GSL in the ACHN medium. LC-MS/MS analysis of urine samples from clear cell RCC (ccRCC) patients and healthy controls showed a significant increase in the peak intensity of urinary DSGb5 (d18:1/16:0) in the ccRCC group compared with that in the control group. Receiver operating characteristic analysis indicated that urinary DSGb5 could serve as a sensitive and specific marker for RCC screening, with an AUC of 0.89. This study demonstrated the possibility of urinary screening using DSGb5 (d18:1/16:0). In conclusion, urinary DSGb5 (d18:1/16:0) was a potential biomarker for cancer screening, which could contribute to the treatment of RCC patients.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan;
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Tomonori Sato
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (I.S.); (Y.K.); (A.I.)
| | - Chika Kanno
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Izumi Sakamoto
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (I.S.); (Y.K.); (A.I.)
| | - Yoshihide Kawasaki
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (I.S.); (Y.K.); (A.I.)
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; (T.S.); (I.S.); (Y.K.); (A.I.)
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan;
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
10
|
Wang L, Zhang X, Li L, Bao J, Lin F, Zhu X. A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence and plasma membrane tension in Magnaporthe oryzae. Microbiol Res 2024; 279:127554. [PMID: 38056173 DOI: 10.1016/j.micres.2023.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Rice blast, caused by the plant pathogenic fungus Magnaporthe oryzae, is a destructive disaster all over the earth that causes enormous losses in crop production. Sphingolipid, an important biological cell membrane lipid, is an essential structural component in the plasma membrane (PM) and has several biological functions, including cell mitosis, apoptosis, stress resistance, and signal transduction. Previous studies have suggested that sphingolipid and its derivatives play essential roles in the virulence of plant pathogenic fungi. However, the functions of sphingolipid biosynthesis-related proteins are not fully understood. In this article, we identified a key sphingolipid synthesis enzyme, MoDes1, and found that it is engaged in cell development and pathogenicity in M. oryzae. Deletion of MoDES1 gave rise to pleiotropic defects in vegetative growth, conidiation, plant penetration, and pathogenicity. MoDes1 is also required for lipid homeostasis and participates in the cell wall integrity (CWI) and Osm1-MAPK pathways. Notably, our results showed that there is negative feedback in the TORC2 signaling pathway to compensate for the decreased sphingolipid level due to the knockout of MoDES1 by regulating the phosphorylated Ypk1 level and PM tension. Furthermore, protein structure building has shown that MoDes1 is a potential drug target. These findings further refine the function of Des1 and deepen our understanding of the sphingolipid biosynthesis pathway in M. oryzae, laying a foundation for developing novel and specific drugs for rice blast control.
Collapse
Affiliation(s)
- Lei Wang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Xiaozhi Zhang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fucheng Lin
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Xueming Zhu
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
Sutter PA, Lavoie ER, Lombardo ET, Pinter MK, Crocker SJ. Emerging Role of Astrocyte-Derived Extracellular Vesicles as Active Participants in CNS Neuroimmune Responses. Immunol Invest 2024; 53:26-39. [PMID: 37981468 PMCID: PMC11472422 DOI: 10.1080/08820139.2023.2281621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Astrocyte-derived extracellular vesicles (ADEVs) have garnered attention as a fundamental mechanism of intercellular communication in health and disease. In the context of neurological diseases, for which prodromal diagnosis would be advantageous, ADEVs are also being explored for their potential utility as biomarkers. In this review, we provide the current state of data supporting our understanding on the manifold roles of ADEVs in several common neurological disorders. We also discuss these findings from a unique emerging perspective that ADEVs represent a means by which the central nervous system may broadcast influence over other systems in the body to affect neuroinflammatory processes, with both dual potential to either propagate illness or restore health and homeostasis.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Erica R. Lavoie
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Evan T. Lombardo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Meghan K. Pinter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
12
|
Lauwers C, De Bruyn L, Langouche L. Impact of critical illness on cholesterol and fatty acids: insights into pathophysiology and therapeutic targets. Intensive Care Med Exp 2023; 11:84. [PMID: 38015312 PMCID: PMC10684846 DOI: 10.1186/s40635-023-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeostasis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysiological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cortisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be interpreted as a signal of severity of illness requires further research.
Collapse
Affiliation(s)
- Caroline Lauwers
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lauren De Bruyn
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Meade R, Chao Y, Harroun N, Li C, Hafezi S, Hsu FF, Semenkovich CF, Zayed MA. Ceramides in peripheral arterial plaque lead to endothelial cell dysfunction. JVS Vasc Sci 2023; 4:100181. [PMID: 38077163 PMCID: PMC10704331 DOI: 10.1016/j.jvssci.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
Background Peripheral arterial atheroprogression is increasingly prevalent, and is a risk factor for major limb amputations in individuals with risk factors such as diabetes. We previously demonstrated that bioactive lipids are significantly altered in arterial tissue of individuals with diabetes and advanced peripheral arterial disease. Methods Here we evaluated whether sphingolipid ceramide 18:1/16:0 (C16) is a cellular regulator in endothelial cells and peripheral tibial arterial tissue in individuals with diabetes. Results We observed that C16 is the single most elevated ceramide in peripheral arterial tissue from below the knee in individuals with diabetes (11% increase, P < .05). C16 content in tibial arterial tissue positively correlates with sphingomyelin (SPM) content in patients with and without diabetes (r2 = 0.5, P < .005; r2 = 0.17, P < .05; respectively). Tibial arteries of individuals with diabetes demonstrated no difference in CERS6 expression (encoding ceramide synthase 6; the predominate ceramide synthesis enzyme), but higher SMPD expression (encoding sphingomyelin phosphodiesterase that catalyzes ceramide synthesis from sphingomyelins; P < .05). SMPD4, but not SMPD2, was particularly elevated in maximally diseased (Max) tibial arterial segments (P < .05). In vitro, exogenous C16 caused endothelial cells (HUVECs) to have decreased proliferation (P < .03), increased apoptosis (P < .003), and decreased autophagy (P < .008). Selective knockdown of SMPD2 and SMPD4 decreased native production of C16 (P < .01 and P < .001, respectively), but only knockdown of SMPD4 rescued cellular proliferation (P < .005) following exogenous supplementation with C16. Conclusions Our findings suggest that C16 is a tissue biomarker for peripheral arterial disease severity in the setting of diabetes, and can impact endothelial cell viability and function. Clinical relevance Peripheral arterial disease and its end-stage manifestation known as chronic limb-threatening ischemia (CLTI) represent ongoing prevalent and intricate medical challenges. Individuals with diabetes have a heightened risk of developing CLTI and experiencing its complications, including wounds, ulcers, and major amputations. In the present study, we conducted a comprehensive examination of the molecular lipid composition within arterial segments from individuals with CLTI, and with and without diabetes. Our investigations unveiled a striking revelation: the sphingolipid ceramide 18:1/16:0 emerged as the predominant ceramide species that was significantly elevated in the peripheral arterial intima below the knee in patients with diabetes. Moreover, this heightened ceramide presence is associated with a marked impairment of endothelial cell function and viability. Additionally, our study revealed a concurrent elevation in the expression of sphingomyelin phosphodiesterases, enzymes responsible for catalyzing ceramide synthesis from sphingomyelins, within maximally diseased arterial segments. These findings underscore the pivotal role of ceramides and their biosynthesis enzymes in the context of CLTI, offering new insights into potential therapeutic avenues for managing this challenging disease process.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Yang Chao
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Nikolai Harroun
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Chenglong Li
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Shahab Hafezi
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Fong-Fu Hsu
- Division of Endocrinology, Lipid, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Clay F. Semenkovich
- Division of Endocrinology, Lipid, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mohamed A. Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Surgery, Veterans Affairs St. Louis Health Care System, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University, McKelvey School of Engineering, St. Louis, MO
| |
Collapse
|
14
|
Fernandes C, Casadevall A, Gonçalves T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol Rev 2023; 47:fuad061. [PMID: 37884396 DOI: 10.1093/femsre/fuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Wolfe Street, Room E5132, Baltimore, Maryland 21205, USA
| | - Teresa Gonçalves
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
15
|
Bassi R, Dei Cas M, Tringali C, Compostella F, Paroni R, Giussani P. Ceramide Is Involved in Temozolomide Resistance in Human Glioblastoma U87MG Overexpressing EGFR. Int J Mol Sci 2023; 24:15394. [PMID: 37895074 PMCID: PMC10607229 DOI: 10.3390/ijms242015394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and deadly brain tumor. Many sphingolipids are crucial players in the regulation of glioma cell growth as well as in the response to different chemotherapeutic drugs. In particular, ceramide (Cer) is a tumor suppressor lipid, able to induce antiproliferative and apoptotic responses in different types of tumors including GBM, most of which overexpress the epidermal growth factor receptor variant III (EGFRvIII). In this paper, we investigated whether Cer metabolism is altered in the U87MG human glioma cell line overexpressing EGFRvIII (EGFR+ cells) to elucidate their possible interplay in the mechanisms regulating GBM survival properties and the response to the alkylating agent temozolomide (TMZ). Notably, we demonstrated that a low dose of TMZ significantly increases Cer levels in U87MG cells but slightly in EGFR+ cells (sensitive and resistant to TMZ, respectively). Moreover, the inhibition of the synthesis of complex sphingolipids made EGFR+ cells sensitive to TMZ, thus involving Cer accumulation/removal in TMZ resistance of GBM cells. This suggests that the enhanced resistance of EGFR+ cells to TMZ is dependent on Cer metabolism. Altogether, our results indicate that EGFRvIII expression confers a TMZ-resistance phenotype to U87MG glioma cells by counteracting Cer increase.
Collapse
Affiliation(s)
- Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Michele Dei Cas
- Department of Scienze della Salute, Università degli Studi di Milano, Via di Rudini, 8, 20142 Milan, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Rita Paroni
- Department of Scienze della Salute, Università degli Studi di Milano, Via di Rudini, 8, 20142 Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| |
Collapse
|
16
|
Ogg GS, Rossjohn J, Clark RA, Moody DB. CD1a and bound lipids drive T-cell responses in human skin disease. Eur J Immunol 2023; 53:e2250333. [PMID: 37539748 PMCID: PMC10592190 DOI: 10.1002/eji.202250333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
In addition to serving as the main physical barrier with the outside world, human skin is abundantly infiltrated with resident αβ T cells that respond differently to self, infectious, microbiome, and noxious stimuli. To study skin T cells during infection and inflammation, experimental biologists track T-cell surface phenotypes and effector functions, which are often interpreted with the untested assumption that MHC proteins and peptide antigens drive measured responses. However, a broader perspective is that CD1 proteins also activate human T cells, and in skin, Langerhans cells (LCs) are abundant antigen presenting cells that express extremely high levels of CD1a. The emergence of new experimental tools, including CD1a tetramers carrying endogenous lipids, now show that CD1a-reactive T cells comprise a large population of resident T cells in human skin. Here, we review studies showing that skin-derived αβ T cells directly recognize CD1a proteins, and certain bound lipids, such as contact dermatitis allergens, trigger T-cell responses. Other natural skin lipids inhibit CD1a-mediated T-cell responses, providing an entry point for the development of therapeutic lipids that block T-cell responses. Increasing evidence points to a distinct role of CD1a in type 2 and 22 T-cell responses, providing new insights into psoriasis, contact dermatitis, and other T-cell-mediated skin diseases.
Collapse
Affiliation(s)
- Graham S. Ogg
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| |
Collapse
|
17
|
Moro K, Ichikawa H, Koyama Y, Abe S, Uchida H, Naruse K, Obata Y, Tsuchida J, Toshikawa C, Ikarashi M, Muneoka Y, Miura K, Tajima Y, Shimada Y, Kobayashi T, Sakata J, Takabe K, Wakai T. Oral Administration of Glucosylceramide Suppresses Tumor Growth by Affecting the Ceramide/Sphingosine-1-Phosphate Balance in Breast Cancer Tissue. World J Oncol 2023; 14:430-437. [PMID: 37869237 PMCID: PMC10588502 DOI: 10.14740/wjon1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Background Ceramide and sphingosine-1-phosphate (S1P) play opposing roles in cell death and survival, and maintain a dynamic balance called the sphingolipid rheostat. Glucosylceramide is a substrate to generate ceramide but its effect on breast cancer by oral administration was never tested. The purpose of this study was to reveal the anticancer activity of glucosylceramide and its potential as a new therapeutic agent in breast cancer. Methods E0771 cells were inoculated into the breast tissue of female C57BL/6NJcl mice. Glucosylceramide was administered orally to the mice for nine consecutive days. The concentrations of sphingolipid mediators including ceramide, glucosylceramide, and S1P in tumor tissues and serum were determined by mass spectrometry. Results Oral administration of glucosylceramide significantly suppressed E0771 tumor growth compared with the control group (P = 0.006). There were no significant differences in the serum concentrations of sphingolipid mediators including ceramide and S1P between the mice treated with glucosylceramide and control-treated mice. The ceramide concentration was significantly lower in tumor tissues (P = 0.026), and the S1P concentration was significantly higher than that in paired non-tumor tissues (P = 0.009). The S1P concentration in tumor tissues was significantly lower in mice treated with glucosylceramide than in control-treated mice (P = 0.001). The ceramide-to-S1P concentration ratio in tumor tissues was significantly higher in mice treated with glucosylceramide than in control-treated mice (P = 0.034). Conclusions Breast tumors could enhance their survival by increasing S1P conversion from ceramide. Oral administration of glucosylceramide suppressed tumor growth by affecting the ceramide/S1P balance. Oral administration of glucosylceramide is a promising basis for a new therapeutic approach.
Collapse
Affiliation(s)
- Kazuki Moro
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yu Koyama
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Nursing, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Shun Abe
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Haruka Uchida
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kana Naruse
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuo Obata
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Chie Toshikawa
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Mayuko Ikarashi
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Muneoka
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yosuke Tajima
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
18
|
Chen H, Deng Y, Wang Q, Chen W, Liu Z, Tan H, Chen D. Large polystyrene microplastics results in hepatic lipotoxicity in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122015. [PMID: 37343913 DOI: 10.1016/j.envpol.2023.122015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Like small microplastics (MPs), recent studies reveal that large MPs could cause health risks in mice, even if they are not enriched in tissues. However, potential hepatoxicity following large MPs exposure and the underlying mechanisms have not been thoroughly investigated. In the present study, we explored the disruption of hepatic lipid metabolism and potential underlying toxic mechanisms in mice caused by long-term exposure to large polystyrene MPs (40-100 μm) based on a multi-omic approach. After 21 weeks of feeding foods containing MPs (50 and 500 mg/kg food), lipidomic revealed that environmentally relevant and higher doses MP exposures resulted in significant changes in a total of 20 lipid classes. Ceramide (Cer) and dihydroceramide (dhCer) were significantly reduced, while cholesteryl ester (CE), lysoalkylphosphatidylcholine (LPCO), lysophosphatidylethanolamine (LPE) and total glyceride (TG) were all elevated by MPs. The transcriptomic and other physiological data suggested that the potential toxic mechanisms may be related to disorders of fatty acid and cholesterol synthesis and metabolism disorders, and transporting of TG. Our findings demonstrate the hepatic lipotoxicity following exposure to environmentally relevant and higher doses of large MPs, calling for future research and management of the environmental risks of MPs with relatively large particle sizes.
Collapse
Affiliation(s)
- Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yongfeng Deng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiteng Liu
- Shenzhen Colleage of International Education, Shenzhen 518043, China
| | - Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
20
|
Abdel-Megied AM, Monreal IA, Zhao L, Apffel A, Aguilar HC, Jones JW. Characterization of the cellular lipid composition during SARS-CoV-2 infection. Anal Bioanal Chem 2023; 415:5269-5279. [PMID: 37438564 PMCID: PMC10981079 DOI: 10.1007/s00216-023-04825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Emerging and re-emerging zoonotic viral diseases continue to significantly impact public health. Of particular interest are enveloped viruses (e.g., SARS-CoV-2, the causative pathogen of COVID-19), which include emerging pathogens of highest concern. Enveloped viruses contain a viral envelope that encapsulates the genetic material and nucleocapsid, providing structural protection and functional bioactivity. The viral envelope is composed of a coordinated network of glycoproteins and lipids. The lipid composition of the envelope consists of lipids preferentially appropriated from host cell membranes. Subsequently, changes to the host cell lipid metabolism and an accounting of what lipids are changed during viral infection provide an opportunity to fingerprint the host cell's response to the infecting virus. To address this issue, we comprehensively characterized the lipid composition of VeroE6-TMPRSS2 cells infected with SARS-CoV-2. Our approach involved using an innovative solid-phase extraction technique to efficiently extract cellular lipids combined with liquid chromatography coupled to high-resolution tandem mass spectrometry. We identified lipid changes in cells exposed to SARS-CoV-2, of which the ceramide to sphingomyelin ratio was most prominent. The identification of a lipid profile (i.e., lipid fingerprint) that is characteristic of cellular SARS-CoV-2 infection lays the foundation for targeting lipid metabolism pathways to further understand how enveloped viruses infect cells, identifying opportunities to aid antiviral and vaccine development.
Collapse
Affiliation(s)
- Ahmed M Abdel-Megied
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh City, Egypt
| | - Isaac A Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA.
| |
Collapse
|
21
|
Wu XY, Xie LJ, He JJ, Yan XX, Zhang FF, Xu YY, Li YB. Lipidomics reveals the lipid metabolism disorders in Fructus Psoraleae-induced hepatotoxicity in rats with kidney-yin deficiency syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123898. [PMID: 37827069 DOI: 10.1016/j.jchromb.2023.123898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Fructus Psoraleae (FP), one of the important traditional Chinese medicines, is widely used in clinic and has been reported to be hepatotoxic. However, there is no report on the mechanism of FP-induced hepatotoxicity based on the theory of You Gu Wu Yun. In this study, plasma samples of rats with different kidney deficiency syndromes were investigated using a lipidomics approach based on UPLC/Q-TOF-MS technique. Firstly, multivariate statistical analysis, VIP value test, statistical test and other methods were used to find the lipid metabolites in the two syndrome model groups that were different from the normal group. The screening of differential lipid metabolites revealed that there were 12 biomarkers between the blank group and the kidney-yang deficiency model group as well as 16 differential metabolites between the kidney-yin deficiency model group, and finally a total of 17 relevant endogenous metabolites were identified, which could be used as differential lipid metabolites to distinguish between kidney-yin deficiency and kidney-yang deficiency evidence. Secondly, the relative content changes of metabolites in rats after administration of FP decoction were further compared to find the substances associated with toxicity after administration, and the diagnostic ability of the identified biomarkers was evaluated using a receiver operating characteristic curve (ROC). Results a total of 14 potential differential lipid metabolites, including LysoPC(20:0/0:0) and LysoPC(16:0/0:0), which may be related to hepatotoxicity in rats with kidney-yin deficiency syndrome were further screened, namely, the potential active lipid metabolites related to hepatotoxicity in rats induced by FP. Finally, cluster analysis, MetPA analysis and KEGG database were used to analyze metabolic pathways. It was discovered that the metabolism of glycerophospholipid and sphingolipid may be strongly related to the mechanism of hepatotoxicity brought on by FP. Overall, we described the lipidomics changes in rats treated with FP decoction and screened out 14 lipid metabolites related to hepatotoxicity in rats with kidney-yin deficiency, which served as a foundation for the theory of "syndrome differentiation and treatment" in traditional Chinese medicine and a guide for further investigation into the subsequent mechanism.
Collapse
Affiliation(s)
- Xiao-Yan Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li-Juan Xie
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun-Jie He
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xing-Xu Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fang-Fang Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan-Yan Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
23
|
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, Chen R. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech 2023; 16:dmm050168. [PMID: 37466006 PMCID: PMC10387349 DOI: 10.1242/dmm.050168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Increasing evidence has supported the role of ceramide as a mediator of photoreceptor dysfunction or cell death in ceramide accumulation and deficiency contexts. TLCD3B, a non-canonical ceramide synthase, was previously identified in addition to the six canonical ceramide synthases (CerSs), and the Tlcd3b-/- mouse model exhibited both retinal dysfunction and degeneration. As previous canonical CerS-deficient mouse models failed to display retinal degeneration, the mechanisms of how TLCD3B interacts with CerSs have not been investigated. Additionally, as the ceramide profile of each CerS is distinct, it is unclear whether the overall level or the homeostasis of different ceramide species plays a critical role in photoreceptor degeneration. Interactions between TLCD3B with canonical CerSs expressed in the retina were examined by subretinally injecting recombinant adeno-associated virus 8 vectors containing the Cers2 (rAAV8-CerS2), Cers4 (rAAV8-CerS4) and Cers5 (rAAV8-CerS5) genes. Injection of all three rAAV8-CerS vectors restored retinal functions as indicated by improved electroretinogram responses, but only rAAV8-CerS5 successfully retained retinal morphology in Tlcd3b-/- mice. CerSs and TLCD3B played partially redundant roles. Additionally, rather than acting as an integral entity, different ceramide species had different impacts on retinal cells, suggesting that the maintenance of the overall ceramide profile is critical for retinal function.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Jiaxiong Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
St Sauver JL, LeBrasseur NK, Rocca WA, Olson JE, Bielinski SJ, Sohn S, Weston SA, McGree ME, Mielke MM. Cohort study examining associations between ceramide levels and risk of multimorbidity among persons participating in the Mayo Clinic Biobank. BMJ Open 2023; 13:e069375. [PMID: 37085302 PMCID: PMC10124265 DOI: 10.1136/bmjopen-2022-069375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Ceramides have been associated with several ageing-related conditions but have not been studied as a general biomarker of multimorbidity (MM). Therefore, we determined whether ceramide levels are associated with the rapid development of MM. DESIGN Retrospective cohort study. SETTING Mayo Clinic Biobank. PARTICIPANTS 1809 persons in the Mayo Clinic Biobank ≥65 years without MM at the time of enrolment, and with ceramide levels assayed from stored plasma. PRIMARY OUTCOME MEASURE Persons were followed for a median of 5.7 years through their medical records to identify new diagnoses of 20 chronic conditions. The number of new conditions was divided by the person-years of follow-up to calculate the rate of accumulation of new chronic conditions. RESULTS Higher levels of C18:0 and C20:0 were associated with a more rapid rate of accumulation of chronic conditions (C18:0 z score RR: 1.30, 95% CI: 1.10 to 1.53; C20:0 z score RR: 1.26, 95% CI: 1.07 to 1.49). Higher C18:0 and C20:0 levels were also associated with an increased risk of hypertension and coronary artery disease. CONCLUSIONS C18:0 and C20:0 were associated with an increased risk of cardiometabolic conditions. When combined with biomarkers specific to other diseases of ageing, these ceramides may be a useful component of a biomarker panel for predicting accelerated ageing.
Collapse
Affiliation(s)
- Jennifer L St Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter A Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet E Olson
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Suzette J Bielinski
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Sunghwan Sohn
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Susan A Weston
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Michaela E McGree
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
25
|
Markowski AR, Żbikowski A, Zabielski P, Chlabicz U, Sadowska P, Pogodzińska K, Błachnio-Zabielska AU. The Effect of Silencing the Genes Responsible for the Level of Sphingosine-1-phosphate on the Apoptosis of Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24087197. [PMID: 37108361 PMCID: PMC10138425 DOI: 10.3390/ijms24087197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) and ceramides (Cer) are engaged in key events of signal transduction, but their involvement in the pathogenesis of colorectal cancer is not conclusive. The aim of our study was to investigate how the modulation of sphingolipid metabolism through the silencing of the genes involved in the formation (SPHK1) and degradation (SGPL1) of sphingosine-1-phosphate would affect the sphingolipid profile and apoptosis of HCT-116 human colorectal cancer cells. Silencing of SPHK1 expression decreased S1P content in HCT-116 cells, which was accompanied by an elevation in sphingosine, C18:0-Cer, and C18:1-Cer, increase in the expression and activation of Caspase-3 and -9, and augmentation of apoptosis. Interestingly, silencing of SGLP1 expression increased cellular content of both the S1P and Cer (C16:0-; C18:0-; C18:1-; C20:0-; and C22:0-Cer), yet inhibited activation of Caspase-3 and upregulated protein expression of Cathepsin-D. The above findings suggest that modulation of the S1P level and S1P/Cer ratio regulates both cellular apoptosis and CRC metastasis through Cathepsin-D modulation. The cellular ratio of S1P/Cer seems to be a crucial component of the above mechanism.
Collapse
Affiliation(s)
- Adam R Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Urszula Chlabicz
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Agnieszka U Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| |
Collapse
|
26
|
Zhang C, Liu J, Wang X, Li E, Song M, Yang Y, Qin C, Qin J, Chen L. Comprehensive transcriptional and metabolomic analysis reveals the neuroprotective mechanism of dietary gamma-aminobutyric acid response to hypoxic stress in the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108663. [PMID: 36898515 DOI: 10.1016/j.fsi.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Hypoxia is one of the serious stress challenges that aquatic animals face throughout their life. Our previous study found that hypoxia stress could induce neural excitotoxicity and neuronal apoptosis in Eriocheir sinensis, and observed that gamma-aminobutyric acid (GABA) has a positive neuroprotective effect on juvenile crabs under hypoxia. To reveal the neuroprotective pathway and metabolic regulatory mechanism of GABA in E. sinensis exposed to hypoxia stress, an 8-week feeding trial and acute hypoxia challenge were performed. Subsequently, we performed a comprehensive transcriptomic and metabolomic analysis of the thoracic ganglia of juvenile crabs. Differential genes and differential metabolites were co-annotated to 11 KEGG pathways, and further significant analysis showed that only the sphingolipid signaling pathway and the arachidonic acid metabolism pathway were significantly enriched. In the sphingolipid signaling pathway, GABA treatment significantly increased long-chain ceramide content in thoracic ganglia, which exerted neuroprotective effects by activating downstream signals to inhibit hypoxia-induced apoptosis. Moreover, in the arachidonic acid metabolism pathway, GABA could increase the content of neuroprotective active substances and reduce the content of harmful metabolites by regulating the metabolism of arachidonic acid for inflammatory regulation and neuroprotection. Furthermore, the decrease of glucose and lactate levels in the hemolymph suggests the positive role of GABA in metabolic regulation. This study reveals the neuroprotective pathways and possible mechanisms of GABA in juvenile E. sinensis exposed to hypoxia stress and inspires the discovery of new targets for improving hypoxia tolerance in aquatic animals.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingqi Song
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
27
|
Yamazaki A, Kawashima A, Honda T, Kohama T, Murakami C, Sakane F, Murayama T, Nakamura H. Identification and characterization of diacylglycerol kinase ζ as a novel enzyme producing ceramide-1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159307. [PMID: 36906254 DOI: 10.1016/j.bbalip.2023.159307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Ceramide-1-phosphate (C1P) is a sphingolipid formed by the phosphorylation of ceramide; it regulates various physiological functions, including cell survival, proliferation, and inflammatory responses. In mammals, ceramide kinase (CerK) is the only C1P-producing enzyme currently known. However, it has been suggested that C1P is also produced by a CerK-independent pathway, although the identity of this CerK-independent C1P was unknown. Here, we identified human diacylglycerol kinase (DGK) ζ as a novel C1P-producing enzyme and demonstrated that DGKζ catalyzes the phosphorylation of ceramide to produce C1P. Analysis using fluorescently labeled ceramide (NBD-ceramide) demonstrated that only DGKζ among ten kinds of DGK isoforms increased C1P production by transient overexpression of the DGK isoforms. Furthermore, an enzyme activity assay using purified DGKζ revealed that DGKζ could directly phosphorylate ceramide to produce C1P. Furthermore, genetic deletion of DGKζ decreased the formation of NBD-C1P and the levels of endogenous C18:1/24:1- and C18:1/26:0-C1P. Interestingly, the levels of endogenous C18:1/26:0-C1P were not decreased by the knockout of CerK in the cells. These results suggest that DGKζ is also involved in the formation of C1P under physiological conditions.
Collapse
Affiliation(s)
- Ayako Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayane Kawashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takafumi Kohama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
28
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
29
|
Ceramide Nanoliposomes as Potential Therapeutic Reagents for Asthma. Cells 2023; 12:cells12040591. [PMID: 36831258 PMCID: PMC9954069 DOI: 10.3390/cells12040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Ceramides are an emerging class of anti-inflammatory lipids, and nanoscale ceramide-delivery systems are potential therapeutic strategies for inflammatory diseases. This study investigated the therapeutic effects of ceramide nanoliposomes (CNL) on type 2 inflammation-based asthma, induced by repeated ovalbumin (OVA) challenges. Asthmatic mice intratracheally treated with ceramide-free liposomes (Ghost) displayed typical airway remodeling including mucosal accumulation and subepithelial fibrosis, whereas, in CNL-treated mice, the degree of airway remodeling was significantly decreased. Compared to the Ghost group, CNL treatment unexpectedly failed to significantly influence formation of type 2 cytokines, including IL-5 and IL-13, known to facilitate pathogenic production of airway mucus predominantly comprising MUC5AC mucin. Interestingly, CNL treatment suppressed OVA-evoked hyperplasia of MUC5AC-generating goblet cells in the airways. This suggests that CNL suppressed goblet cell hyperplasia and airway mucosal accumulation independently of type 2 cytokine formation. Mechanistically, CNL treatment suppressed cell growth and EGF-induced activation of Akt, but not ERK1/2, in a human lung epithelial cell culture system recapitulating airway goblet cell hyperplasia. Taken together, CNL is suggested to have therapeutic effects on airway remodeling in allergic asthma by targeting goblet cell hyperplasia. These findings raise the potential of ceramide-based therapies for airway diseases, such as asthma.
Collapse
|
30
|
Pullmannová P, Čuříková-Kindlová BA, Ondrejčeková V, Kováčik A, Dvořáková K, Dulanská L, Georgii R, Majcher A, Maixner J, Kučerka N, Zbytovská J, Vávrová K. Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films. ACS OMEGA 2023; 8:422-435. [PMID: 36643519 PMCID: PMC9835644 DOI: 10.1021/acsomega.2c04924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Barbora A. Čuříková-Kindlová
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Veronika Ondrejčeková
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Kristýna Dvořáková
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Lucia Dulanská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Robert Georgii
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748Garching, Germany
| | - Adam Majcher
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Norbert Kučerka
- Faculty
of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32Bratislava, Slovakia
- Frank
Laboratory of Neutron Physics, Joint Institute
for Nuclear Research, Joliot-Curie 6, 141980Dubna, Russia
| | - Jarmila Zbytovská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
31
|
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:303-307. [PMID: 37440049 DOI: 10.1007/978-3-031-27681-1_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Ceramide (Cer) plays an essential role in photoreceptor cell death in the retina. On the one hand, Cer accumulation emerges as a common feature during retina neurodegeneration, leading to the death of photoreceptors. On the other hand, Cer deficiency has also recently been associated with retinal dysfunction and degeneration. Although more and more evidence supports the importance of maintaining Cer homeostasis in the retina, mechanistic explanations of the observed phenotypes, especially in the context of Cer deficiency, are still lacking. An enhanced understanding of Cer's role in the retina will help us explore the underlying molecular basis for clinical phenotypes of retinal dystrophies and provide us with potential therapeutic targets.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Wang J, Keshava S, Das K, Kolesnick R, Jiang XC, Pendurthi UR, Rao LVM. Alterations to Sphingomyelin Metabolism Affect Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2023; 43:64-78. [PMID: 36412194 PMCID: PMC9762718 DOI: 10.1161/atvbaha.122.318443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Our recent studies suggest that sphingomyelin levels in the plasma membrane influence TF (tissue factor) procoagulant activity. The current study was performed to investigate how alterations to sphingomyelin metabolic pathway would affect TF procoagulant activity and thereby affect hemostatic and thrombotic processes. METHODS Macrophages and endothelial cells were transfected with specific siRNAs or infected with adenoviral vectors to alter sphingomyelin levels in the membrane. TF activity was measured in factor X activation assay. Saphenous vein incision-induced bleeding and the inferior vena cava ligation-induced flow restriction mouse models were used to evaluate hemostasis and thrombosis, respectively. RESULTS Overexpression of SMS (sphingomyelin synthase) 1 or SMS2 in human monocyte-derived macrophages suppresses ATP-stimulated TF procoagulant activity, whereas silencing SMS1 or SMS2 increases the basal cell surface TF activity to the same level as of ATP-decrypted TF activity. Consistent with the concept that sphingomyelin metabolism influences TF procoagulant activity, silencing of acid sphingomyelinase or neutral sphingomyelinase 2 or 3 attenuates ATP-induced enhanced TF procoagulant activity in macrophages and endothelial cells. Niemann-Pick disease fibroblasts with a higher concentration of sphingomyelin exhibited lower TF activity compared with wild-type fibroblasts. In vivo studies revealed that LPS+ATP-induced TF activity and thrombin generation were attenuated in ASMase-/- mice, while their levels were increased in SMS2-/- mice. Further studies revealed that acid sphingomyelinase deficiency leads to impaired hemostasis, whereas SMS2 deficiency increases thrombotic risk. CONCLUSIONS Overall, our data indicate that alterations in sphingomyelin metabolism would influence TF procoagulant activity and affect hemostatic and thrombotic processes.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | | | | | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| |
Collapse
|
33
|
Lee TH, Cheng CN, Lee CW, Kuo CH, Tang SC, Jeng JS. Investigating sphingolipids as biomarkers for the outcomes of acute ischemic stroke patients receiving endovascular treatment. J Formos Med Assoc 2023; 122:19-28. [PMID: 36184387 DOI: 10.1016/j.jfma.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Long-chain ceramides are associated with the mechanisms and clinical outcomes of acute ischemic stroke (AIS). This study aimed to investigate the plasma ceramides and sphingosine-1-phosphate in AIS patients undergoing endovascular thrombectomy (EVT) and their associations with outcomes. METHODS Plasma samples were collected from 75 AIS patients who underwent EVT before (T1), immediately after (T2), and 24 h after (T3) the procedures and 19 controls that were matched with age, sex, and co-morbidities. The levels of ceramides with different fatty acyl chain lengths and sphingosine-1-phosphate were measured by UHPLC-ESI-MS/MS. A poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months after stroke. RESULTS The plasma levels of long-chain ceramides Cer (d18:1/16:0) at all three time points, Cer (d18:1/18:0) at T1 and T3, and Cer (d18:1/20:0) at T1 and very-long-chain ceramide Cer (d18:1/24:1) at T1 were significantly higher in AIS patients than those in the controls. In contrast, the plasma levels of sphingosine-1-phosphate in AIS patients were significantly lower than those in the controls at all three time points. Among the AIS patients, 34 (45.3%) had poor functional outcomes at 3 months poststroke. Multivariable analysis showed that higher levels of Cer (d18:1/16:0) and Cer (d18:1/18:0) at all three time points, Cer (d18:1/20:0) at T1 and T2, and Cer (d18:1/24:0) at T2 remained significantly associated with poor functional outcomes after adjustment for potential confounding factors. CONCLUSION Plasma ceramides were elevated early in AIS patients with acute large artery occlusion. Furthermore, Cer (d18:1/16:0) and Cer (d18:1/18:0) could be early prognostic indicators for AIS patients undergoing EVT.
Collapse
Affiliation(s)
- Tsung-Heng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Izquierdo E, López-Corrales M, Abad-Montero D, Rovira A, Fabriàs G, Bosch M, Abad JL, Marchán V. Fluorescently Labeled Ceramides and 1-Deoxyceramides: Synthesis, Characterization, and Cellular Distribution Studies. J Org Chem 2022; 87:16351-16367. [PMID: 36441972 PMCID: PMC9764360 DOI: 10.1021/acs.joc.2c02019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ceramides (Cer) are bioactive sphingolipids that have been proposed as potential disease biomarkers since they are involved in several cellular stress responses, including apoptosis and senescence. 1-Deoxyceramides (1-deoxyCer), a particular subtype of noncanonical sphingolipids, have been linked to the pathogenesis of type II diabetes. To investigate the metabolism of these bioactive lipids, as well as to have a better understanding of the signaling processes where they participate, it is essential to expand the toolbox of fluorescent sphingolipid probes exhibiting complementary subcellular localization. Herein, we describe a series of new sphingolipid probes tagged with two different organic fluorophores, a far-red/NIR-emitting coumarin derivative (COUPY) and a green-emitting BODIPY. The assembly of the probes involved a combination of olefin cross metathesis and click chemistry reactions as key steps, and these fluorescent ceramide analogues exhibited excellent emission quantum yields, being the Stokes' shifts of the COUPY derivatives much higher than those of the BODIPY counterparts. Confocal microscopy studies in HeLa cells confirmed an excellent cellular permeability for these sphingolipid probes and revealed that most of the vesicles stained by COUPY probes were either lysosomes or endosomes, whereas BODIPY probes accumulated either in Golgi apparatus or in nonlysosomal intracellular vesicles. The fact that the two sets of fluorescent Cer probes have such different staining patterns indicates that their subcellular distribution is not entirely defined by the sphingolipid moiety but rather influenced by the fluorophore.
Collapse
Affiliation(s)
- Eduardo Izquierdo
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Marta López-Corrales
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Diego Abad-Montero
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain,Research
Unit on BioActive Molecules, Departament de Química Biològica, Institut de Química Avançada de Catalunya
(IQAC-CSIC), Jordi Girona
18-26, 08034Barcelona, Spain
| | - Anna Rovira
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Gemma Fabriàs
- Research
Unit on BioActive Molecules, Departament de Química Biològica, Institut de Química Avançada de Catalunya
(IQAC-CSIC), Jordi Girona
18-26, 08034Barcelona, Spain
| | - Manel Bosch
- Unitat
de Microscòpia Òptica Avanc̨ada, Centres Científics
i Tecnològics, Universitat de Barcelona
(UB), Av. Diagonal, 643, 08028Barcelona, Spain
| | - José Luís Abad
- Research
Unit on BioActive Molecules, Departament de Química Biològica, Institut de Química Avançada de Catalunya
(IQAC-CSIC), Jordi Girona
18-26, 08034Barcelona, Spain,
| | - Vicente Marchán
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain,Institut
de Biomedicina de la Universitat de Barcelona (IBUB), 08028Barcelona, Spain,
| |
Collapse
|
35
|
Agapito G, Milano M, Cannataro M. A Python Clustering Analysis Protocol of Genes Expression Data Sets. Genes (Basel) 2022; 13:1839. [PMID: 36292724 PMCID: PMC9601308 DOI: 10.3390/genes13101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Gene expression and SNPs data hold great potential for a new understanding of disease prognosis, drug sensitivity, and toxicity evaluations. Cluster analysis is used to analyze data that do not contain any specific subgroups. The goal is to use the data itself to recognize meaningful and informative subgroups. In addition, cluster investigation helps data reduction purposes, exposes hidden patterns, and generates hypotheses regarding the relationship between genes and phenotypes. Cluster analysis could also be used to identify bio-markers and yield computational predictive models. The methods used to analyze microarrays data can profoundly influence the interpretation of the results. Therefore, a basic understanding of these computational tools is necessary for optimal experimental design and meaningful data analysis. This manuscript provides an analysis protocol to effectively analyze gene expression data sets through the K-means and DBSCAN algorithms. The general protocol enables analyzing omics data to identify subsets of features with low redundancy and high robustness, speeding up the identification of new bio-markers through pathway enrichment analysis. In addition, to demonstrate the effectiveness of our clustering analysis protocol, we analyze a real data set from the GEO database. Finally, the manuscript provides some best practice and tips to overcome some issues in the analysis of omics data sets through unsupervised learning.
Collapse
Affiliation(s)
- Giuseppe Agapito
- Department of Law, Economics and Social Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
- Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Milano
- Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
- Department of Medical and Clinical Surgery, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
- Department of Medical and Clinical Surgery, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
36
|
Komorowska D, Radzik T, Kalenik S, Rodacka A. Natural Radiosensitizers in Radiotherapy: Cancer Treatment by Combining Ionizing Radiation with Resveratrol. Int J Mol Sci 2022; 23:ijms231810627. [PMID: 36142554 PMCID: PMC9501384 DOI: 10.3390/ijms231810627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional cancer treatment is mainly based on the surgical removal of the tumor followed by radiotherapy and/or chemotherapy. When surgical removal is not possible, radiotherapy and, less often, chemotherapy is the only way to treat patients. However, despite significant progress in understanding the molecular mechanisms of carcinogenesis and developments in modern radiotherapy techniques, radiotherapy (alone or in combination) does not always guarantee treatment success. One of the main causes is the radioresistance of cancer cells. Increasing the radiosensitivity of cancer cells improves the processes leading to their elimination during radiotherapy and prolonging the survival of cancer patients. In order to enhance the effect of radiotherapy in the treatment of radioresistant neoplasms, radiosensitizers are used. In clinical practice, synthetic radiosensitizers are commonly applied, but scientists have recently focused on using natural products (phytocompounds) as adjuvants in radiotherapy. In this review article, we only discuss naturally occurring radiosensitizers currently in clinical trials (paclitaxel, curcumin, genistein, and papaverine) and those whose radiation sensitizing effects, such as resveratrol, have been repeatedly confirmed by many independent studies.
Collapse
Affiliation(s)
- Dominika Komorowska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Tomasz Radzik
- MARINEX International, 4 Placowa St., 93-446 Lodz, Poland
| | - Sebastian Kalenik
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Correspondence: ; Fax: +48-426354473
| |
Collapse
|
37
|
Genetic Variants Associated with Elevated Plasma Ceramides in Individuals with Metabolic Syndrome. Genes (Basel) 2022; 13:genes13081497. [PMID: 36011408 PMCID: PMC9407997 DOI: 10.3390/genes13081497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex condition of metabolic disorders and shows a steady onset globally. Ceramides are known as intracellular signaling molecules that influence key metabolism through various pathways such as MetS and insulin resistance. Therefore, it is important to identify novel genetic factors related to increased plasma ceramides in subjects with MetS. Here we first measured plasma ceramides levels in 37 subjects with MetS and in 38 healthy subjects by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Specifically, levels of C16 ceramide (Cer-16), C18 ceramide (Cer-18), C20 ceramide (Cer-20), C18 dihydroceramide (DhCer-18), C24 dihydroceramide (DhCer-24), and C24:1 dihydroceramide (DhCer-24:1) were significantly increased in MetS group (p < 5.0 × 10−2). We then performed single nucleotide polymorphism (SNP) genotyping to identify variants associated with elevated plasma ceramides in MetS group using Axiom® Korea Biobank Array v1.1 chip. We also performed linear regression analysis on genetic variants involved in ceramide synthesis and significantly elevated plasma ceramides and dihydroceramides. Ten variants (rs75397325, rs4246316, rs80165332, rs62106618, rs12358192, rs11006229, rs10826014, rs149162405, rs6109681, and rs3906631) across six genes (ACER1, CERS3, CERS6, SGMS1, SPTLC2, and SPTLC3) functionally involved in ceramide biosynthesis showed significant associations with the elevated levels of at least one of the ceramide species in MetS group at a statistically significant threshold of false discovery rate (FDR)-adjusted p < 5.0 × 10−2. Our findings suggest that the variants may be genetic determinants associated with increased plasma ceramides in individuals with MetS.
Collapse
|
38
|
Berg AL, Rowson-Hodel A, Wheeler MR, Hu M, Free SR, Carraway KL. Engaging the Lysosome and Lysosome-Dependent Cell Death in Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-lysosome] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Zhu X, Hollinger KR, Huang Y, Borjabad A, Kim BH, Arab T, Thomas AG, Moniruzzaman M, Lovell L, Turchinovich A, Witwer KW, Volsky DJ, Haughey NJ, Slusher BS. Neutral sphingomyelinase 2 inhibition attenuates extracellular vesicle release and improves neurobehavioral deficits in murine HIV. Neurobiol Dis 2022; 169:105734. [PMID: 35462006 PMCID: PMC9202342 DOI: 10.1016/j.nbd.2022.105734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition. Mice were infected with EcoHIV and daily treatment with either vehicle or the nSMase2 inhibitor (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC) began 3 weeks post-infection. After 2 weeks of treatment, mice were subjected to behavior tests. EcoHIV-infected mice exhibited behavioral abnormalities relevant to MDD and CI that were reversed by PDDC treatment. EcoHIV infection significantly increased cortical brain nSMase2 activity, resulting in trend changes in sphingomyelin and ceramide levels that were normalized by PDDC treatment. EcoHIV-infected mice also exhibited increased levels of brain-derived EVs and altered microRNA cargo, including miR-183-5p, miR-200c-3p, miR-200b-3p, and miR-429-3p, known to be associated with MDD and CI; all were normalized by PDDC. In conclusion, inhibition of nSMase2 represents a possible new therapeutic strategy for the treatment of HIV-associated CI and MDD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandra Borjabad
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Boe-Hyun Kim
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Moniruzzaman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyndah Lovell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrey Turchinovich
- Heidelberg Biolabs GmbH, Heidelberg, Germany; Division of Cancer Genome Research, German Cancer Research Center, Heidelberg, Germany
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Volsky
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
DiPasquale M, Deering TG, Desai D, Sharma AK, Amin S, Fox TE, Kester M, Katsaras J, Marquardt D, Heberle FA. Influence of ceramide on lipid domain stability studied with small-angle neutron scattering: The role of acyl chain length and unsaturation. Chem Phys Lipids 2022; 245:105205. [PMID: 35483419 PMCID: PMC9320172 DOI: 10.1016/j.chemphyslip.2022.105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Ceramides and diacylglycerols are groups of lipids capable of nucleating and stabilizing ordered lipid domains, structures that have been implicated in a range of biological processes. Previous studies have used fluorescence reporter molecules to explore the influence of ceramide acyl chain structure on sphingolipid-rich ordered phases. Here, we use small-angle neutron scattering (SANS) to examine the ability of ceramides and diacylglycerols to promote lipid domain formation in the well-characterized domain-forming mixture DPPC/DOPC/cholesterol. SANS is a powerful, probe-free technique for interrogating membrane heterogeneity, as it is differentially sensitive to hydrogen's stable isotopes protium and deuterium. Specifically, neutron contrast is generated through selective deuteration of lipid species, thus enabling the detection of nanoscopic domains enriched in deuterated saturated lipids dispersed in a matrix of protiated unsaturated lipids. Using large unilamellar vesicles, we found that upon replacing 10 mol% DPPC with either C16:0 or C18:0 ceramide, or 16:0 diacylglycerol (dag), lipid domains persisted to higher temperatures. However, when DPPC was replaced with short chain (C6:0 or C12:0) or very long chain (C24:0) ceramides, or ceramides with unsaturated acyl chains of any length (C6:1(3), C6:1(5), C18:1, and C24:1), as well as C18:1-dag, lipid domains were destabilized, melting at lower temperatures than those in the DPPC/DOPC/cholesterol system. These results show how ceramide acyl chain length and unsaturation influence lipid domains and have implications for how cell membranes might modify their function through the generation of different ceramide species.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Tye G Deering
- Department of Pharmacology, University of Virginia, Charlottesville 22908, VA, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State University, University Park 16801, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State University, University Park 16801, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University, University Park 16801, PA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville 22908, VA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville 22908, VA, USA; Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville 22908, VA, USA
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN, USA; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge 37831, TN, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville 37996, TN, USA.
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada; Department of Physics, University of Windsor, Windsor N9B 3P4, ON, Canada.
| | | |
Collapse
|
41
|
Almeida-Silva M, Cardoso J, Alemão C, Santos S, Monteiro A, Manteigas V, Marques-Ramos A. Impact of Particles on Pulmonary Endothelial Cells. TOXICS 2022; 10:toxics10060312. [PMID: 35736920 PMCID: PMC9227819 DOI: 10.3390/toxics10060312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
According to the WHO, air quality affects around 40 million people, contributing to around 21,000 premature deaths per year. Severe respiratory diseases, such as asthma and chronic obstructive pulmonary disorder, can be promoted by air pollution, which has already been documented; this is one of the reasons why air quality is a very relevant factor for human health and well-being. Aerosols are an aggregation of solid or liquid particles dispersed in the air and can be found in the form of dust or fumes. Aerosols can be easily inhaled or absorbed by the skin, which can lead to adverse health effects according to their sizes that range from the nanometre to the millimetre scale. Based on the PRISMA methodology and using the Rayyan QCRI platform, it was possible to assess more than four hundred research articles. This systematic review study aimed to understand the impact of particles on pulmonary endothelial cells, namely particulate matter in different sizes, cigarette smoke, diesel exhaust particles and carbon black. The main conclusions were that particles induce multiple health effects on endothelial cells, namely endothelial dysfunction, which can lead to apoptosis and necrosis, and it may also cause necroptosis in lung structure.
Collapse
Affiliation(s)
- Marina Almeida-Silva
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Jéssica Cardoso
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Catarina Alemão
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Sara Santos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Ana Monteiro
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Vítor Manteigas
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Ana Marques-Ramos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Correspondence: ; Tel.: +351-966087971
| |
Collapse
|
42
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
43
|
Abstract
Altered lipid metabolism is a characteristic feature and potential driving factor of acute kidney injury (AKI). Of the lipids that accumulate in injured renal tissues, ceramides are potent regulators of metabolism and cell fate. Up-regulation of ceramide synthesis is a common feature shared across several AKI etiologies in vitro and in vivo. Furthermore, ceramide accumulation is an early event in the natural history of AKI that precedes cell death and organ dysfunction. Emerging evidence suggests that inhibition of ceramide accumulation may improve renal outcomes in several models of AKI. This review examines the landscape of ceramide metabolism and regulation in the healthy and injured kidney. Furthermore, we discuss the body of literature regarding ceramides as therapeutic targets for AKI and consider potential mechanisms by which ceramides drive kidney pathogenesis.
Collapse
Affiliation(s)
- Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - William L Holland
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT.
| |
Collapse
|
44
|
Zhao L, Liao C, Chen D, Zhang D, Li G, Zhang X. Stiffening Effect of Ceramide on Lipid Membranes Provides Non-Sacrificial Protection against Potent Chemical Damage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3522-3529. [PMID: 35263105 DOI: 10.1021/acs.langmuir.1c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceramide is a sphingolipid that constitutes only a small fraction of membrane biomolecules but plays a central role in regulating many biological processes. The ceramide level in cell membranes can drastically increase in response to external damage, which has been hypothesized to involve ceramide's biophysical role that increases the membrane packing density and lowers the membrane permeability. However, direct observation of the consequent influence on membrane chemistry resulting from these ceramide-induced physical properties has been absent. Using our unique field-induced droplet ionization mass spectrometry technique combined with molecular dynamics simulations, here we report that the addition of ceramide to POPC monolayer membranes at the air-water interface greatly reduces the chemical damage from potent chemicals, •OH radicals, and HCl vapor, by stiffening the membrane packing and lowering the permeability. These results shed new light on the underlying chemoprotective role of ceramide in lipid membranes, which might serve as a previously unknown protection mechanism in response to external stimuli that cause cell stress or death.
Collapse
Affiliation(s)
- Lingling Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Danye Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Liu Y, Wen M, He Q, Dang X, Feng S, Liu T, Ding X, Li X, He X. Lipid metabolism contribute to the pathogenesis of IgA Vasculitis. Diagn Pathol 2022; 17:28. [PMID: 35148801 PMCID: PMC8840790 DOI: 10.1186/s13000-021-01185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
Background and objectives The underlying mechanism of IgA vasculitis (IgAV) and IgA vasculitis with nephritis (IgAVN) remains unclear. Therefore, there are no accurate diagnostic methods. Lipid metabolism is related to many immune related diseases, so this study set out to explore the relationship of lipids and IgAV and IgAVN. Methods Fifty-eighth patients with IgAV and 28 healthy controls were recruited, which were divided into six separate pools to investigate the alterations of serum lipids according to the clinical characteristics: healthy controls group (HCs) and IgAV group (IgAVs), IgAVN group (IgAV-N) and IgAV without nephritis group (IgAV-C), initial IgAV group (IgAV0) and IgAV in treatment with glucocorticoids group (IgAV1). Results 31 identified lipid ions significantly changed in IgAVs with p < 0.05, variable importance of the projection (VIP) > 1 and fold change (FC) > 1.5. All these 31 lipid ions belong to 6 classes: triacylglycerols (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine, ceramide, and lysophosphatidylcholine. TG (16:0/18:1/22:6) +NH4 over 888875609.05, PC (32:1) +H over 905307459.90 and PE (21:4)-H less than 32236196.59 increased the risk of IgAV significantly (OR>1). PC (38:6) +H was significantly decreased (p < 0.05, VIP>1 and FC>1.5) in IgAVN. PC (38:6) less than 4469726623 conferred greater risks of IgAV (OR=45.833, 95%CI: 6.689~341.070). Conclusion We suggest that lipid metabolism may affect the pathogenesis of IgAV via cardiovascular disease, insulin resistance, cell apoptosis, and inflammation. The increase of TG(16:0/18:1/22:6) + NH4, and PC(32:1) + H as well as PE (21:4)-H allow a good prediction of IgAV. PE-to-PC conversion may participate in the damage of kidney in IgAV. PC (38:6) + H may be a potential biomarker for IgAVN. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01185-1.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shipin Feng
- Department of Pediatric Nephrology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Taohua Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China. .,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
46
|
Kagan T, Stoyanova G, Lockshin RA, Zakeri Z. Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells. Cell Commun Signal 2022; 20:15. [PMID: 35101031 PMCID: PMC8802477 DOI: 10.1186/s12964-021-00767-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Ceramide, important for both neuronal differentiation and dedifferentiation, resides in several membranes, is synthesized in the endoplasmic reticulum, mitochondrial, and nuclear membranes, and can be further processed into glycosphingolipids or sphingomyelin. Ceramide may also be generated by hydrolysis of sphingomyelin by neutral or acidic sphingomyelinases in lysosomes and other membranes. Here we asked whether the differing functions of ceramide derived from different origins. Methods We added NGF to PC12 cells and to TrkA cells. These latter overexpress NGF receptors and are partially activated to differentiate, whereas NGF is required for PC12 cells to differentiate. We differentiated synthesis from hydrolysis by the use of appropriate inhibitors. Ceramide and sphingomyelin were measured by radiolabeling. Results When NGF is added, the kinetics and amounts of ceramide and sphingomyelin indicate that the ceramide comes primarily from hydrolysis but, when hydrolysis is inhibited, can also come from neosynthesis. When NGF is removed, the ceramide comes from both neosynthesis and hydrolysis. Conclusion We conclude that the function of ceramide depends heavily on its intracellular location, and that further understanding of its function will depend on resolving its location during changes of cell status. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00767-2. Ceramide and sphingomyelin reportedly are important both for differentiation of nerve cells and for their death. We studied PC12 cells, which can differentiate into neuron-like cells in the presence of nerve growth factor and cells that overexpress receptors for nerve growth factor. By combining various inhibitors, we conclude that in the presence of nerve growth factor ceramide comes from hydrolysis of sphingomyelin, but when nerve growth factor is removed and the cells atrophy and die, sphingomyelin comes from both neosynthesis and hydrolysis.
Collapse
Affiliation(s)
- Terri Kagan
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
| | - Gloria Stoyanova
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA.,St. Johns University, Jamaica, NY, USA
| | | |
Collapse
|
47
|
Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA 2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes. Molecules 2021; 26:molecules26216361. [PMID: 34770770 PMCID: PMC8587436 DOI: 10.3390/molecules26216361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.
Collapse
Affiliation(s)
- Tomader Ali
- Research Department, Imperial College London Diabetes Center, Abu Dhabi 51133, United Arab Emirates;
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Suzanne E. Barbour
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto Graduate School of Medicine, Kyoto 606-8501, Japan;
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: ; Tel.: +1-205-996-5973; Fax: +1-205-996-5220
| |
Collapse
|
48
|
Lee H, Choi SQ. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101766. [PMID: 34473415 PMCID: PMC8529493 DOI: 10.1002/advs.202101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several signaling processes in the plasma membrane are intensified by ceramides that are formed by sphingomyelinase-mediated hydrolysis of sphingomyelin. These ceramides trigger clustering of signaling-related biomolecules, but how they concentrate such biomolecules remains unclear. Here, the spatiotemporal localization of ganglioside GM1, a glycolipid receptor involved in signaling, during sphingomyelinase-mediated hydrolysis is described. Real-time visualization of the dynamic remodeling of the heterogeneous lipid membrane that occurs due to sphingomyelinase action is used to examine GM1 clustering, and unexpectedly, it is found that it is more complex than previously thought. Specifically, lipid membranes generate two distinct types of condensed GM1: 1) rapidly formed but short-lived GM1 clusters that are formed in ceramide-rich domains nucleated from the liquid-disordered phase; and 2) late-onset yet long-lasting, high-density GM1 clusters that are formed in the liquid-ordered phase. These findings suggest that multiple pathways exist in a plasma membrane to synergistically facilitate the rapid amplification and persistence of signals.
Collapse
Affiliation(s)
- Hyun‐Ro Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
49
|
Zhang Y, Wu W, Zhang J, Li Z, Ma H, Zhao Z. Facile Method for Specifically Sensing Sphingomyelinase in Cells and Human Urine Based on a Ratiometric Fluorescent Nanoliposome Probe. Anal Chem 2021; 93:11775-11784. [PMID: 34412477 DOI: 10.1021/acs.analchem.1c02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingomyelinase (SMase) is closely related to diseases like Niemann-Pick disease and atherosclerosis, and the development of a simple method for the assay of SMase activity is very useful to screen new potential inhibitors or stimulators of SMase or biomarkers of disease. Fluorophore-encapsulated nanoliposomes (FENs) are emerging as a new fluorescent probe for sensing the enzymatic activity. In this work, two fluorochromes (cy7 and IR780) were encapsulated into the liposome of sphingomyelin, and therefore, a sphingomyelin-based ratiometric FEN probe for the SMase activity assay was constructed. The probe shows high selectivity and sensitivity to acid SMase with a detection limit of 4.8 × 10-4 U/mL. Sphingomyelin is the natural substrate of SMase; therefore, the probe has native ability for all kinds of SMase activity assays. Moreover, the probe has been successfully applied to the analysis of acid SMase activity in cells and urine samples. As far as we know, this is the first example of a nanoliposome fluorescence method for assaying acid SMase, and the method is biocompatible and much simpler than the existing ones, which might provide a new strategy for developing new methods for other important esterases.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Lipidomic profile of human nasal mucosa and associations with circulating fatty acids and olfactory deficiency. Sci Rep 2021; 11:16771. [PMID: 34408170 PMCID: PMC8373950 DOI: 10.1038/s41598-021-93817-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
The nasal mucosa (NM) contains olfactory mucosa which contributes to the detection of odorant molecules and the transmission of olfactory information to the brain. To date, the lipid composition of the human NM has not been adequately characterized. Using gas chromatography, liquid chromatography coupled to mass spectrometry and thin layer chromatography, we analyzed the fatty acids and the phospholipid and ceramide molecular species in adult human nasal and blood biopsies. Saturated and polyunsaturated fatty acids (PUFAs) accounted for 45% and 29% of the nasal total fatty acids, respectively. Fatty acids of the n-6 family were predominant in the PUFA subgroup. Linoleic acid and arachidonic acid (AA) were incorporated in the main nasal phospholipid classes. Correlation analysis revealed that the nasal AA level might be positively associated with olfactory deficiency. In addition, a strong positive association between the AA levels in the NM and in plasma cholesteryl esters suggested that this blood fraction might be used as an indicator of the nasal AA level. The most abundant species of ceramides and their glycosylated derivatives detected in NM contained palmitic acid and long-chain fatty acids. Overall, this study provides new insight into lipid species that potentially contribute to the maintenance of NM homeostasis and demonstrates that circulating biomarkers might be used to predict nasal fatty acid content.
Collapse
|