1
|
Pang Y, Shi M. Repetitive Transcranial Magnetic Stimulation Improves Mild Cognitive Impairment Associated with Alzheimer's Disease in Mice by Modulating the miR-567/NEUROD2/PSD95 Axis. Neuropsychiatr Dis Treat 2021; 17:2151-2161. [PMID: 34239303 PMCID: PMC8259939 DOI: 10.2147/ndt.s311183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a typical symptom of early Alzheimer's disease (AD) and is driven by the dysfunction of microRNAs (miRs). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique for handling neuropsychiatric disorders and has universally effects on the functions of miRs. In the current study, the improvement effects of rTMS on MCI associated with AD were explored by focusing on miR-567/NEUROD2/PSD95 axis. METHODS MCI was induced in mice using scopolamine and was treated with rTMS of two frequencies (1 Hz and 10 Hz). The changes in cognitive function, brain structure, neurotrophic factor levels, and activity of miR-567/NEUROD2/PSD95 axis were assessed. The interaction between rTMS and miR-567 was further verified by inducing the level of miR-567 in AD mice. RESULTS The administrations of rTMS improved the cognitive function of AD mice and attenuated brain tissue destruction, which were associated with the restored production of BDNF and NGF. Additionally, rTMS administrations suppressed the expression of miR-567 and up-regulated the expressions of NEUROD2 and PSD95, which contributed to the improved condition in central nerve system. With the induced level of miR-567, the effects of rTMS were counteracted: the learning and memorizing abilities of mice were impaired, the brain neuron viability was suppressed, and the production of neurotrophic factors was suppressed even under the administration of rTMS. The changes in brain function and tissues were associated with the inhibited expressions of NEUROD2 and PSD95. CONCLUSION The findings outlined in the current study demonstrated that rTMS treatment could protect brain against AD-induced MCI without significant side effects, and the function depended on the inhibition of miR-567.
Collapse
Affiliation(s)
- Yongfeng Pang
- Department of Rehabilitation, Tiantai People's Hospital of Zhejiang Province, Zhengjiang, 317200, People's Republic of China
| | - Mingfei Shi
- Department of Rehabilitation, Tiantai People's Hospital of Zhejiang Province, Zhengjiang, 317200, People's Republic of China
| |
Collapse
|
2
|
Hosseini N, Alaei H, Reisi P, Radahmadi M. The effects of NBM- lesion on synaptic plasticity in rats. Brain Res 2017; 1655:122-127. [DOI: 10.1016/j.brainres.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
3
|
Weinberger NM. New perspectives on the auditory cortex: learning and memory. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:117-47. [PMID: 25726266 DOI: 10.1016/b978-0-444-62630-1.00007-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Grothe MJ, Ewers M, Krause B, Heinsen H, Teipel SJ. Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement 2014; 10:S344-53. [PMID: 24418052 PMCID: PMC4092050 DOI: 10.1016/j.jalz.2013.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/09/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Both neurodegeneration of the cholinergic basal forebrain (BF) and deposition of β-amyloid are early events in the course of Alzheimer's disease (AD). Associations between increased amyloid pathology and cholinergic atrophy have been described in autopsy studies. METHODS We used structural MRI and AV45-PET amyloid imaging data of 225 cognitively normal or mildly impaired elderly subjects from the Alzheimer's Disease Neuroimaging Initiative to assess in vivo associations between BF atrophy and cortical amyloid deposition. Associations were examined using region-of-interest (ROI) and voxel-based approaches with reference to cytoarchitectonic mappings of the cholinergic BF nuclei. RESULTS ROI- and voxel-based approaches yielded complementary evidence for an association between BF volume and cortical amyloid deposition in presymptomatic and predementia stages of AD, irrespective of age, gender, and APOE genotype. CONCLUSIONS The observed correlations between BF atrophy and cortical amyloid load likely reflect associations between cholinergic degeneration and amyloid pathology as reported in neuropathologic examination studies.
Collapse
Affiliation(s)
- Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Bernd Krause
- Department of Nuclear Medicine, University of Rostock, Rostock, Germany
| | - Helmut Heinsen
- Laboratory of Morphological Brain Research, Department of Psychiatry, University of Würzburg, Würtzburg, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Bataveljic D, Petrovic J, Lazic K, Saponjic J, Andjus P. Glial response in the rat models of functionally distinct cholinergic neuronal denervations. J Neurosci Res 2014; 93:244-52. [PMID: 25250774 DOI: 10.1002/jnr.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/23/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) involves selective loss of basal forebrain cholinergic neurons, particularly in the nucleus basalis (NB). Similarly, Parkinson's disease (PD) might involve the selective loss of pedunculopontine tegmental nucleus (PPT) cholinergic neurons. Therefore, lesions of these functionally distinct cholinergic centers in rats might serve as models of AD and PD cholinergic neuropathologies. Our previous articles described dissimilar sleep/wake-state disorders in rat models of AD and PD cholinergic neuropathologies. This study further examines astroglial and microglial responses as underlying pathologies in these distinct sleep disorders. Unilateral lesions of the NB or the PPT were induced with rats under ketamine/diazepam anesthesia (50 mg/kg i.p.) by using stereotaxically guided microinfusion of the excitotoxin ibotenic acid (IBO). Twenty-one days after the lesion, loss of cholinergic neurons was quantified by nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, and the astroglial and microglial responses were quantified by glia fibrillary acidic protein/OX42 immunohistochemistry. This study demonstrates, for the first time, the anatomofunctionally related astroglial response following unilateral excitotoxic PPT cholinergic neuronal lesion. Whereas IBO NB and PPT lesions similarly enhanced local astroglial and microglial responses, astrogliosis in the PPT was followed by a remote astrogliosis within the ipslilateral NB. Conversely, there was no microglial response within the NB after PPT lesions. Our results reveal the rostrorostral PPT-NB astrogliosis after denervation of cholinergic neurons in the PPT. This hierarchically and anatomofunctionally guided PPT-NB astrogliosis emerged following cholinergic neuronal loss greater than 17% throughout the overall rostrocaudal PPT dimension.
Collapse
Affiliation(s)
- Danijela Bataveljic
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
6
|
Drain of the brain: low-affinity p75 neurotrophin receptor affords a molecular sink for clearance of cortical amyloid β by the cholinergic modulator system. Neurobiol Aging 2013; 34:2517-24. [DOI: 10.1016/j.neurobiolaging.2013.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/09/2013] [Accepted: 05/04/2013] [Indexed: 12/13/2022]
|
7
|
Baggio H, Segura B, Ibarretxe-Bilbao N, Valldeoriola F, Marti M, Compta Y, Tolosa E, Junqué C. Structural correlates of facial emotion recognition deficits in Parkinson's disease patients. Neuropsychologia 2012; 50:2121-8. [DOI: 10.1016/j.neuropsychologia.2012.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
|
8
|
Jovanova-Nesic K, Eric-Jovicic M, Spector NH. MAGNETIC STIMULATION OF THE BRAIN INCREASE Na+, K+-ATPase ACTIVITY DECREASED BY INJECTION OF AlCl3INTO NUCLEUS BASALIS MAGNOCELLULARIS OF RATS. Int J Neurosci 2009; 116:681-95. [PMID: 16753895 DOI: 10.1080/00207450600674830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article reports here on the influence of the static magnetic fields (MFs), locally applied to the brain area, on Na, K-ATPase activity in the rat with lesioned nucleus basalis magnocellularis (NBM) by intracerebral injection of 5 microl, 1% AlCl3 into the nucleus. Two AKMA micromagnets (M) flux density of 60 miliTesla, 5 mm in diameter, were bilaterally implanted with "N" polarity facing down to the cranial bones in the vicinity of the pineal gland (PG), immediately after the lesioning of NBM, during the same operation procedure. Ten days after the lesions of NBM, Na, K-ATPase activity on the erythrocyte membranes in the peripheral blood, measured spectrophotometrically, was completely inhibited. Magnetic stimulation (60 mT) of the brain during the 10 days significantly increased Na, K-ATPase activity on the erythrocyte membranes of rats with lesioned NBM. This results suggests that altered by lesions Na, K-ATPase activity in an experimental model of Alzheimer's disease might be ameliorated by magnetic stimulation of the brain.
Collapse
|
9
|
Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 2008; 67:309-18. [PMID: 18379437 DOI: 10.1097/nen.0b013e31816a1df3] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A large body of evidence indicates that basal forebrain cholinergic neurons are selectively vulnerable to degeneration early in Alzheimer disease (AD). Recent studies, however, demonstrate reductions in cortical activity of the cholinergic enzyme choline acetyltransferase only in late stages of AD. To address this apparent contradiction, we compared abnormalities in magnocellular basal forebrain cholinergic neurons and their axons in nondemented young (<65 years; n = 6), nondemented old (>65 years; n = 7), pathologically mild (n = 5), and pathologically severe (n = 5) AD cases. Cholinergic axon abnormalities (i.e. thickened fibers and ballooned terminals) were evident in nondemented middle-aged cases, increased in nondemented old cases, and reduced in density in severe AD. This suggests that loss of cortical cholinergic axons in AD occurs preferentially in fibers with these abnormalities. Paired helical filament 1-immunoreactive pretangles and tangles were observed as early as the third decade prior to their appearance in entorhinal/perirhinal cortex; they were increased in mild and severe AD. These results indicate that basal forebrain cholinergic neuron abnormalities are present very early in aging and in the course of AD. Therefore, despite the morphologic alterations, choline acetyltransferase activity, but not necessarily normal neuron functions, may be preserved.
Collapse
|
10
|
Abstract
A profound loss of cortical cholinergic innervation is a nearly invariant feature of advanced Alzheimer's disease (AD). The temporal course of this lesion and its relationship to other aspects of the disease have not yet been fully clarified. Despite assertions to the contrary, a review of the evidence suggests that a perturbation of cholinergic innervation is likely to be present even in the very early stages of AD. This cholinergic lesion is unlikely to be a major determinant of the clinical symptoms or of the neuropathological lesions. Nonetheless, it almost certainly contributes to the severity of the cognitive and behavioral deficits, especially in the areas of memory and attention. The cholinergic lesion may also influence the progression of the neuropathological process through complex interactions with amyloidogenesis, tau phosphorylation and neuroplasticity.
Collapse
Affiliation(s)
- Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
11
|
Madeira MD, Pereira PA, Silva SM, Cadete-Leite A, Paula-Barbosa MM. Basal forebrain neurons modulate the synthesis and expression of neuropeptides in the rat suprachiasmatic nucleus. Neuroscience 2004; 125:889-901. [PMID: 15120850 DOI: 10.1016/j.neuroscience.2004.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2004] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that efferents from the nucleus basalis magnocellularis (NBM) play a direct role in the regulation of neuropeptide synthesis and expression by neurons of the rat suprachiasmatic nucleus (SCN). Adult male rats in which the NBM was destroyed with quinolinic acid, either unilaterally or bilaterally, were compared with rats injected with physiological saline and with control rats. The estimators used to assess the effects of cholinergic deafferentation on the neuroanatomy and neurochemistry of the SCN were the total number of SCN neurons, the total number and somatic size of SCN neurons producing vasopressin (VP) and vasoactive intestinal polypeptide (VIP), and the respective mRNA levels. Bilateral destruction of the NBM did not produce cell death in the SCN, but caused a marked reduction in the number and somatic size of SCN neurons expressing VP and VIP, and in the mRNA levels of these peptides. The decrease in the number of VP- and VIP-producing neurons provoked by unilateral lesions was less striking than that resulting from bilateral lesions. It was, however, statistically significant in the ipsilateral hemisphere, but not in the contralateral hemisphere. The results show that the reduction of cholinergic inputs to the SCN impairs the synthesis, and thereby decreases the expression of neuropeptides by SCN neurons, and that the extent of the decline correlates with the amount of cholinergic afferents destroyed. This supports the notion that acetylcholine plays an important, and direct role in the regulation of the metabolic activity of SCN neurons.
Collapse
Affiliation(s)
- M D Madeira
- Department of Anatomy, Porto Medical School, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | | | | | | | | |
Collapse
|
12
|
Bleich S, Römer K, Wiltfang J, Kornhuber J. Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry 2003; 18:S33-40. [PMID: 12973748 DOI: 10.1002/gps.933] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate is the most important excitatory neurotransmitter in the central nervous system. In the process, glutamate fulfills numerous physiological functions, but also plays an important role in the pathophysiology of different neurological and psychiatric diseases, especially when an imbalance in glutamatergic neurotransmission occurs. Under certain conditions, glutamate has a toxic action resulting from an activation of specific glutamate receptors, which leads to acute or chronic death of nerve cells. Such mechanisms are currently under discussion in acute neuronal death within the context of hypoxia, ischaemia and traumas, as well as in chronic neurodegenerative or neurometabolic diseases, idiopathic parkinsonian syndrome, Alzheimer's dementia and Huntington's disease. It is hoped that glutamate antagonists will lead to novel therapies for these diseases, whereby the further development of glutamate antagonists for blocking disease-specific subtypes of glutamate receptors may be of major importance in the future.
Collapse
Affiliation(s)
- Stefan Bleich
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
13
|
Armstrong RA, Cairns NJ, Lantos PL. Are pathological lesions in neurodegenerative disorders the cause or the effect of the degeneration? Neuropathology 2002; 22:133-46. [PMID: 12416552 DOI: 10.1046/j.1440-1789.2002.00446.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathological lesions in the form of extracellular protein deposits, intracellular inclusions and changes in cell morphology occur in the brain in the majority of neurodegenerative disorders. Studies of the presence, distribution, and molecular determinants of these lesions are often used to define individual disorders and to establish the mechanisms of lesion pathogenesis. In most disorders, however, the relationship between the appearance of a lesion and the underlying disease process is unclear. Two hypotheses are proposed which could explain this relationship: (i) lesions are the direct cause of the observed neurodegeneration ('causal' hypothesis); and (ii) lesions are a reaction to neurodegeneration ('reaction' hypothesis). These hypotheses are considered in relation to studies of the morphology and molecular determinants of lesions, the effects of gene mutations, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies and the degeneration of anatomical pathways. The balance of evidence suggests that in many disorders, the appearance of the pathological lesions is a reaction to degenerative processes rather than being their cause. Such a conclusion has implications both for the classification of neurodegenerative disorders and for studies of disease pathogenesis.
Collapse
|
14
|
Hotta H, Uchida S, Kagitani F. Effects of stimulating the nucleus basalis of Meynert on blood flow and delayed neuronal death following transient ischemia in the rat cerebral cortex. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:383-93. [PMID: 12519473 DOI: 10.2170/jjphysiol.52.383] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An increase in cortical cerebral blood flow (CBF), independent of metabolic vasodilation, via the activation of cholinergic neurons originating in the nucleus basalis of Meynert (NBM) in the basal forebrain and projecting to the widespread cortices was recently demonstrated. In the present study, we aimed to clarify whether the increase in CBF following a stimulation of the NBM can improve delayed death of the cortical neurons following transient ischemia in rats. CBF was measured with a laser Doppler flowmeter, and the delayed neuronal death of the cerebral cortex produced by intermittent (every 5 s) occlusions of the unilateral common carotid artery for 60 min was measured histologically in the cortical hemisphere at 3 different coronal levels (6 microm thickness). In control rats without occlusion there were 6000-8000 intact neurons and 9-19 damaged neurons in the cortical hemisphere at each coronal level. During the occlusions, CBF ipsilateral to the occluded artery decreased by 13-32% of the preocclusion level. Five days after the occlusions, the numbers of damaged neurons were increased to 75-181. Repetitive electrical stimulation was delivered to the NBM, ipsilateral to the occluded artery, starting 5 min before the occlusions and finishing around the end of them. The increase in CBF induced by NBM stimulation prevented the occlusion-induced decrease in CBF in all 3 of the cortices. The delayed death of the cortical neurons previously observed after the occlusions was scarcely observable in all the cortices when NBM was stimulated. The present results suggest that NBM-originating vasodilative activation can protect the ischemia-induced delayed death of cortical neurons by preventing a blood flow decrease in widespread cortices.
Collapse
Affiliation(s)
- Harumi Hotta
- Motor and Autonomic Nervous System Integration Research Group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan.
| | | | | |
Collapse
|
15
|
Abstract
Neural transplantation provides a powerful novel technique for investigating the neurobiological basis and potential strategies for repair of a variety of neurodegenerative conditions. The present review considers applications of this technique to dementia. After a general introduction (section 1), attempts to replace damaged neural systems by transplantation are considered in the context of distinct animal models of dementia. These include grafting into aged animals (section 2), into animals with neurotransmitter-selective lesions of subcortical nuclei, in particular involving basal forebrain cholinergic systems (section 3), and into animals with non-specific lesions of neocortical and hippocampal systems (section 4). The next section considers the alternative use of grafts as a source of growth/trophic factors to inhibit degeneration and promote regeneration in the aged brain (section 5). Finally, a number of recent studies have employed transplanted tissues to model and study the neurodegenerative processes associated with ageing and Alzheimer's disease taking place within the transplant itself (section 6). It is concluded (section 7) that although neural transplantation does not offer any immediate prospect of therapeutic repair in clinical dementia, the technique does offer a powerful neurobiological tool for studying the neuropathological processes involved in both spontaneous degeneration and specific diseases of ageing. New understandings derived from neural transplantation may be expected to lead to rational development of novel strategies to inhibit the neurodegenerative process and to promote regeneration in the aged brain.
Collapse
Affiliation(s)
- S. B. Dunnett
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
16
|
Expression of the nerve growth factor receptors TrkA and p75NTR in the visual cortex of the rat: development and regulation by the cholinergic input. J Neurosci 2002. [PMID: 11826120 DOI: 10.1523/jneurosci.22-03-00912.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several lines of evidence have shown that nerve growth factor (NGF), the progenitor of the neurotrophin family of growth factors, plays a fundamental role in the developmental plasticity of the rat visual cortex. However, the expression of NGF receptors (NGFRs) TrkA and p75(NTR) and the possible sites of NGF action in the visual cortex remain to be elucidated so far. Using a highly sensitive ECL immunoblot analysis, we have been able to show, in the present study, that the TrkA protein is expressed in the rat visual cortex and that it is developmentally upregulated during the critical period for cortical plasticity. In contrast, the expression level of the low-affinity NGF receptor p75(NTR) seems to remain nearly constant throughout development. In the analysis of possible pathways involved in the regulation of NGFR expression, we found that neither blockade of the visual input nor NGF administration to the visual cortex resulted in a modulation of NGFR levels of expression. On the other hand, the selective destruction of cholinergic afferents to the visual cortex caused a dramatic, but not complete, reduction of the cortical NGFRs, which suggests that these receptors are located on cholinergic terminals predominantly. At the functional level, we found that, after the elimination of the cholinergic afferents to the visual cortex, the NGF-induced increase of both acetylcholine and glutamate release from cortical synaptosomes was strongly impaired. These results indicate that the cholinergic input is an important mediator of visual cortex responsiveness to NGF action.
Collapse
|
17
|
Gau JT, Steinhilb ML, Kao TC, D'Amato CJ, Gaut JR, Frey KA, Turner RS. Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:731-8. [PMID: 11839594 PMCID: PMC1850661 DOI: 10.1016/s0002-9440(10)64893-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined presynaptic cholinergic markers and beta-secretase activity during progressive central nervous system amyloidogenesis in Tg2576 Alzheimer mice (transgenic for human amyloid precursor protein Swedish mutation; hAPPswe). At 14, 18, and 23 months of age there were no significant differences between wild-type and transgenic mice in four distinct central nervous system cholinergic indices--choline acetyltransferase and acetylcholinesterase activities, and binding to vesicular acetylcholine transporter and Na(+)-dependent high-affinity choline uptake sites. A novel enzyme-linked immunosorbent assay measuring only the secreted human beta-secretase cleavage product (APPsbetaswe) of APPswe also revealed no change with aging in Tg2576 mouse brain. In contrast, transgenic but not wild-type mice exhibited an age-dependent increase in soluble Abeta40 and Abeta42 levels and progressive amyloid deposition in brain. Thus, aging Tg2576 mice exhibited presynaptic cholinergic integrity despite progressively increased soluble Abeta40 and Abeta42 levels and amyloid plaque density in brain. Older Tg2576 mice may best resemble preclinical or early stages of human Alzheimer's disease with preserved presynaptic cholinergic innervation. Homeostatic APPsbetaswe levels with aging suggest that progressive amyloid deposition in brain results not from increased beta-secretase cleavage of APP but from impaired Abeta/amyloid clearance mechanisms.
Collapse
Affiliation(s)
- Jen-Tzer Gau
- Department of Medicine, Division of Geriatric Medicine, the Institute of Gerontology, University of Michigan, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Martínez-Contreras A, Huerta M, Lopez-Perez S, García-Estrada J, Luquín S, Beas Zárate C. Astrocytic and microglia cells reactivity induced by neonatal administration of glutamate in cerebral cortex of the adult rats. J Neurosci Res 2002; 67:200-10. [PMID: 11782964 DOI: 10.1002/jnr.10093] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies confirm that astrocytes and neurons are associated with the synaptic transmission, particularly with the regulation of glutamate (Glu) levels. Therefore, they have the capacity to modulate the Glu released from neurons into the extracellular space. It has also been demonstrated an intense astrocytic and microglia response to physical or chemical lesions of the central nervous system. However, the persistence of the response of the glial cells in adult brain had not been previously reported, after the excitotoxic damage caused by neonatal dosage of monosodium glutamate (MSG) to newborn rats. In this study, 4 mg/g body weight of MSG were administered to newborn rats at 1, 3, 5, and 7 days after birth, at the age of 60 days the astrocytes and the microglia cells were analyzed with immunohistochemical methods in the fronto-parietal cortex. Double labeling to glial fibrillary acidic protein (GFAP) and BrdU, or isolectin-B(4) and BrdU identified astrocytes or microglia cells that proliferated; immunoblotting and immunoreactivity to vimentin served for assess immaturity of astrocytic intermediate filaments. The results show that the neonatal administration of MSG-induced reactivity of astrocytes and microglia cells in the fronto-parietal cortex, which was characterized by hyperplasia; an increased number of astrocytes and microglia cells that proliferated, hypertrophy; increased complexity of the cytoplasm extension of both glial cells and expression of RNAm to vimentin, with the presence of vimentin-positive astrocytes. This glial response to neuroexcitotoxic stimulus of Glu on the immature brain, which persisted to adulthood, suggests that the neurotransmitter Glu could trigger neuro-degenerative illnesses.
Collapse
|
19
|
Burghaus L, Schütz U, Simonnet K, Krempel U, Lindstrom J, Schröder H. Nucleus basalis Meynert lesions and the expression of nicotinic acetylcholine receptor proteins in the rat frontal cerebral cortex. Neurosci Lett 2001; 301:111-4. [PMID: 11248435 DOI: 10.1016/s0304-3940(01)01605-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An important feature of cholinergic dysfunction in Alzheimer's disease (AD) is the degenerative loss of magnocellular cholinergic neurons in the basal nucleus of Meynert. In search for suitable animal models of Alzheimer dementia, rats with lesioned basal nuclei rats have been shown to display learning and memory disturbances. We here report on the quantitative assessment of the expression of the nicotinic acetylcholine receptor alpha4 protein in the rat frontal cerebral cortex following a unilateral lesion of the basal nucleus. Cortical alpha4 isoform expression shows a significant increase on the lesioned vs. the non-lesioned control side 1 week after lesioning. By contrast, no differences were observed 4 weeks after lesioning. In consideration of these results basal nucleus lesions appear as a questionable model of AD which in contrast to the present findings shows a decrease of cortical alpha4 nicotinic acetylcholine receptor protein expression.
Collapse
Affiliation(s)
- L Burghaus
- Department of Anatomy, Neuroanatomy, University of Köln, J. Stelzmann-Strasse 9, D-50931, F.R., Köln, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Heininger K. A unifying hypothesis of Alzheimer's disease. IV. Causation and sequence of events. Rev Neurosci 2001; 11 Spec No:213-328. [PMID: 11065271 DOI: 10.1515/revneuro.2000.11.s1.213] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Contrary to common concepts, the brain in Alzheimer's disease (AD) does not follow a suicide but a rescue program. Widely shared features of metabolism in starvation, hibernation and various conditions of energy deprivation, e.g. ischemia, allow the definition of a deprivation syndrome which is a phylogenetically conserved adaptive response to energetic stress. It is characterized by hypometabolism, oxidative stress and adjustments of the glucose-fatty acid cycle. Cumulative evidence suggests that the brain in aging and AD actively adapts to the progressive fuel deprivation. The counterregulatory mechanisms aim to preserve glucose for anabolic needs and promote the oxidative utilization of ketone bodies. The agent mediating the metabolic switch is soluble Abeta which inhibits glucose utilization and stimulates ketone body utilization at various levels. These processes, which are initiated during normal aging, include inhibition of pro-glycolytic neurohormones, cholinergic transmission, and pyruvate dehydrogenase, the key transmitter and effector systems regulating glucose metabolism. Hormonal and effector systems which promote ketone body utilization, such as glucocorticosteroid and galanin activity, GABAergic transmission, nitric oxide, lipid transport, Ca2+ elevation, and ketone body metabolizing enzymes, are enhanced. A multitude of risk factors feed into this pathophysiological cascade at a variety of levels. Taking into account its pleiotropic regulatory actions in the deprivation response, a new name for Abeta is suggested: deprivin. On the other hand, cumulative evidence, taken together compelling, suggests that senile plaques are the dump rather than the driving force of AD. Moreover, the neurotoxic action of fibrillar Abeta is a likely in vitro artifact but does not contribute significantly to the in vivo pathophysiological events. This archaic program, conserved from bacteria to man, aims to ensure the survival of a deprived organism and controls such divergent processes as sporulation, hibernation, aging and aging-related diseases. In contrast to the immature brain, ketone body utilization of the aged brain is no longer sufficient to meet the energetic demands and is later supplemented by lactate, thus recapitulating in reverse order the sequential fuel utilization of the immature brain. The transduction pathways which operate to switch metabolism also convey the programming and balancing of the de-/redifferentiation/apoptosis cell cycle decisions. This encompasses the reiteration of developmental processes such as transcription factor activation, tau hyperphosphorylation, and establishment of growth factor independence by means of Ca2+ set point shift. Thus, the increasing energetic insufficiency results in the progressive centralization of metabolic activity to the neuronal soma, leading to pruning of the axonal/dendritic trees, loss of neuronal polarity, downregulation of neuronal plasticity and, eventually, depending on the Ca2+ -energy-redox homeostasis, degeneration of vulnerable neurons. Finally, it is outlined that genetic (e.g. Down's syndrome, APP and presenilin mutations and apoE4) and environmental risk factors represent progeroid factors which accelerate the aging process and precipitate the manifestation of AD as a progeroid systemic disease. Aging and AD are related to each other by threshold phenomena, corresponding to stage 2, the stage of resistance, and stage 3, exhaustion, of a metabolic stress response.
Collapse
Affiliation(s)
- K Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Monzón-Mayor M, Alvarez M, Arbelo-Galván J, Romero-Alemán M, Yanes C, Plaza ML, Rodríguez JR, Rodríguez JJ, Toledano A. Long-term evolution of local, proximal and remote astrocyte responses after diverse nucleus basalis lesioning (an experimental Alzheimer model): GFAP immunocytochemical study. Brain Res 2000; 865:245-58. [PMID: 10821927 DOI: 10.1016/s0006-8993(00)02231-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study on long-term astrocytic responses (from 1 day to 20 months after lesioning in 4-month-old rats, and from 1 day to 6 months in 20-month-old rats) to diverse unilateral damage of the nucleus basalis (nbM) by injection of 40 nmol of ibotenic acid, or 50 or 100 nmols of quisqualic acid was performed using a histochemical method (immunoreactivity against the glial fibrillary acidic protein GFAP). Glial reactivity (i.e., isolated or clustered hypertrophic and/or hyper-reactive astrocytes) was evaluated in several ipsilateral and contralateral brain regions: the 'local response' within the damaged nbM region; the 'proximal response' (a new concept proposed by us) in the non-damaged structures neighbouring the nbM; and the 'remote response' in the ipsilateral brain cortex and in the contralateral cortex and nbM. In 4-month-old animals, the remote cortical glial responses, independent of the involution of cortical cholinergic activity and randomly located in layers I-V of motor and somatosensory cortical regions, were similar in appearance over a long period (13-20 months), with the highest reactivity 45 days after lesioning. The proximal response lasted from 1 day to 13 months and afterwards tended to disappear. Contralateral reactivity and ipsilateral cortical scars were observed. The local (nbM) glial response was maintained throughout the period studied. Subsets of astrocytes of different reactivities were observed, most of their elements being highly intermeshed. In 20-month-old animals, nbM lesions produced less positive, but similar, glial reactive patterns. This glial reactivity was superposed onto the glial reactivity of old age. All these results are discussed. The maintenance of reactive astrocytes many months after lesioning suggests the existence of cellular factors other than those produced by damaged nbM neurons. Taking into account the role of glial cells under pathological conditions, it is possible that these reactive astrocytes in humans could promote neurodegenerative processes, such as amyloid plaque formation and neurodegeneration (Alzheimer's disease). Along this line, nbM cholinergic involution could then originate cortical involution through induced reactive astrocytosis.
Collapse
Affiliation(s)
- M Monzón-Mayor
- Department of Morphology (Cellular Biology Section), Faculty of Health Sciences, University of Las Palmas, Gran Canaria, Canary Islands, Las Palmas, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Normal ageing and Alzheimer's disease (AD) have many features in common and, in many respects, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading the brain into the devastation of AD. In accordance with the concept that AD is a metabolic disease, these risk factors deteriorate the homeostasis of the Ca(2+)-energy-redox triangle and disrupt the cerebral reserve capacity under metabolic stress. The major genetic risk factors (APP and presenilin mutations, Down's syndrome, apolipoprotein E4) are associated with a compromise of the homeostatic triangle. The pathophysiological processes leading to this vulnerability remain elusive at present, while mitochondrial mutations can be plausibly integrated into the metabolic scenario. The metabolic leitmotif is particularly evident with medical risk factors which are associated with an impaired cerebral perfusion, such as cerebrovascular diseases including stroke, cardiovascular diseases, hypo- and hypertension. Traumatic brain injury represents another example due to the persistent metabolic stress following the acute event. Thyroid diseases have detrimental sequela for cerebral metabolism as well. Furthermore, major depression and presumably chronic stress endanger susceptible brain areas mediated by a host of hormonal imbalances, particularly the HPA-axis dysregulation. Sociocultural and lifestyle factors like education, physical activity, diet and smoking may also modulate the individual risk affecting both reserve capacity and vulnerability. The pathophysiological relevance of trace metals, including aluminum and iron, is highly controversial; at any rate, they may adversely affect cellular defences, antioxidant competence in particular. The relative contribution of these factors, however, is as individual as the pattern of the factors. In familial AD, the genetic factors clearly drive the sequence of events. A strong interaction of fat metabolism and apoE polymorphism is suggested by intercultural epidemiological findings. In cultures, less plagued by the 'blessings' of the 'cafeteria diet-sedentary' Western lifestyle, apoE4 appears to be not a risk factor for AD. This intriguing evidence suggests that, analogous to cardiovascular diseases, apoE4 requires a hyperlipidaemic lifestyle to manifest as AD risk factor. Overall, the etiology of AD is a key paradigm for a gene-environment interaction. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
23
|
Gilissen EP, Jacobs RE, Allman JM. Magnetic resonance microscopy of iron in the basal forebrain cholinergic structures of the aged mouse lemur. J Neurol Sci 1999; 168:21-7. [PMID: 10500269 DOI: 10.1016/s0022-510x(99)00162-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Increased non-heme iron levels in the brain of Alzheimer's disease (AD) patients are higher than the levels observed in age matched normal subjects. Iron level in structures that are highly relevant for AD, such as the basal forebrain, can be detected post mortem with histochemistry. Because of the small size of these structures, in vivo MR detection is very difficult at conventional field magnets (1.5 and 4 T). In this study, we observed iron deposits with histochemistry and MR microscopy at 11.7 T in the brain of the mouse lemur, a strepsirhine primate which is the only known animal model of aging presenting both senile plaques and neurofibrillary degeneration. We also examined a related species, the dwarf lemur. Iron distribution in aged animals (8 to 15 years old) agrees with previous findings in humans. In addition, the high iron levels of the globus pallidus is paralleled by a comparable contrast in basal forebrain cholinergic structures. Because of the enhancement of iron-dependent contrast with increasing field strength, microscopic magnetic resonance imaging of the mouse lemur appears to be an ideal model system for studying in vivo iron changes in the basal forebrain in relation to aging and neurodegeneration.
Collapse
Affiliation(s)
- E P Gilissen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
24
|
Lancelot E, Beal MF. Glutamate toxicity in chronic neurodegenerative disease. PROGRESS IN BRAIN RESEARCH 1999; 116:331-47. [PMID: 9932386 DOI: 10.1016/s0079-6123(08)60446-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- E Lancelot
- Department of Neurology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
25
|
Zhang ZJ, Lappi DA, Wrenn CC, Milner TA, Wiley RG. Selective lesion of the cholinergic basal forebrain causes a loss of cortical neuropeptide Y and somatostatin neurons. Brain Res 1998; 800:198-206. [PMID: 9685641 DOI: 10.1016/s0006-8993(98)00484-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Degeneration of the cholinergic basal forebrain (CBF) and changes in cortical neuropeptide levels have been reported in Alzheimer's disease. In the present study, we sought to determine if a selective cholinergic lesion of nucleus basalis magnocellularis (Nbm) could affect the number and distribution of neuropeptide Y (NPY) and somatostatin (SS) immunoreactive neurons in the frontoparietal and occipital cortices of rats. Brain sections were evaluated at survival times of 1, 2, 4, 8, 12, 24, 48, 78 and 100 weeks after intraventricular injection of 192-saporin, an immunotoxin directed at the low affinity neurotrophin receptor (p75NGFr), that selectively destroys the CBF. Following the immunotoxin lesion of the Nbm, the number of NPY-labeled neurons decreased 33% in the frontoparietal cortex and 60% in the occipital cortex compared to age-matched normal controls at most survival time points. A significant loss of SS-labeled neurons in both cortical regions was seen 12 weeks after 192-saporin injection with no further change up to 100-week survival time. The effect of age on neuropeptidergic populations was evaluated in normal control rats. The number of NPY and SS immunoreactive neurons in aged rats (21-26 months) decreased by 42% in the frontoparietal cortex and 27% in the occipital cortex when compared with young (3-6 months) and middle-age (9-14 months) rats. When both non-lesioned and lesioned animals with different ages were pooled for linear regression, a significant correlation was found between the number of cortical NPY- and SS-labeled neurons and cortical acetylcholinesterase (AChE) histochemical staining intensity. These findings indicate that: (1) cholinergic denervation of the Nbm is associated with an irreversible loss of neocortical NPY and SS immunoreactive neurons analogous to that observed in Alzheimer's disease and aging; (2) the degree of the loss of cortical NPY and SS immunoreactive neurons seems to be related to the extent of the reduction of cortical AChE intensity in both toxin-injected and normal aged rats. These findings may reflect a trophic dependence of NPY and SS neurons on cortical cholinergic input.
Collapse
Affiliation(s)
- Z J Zhang
- Laboratory of Experimental Neurology, Neurology Service (127), DVAMC, 1310 24th Avenue, South, Nashville, TN 37212-2637, USA
| | | | | | | | | |
Collapse
|
26
|
Distinctive morphological features of a subset of cortical neurons grown in the presence of basal forebrain neurons in vitro. J Neurosci 1998. [PMID: 9592099 DOI: 10.1523/jneurosci.18-11-04201.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) provide the major subcortical source of cholinergic input to cerebral cortex and play an important role in regulating cortical activity. The present study examined the ability of BFCNs to influence neocortical neuronal growth by examining effects of the presence of BFCNs on certain cortical neurons grown under the controlled conditions of dissociated cell culture. Initial experiments demonstrated distinctive morphological features of a population of neurons (labeled with SMI-32, a monoclonal antibody to nonphosphorylated neurofilament proteins that labels pyramidal neurons in vivo) in cocultures containing basal forebrain (BF) and cortical cells. These neurons (large neurons immunoreactive for SMI-32 [SMI-32(+) neurons]) were characterized as having extensive axons, greater soma size, and more dendritic growth than did most SMI-32(+) neurons in the cultures. Staining for SMI-32 in cocultures in which the cortical neurons were labeled with a fluorescent marker before adding the BF cells indicated that virtually all large SMI-32(+) neurons were of cortical origin. Eliminating BFCNs with the selective cholinergic immunotoxin 192 IgG-saporin resulted in a >80% decrease in the number of large SMI-32(+) neurons, although causing little damage to other cells in the treated cultures; this suggests that survival or maintenance of large SMI-32(+) neurons may depend on ongoing trophic support from BFCNs. Thus, present findings suggest that BFCNs may provide powerful growth- and/or survival-enhancing signals to a subset of cortical neurons.
Collapse
|
27
|
Smiley JF, Levey AI, Mesulam MM. Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate-diaphorase in the human and monkey cerebral cortex. Neuroscience 1998; 84:755-69. [PMID: 9579781 DOI: 10.1016/s0306-4522(97)00524-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intense immunoreactivity for the m2-muscarinic receptor was found in a population of interstitial polymorphic neurons embedded within the infracortical white matter and the adjacent deep layers of the cerebral cortex. These infracortical neurons were evenly distributed throughout architectonic subdivisions of the monkey cortex except for parts of primary visual cortex where they were less numerous. A similar set of m2-immunoreactive interstitial cells was also detected in the human lateral temporal neocortex obtained at surgery. Upon electron microscopic examination, they were found to receive unlabelled synaptic inputs and displayed abundant rough endoplasmic reticulum, a prominent nucleolus, and invaginations of the nuclear membrane. Double labelling of m2 immunoreactivity and acetylcholinesterase histochemistry demonstrated that approximately 90% of the m2-positive infracortical cells were acetylcholinesterase-rich in the monkey and human brains. Conversely, the proportion of acetylcholinesterase-rich infracortical neurons that were m2-immunoreactive was over 90% in the monkey and at least 50% in the human. The concurrent visualization of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) enzyme activity with m2 immunoreactivity in the monkey and human brain showed that 85-95% of m2-immunoreactive infracortical cells were NADPH-d positive. Conversely, about 70% of NADPH-d cells contained m2 immunoreactivity. These observations provide the most convincing information to date that many of the acetylcholinesterase-rich neurons located in the infracortical white matter of the cerebral cortex are likely to be cholinoceptive. The expression of NADPH-d by these neurons suggests that they may also provide a relay through which cholinergic innervation, originating predominantly from the nucleus basalis of Meynert, could regulate the release of nitric oxide in the cerebral cortex and subjacent white matter. The degeneration of these neurons may account for at least some of the depletion of m2 receptors that has been reported in Alzheimer's disease.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
28
|
Mesulam MM. Some cholinergic themes related to Alzheimer's disease: synaptology of the nucleus basalis, location of m2 receptors, interactions with amyloid metabolism, and perturbations of cortical plasticity. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:293-8. [PMID: 9789826 DOI: 10.1016/s0928-4257(98)80036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholinergic neurons in the nucleus basalis of Meynert (nbM) receive cholinergic, GABAergic and monoaminergic synapses. Only few of these neurons display the sort of intense m2 immunoreactivity that would be expected if they were expressing m2 as their presynaptic autoreceptor. The depletion of cortical m2 in Alzheimer's disease (AD) appears to reflect the loss of presynaptic autoreceptors located on incoming axons from the nucleus basalis of Meynert (nbM) and also the loss of postsynaptic receptors located on a novel group of nitric oxide producing interstitial neurons in the cerebral cortex. The defect of cholinergic transmission in AD may enhance the neurotoxicity of amyloid beta, leading to a vicious cycle which can potentially accelerate the pathological process. Because acetylcholine plays a critical role in regulating axonal growth and synaptic remodeling, the cholinergic loss in AD can perturb cortical plasticity so as to undermine the already fragile compensatory reserve of the aging cerebral cortex.
Collapse
Affiliation(s)
- M M Mesulam
- Department of Neurology and Psychiatry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
29
|
Meyer EM, King MA, Meyers C. Neuroprotective effects of 2,4-dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in neocortices of nucleus basalis lesioned rats. Brain Res 1998; 786:252-4. [PMID: 9555043 DOI: 10.1016/s0006-8993(97)00300-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nicotinic alpha7 agonist dimethoxybenzilidene anabaseine (DMXB) and cholinesterase inhibitor tetrahydroaminoacridine (THA) were investigated in a trans-synaptic model for neocortical atrophy and degeneration following nucleus basalis lesions. Bilateral lesions reduced parietal neuronal density in layers II-V 8 months later. DMXB administered i.p. daily to rats for 3 months attenuated this loss in layers II-V at a 1 mg/kg i.p. dose. A lower, 0.2 mg/kg i.p. dose, was neuroprotective in layer IV only. THA (1 mg/kg i.p.) also protected against neocortical Nissl-staining deficits.
Collapse
Affiliation(s)
- E M Meyer
- Department of Pharmacology and Therapeutics, Box 100267, University Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
30
|
Browne SE, Muir JL, Robbins TW, Page KJ, Everitt BJ, McCulloch J. The cerebral metabolic effects of manipulating glutamatergic systems within the basal forebrain in conscious rats. Eur J Neurosci 1998; 10:649-63. [PMID: 9749726 DOI: 10.1046/j.1460-9568.1998.00084.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated manipulations of the cortical cholinergic input arising from the basal forebrain differentially affect cognitive function. We used [14C]-2-deoxyglucose autoradiography in conscious rats to map the effects of excitatory amino acid agonist infusions into the nucleus basalis magnocellularis (NBM) on cerebral functional activity, as reflected by local rates of glucose utilization. Acute stimulation of NBM neurones by local infusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 15 min before glucose use measurement, resulted in glucose use reductions in nine cortical regions innervated by NBM efferents including prefrontal, frontal, sensorimotor and cingulate cortices. NMDA infusions altered glucose use in two cortical areas. Both AMPA and NMDA markedly increased glucose use in the striatum and globus pallidus, with concomitant perturbations in striato-pallidal projection targets including the substantia nigra, entopeduncular nucleus, subthalamic nucleus and lateral habenular nucleus. In contrast, the GABAA agonist muscimol did not affect glucose use in the NBM or neocortical regions, but induced glucose use increases in several subcortical nuclei including the substantia nigra and entopeduncular nucleus. The delayed effects of excitotoxic lesions were assessed 3 weeks after basal forebrain infusions of AMPA, NMDA, ibotenate or quisqualate. Statistically significant glucose use changes only occurred in the hypothalamus after NMDA, and the NBM after ibotenate infusions, although reduced cortical metabolism was apparent following AMPA-induced lesions of the NBM. Results support a dissociation between the functional sequelae of NMDA and non-NMDA receptor-mediated events in the basal forebrain, and long-term compensatory functional adaptation following cortical denervation.
Collapse
Affiliation(s)
- S E Browne
- Wellcome Surgical Institute, University of Glasgow, Scotland.
| | | | | | | | | | | |
Collapse
|
31
|
Kornhuber J, Weller M. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997; 41:135-44. [PMID: 9018383 DOI: 10.1016/s0006-3223(96)00047-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of neuroprotective agents for the prevention of neuronal loss in acute conditions such as stroke and epilepsy or chronic neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, Huntington's chorea, and motor neuron disease is currently focusing on drugs that inhibit excitatory amino acid neurotransmission or exhibit antioxidant properties. Unfortunately, potent antagonists at the N-methyl-D-aspartate (NMDA) type glutamate receptor, which is thought to mediate excitotoxic neuronal injury, e.g., MK-801 or phencyclidine (PCP), share a high probability of inducing psychotomimetic side effects. Further, these drugs have been associated with acute neurotoxicity in vitro and in vivo, precluding their clinical use. In contrast, low affinity NMDA receptor antagonists like amantadine and its dimethyl derivative, memantine, have been administered clinically for the management of Parkinson's disease, dementia, neuroleptic drug-induced side effects, and spasticity. These agents have only rarely induced significant psychotomimetic side effects. Recent pharmacologic advances have helped to elucidate how high drug affinity for the PCP binding site of the NMDA receptor may enhance psychotogenicity. Low affinity and associated fast voltage-dependent channel unblocking kinetics are likely to be responsible for the better tolerance of amantadine and memantine compared with MK-801 and PCP. Further factors apparently modulating psychotogenicity of glutamate receptor antagonists include differential actions on neuronal populations in various brain regions and interactions with neurotransmitter receptors other than the NMDA type glutamate receptor.
Collapse
Affiliation(s)
- J Kornhuber
- Department of Psychiatry, University of Würzburg, Germany
| | | |
Collapse
|
32
|
Popović M, Jovanova-Nesić K, Popović N, Bokonjić D, Dobrić S, Rosić N, Rakić L. Behavioral and adaptive status in an experimental model of Alzheimer's disease in rats. Int J Neurosci 1996; 86:281-99. [PMID: 8884399 DOI: 10.3109/00207459608986719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ten days after bilateral electrolytic lesions of nucleus basalis magnocellularis (NBM) we tested behavioral (spontaneous motor activity, acquisition and performance of two-way active avoidance, fear-response in open field test, foot shock induced aggression, depression-response in learned helplessness test) and adaptive status (body temperature at standard, hot and cold environment as well as cold restraint-induced gastric lesions) in adult male Wistar rats. Compared to intact control and sham-operated rats, the bilateral NBM-lesioned rats showed the significant impairment of learning behavior and reduced fear, aggression and depression as well as altered body temperature at standard and stressed conditions. Namely, it was established that body temperature in NBM-lesioned rats was significantly lower at standard laboratory conditions, but in these rats body temperature significantly was raised after exposing to cold and hot environment. On the other hand, spontaneous motor activity and number and length of cold restraint-induced gastric lesions (erosions and petechiae) in NBM-lesioned rats were similarly to those in both controls. It could be concluded that NBM plays a significant role in cognitive, emotional and adaptive processes in the rats.
Collapse
Affiliation(s)
- M Popović
- Immunology Research Center Branislav Janković, Belgrade, FR Yugoslavia
| | | | | | | | | | | | | |
Collapse
|
33
|
Hasegawa M, Nakayama S, Kinoshita H, Amano M, Yamada K, Hasegawa T, Nabeshima T. Effects of the subacute administration of nefiracetam on abnormal behavior in aged rats. Behav Brain Res 1996; 78:93-100. [PMID: 8864041 DOI: 10.1016/0166-4328(95)00235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the effects of nefiracetam on learning and memory by the Morris water maze task and water-finding test, and on emotional behavior by forced swimming, hole-board and open-field tests in old male Kbl Wistar rats aged 90 and 108 weeks. In the water maze task, the acquisition of the task in aged rats was slower than that in young rats. Subacute administration of nefiracetam (1 and 3 mg/kg daily) for 24 days tended to shorten the goal latency to escape onto the platform in a dose-dependent manner in the retention test, conducted 24 days after acquisition training. Nefiracetam (1 mg/kg) administration for 49 days decreased the duration of immobility in aged rats in the forced swimming test. Locomotor activity in young rats during the dark period was significantly higher than that during the light period, while there was no difference in locomotor activity between the light and dark periods in aged rats, suggesting that locomotor activity during the dark period and nocturnal habits may be impaired in aged rats. Subacute administration of nefiracetam for 14 days significantly increased the locomotor activity during the dark, but not light, period in a dose-dependent manner. In addition, nefiracetam given for 38 days, significantly shortened the increased time elapsed before animals started exploring the environment in aged rats compared with young rats in the water-finding tests. These findings suggest that nefiracetam may improve the impaired nocturnal habits and some of emotional behavior in aged rats.
Collapse
Affiliation(s)
- M Hasegawa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Mirmiran M, van Someren EJ, Swaab DF. Is brain plasticity preserved during aging and in Alzheimer's disease? Behav Brain Res 1996; 78:43-8. [PMID: 8793036 DOI: 10.1016/0166-4328(95)00217-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder believed to involve selective neuronal cell atrophy/loss in certain brain regions. The progress of the disease is accompanied by selective cognitive impairments and behavioral disturbances. The hypothesis has been put forward that by activation of selective brain areas throughout life one might protect or delay the degenerative process. This hypothesis, paraphrased as "a differential level of brain cell activity may account for cell selective loss" or "use it or lose it", further suggests that a certain level of neuronal plasticity persists during aging and even in Alzheimer's disease.
Collapse
Affiliation(s)
- M Mirmiran
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands.
| | | | | |
Collapse
|
35
|
Socci DJ, Arendash GW. Chronic nicotine treatment prevents neuronal loss in neocortex resulting from nucleus basalis lesions in young adult and aged rats. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 27:285-305. [PMID: 9147414 DOI: 10.1007/bf02815110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In both young adult and aged rats, we tested the ability of chronically administered nicotine to rescue neocortical neurons from transneuronal degeneration resulting 5 mo after ibotenic acid (IBO) lesioning of the nucleus basalis magnocellularis (NBM). Young adult (2-3 mo-old) and aged (20-22-mo-old) rats were given unilateral infusions of IBO (5 mu g/1 mu L) at two sites within the NBM. Following surgery, animals began receiving either daily ip injections of nicotine (0.2 mg/kg) or saline vehicle. Treatment continued for 5 mo, at which time all animals were sacrificed and their brains processed histologically. For each brain, computer-assisted image analysis was then used to analyze the unlesioned (left) and lesioned (right) side of five non-consecutive brain sections from parietal cortex Layers II-IV and V. NBM lesioning in both young adult and aged vehicle-treated rats resulted in a significant 16-21% neuronal loss ipsilateral to NBM lesioning in neocortical Layers II-IV. Aged NBM-lesioned rats also exhibited a significant 12% neuronal loss in neocortical Layer V ipsilaterally. By contrast, those NBM-lesioned young adult and aged rats that received daily nicotine treatment postsurgery did not show any ipsilateral neuronal loss in the same parietal cortex areas, indicating that chronic nicotine treatment prevented the transneuronal degeneration of neocortical neurons resulting 5 mo afer NBM lesioning.
Collapse
Affiliation(s)
- D J Socci
- Department of Biology and Institute on Aging, University of South Florida, Tampa, 33620, USA
| | | |
Collapse
|
36
|
Whatley VJ, Harris RA. The cytoskeleton and neurotransmitter receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:113-43. [PMID: 8894846 DOI: 10.1016/s0074-7742(08)60665-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuronal cytoskeleton consists of microtubules and microfilaments that can interact with membrane proteins including neurotransmitter receptors and ion channels. Ligand-gated ion channels, such as nicotinic acetylcholine receptors, glycine receptors, glutamate receptors and gamma-aminobutryic acidA (GABAA) receptors, are known to cluster in plasma membranes. Studies suggest that postsynaptic ligand-gated channels form clusters that are anchored in the plasma membrane by interacting with cytoskeletal components and these clusters may serve to optimize delivery of neurotransmitters to the channels. Other findings indicate that the interaction of clustered ligand-gated ion channels with cytoskeletal components may also play a role in channel function. For example, studies suggest that the interaction of microtubules with GABAA receptors regualtes GABA binding affinity. Regulation of neurotransmitter function may be significant in the study of neuropathological processes, such as Alzheimer's disease, neurotrauma, and experimental epilepsy, in which the cytoskeleton is vulnerable to disruption.
Collapse
Affiliation(s)
- V J Whatley
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, USA
| | | |
Collapse
|
37
|
Abstract
Because VIP is known to be neurotrophic in vitro, the present study tested whether peptide T (PT), an octapeptide with a pentapeptide sequence homologous to VIP, could prevent nucleus basalis (NBM)-induced degenerative changes in the parietal neocortex of aged rats. Aged (20-21 months old) Sprague-Dawley rats were given bilateral neurotoxic lesions of the NBM, and injected daily with PT (1 mg, IP) or vehicle solution for 5 months. Compared to unoperated controls, vehicle-treated NBM lesioned animals had: 1) a significant 17% decrease in overall cortical thickness, 2) significant decreases of 13-29% in the thickness of cortical layers II-IV, V, and VI, and 3) significant neuronal and glial cell loss in layer V. PT treatment prevented or attenuated these lesion-induced decreases in cortical thickness and attenuated the accompanying loss of large neurons in layer V. These results provide evidence that PT1 perhaps acting via VIP receptor stimulation, is neurotrophic and important for the integrity of brain tissue following denervation.
Collapse
Affiliation(s)
- D J Socci
- Department of Biology and Institute on Aging, University of South Florida, Tampa 33620, USA
| | | | | | | |
Collapse
|
38
|
Mesulam MM. The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1996; 109:285-97. [PMID: 9009717 DOI: 10.1016/s0079-6123(08)62112-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M M Mesulam
- Department of Néurology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Marczynski TJ. GABAergic deafferentation hypothesis of brain aging and Alzheimer's disease; pharmacologic profile of the benzodiazepine antagonist, flumazenil. Rev Neurosci 1995; 6:221-58. [PMID: 8717636 DOI: 10.1515/revneuro.1995.6.3.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent experiments have shown that: 1) A chronic 10 month daily administration to rats of the benzodiazepine (BDZ) receptor antagonist, flumazenil (FL; 4 mg/kg in drinking water), from the age of 13 through 22 months, significantly retarded the age-related loss of cognitive functions, as ascertained by the radial arm maze tests conducted two months after FL withdrawal. 2) An equal number of 8 rats died in the control and FL-treated group before the behavioral tests were completed and the animals were sacrificed; the life span of the FL-treated 8 rats equaled 24.0 (+/- 0.6 SEM) months, while that of the control 8 rats equaled 22.3 months (+/- 0.7 SEM), and the group difference was marginally significant (p = 0.04 Mann-Whitney test). 3) In rats sacrificed 3 months after FL withdrawal and behavioral testing, the protective action of FL, relative to age-matched controls, was revealed by a significant reduction in the age-related loss of neurons in the hippocampal formation. 4) In the time period of 3 months between the drug withdrawal and sacrificing of the animals, stress experienced by the aging rats during behavioral testing, related to excessive daily handling of the animals and partial food deprivation to motivate them to perform in the radial arm maze, apparently had excitotoxic effects on the hippocampal neurons, as indexed by the presence of 30% neurons in a state of moderate pyknosis found both in the FL group and the age-matched controls. In the 6 months "young" control group, the number of pyknotic neurons equaled only 3.5%. It was concluded that the drug withdrawal and stress of behavioral testing unleashed the previously FL-controlled age-related degeneration. On the basis of these results and the literature, showing that the tone of the GABAergic system increases with age, and particularly in Alzheimer's disease (AD), the hypothesis of brain aging was formulated. It postulates that in mammals, with growing age, and prematurely in humans with AD, the increasing tone of the BDZ/GABAergic system interferes with antero- and retrograde axonal transport through a chronic depolarizing block of preterminal axon varicosities of the ascending aminergic and cholinergic/peptidergic systems, which are indispensable for normal metabolic/trophic glial-neuronal relationships. Such a state leads to discrete anatomic deafferentation of forebrain systems, and particularly of the neocortex, where block of the anterograde axonal transport results in induction of the cortical mRNA responsible for synthesis of the beta-amyloid precursor protein (beta APP). The simultaneous block of retrograde transport from chronically depolarized preterminal axon varicosities may account for toxic accumulation in cortex of the nerve growth factor (NGF) and other trophins, without which the basal forebrain cholinergic neurons degenerate. The general pharmacologic profile of FL has been discussed on the basis of FL administration to animals and healthy and diseased humans. This profile shows that FL: 1) increases brain metabolic functions; 2) reduces emotional responses, thereby stabilizing the functions of the autonomic system in both humans and animals challenged by adverse environmental stimuli; 3) improves cognitive and coordinated motor functions in both humans and animals; 4) uniquely combines anxiolytic, vigilance and cognitive enhancing, i.e. nootropic, properties, which may, in part, stem from FL-induced emotional imperturbability (ataraxy); 5) facilitates habituation of healthy humans and animals to novel but inconsequential environmental stimuli, and promotes non-aggressive interactions among animals; 6) in single i.v. doses, and administered chronically to humans, FL has antiepileptic actions in the Lennox-Gastaut syndrome and other forms of epilepsy characterized by "spike-and-dome" EEG patterns; these actions are likely to depend on FL's disinhibition of the serotonin system; 7) administered in single i.v...
Collapse
Affiliation(s)
- T J Marczynski
- Department of Pharmacology, University of Illinois, Chicago 60612 USA
| |
Collapse
|
40
|
Calingasan NY, Gandy SE, Baker H, Sheu KF, Kim KS, Wisniewski HM, Gibson GE. Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Res 1995; 677:50-60. [PMID: 7606469 DOI: 10.1016/0006-8993(95)00136-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiamine deficiency (TD) is a classical model of impaired cerebral oxidation. As in Alzheimer's disease (AD), TD is characterized by selective neuronal loss, decreased activities of thiamine pyrophosphate-dependent enzymes, cholinergic deficits and memory loss. Amyloid beta-protein (A beta), a approximately 4 kDa fragment of the beta-amyloid precursor protein (APP), accumulates in the brains of patients with AD or Down's syndrome. In the current study, we examined APP and A beta immunoreactivity in the brains of thiamine-deficient rats. Animals received thiamine-deficient diet ad libitum and daily injections of the thiamine antagonist, pyrithiamine. Immunocytochemical staining and immunoblotting utilized a rabbit polyclonal antiserum against human APP645-694 (numbering according to APP695 isoform). Three, 6 and 9 days of TD did not appear to damage any brain region nor change APP-like immunoreactivity. However, 13 days of TD led to pathological lesions mainly in the thalamus, mammillary body, inferior colliculus and some periventricular areas. While immunocytochemistry and thioflavine S histochemistry failed to show fibrillar beta-amyloid, APP-like immunoreactivity accumulated in aggregates of swollen, abnormal neurites and perikarya along the periphery of the infarct-like lesion in the thalamus and medial geniculate nucleus. Immunoblotting of the thalamic region around the lesion revealed increased APP-like holoprotein immunoreactivity. APP-like immunoreactive neurites were scattered in the mammillary body and medial vestibular nuclei where the lesion did not resemble infarcts. In the inferior colliculus, increased perikaryal APP-like immunostaining occurred in neurons surrounding necrotic areas. Regions without apparent pathological lesions showed no alteration in APP-like immunoreactivity. Thus, the oxidative insult associated with cell loss, hemorrhage and infarct-like lesions during TD leads to altered APP metabolism. This is the first report to show a relationship between changes in APP expression, oxidative metabolism and selective cell damage caused by nutritional/cofactor deficiency. This model appears useful in defining the role of APP in the reponse to central nervous system injury, and may also be relevant to the pathophysiology of Wernicke-Korsakoff syndrome and AD.
Collapse
Affiliation(s)
- N Y Calingasan
- Cornell University Medical College, Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Cullen KM, Halliday GM. Mechanisms of cell death in cholinergic basal forebrain neurons in chronic alcoholics. Metab Brain Dis 1995; 10:81-91. [PMID: 7596331 DOI: 10.1007/bf01991785] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tau immunoreactivity was examined in post mortem tissue from patients in three groups: neurologically-asymptomatic and neuropathologically normal alcoholics, alcoholics with Wernicke's Encephalopathy (WE) and age matched non-alcoholic controls. Tau-positive granular and fibrillary inclusions were frequently observed within the magnocellular neurons of the cholinergic nucleus basalis, within occasional nucleus basalis neurons in non-WE alcoholics, but not in controls. Tau immunoreactivity was not however observed in cortical, brainstem, diencephalic or non-cholinergic forebrain structures. Peroxidase activity was also examined within the nucleus basalis using diaminobenzidine as an indicator. The majority of neurons in the basal forebrain showed increased peroxidase activity in all WE alcoholics and in some nucleus basalis neurons of non-WE alcoholics, but was rarely seen in controls. Neighboring astrocytes also showed increased peroxidase activity. These results suggest a link between peroxidase activity and the abnormal accumulation of phosphorylated tau. The presence of tau in the nucleus basalis of alcoholics with WE suggests a thiamine-dependent mechanism in tau accumulation and cell death in the cholinergic basal forebrain.
Collapse
Affiliation(s)
- K M Cullen
- Neuropathology Unit, University of Sydney, NSW, Australia
| | | |
Collapse
|
42
|
Mahy N, Bendahan G, Boatell ML, Bjelke B, Tinner B, Olson L, Fuxe K. Differential brain area vulnerability to long-term subcortical excitotoxic lesions. Neuroscience 1995; 65:15-25. [PMID: 7538642 DOI: 10.1016/0306-4522(94)00472-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To investigate the long-term effects of excitatory amino acid microinjections into the basal forebrain and its correlation with a possible Ca2+ imbalance associated with the excitotoxic process, ibotenic acid, mainly an N-methyl-D-aspartate receptor agonist, and quisqualic acid, an agonist of non-N-methyl-D-aspartate receptors, were injected into two regions rich in cholinergic neurons, namely the medial septal nucleus and the ventral globus pallidus. Within the globus pallidus but not within the medial septal nucleus, 13 days and one year postlesion, nerve cell death was associated with the appearance of calcium deposits within the large putative GABAergic pallidal neurons, being more pronounced in ibotenic acid than quisqualic acid-lesioned rats. An intermediate two month post-lesion study with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and ibotenic acid microinjections in globus pallidus demonstrated that the AMPA subtype of glutamate receptor may also be involved in this Ca2+ imbalance, together with the N-methyl-D-aspartate and metabotropic subtype receptors. Quisqualic acid lesions in globus pallidus and medial septum were associated with a substantial disappearance of cholinergic cell bodies and their nerve terminal networks within the cerebral cortex and hippocampal formation respectively, as assessed by choline acetyltransferase and acetylcholine esterase immunocytochemistry. Ibotenic acid lesions resulted in a lower reduction of cholinergic markers. One year after septal lesions induced either by ibotenic or quisqualic acid, a marked atrophy of the entire dorsolateral septal nucleus was observed. Our results support the hypothesis that brief and intense glutamate exposure can induce long-term neurodegenerative processes and give evidence that long-term excitotoxic lesions of the two areas studied result in marked differences in neuronal damage, including intracellular calcium deposits which do not correlate with the cholinergic deficits produced by multiple glutamate receptor subtypes.
Collapse
Affiliation(s)
- N Mahy
- Unit of Biochemistry, School of Medicine, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Farris TW, Butcher LL, Oh JD, Woolf NJ. Trophic-factor modulation of cortical acetylcholinesterase reappearance following transection of the medial cholinergic pathway in the adult rat. Exp Neurol 1995; 131:180-92. [PMID: 7895819 DOI: 10.1016/0014-4886(95)90040-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Laminar patterns of cortical acetylcholinesterase (AChE) activity are reestablished in the adult, pharmacologically unmanipulated rat following axotomy of the medial cholinergic pathway. The extent to which trophic and/or growth promoting or inhibiting agents modulate AChE fiber reappearance is not fully understood. Such studies, however, would further clarify possible roles for these agents in neuronal plasticity in response to injury, as well as in plastic processes associated with normative functions. In the present experiments, we explored trophic modulation by intracortically infusing nerve growth factor (NGF) or somatostatin into cingulate cortex at a site distal to transection of the medial cholinergic pathway. Comparisons were made with sham-operated or noninfused transected controls, as well as with transected animals infused with renin or antibodies against NGF. Administration began 2 days after axotomy and continued at successive 3-day intervals for 4 weeks. It was found that, proximal to the lesion site, NGF increased and somatostatin decreased optical density of AChE; the number of AChE-containing fibers was unaltered compared to controls. Distal to the knife cut, both NGF and somatostatin increased number of AChE fibers but did not alter overall AChE optical density. Nonetheless, NGF produced an increase in the number of intensely staining puncta both proximal and distal to the cut. Neither renin nor anti-NGF antibodies produced statistically significant effects on optical density or number of fibers at any cortical locus studied. We conclude that NGF and somatostatin have opposite effects on the expression of AChE: whereas NGF increases AChE levels, somatostatin inhibits AChE accumulation in proximal fibers, perhaps by actions on synthesis or transport. Fiber proliferation, which only occurred distally, was affected positively by both NGF and somatostatin, indicating that neurite-promoting effects produced by both agents are confined to tissue regions where neurite extension is stimulated by axotomy. Increases in AChE-positive puncta produced by NGF, however, were not confined to regions of fiber proliferation.
Collapse
Affiliation(s)
- T W Farris
- Department of Psychology, University of California, Los Angeles 90024-1563, USA
| | | | | | | |
Collapse
|
44
|
Wellman CL, Sengelaub DR. Alterations in dendritic morphology of frontal cortical neurons after basal forebrain lesions in adult and aged rats. Brain Res 1995; 669:48-58. [PMID: 7712164 DOI: 10.1016/0006-8993(94)01231-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nucleus basalis magnocellularis (NBM) is the major cholinergic projection to neocortex in the rat and plays a role in the modulation of cortical activity. Lesions of the NBM decrease thickness of lamina II-III of frontal cortex and decrease soma size of lamina II-III neurons. Additionally, aging produces changes in neuron size and numbers in the basal forebrain and frontal cortex of rats. We assessed dendritic changes in neurons from lamina II-III of frontal cortex in adult, middle-aged, and aged rats three months after unilateral lesions of the NBM. While lesions did not affect dendritic morphology in young adult rats, they decreased total dendritic length in middle-aged and aged rats, with dendritic alterations most pronounced in middle-aged rats. In middle-aged rats, lesion-induced changes in basilar arbor were apparently due to decreased dendritic branching: lesions markedly decreased the number of first-, second-, and third-order branches, but did not affect higher-order branching. In aged rats, lesions resulted in a small decrease in dendritic material proximal to the soma and a pronounced decrease in dendritic material distal to the soma, apparently due to a decrease in the length of terminal branches. These results suggest that the plasticity of neocortical neurons in the basalocortical system changes with age, and that early in aging this system may be particularly vulnerable to neural damage.
Collapse
Affiliation(s)
- C L Wellman
- Department of Psychology, Indiana University, Bloomington
| | | |
Collapse
|
45
|
Strategic Approaches to in Vitro Neurotoxicology. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Lapchak PA, Araujo DM. Effects of chronic intraventricular nerve growth factor treatment on vasoactive intestinal peptide and neuropeptide Y levels in the hippocampal formation and cerebral cortex following fimbrial transections. Brain Res 1994; 654:1-7. [PMID: 7982082 DOI: 10.1016/0006-8993(94)91564-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study determined whether chronic intracerebroventricular (i.c.v.) nerve growth factor (NGF) treatment alters the hippocampal content of vasoactive intestinal peptide (VIP) or neuropeptide Y (NPY) in rats with unilateral fimbrial transections. In addition, effects of chronic NGF treatment on cortical VIP and NPY levels were determined. Following partial and full fimbrial transections, hippocampal choline acetyltransferase (ChAT) activity was reduced by 41% and 60% ipsilateral to the lesioned side, respectively. Chronic NGF treatment partially attenuated (by 48%) the reduction of ChAT following partial lesions, but not full lesions. Neither the hippocampal contents of VIP or NPY were altered by partial or full fimbrial transections nor by chronic NGF treatment. However, in the NGF-treated rats, significant increases not only in cortical ChAT activity (by 28%), but also cortical VIP levels (by 68%) were observed. Cortical NPY levels remained unchanged following chronic NGF administration. In summary, the results suggest that the increases in cortical VIP levels observed in chronic NGF-treated rats may be specific to this tissue and consequent to the enhanced cholinergic tone exerted by this neurotrophin in the basalocortical pathway. Additionally, it appears that NGF when administered in pharmacological doses is not involved in the regulation of NPY synthesis in the hippocampus or cortex despite the presence of an NGF-responsive element associated with the rat NPY gene.
Collapse
Affiliation(s)
- P A Lapchak
- Department of Neurogerontology, University of Southern California, Los Angeles 90089-0191
| | | |
Collapse
|
47
|
Kaneda H, Maeda K. Alteration in regional brain neuropeptides following intracerebroventricular infusion of excitotoxins in rats. Biol Psychiatry 1994; 36:103-9. [PMID: 7948442 DOI: 10.1016/0006-3223(94)91190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We determined regional brain concentrations of somatostatin (SS), neuropeptide Y (NPY) and arginine-vasopressin (AVP) in 3- and 13-month-old rats. We also examined the effects of the excitotoxins, ibotenic acid (IA), kainic acid (KA), and quinolinic acid (QA) on regional levels of brain neuropeptides in rats. Excitotoxins were infused continuously into the lateral ventricle for 14 days using an osmotic minipump. Our results indicate that; (1) NPY in the brain is especially vulnerable to aging, compared to AVP. (2) IA induces a decrease in brain regional concentrations of neuropeptides and the effects are different from those of other excitotoxins, for example, KA and QA. (3) These effects of IA on neuropeptides may be dependent on the age of the animals when exposed and on the dose of IA.
Collapse
Affiliation(s)
- H Kaneda
- Department of Psychiatry, Kobe University School of Medicine, Japan
| | | |
Collapse
|
48
|
Liebl DJ, Koo PH. Monoamine-activated alpha 2-macroglobulin inhibits choline acetyltransferase of embryonic basal forebrain neurons and reversal of the inhibition by NGF and BDNF but not NT-3. J Neurosci Res 1994; 38:407-14. [PMID: 7523691 DOI: 10.1002/jnr.490380406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Monoamine-activated alpha 2-macroglobulin (alpha 2M) has recently been shown to inhibit the growth and survival of cholinergic neurons of the basal forebrain (Liebl and Koo: J Neurosci Res 35:170-182, 1993). The mechanism of this inhibitory effect is believed to involve the regulation of growth factor activities by alpha 2M. The objectives of this study are to determine whether monoamine-activated alpha 2M can inhibit choline acetyltransferase (ChAT) activity of cholinergic basal forebrain neurons, and whether some common neurotrophins in the CNS can reverse the inhibition. This study demonstrates that both methylamine-activated alpha 2M (MA-alpha 2M) and serotonin-activated alpha 2M (5HT-alpha 2M) can dose-dependently suppress the expression of normal basal levels of ChAT activity in embryonic rat basal forebrain cells in vitro, while normal alpha 2M has little or no effect. As little as 0.35 microM monoamine-activated alpha 2M can suppress the ChAT activity, whereas either nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF), but not neurotrophin-3 (NT-3), stimulates ChAT expression of these cells. The addition of either NGF or BDNF to the alpha 2M-suppressed cells can increase ChAT activity back to its normal levels, while NT-3 can not. These results demonstrate that (1) monoamine-activated alpha 2M is a potent non-cytotoxic inhibitor of the ChAT activity in cholinergic basal forebrain neurons, and (2) NGF and BDNF are capable of not only stimulating the ChAT activity but can also specifically reverse the alpha 2M inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D J Liebl
- Neuroscience Program, Northeastern Ohio Universities College of Medicine, Rootstown
| | | |
Collapse
|
49
|
Unger JW, Schmidt Y. Neuropeptide Y and somatostatin in the neocortex of young and aging rats: response to nucleus basalis lesions. J Chem Neuroanat 1994; 7:25-34. [PMID: 7802968 DOI: 10.1016/0891-0618(94)90005-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lesions of the nucleus basalis of Meynert (NBM) have been used to mimic, in part, cholinergic deficits occurring in age-related neurodegenerative disorders, i.e., Alzheimer's disease. In our study, the effect of a persistent cholinergic denervation of the fronto-parietal cortex on neuropeptide Y (NPY) and somatostatin (SOM) was examined in young adult (3 months old) and aging (> 18 months old) rats, 1, 3 and 6 months after bilateral stereotaxic NBM lesions with quisqualic acid. In aging, non-lesioned rats a significant decrease in radioimmunologically and immunohistochemically detectable NPY and SOM was found with no further changes after lesions. Morphological markers for these peptidergic populations (cell size and number, NADPH-diaphorase histochemistry, electron microscopy) demonstrated no signs of alterations in both age groups after lesion. Densitometric analysis of peptide fibre networks displayed a heterogeneous response with a significant rarefication in young rats 1 month after the lesion, followed by restoration and a tendency towards increase 6 months post lesioning in individual animals. These findings were confirmed by radioimmunological measurements. Examination of synaptic and cytoskeletal markers, i.e., synaptophysin, GAP-43, MAP-2, Tau-1 and amyloid precursor protein, did not reveal any signs for neuronal reorganization or sprouting. These data are discussed in the context of plasticity and pathology in age-related neurodegenerative disorders with cholinergic impairment.
Collapse
Affiliation(s)
- J W Unger
- Department of Anatomy, University of Munich, Germany
| | | |
Collapse
|
50
|
Pellegrini-Giampietro DE, Bennett MV, Zukin RS. AMPA/kainate receptor gene expression in normal and Alzheimer's disease hippocampus. Neuroscience 1994; 61:41-9. [PMID: 7969894 DOI: 10.1016/0306-4522(94)90058-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease is a progressive dementia characterized by pronounced degeneration of certain populations of neurons in the hippocampus and cerebral cortex of the brain. One theory is that glutamate receptor-mediated toxicity plays a role in cell loss associated with Alzheimer's disease. We used in situ hybridization to examine GluR1, GluR2, and GluR3 messengerRNAs (encoding alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/kainate receptor subunits) in sections of autopsy samples of Alzheimer's disease brains and age-, sex-, and post-mortem delay-matched brains from non-demented (control) subjects. GluR1 and GluR2 exhibited a heterogeneous distribution in control brain. GluR1 was expressed in granule cells of the dentate gyrus, in pyramidal cells of the CA1 and CA3 hippocampal subfields and in neurons of the subiculum and entorhinal cortex. GluR2 mRNA was at high density in the dentate gyrus and in CA3, but was at low density in CA1, subiculum, and entorhinal cortex. GluR3 hybridization was at very low levels but selectively localized to the dentate gyrus and CA3. In cerebellum, GluR1 was found in granule and Purkinje cell layers. In sections from Alzheimer's disease brain, a high degree of intersubject variability was observed: some samples showed markedly reduced GluR1 mRNA levels in dentate gyrus, CA1 and CA3 relative to controls; others showed no changes. Microscopic observation of emulsion-dipped sections revealed that the reduction of GluR1 seen in the dentate gyrus and CA3 of some Alzheimer's disease subjects was not due to cell loss.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|