1
|
|
2
|
Larsen EH, Sørensen JN. Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model. Rev Physiol Biochem Pharmacol 2019; 177:101-147. [DOI: 10.1007/112_2019_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractOur mathematical model of epithelial transport (Larsen et al. Acta Physiol. 195:171–186, 2009) is extended by equations for currents and conductance of apical SGLT2. With independent variables of the physiological parameter space, the model reproduces intracellular solute concentrations, ion and water fluxes, and electrophysiology of proximal convoluted tubule. The following were shown:Water flux is given by active Na+flux into lateral spaces, while osmolarity of absorbed fluid depends on osmotic permeability of apical membranes.Following aquaporin “knock-out,” water uptake is not reduced but redirected to the paracellular pathway.Reported decrease in epithelial water uptake in aquaporin-1 knock-out mouse is caused by downregulation of active Na+absorption.Luminal glucose stimulates Na+uptake by instantaneous depolarization-induced pump activity (“cross-talk”) and delayed stimulation because of slow rise in intracellular [Na+].Rate of fluid absorption and flux of active K+absorption would have to be attuned at epithelial cell level for the [K+] of the absorbate being in the physiological range of interstitial [K+].Following unilateral osmotic perturbation, time course of water fluxes between intraepithelial compartments provides physical explanation for the transepithelial osmotic permeability being orders of magnitude smaller than cell membranes’ osmotic permeability.Fluid absorption is always hyperosmotic to bath.Deviation from isosmotic absorption is increased in presence of glucose contrasting experimental studies showing isosmotic transport being independent of glucose uptake.For achieving isosmotic transport, the cost of Na+recirculation is predicted to be but a few percent of the energy consumption of Na+/K+pumps.
Collapse
|
3
|
Yamaguchi M, Steward MC, Smallbone K, Sohma Y, Yamamoto A, Ko SBH, Kondo T, Ishiguro H. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium. J Physiol 2017; 595:1947-1972. [PMID: 27995646 DOI: 10.1113/jp273306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO3- concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO3- . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO3- concentrations is to minimize the secretion of Cl- ions. These findings help to clarify the mechanism responsible for pancreatic HCO3- secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. ABSTRACT A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO3- ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na+ -HCO3- cotransporter (NBC1) and apical Cl- /HCO3- exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K+ permeability and apical Cl- and HCO3- permeabilities (CFTR), and reducing the activity of the basolateral Cl- /HCO3- exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO3- at a rate of ∼3 nl min-1 mm-2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl- /HCO3- exchange via SLC26A6 at the apical membrane were able to support a HCO3- -rich secretion. Raising the HCO3- /Cl- permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO3- concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl- concentration following cAMP stimulation and thereby maximizing the secreted HCO3- concentration. The addition of a basolateral Na+ -K+ -2Cl- cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl- and resulted in a lower secreted HCO3- concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl- secretion is the main requirement for secreting 140 mm HCO3- .
Collapse
Affiliation(s)
- Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kieran Smallbone
- School of Computer Science, University of Manchester, Manchester, UK
| | | | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University, Tokyo, Japan
| | - Takaharu Kondo
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Gorodeski GI. The Cultured Human Cervical Epithelium: A New Model for Studying Paracellular Transport. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769600300507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- George I. Gorodeski
- Department of Reproductive Biology, Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; University MacDonald Womens Hospital, University Hospitals of Cleveland, 11100 Euclid Road, Cleveland, OH 044106
| |
Collapse
|
5
|
Gorodeski GI, Hopfer U. Regulation of the Paracellular Permeability of Cultured Human Cervical Epithelium by a Nucleotide Receptor. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769500200508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Ulrich Hopfer
- Departments of Reproductive Biology and Physiology and Biophysics, Case Western Reserve School of Medicine; Department of Obstetrics and Gynecology, University MacDonald Womens Hospital, Cleveland, Ohio
| |
Collapse
|
6
|
Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4394702. [PMID: 27127786 PMCID: PMC4835618 DOI: 10.1155/2016/4394702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/04/2016] [Accepted: 03/28/2016] [Indexed: 01/12/2023]
Abstract
Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230–240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication.
Collapse
|
7
|
Abstract
Physical forces are central players in development and morphogenesis, provide an ever-present backdrop influencing physiological functions, and contribute to a variety of pathologies. Mechanotransduction encompasses the rich variety of ways in which cells and tissues convert cues from their physical environment into biochemical signals. These cues include tensile, compressive and shear stresses, and the stiffness or elastic modulus of the tissues in which cells reside. This article focuses on the proximal events that lead directly from a change in physical state to a change in cell-signaling state. A large body of evidence demonstrates a prominent role for the extracellular matrix, the intracellular cytoskeleton, and the cell matrix adhesions that link these networks in transduction of the mechanical environment. Recent work emphasizes the important role of physical unfolding or conformational changes in proteins induced by mechanical loading, with examples identified both within the focal adhesion complex at the cell-matrix interface and in extracellular matrix proteins themselves. Beyond these adhesion and matrix-based mechanisms, classical and new mechanisms of mechanotransduction reside in stretch-activated ion channels, the coupling of physical forces to interstitial autocrine and paracrine signaling, force-induced activation of extracellular proteins, and physical effects directly transmitted to the cell's nucleus. Rapid progress is leading to detailed delineation of molecular mechanisms by which the physical environment shapes cellular signaling events, opening up avenues for exploring how mechanotransduction pathways are integrated into physiological and pathophysiological cellular and tissue processes.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
|
9
|
Kojic N, Chung E, Kho AT, Park JA, Huang A, So PTC, Tschumperlin DJ. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. FASEB J 2010; 24:1604-15. [PMID: 20056713 DOI: 10.1096/fj.09-145367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant approximately 110 s). We confirm that epidermal growth factor (EGF)-family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant-rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses to sustained mechanical loading require ongoing activity of this autocrine loop, indicating a dominant role for mechanotransduction through autocrine EGFR signaling in this context. A slow deformation response to a step increase in loading, accompanied by synchronous increases in ligand concentration and EGFR activation, provides one means for cells to mount a selective and context-appropriate response to a sustained change in mechanical environment.
Collapse
Affiliation(s)
- Nikola Kojic
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Somasekharan S, Brandt R, Iwamoto T, Tomich JM, Schultz BD. Epithelial barrier modulation by a channel forming peptide. J Membr Biol 2008; 222:17-30. [PMID: 18418541 DOI: 10.1007/s00232-008-9099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 02/21/2008] [Indexed: 01/07/2023]
Abstract
NC-1059 is a synthetic channel-forming peptide that provides for ion transport across, and transiently reduces the barrier integrity of, cultured epithelial monolayers derived from canine kidney (MDCK cells). Experiments were conducted to determine whether epithelial cells derived from other sources were similarly affected. Epithelial cells derived from human intestine (T-84), airway (Calu-3), porcine intestine (IPEC-J2) and reproductive duct (PVD9902) were grown on permeable supports. Basal short circuit current (Isc) was <3 microA cm(-2) for T-84, IPEC-J2 and PVD9902 cell monolayers and <8 microA cm(-2) for Calu-3 cells. Apical NC-1059 exposure caused, in all cell types, an increase in Isc to >15 microA cm(-2), indicative of net anion secretion or cation absorption, which was followed by an increase in transepithelial conductance (in mS cm(-2): T-84, 1.6 to 62; PVD9902, 0.2 to 51; IPEC-J2, 0.3 to 26; Calu-3, 2.3 to 13). These results are consistent with the peptide affecting transcellular ion movement, with a likely effect also on the paracellular route. NC-1059 exposure increased dextran permeation when compared to basal permeation, which documents an effect on the paracellular pathway. In order to evaluate membrane ion channels, experiments were conducted to study the dose dependence and stability of the NC-1059-induced membrane conductance in Xenopus laevis oocytes. NC-1059 induced a dose-dependent increase in oocyte membrane conductance that remained stable for greater than 2 h. The results demonstrate that NC-1059 increases transcellular conductance and paracellular permeation in a wide range of epithelia. These effects might be exploited to promote drug delivery across barrier epithelia.
Collapse
Affiliation(s)
- Suma Somasekharan
- Yale School of Medicine Cellular and Molecular Physiology, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
11
|
Gorodeski GI. Estrogen modulation of epithelial permeability in cervical-vaginal cells of premenopausal and postmenopausal women. Menopause 2008; 14:1012-9. [PMID: 17572644 PMCID: PMC2366810 DOI: 10.1097/gme.0b013e3180587eb5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To understand how menopause affects estrogen regulation of epithelial permeability. DESIGN Experimental study using human normal epithelial vaginal-ectocervical cells obtained from premenopausal and postmenopausal women. Endpoints were paracellular permeability (determined in terms of the resistance of the lateral intercellular space [RLIS] and tight junctions [RTJ]); cellular G-actin; nonmuscle myosin type II-B (NMMII-B) filamentation and magnesium-adenosine triphosphatase activity; and occludin expression (in terms of expression of the functional 65-kd and truncated 50-kd forms). RESULTS Estrogen induced an early transient decrease in RLIS that correlated in time with increases in cellular G-actin and NMMII-B magnesium-adenosine triphosphatase activity and with decreases in NMMII-B filamentation and a slower decrease in RTJ that correlated with up-regulation of the 50-kd form of occludin. Estrogen modulation of G-actin NMMII-B and occludin could be described in terms of interaction with the estrogen receptor mechanism. The potency of estrogen effects was similar in cells of premenopausal and postmenopausal women, but the effects occurred earlier in cells of premenopausal women. RLIS returned to baseline faster in cells of postmenopausal women, and the effect was associated with faster reversal of estrogen changes in NMMII-B despite the continued presence of estrogen in the culture medium, suggesting that desensitization of the actin-myosin effects to estrogen actions occur distal to the estrogen receptor. CONCLUSIONS The results suggest that the transient estrogen decrease in RLIS is mediated by modulation of actomyosin, and it is affected by the aging process. In contrast, the late persistent decrease in RTJ is mediated by occludin degradation and is unrelated to aging.
Collapse
Affiliation(s)
- George I Gorodeski
- Department of Reproductive Biology, Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Li X, Zhou L, Gorodeski GI. Estrogen regulates epithelial cell deformability by modulation of cortical actomyosin through phosphorylation of nonmuscle myosin heavy-chain II-B filaments. Endocrinology 2006; 147:5236-48. [PMID: 16901965 PMCID: PMC2398684 DOI: 10.1210/en.2006-0779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the study was to understand how estrogen modulates the rigidity of the cytoskeleton in epithelial cells. Estrogen depletion decreased, and treatment with 17beta-estradiol increased deformability of cervical-vaginal epithelial cells. Estrogen also induced redistribution of nonmuscle myosin II-B (NMM-II-B); lesser interaction of NMM-II-B with actin; increased phosphorylation of NMM-II-B-heavy chains at threonine and serine residues; and decreased filamentation of NMM-II-B in vitro. The effects of 17beta-estradiol were time and dose related and could be mimicked by diethylstilbestrol. The effects of estrogen were blocked by cotreatment with antisense oligonucleotide for the estrogen receptor-alpha and inhibited by ICI-182,780 and tamoxifen; omission of epithelial growth factor (EGF) from the culture medium; and cotreatments with the EGF receptor inhibitor AG1478, the ERK-MAPK inhibitor PD98059, the casein kinase-II (CK2) inhibitor 5,6-dichloro-1-beta-(D)-ribofuranosylbenzimidazole, the Rho-associated kinase inhibitor Y-27632, and the nonspecific phosphatase inhibitor okadaic acid. Coadministration of 5,6-dichloro-1-beta-(D)-ribofuranosylbenzimidazole plus okadaic acid blocked the 17beta-estradiol effect. H-89 or LY294002 did not significantly affect estrogen effects. Treatment with estrogen increased activation of ERK1/2 and CK2 activity. These data suggest a novel pathway of estrogen regulation of the cytoskeleton in epithelial cells. The effect is mediated by estrogen receptor-alpha and involves in part the EGF-EGF receptor and ERK-MAPK cascades as proximal signaling networks and the CK2 and Rho-associated kinase-regulated myosin heavy chain phosphatase as terminal effectors. Augmented phosphorylation of NMM-II-B can block filamentation and induce disassociation of the myosin from the cortical actin, and disruption of the actomyosin ring can increase cell deformability. This mechanism can explain estrogen regulation of paracellular permeability in cervical-vaginal epithelia in vivo.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
13
|
Abstract
Mechanotransduction may occur through numerous mechanisms, including potentially through autocrine signaling in a dynamically changing extracellular space. We developed a computational model to analyze how alterations in the geometry of an epithelial lateral intercellular space (LIS) affect the concentrations of constitutively shed ligands inside and below the LIS. The model employs the finite element method to solve for the concentration of ligands based on the governing ligand diffusion-convection equations inside and outside of the LIS, and assumes idealized parallel plate geometry and an impermeable tight junction at the apical surface. Using the model, we examined the temporal relationship between geometric changes and ligand concentration, and the dependence of this relationship on system characteristics such as ligand diffusivity, shedding rate, and rate of deformation. Our results reveal how the kinetics of mechanical deformation can be translated into varying rates of ligand accumulation, a potentially important mechanism for cellular discrimination of varying rate-mechanical processes. Furthermore, our results demonstrate that rapid changes in LIS geometry can transiently increase ligand concentrations in underlying media or tissues, suggesting a mechanism for communication of mechanical state between epithelial and subepithelial cells. These results underscore both the plausibility and complexity of the proposed extracellular mechanotransduction mechanism.
Collapse
Affiliation(s)
- Nikola Kojić
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
14
|
Abstract
Both mechanical and chemical stimuli guide tissue function. In a recent paper, Tschumperlin et al. proposed that pressure acting on airway epithelium elicits mechanotransduction not by directly altering biochemical signaling but by regulating extracellular fluid volume to modulate ligand-receptor interactions.
Collapse
Affiliation(s)
- Brian P Helmke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA22908, USA
| | | |
Collapse
|
15
|
Martines E, McGhee K, Wilkinson C, Curtis A. A Parallel-Plate Flow Chamber to Study Initial Cell Adhesion on a Nanofeatured Surface. IEEE Trans Nanobioscience 2004; 3:90-5. [PMID: 15382740 DOI: 10.1109/tnb.2004.828268] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells in the human body come across many types of information, which they respond to. Both material chemistry and topography of the surface where they adhere have an effect on cell shape, proliferation, migration, and gene expression. It is possible to create surfaces with topography at the nanometric scale to allow observation of cell-topography interactions. Previous work has shown that 100-nm-diameter pits on a 300-nm pitch can have a marked effect in reducing the adhesion of rat fibroblasts in static cultures. In the present study, a flow of cell suspension was used to investigate cell adhesion onto nanopits in dynamic conditions, by means of a parallel-plate flow chamber. A flow chamber with inner nanotopography has been designed, which allows real-time observation of the flow over the nanopits. A nanopitted pattern was successfully embossed into polymethylmethacrylate to meet the required shape of the chamber. Dynamic cell adhesion after 1 h has been quantified and compared on flat and nanopitted polymethylmethacrylate substrates. The nanopits were seen to be significantly less adhesive than the flat substrates (p < 0.001), which is coherent with previous observations of static cultures.
Collapse
Affiliation(s)
- Elena Martines
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | | | | |
Collapse
|
16
|
Tschumperlin DJ, Dai G, Maly IV, Kikuchi T, Laiho LH, McVittie AK, Haley KJ, Lilly CM, So PTC, Lauffenburger DA, Kamm RD, Drazen JM. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 2004; 429:83-6. [PMID: 15103386 PMCID: PMC5539413 DOI: 10.1038/nature02543] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 04/05/2004] [Indexed: 01/12/2023]
Abstract
Physical forces elicit biochemical signalling in a diverse array of cells, tissues and organisms, helping to govern fundamental biological processes. Several hypotheses have been advanced that link physical forces to intracellular signalling pathways, but in many cases the molecular mechanisms of mechanotransduction remain elusive. Here we find that compressive stress shrinks the lateral intercellular space surrounding epithelial cells, and triggers cellular signalling via autocrine binding of epidermal growth factor family ligands to the epidermal growth factor receptor. Mathematical analysis predicts that constant rate shedding of autocrine ligands into a collapsing lateral intercellular space leads to increased local ligand concentrations that are sufficient to account for the observed receptor signalling; direct experimental comparison of signalling stimulated by compressive stress versus exogenous soluble ligand supports this prediction. These findings establish a mechanism by which mechanotransduction arises from an autocrine ligand-receptor circuit operating in a dynamically regulated extracellular volume, not requiring induction of force-dependent biochemical processes within the cell or cell membrane.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Physiology Program, Department of Environmental Health, Harvard School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jones DM, Smallwood RH, Hose DR, Brown BH, Walker DC. Modelling of epithelial tissue impedance measured using three different designs of probe. Physiol Meas 2003; 24:605-23. [PMID: 12812442 DOI: 10.1088/0967-3334/24/2/369] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Impedance measurement is a promising technique for detecting pre-malignant changes in epithelial tissue. This paper considers how the design of the impedance probe affects the ability to discriminate between tissue types. To do this, finite element models of the electrical properties of squamous and glandular columnar epithelia have been used. The glandular tissue model is described here for the first time. Glandular mucosa is found in many regions of the gastrointestinal tract, such as the stomach and intestine, and has a large effective surface area. Firstly, the electrical properties of a small section of gland, with epithelial cells and supportive tissue, are determined. These properties are then used to build up a three-dimensional model of a whole section of mucosa containing many thousands of glands. Measurements using different types of impedance probe were simulated by applying different boundary conditions to the models. Transepithelial impedance, and tetrapolar measurement with a probe placed on the tissue surface have been modelled. In the latter case, the impedance can be affected by conductive fluid, such as mucus, on the tissue surface. This effect has been investigated, and a new design of probe, which uses a guard electrode to counteract this potential source of variability, is proposed.
Collapse
Affiliation(s)
- D M Jones
- Medical Physics and Engineering, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK.
| | | | | | | | | |
Collapse
|
18
|
Larsen EH. Hans H. Ussing--scientific work: contemporary significance and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:2-15. [PMID: 12421533 DOI: 10.1016/s0005-2736(02)00592-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a zoologist, Hans H. Ussing began his scientific career by studying the marine plankton fauna in East Greenland. This brought him in contact with August Krogh at the time George de Hevesy, Niels Bohr and Krogh planned the application of artificial radioactive isotopes for studying the dynamic state of the living organism. Following his studies of protein turnover of body tissues with deuterium-labeled amino acids, Ussing initiated a new era of studies of transport across epithelial membranes. Theoretical difficulties in the interpretation of tracer fluxes resulted in novel concepts such as exchange diffusion, unidirectional fluxes, flux-ratio equation, and solvent drag. Combining methods of biophysics with radioactive isotope technology, Ussing introduced and defined the phrases 'short-circuit current', 'active transport pathway' and 'shunt pathway', and with frog skin as experimental model, he unambiguously proved active transport of sodium ions. Conceived in his electric circuit analogue of frog skin, Ussing associated transepithelial ion fluxes with the hitherto puzzling 'bioelectric potentials'. The two-membrane hypothesis of frog skin initiated the study of epithelial transport at the cellular level and raised new questions about cellular mechanisms of actions of hormones and drugs. His theoretical treatment of osmotic water fluxes versus fluxes of deuterium labeled water resulted in the discovery of epithelial water channels. His discovery of paracellular transport in frog skin bridged studies of high and low resistance epithelia and generalized the description of epithelial transport. He devoted the last decade of his scientific life to solute-coupled water transport. He introduced the sodium recirculation theory of isotonic transport, and in an experimental study, he obtained the evidence for recirculation of sodium ions in toad small intestine. In penetrating analyses of essential aspects of epithelial membrane transport, Ussing provided insights of general applicability and powerful analytical methods for the study of intestine, kidney, respiratory epithelia, and exocrine glands-of equal importance to biology and medicine.
Collapse
Affiliation(s)
- Erik Hviid Larsen
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
19
|
Larsen EH, Sørensen JB, Sørensen JN. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine. J Physiol 2002; 542:33-50. [PMID: 12096047 PMCID: PMC2290396 DOI: 10.1113/jphysiol.2001.013248] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral flows of water across the epithelium with recirculation of the diffusible ions maintained by a 1Na+-1K+-2Cl- cotransporter in the plasma membrane facing the serosal compartment. With intracellular non-diffusible anions and compliant plasma membranes, the model describes the dependence on membrane permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions. The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward uphill water flux, or an electroneutral Na+-K+-2Cl- cotransporter.
Collapse
Affiliation(s)
- Erik Hviid Larsen
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
20
|
Serikov VB, Jang YJ, Widdicombe JH. Estimate of the subepithelial hydrostatic pressure that drives inflammatory transudate into the airway lumen. J Appl Physiol (1985) 2002; 92:1702-8. [PMID: 11896040 DOI: 10.1152/japplphysiol.00645.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory diseases of the upper respiratory tract are characterized by flow of plasma filtrate across the epithelium into the airway lumen ("transudation"). Elsewhere, we have proposed that extravasation from microvessels causes edema, and this is associated with elevated subepithelial hydrostatic pressure that drives transudation. To test this hypothesis, we have attempted to block transudation by elevating luminal hydrostatic pressure. We measured the appearance of plasma markers into the lumen of an isolated perfused segment of rat trachea in vivo and found that stimulation of one vagal nerve caused a rapid (half-time approximately 5 min) and nonselective increase in the flow of markers from blood to airway lumen. Leukocyte migration also caused transudation that developed much more slowly (half-time = 2-3 h). In both cases, transudation was blocked by application of luminal hydrostatic pressures. The critical luminal pressure needed to block vagally induced transudation was approximately 4.5 cmH2O, and, to block epithelial transudation induced by leukocyte traffic, it was 3 cmH2O, and we conclude that these are the subepithelial pressures that drive inflammatory transudation into the airway lumen.
Collapse
Affiliation(s)
- V B Serikov
- Department of Human Physiology, University of California Davis, Davis 95616, USA
| | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE To determine the effects of menopause (aging and E) on vaginal-cervical epithelial paracellular permeability. DESIGN Experimental, basic clinical research. SETTING Academic research environment. PATIENT(S) Premenopausal, perimenopausal, and postmenopausal women, aged 35-65 years. INTERVENTION(S) Primary to tertiary cultures of normal human ectocervical epithelial cells on filters. Cells were outgrown from surgically discarded ectocervical minces. MAIN OUTCOME MEASURE(S) Changes in paracellular permeability were determined as changes in transepithelial electrical conductance and pyranine permeability. RESULT(S) [1] Levels of transepithelial electrical conductance and pyranine permeability decreased as women's age advanced. [2] Removal of E from the culture medium decreased paracellular permeability. Treatment of cells in vitro with 10 nmol/L 17beta-E2 increased transepithelial electrical conductance and pyranine permeability, but the effects were additive to the age-related decrease in permeability. [3] Coadministration of 100 nmol/L tamoxifen blocked the E increase in paracellular permeability in cells of both premenopausal and postmenopausal women. CONCLUSION(S) [1] Aging and E deficiency decrease independently vaginal-cervical epithelial paracellular permeability. [2] The E increase in vaginal-cervical epithelial paracellular permeability in cells of postmenopausal women is mediated by the E receptor. [3] The E increase in vaginal-cervical epithelial paracellular permeability in cells of postmenopausal women is masked by age-related increase in the tight junctional resistance, leading to overall decrease in paracellular permeability.
Collapse
Affiliation(s)
- G I Gorodeski
- Department of Obstetrics and Gynecology, University MacDonald Women's Hospital, Cleveland, Ohio 44106, USA.
| |
Collapse
|
22
|
Gorodeski GI. Calcium regulates estrogen increase in permeability of cultured CaSki epithelium by eNOS-dependent mechanism. Am J Physiol Cell Physiol 2000; 279:C1495-505. [PMID: 11029297 DOI: 10.1152/ajpcell.2000.279.5.c1495] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen increases baseline transepithelial permeability across CaSki cultures and augments the increase in permeability in response to hypertonic gradients. In estrogen-treated cells, lowering cytosolic calcium abrogated the hypertonicity-induced augmented increase in permeability and decreased baseline permeability to a greater degree than in estrogen-deprived cells. Steady-state levels of cytosolic calcium in estrogen-deprived cells were higher than in estrogen-treated cells. Increases in extracellular calcium increased cytosolic calcium more in estrogen-deprived cells than in estrogen-treated cells. However, in estrogen-treated cells, increasing cytosolic calcium was associated with greater increases in permeability in response to hypertonic gradients than in estrogen-deprived cells. Lowering cytosolic calcium blocked the estrogen-induced increase in nitric oxide (NO) release and in the in vitro conversion of L-[(3)H]arginine to L-[(3)H]citrulline. Treatment with estrogen upregulated mRNA of the NO synthase isoform endothelial nitric oxide synthase (eNOS). These results indicate that cytosolic calcium mediates the responses to estrogen and suggest that the estrogen increase in permeability and the augmented increase in permeability in response to hypertonicity involve an increase in NO synthesis by upregulation of the calcium-dependent eNOS.
Collapse
Affiliation(s)
- G I Gorodeski
- Departments of Reproductive Biology and Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
23
|
Larsen EH, Nedergaard S, Ussing HH. Role of lateral intercellular space and sodium recirculation for isotonic transport in leaky epithelia. Rev Physiol Biochem Pharmacol 2000; 141:153-212. [PMID: 10916425 DOI: 10.1007/bfb0119579] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- E H Larsen
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
24
|
Gorodeski GI, Whittembury J. A novel fluorescence chamber for the determination of volume changes in human CaSki cell cultures attached on filters. Cell Biochem Biophys 1998; 29:307-31. [PMID: 9868584 DOI: 10.1007/bf02737900] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The objective of the study was to test the hypothesis that, in the cultured human cervical epithelium, CaSki, the effect of calcium mobilizing agents on transepithelial electrical conductance (GTE), is the result of cell volume decrease. CaSki cells attached on filters were loaded with fura-2, and measurements of fluorescence at the isosbestic wavelength 360 nm (excitation/emission [F360/510]) were made in a newly designed fluorescence chamber; this design allowed us also to determine changes in cytosolic calcium ([Ca2+]i). The experimental conditions were similar to those used to measure changes in paracellular permeability in the Ussing chamber, and they enabled us to compare the time-course of changes in [Ca2+]i, in F360/510, and in GTE. Hypertonicity increased, and hypotonicity decreased F360/510 and GTE, without having an effect on [Ca2+]i, and the changes in F360/510 and in GTE correlated linearly. Metabolism, bleaching, and extrusion of intracellular fura-2 were minimal, indicating that the changes in F360/510 reflect changes in dye concentration. Hypertonicity decreased, and hypotonicity increased the size of dispersed CaSki cells, suggesting that osmolarity-induced changes in F360/510 reflect changes in size of the attached cells. Ionomycin increased [Ca2+]i, F360/510, and GTE, but the increases in [Ca2+]i preceded those in F360/510 and GTE. The calcium chelator BAPTA blocked the ionomycin-induced increase in [Ca2+]i, F360/510, and in GTE. Preincubation with 4-acetamido-4'isothiocyanatostilbene-2,2'disulfonic acid (SITS) augmented the ionomycin-induced increase in [Ca2+]i, but blocked the increases in F360/510 and in GTE. Pretreatment of cells with hypertonic solution abrogated the increases in F360/510 and in GTE in response to ionomycin, but had little effect on the ionomycin-induced increase in [Ca2+]i. On the basis of these results we suggest that the ionomycin-induced increase in GTE is mediated by [Ca2+]i-dependent chloride secretion and osmotic water loss.
Collapse
Affiliation(s)
- G I Gorodeski
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
25
|
|
26
|
Abstract
The mechanism of fluid transport by leaky epithelia and the route taken by the transported fluid are in dispute. A consideration of current mathematical models for coupling of solutes and water, as well as the methodologies for the study of fluid transport, shows that local osmosis best accounts for water movement. Although it seems virtually certain that the tight junctions are water permeable, the fraction of absorbed fluid that crosses the tight junction cannot yet be determined with confidence.
Collapse
Affiliation(s)
- K R Spring
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-1603, USA.
| |
Collapse
|
27
|
Rieder CL, Cole RW. Perfusion chambers for high-resolution video light microscopic studies of vertebrate cell monolayers: some considerations and a design. Methods Cell Biol 1998; 56:253-75. [PMID: 9500142 DOI: 10.1016/s0091-679x(08)60430-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C L Rieder
- Division of Molecular Medicine, Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509, USA
| | | |
Collapse
|
28
|
Chu S, Brownell WE, Montrose MH. Quantitative confocal imaging along the crypt-to-surface axis of colonic crypts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C1557-64. [PMID: 8572186 DOI: 10.1152/ajpcell.1995.269.6.c1557] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Quantitative confocal microscopy methods are used to measure events along the crypt-to-surface axis in living mouse colonic mucosa. Experiments visualize carboxyseminaphthorhodofluor-1 (SNARF-1; a pH-sensitive fluorescent dye) in the extracellular fluid to measure extracellular pH within an intact epithelium. Lucifer yellow (LY; a pH-insensitive dye) is used to control for fidelity of the optical path. Light scatter from colonic tissue caused SNARF-1 or LY fluorescence to decrease 3% per micrometer focal distance into tissue at both 640- and 580-nm emission wavelengths. However, dual emission ratios of LY fluorescence were constant as a function of focal distance into tissue or in the presence of short-chain fatty acids (SCFA). SCFA, known to cause changes in extracellular pH, cause maximal changes in crypt luminal pH at 10 microns from the crypt base. Maximal changes of pH in lamina propria occur higher along the crypt-to-surface axis than maximal changes in luminal pH. Lateral intercellular spaces between colonocytes are a separate microdomain in which pH is constant in absence vs. presence of SCFA and along the base-to-apex axis of colonocytes.
Collapse
Affiliation(s)
- S Chu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
29
|
Zeuthen T. Molecular mechanisms for passive and active transport of water. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 160:99-161. [PMID: 7558688 DOI: 10.1016/s0074-7696(08)61554-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Water crosses cell membranes by passive transport and by secondary active cotransport along with ions. While the first concept is well established, the second is new. The two modes of transport allow cellular H2O homeostasis to be viewed as a balance between H2O leaks and H2O pumps. Consequently, cells can be hyperosmolar relative to their surroundings during steady states. Under physiological conditions, cells from leaky epithelia may be hyperosmolar by roughly 5 mosm liter-1, under dilute conditions, hyperosmolarities up to 40 mosm liter-1 have been recorded. Most intracellular H2O is free to serve as solvent for small inorganic ions. The mechanism of transport across the membrane depends on how H2O interacts with the proteinaceous or lipoid pathways. Osmotic transport of H2O through specific H2O channels such as CHIP 28 is hydraulic if the pore is impermeable to the solute and diffusive if the pore is permeable. Cotransport of ions and H2O can be a result of conformational changes in proteins, which in addition to ion transport also translocate H2O bound to or occlude in the protein. A cellular model of a leaky epithelium based on H2O leaks and H2O pumps quantitatively predicts a number of so-far unexplained observations of H2O transport.
Collapse
Affiliation(s)
- T Zeuthen
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Gorodeski GI, Hopfer U, Eckert RL, Utian WH, De Santis BJ, Rorke EA, Romero MF. ATP decreases acutely and reversibly transport through the paracellular pathway in human cervical cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1692-8. [PMID: 8023899 DOI: 10.1152/ajpcell.1994.266.6.c1692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We studied the effect of ATP on transepithelial transport through the paracellular pathway in human cervical cells. Transepithelial conductance and transepithelial permeability (determined from the measurements of unidirectional flux of inert molecules) were measured in Caski cells grown on permeable support. Transepithelial conductance was 55.9 +/- 17.7 mS/cm2 and permeability was 12.5 +/- 2.7 x 10(-6) cm/s for a 0.51-kDa probe. Addition of ATP to the medium decreased acutely and reversibly the conductance and the permeability to probes between 0.18 and 10 kDa by 23-31% in a dose-related fashion; the 50% effective concentration was 1 microM, with a maximal effect at 5-10 microM extracellular ATP. The ATP effect was observed regardless of the pressure gradient across the epithelium. These results indicate that extracellular ATP in micromolar concentrations decreases acutely and reversibly the permeability through the paracellular pathway in cervical cells, possibly by affecting the permeability of the tight junctions and the resistance of the intercellular space. On the basis of these data, we speculate that ATP may play a role in the regulation of solutes and fluid transport across the cervical epithelium in vivo.
Collapse
Affiliation(s)
- G I Gorodeski
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | | | | | | | | | |
Collapse
|
31
|
Marano CW, Laughlin KV, Russo LM, Peralta Soler A, Mullin JM. Long-term effects of tumor necrosis factor on LLC-PK1 transepithelial resistance. J Cell Physiol 1993; 157:519-27. [PMID: 8253863 DOI: 10.1002/jcp.1041570311] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Renal epithelial LLC-PK1 cell sheets incubated with tumor necrosis factor (TNF) undergo an acute, spontaneous, and rapidly reversible decrease in transepithelial resistance (TER). (Mullin et al., 1992). However, 24 to 72 h following TNF exposure, TER across the cell sheet increases 2-fold. This later effect of TNF is also reversible, albeit slowly. The TER of TNF-treated cell sheets then declines toward initial levels between 72 and 144 h following exposure to the cytokine. Whereas the long-term increase in TER following TNF exposure is not associated with a decreased transepithelial 14C-mannitol flux (size selectivity), the charge (anionic) selectivity of the LLC-PK1 tight junction is decreased. Basal-lateral (ouabain and bumetanide-insensitive) Rb+ and apical Na+-dependent alpha-methylglucoside (AMG) uptake into the cell are both reduced in cultures exposed to TNF 24 h earlier. Correspondingly, this long-term effect on TER is accompanied by a 30% decrease in short circuit current (iscc). Along with an observed increase in basal-lateral methylamino-isobutyric acid (MeAIB) influx into the cells, an increased incorporation of [3H]-thymidine into DNA indicates increased cell cycling after exposure to TNF. While the increase in cell cycling is not sustained for the duration of the elevation in TER, it does appear to initiate a sequence of events that lead to the sustained increase in TER. A decrease in the lateral intercellular space, observed between these epithelial cells after long-term TNF exposure, may be a mechanism for the elevated TER following from the mitogenesis and/or transport changes. This overall long-term tightening of an epithelium in response to TNF may function, in part, as a compensatory action of the epithelium to reestablish its effectiveness as a physiological barrier, following the acute effect of TNF.
Collapse
Affiliation(s)
- C W Marano
- Lankenau Medical Research Center, Wynnewood, PA 19096
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- C A Pinkstaff
- Department of Anatomy, West Virginia University School of Dentistry, Morgantown 26506-9128
| |
Collapse
|
33
|
Shachar-Hill B, Hill AE. Convective fluid flow through the paracellular system of Necturus gall-bladder epithelium as revealed by dextran probes. J Physiol 1993; 468:463-86. [PMID: 7504731 PMCID: PMC1143837 DOI: 10.1113/jphysiol.1993.sp019782] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Bidirectional paracellular fluxes using radioactive dextrans as inert molecular probes have been measured across Necturus gall-bladder epithelium during conditions of normal fluid absorption. There is a net flux at all radii analysed (0.4-2.2 nm) in the direction of fluid absorption. 2. The net flux is substantial at all radii within the range. The data extraplate to 2 x 10(-6) cm s-1 at zero probe radius, which is very close to the rate of epithelial fluid absorption. 3. The unstirred layers at the epithelial faces during transport have been determined; their contribution to the net fluxes is negligible. 4. Two possible mechanisms for the net flow of probes are considered: (i) that the probes diffuse across the junctions and are then entrained in a local osmotic flow along the interspaces and subepithelium; (ii) that the probes are entrained in volume flow across the junctions and the emergent solution subsequently passes through the interspaces and subepithelium. Model calculations clearly rule out mechanism (i) in which the maximum net flow obtainable is less than 10% of that observed. In addition the presence of leak paths shunting the junctions is not compatible with the observed fluxes. With mechanism (ii) the net flows are correctly predicted with all the fluid flow being transjunctional. The fluid absorption is therefore entirely paracellular. 5. The slope of the net flow curve shows no apparent change in magnitude over the range of the probe radii, indicating that effectively only one population of convective channels is present with parallel walls separated by about 7.7 nm. This agrees with the width previously determined by electron microscopy. 6. If the fluid absorption is junctional then the cellular route offers little if any relative contribution. The hydraulic conductivity of the junctions is not high enough, or the osmotic permeability of the membranes low enough, to accommodate this by osmosis and therefore the junctional fluid absorption must be non-osmotic.
Collapse
|
34
|
Schafer JA, Reeves WB, Andreoli TE. Mechanisms of Fluid Transport Across Renal Tubules. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Davis CW, Dowell ML, Lethem M, Van Scott M. Goblet cell degranulation in isolated canine tracheal epithelium: response to exogenous ATP, ADP, and adenosine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C1313-23. [PMID: 1590365 DOI: 10.1152/ajpcell.1992.262.5.c1313] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mucin secretion by goblet cells was determined by quantifying degranulation events (DE) in isolated, superficial epithelium from canine trachea. The epithelium was isolated and explanted to a novel transparent, permeable support, and the goblet cells were visualized by video microscopy. Baseline degranulation events were quantified at 0.05 DE/min. Luminal ATP (10(-4) M, n = 10) stimulated a biphasic secretory response; a burst, maximum rate = 87.9 +/- 25.3, was followed by a plateau, rate = 1.9 +/- 0.3 DE/min. Serosal ATP elicited a complex set of responses: 9 cells failed to respond, 13 exhibited a trivial response, and 31 responded vigorously but with highly variable patterns of degranulation. Nonhydrolyzable 5'-adenylylimidodiphosphate caused degranulation from both sides of the epithelium. Luminal ADP and adenosine were ineffective. Serosal ADP and adenosine elicited a range of responses that was similar in diversity and magnitude to the ATP response. Our conclusions were as follows: 1) goblet cells in the superficial epithelium of the airway can be studied at the single-cell level in explants; 2) nucleotides stimulate goblet cells to secrete mucin; and 3) the goblet cell expresses different nucleotide receptors on its apical and basolateral membranes.
Collapse
Affiliation(s)
- C W Davis
- Department of Physiology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
36
|
Reuss L, Simon B, Xi Z. Pseudo-streaming potentials in Necturus gallbladder epithelium. I. Paracellular origin of the transepithelial voltage changes. J Gen Physiol 1992; 99:297-316. [PMID: 1375273 PMCID: PMC2216605 DOI: 10.1085/jgp.99.3.297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apparent streaming potentials were elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution. In NaCl Ringer's solution, the transepithelial voltage (Vms) change (reference, basolateral solution) was positive with sucrose addition and negative with sucrose removal. Bilateral Cl- removal (cyclamate replacement) had no effect on the polarity or magnitude of the Vms change elicited by addition of 100 mM sucrose. In contrast, bilateral Na+ removal (tetramethylammonium [TMA+] replacement) inverted the Vms change (from 2.7 +/- 0.3 to -3.2 +/- 0.2 mV). Replacement of Na+ and Cl- with TMA+ and cyclamate, respectively, abolished the change in Vms. Measurements of cell membrane voltages and relative resistances during osmotic challenges indicate that changes in cell membrane parameters do not explain the transepithelial voltage changes. The initial changes in Vms were slower than expected from concomitant estimates of the time course of sucrose concentration (and hence osmolality) at the membrane surface. Paired recordings of the time courses of paracellular bi-ionic potentials (partial substitution of apical Na+ with tetrabutylammonium [TBA+]) revealed much faster time courses than those produced by sucrose addition, although the diffusion coefficients of sucrose and TBACl are similar. Hyperosmotic and hypoosmotic challenges yielded initial Vms changes at the same rate; thereafter, the voltage increased with hypoosmotic solution and decreased with hyperosmotic solution. These late voltage changes appear to result from changes in width of the lateral intercellular spaces. The early time courses of the Vms changes produced by osmotic challenge are inconsistent with the expectations for water-ion flux coupling in the junctions. We propose that they are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow.
Collapse
Affiliation(s)
- L Reuss
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
37
|
Reuss L, Simon B, Cotton CU. Pseudo-streaming potentials in Necturus gallbladder epithelium. II. The mechanism is a junctional diffusion potential. J Gen Physiol 1992; 99:317-38. [PMID: 1588300 PMCID: PMC2216603 DOI: 10.1085/jgp.99.3.317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of apparent streaming potentials elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution were studied by assessing the time courses of: (a) the change in transepithelial voltage (Vms). (b) the change in osmolality at the cell surface (estimated with a tetrabutylammonium [TBA+]-selective microelectrode, using TBA+ as a tracer for sucrose), and (c) the change in cell impermeant solute concentration ([TMA+]i, measured with an intracellular double-barrel TMA(+)-selective microelectrode after loading the cells with TMA+ by transient permeabilization with nystatin). For both sucrose addition and removal, the time courses of Vms were the same as the time courses of the voltage signals produced by [TMA+]i, while the time courses of the voltage signals produced by [TBA+]o were much faster. These results suggest that the apparent streaming potentials are caused by changes of [NaCl] in the lateral intercellular spaces, whose time course reflects the changes in cell water volume (and osmolality) elicited by the alterations in apical solution osmolality. Changes in cell osmolality are slow relative to those of the apical solution osmolality, whereas lateral space osmolality follows cell osmolality rapidly, due to the large surface area of lateral membranes and the small volume of the spaces. Analysis of a simple mathematical model of the epithelium yields an apical membrane Lp in good agreement with previous measurements and suggests that elevations of the apical solution osmolality elicit rapid reductions in junctional ionic selectivity, also in good agreement with experimental determinations. Elevations in apical solution [NaCl] cause biphasic transepithelial voltage changes: a rapid negative Vms change of similar time course to that of a Na+/TBA+ bi-ionic potential and a slow positive Vms change of similar time course to that of the sucrose-induced apparent streaming potential. We conclude that the Vms changes elicited by addition of impermeant solute to the apical bathing solution are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow from the cells to the apical bathing solution and from the lateral intercellular spaces to the cells. Our results do not support the notion of junctional solute-solvent coupling during transepithelial osmotic water flow.
Collapse
Affiliation(s)
- L Reuss
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
38
|
Spring KR. Mechanism of Fluid Transport by Epithelia. Compr Physiol 1991. [DOI: 10.1002/cphy.cp060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Spring KR. Fluid Transport by Leaky Epithelia and Cell Volume Regulation. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
|
41
|
Heyman SN, Brezis M, Greenfeld Z, Rosen S. Protective role of furosemide and saline in radiocontrast-induced acute renal failure in the rat. Am J Kidney Dis 1989; 14:377-85. [PMID: 2816930 DOI: 10.1016/s0272-6386(89)80171-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute renal failure (ARF) can be produced in rats by a combination of insults which augment transport activity and blunt regulatory mechanisms designed to maintain medullary oxygen sufficiency. This type of ARF is characterized by necrosis of medullary thick ascending limbs (mTALs). Uninephrectomized, salt-depleted rats injected with indomethacin (10 mg/kg) develop ARF following the administration of the radiocontrast agent, iothalamate. Furosemide (20 mg/kg, intravenous), administered immediately before the contrast material, attenuated the severity of ARF and reduced mTAL necrosis. Treatment with furosemide and/or normal saline prevented both the decline in renal function and mTAL injury. It is concluded that furosemide and normal saline may ameliorate the course of ARF if administered before radiocontrast.
Collapse
Affiliation(s)
- S N Heyman
- Department of Medicine, Hadassah University Hospital, Mt Scopus, Jerusalem, Israel
| | | | | | | |
Collapse
|
42
|
Abstract
The osmometric behavior of Drosophila melanogaster embryos in permeabilized eggs was studied in a microscope diffusion chamber designed to impose a rapid change in osmotic environment at various temperatures. A numerical model of NaCl diffusion in the chamber predicted that radial variations in concentration arising from the presence of a thin film of solution at the top of the chamber were negligible. On the basis of transient electrical conductance measurements in the chamber, characteristic time constants for the change in concentration averaged over the chamber depth occupied by the eggs were 0.99, 0.77, and 0.60 min at 0, 10, and 20 degrees C, respectively. The chamber response was sufficiently rapid that the characteristic response of the embryo was not masked. Equilibrium volumetric behavior of the embryos indicated that they behaved as nearly ideal osmometers over the range of 0.256 to 2.000 osm, and followed the relation FVeq = 0.123C-1 + 0.541, where FVeq is equilibrium fractional volume and C is osmolality. Nonlinear regression of volumetric data during osmotic contraction yielded an average Lp of 0.722 micron/(min.atm) at 20 degrees C and an apparent activation energy delta E of 8.11 kcal/mol. The coefficients of variation in the Lp estimates among individual embryos were 38, 18, and 47% at 0, 10, and 20 degrees C, respectively. With the use of probability rules and a model for volumetric behavior during freezing, it was determined that the observed variability in Lp (assuming delta E is fixed) considerably broadens the transition range of cooling rates over which the predicted probability of intracellular ice formation goes from 0 to 1. However, experimental observations (21) show the actual transition range is even wider, indicating that there exist other important sources of variability which determine the event of ice formation in D. melanogaster embryos.
Collapse
Affiliation(s)
- T T Lin
- Department of Agricultural and Biological Engineering, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
43
|
|
44
|
Lopes AG, Amzel LM, Markakis D, Guggino WB. Cell volume regulation by the thin descending limb of Henle's loop. Proc Natl Acad Sci U S A 1988; 85:2873-7. [PMID: 2833759 PMCID: PMC280102 DOI: 10.1073/pnas.85.8.2873] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thin descending limb cells from Henle's loop (from the inner strip of the outer medulla of long loops) were studied with optical and video techniques to identify the mechanisms of ion transport and cell volume regulation. Increasing the K+ concentration in the basolateral solution from 5 to 90 mM caused the cells to swell. This K+-induced swelling was inhibited by exposure of the basolateral membrane to 9 mM Ba2+ and was abolished by removing Cl- from the perfusion solutions. Decreasing the perfusion osmolality caused an increase in cell volume followed by a return to the preexposure volume. The latter regulatory decrease in hypoosmolality was slowed by basolateral Ba2+ and the removal of HCO-3 from the solutions. Further slowing occurred when both HCO-3 and Cl- were removed. Exposure of cells to ouabain abolished volume regulation. These data suggest that the basolateral cell membrane of the thin descending limb has a Cl- -dependent K+ permeability, which is important in cell volume regulation. The cells also possess Cl- and HCO-3 transport pathways that participate in volume regulation. Finally, volume regulation is dependent upon the operation of the Na/K pump.
Collapse
Affiliation(s)
- A G Lopes
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205
| | | | | | | |
Collapse
|
45
|
Whittembury G, Carpi-Medina P, González E, Linares H. Pathways for water absorption and physiological role of the lateral interspaces in the kidney tubule. Artif Organs 1987; 11:478-85. [PMID: 3326560 DOI: 10.1111/j.1525-1594.1987.tb02713.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Possible routes for water and salt flow and the most likely theories that describe coupling between water and salt flow across leaky epithelia are presented. The osmotic theories seem the most likely ones. However, several of the theories have weaknesses that render them unsatisfactory, in particular because of the possibility of paracellular water flow in these epithelia. Puzzling are the findings that measurements of the cellular water osmotic permeability give figures that are too low for some of the exclusively transcellular theories to work. If these observations hold in the future, it may be shown that part of the water moves through paracellular pathways in these leaky epithelia. This view is supported by the observation that large extracellular markers are dragged by volume flow. Finally, experimental evidence is reviewed indicating that changes in the luminal area concentration may modulate the functional state of the nephron junctional complexes.
Collapse
Affiliation(s)
- G Whittembury
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | |
Collapse
|
46
|
Avner ED, Studnicki FE, Young MC, Sweeney WE, Piesco NP, Ellis D, Fettermann GH. Congenital murine polycystic kidney disease. I. The ontogeny of tubular cyst formation. Pediatr Nephrol 1987; 1:587-96. [PMID: 3153336 DOI: 10.1007/bf00853593] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the current study, the ontogeny of tubular cyst formation was studied in the CPK mouse, a murine strain with autosomal recessive polycystic kidney disease. Utilizing the technique of intact nephron microdissection in addition to standard light and transmission electron microscopy, the earliest morphologic alterations in CPK kidneys were localized in fetal tissue at 17 days of gestation to the distal portion of developing proximal tubules. During disease progression, from birth to 21 days of postnatal age, there was a shift in the site of cystic nephron involvement from proximal tubule to collecting tubules without involvement of other nephron segments. Cysts were enlarged tubular segments which remained in continuity with other portions of the nephron and were not associated with abnormalities in the overall pattern of nephron growth or differentiation. Analysis suggested that alterations in transtubular transport in abnormally shortened proximal tubular segments of juxtamedullary nephrons may have pathogenic importance in the early stages of cyst formation, and that epithelial hyperplasia and cytoskeletal alterations may have a role in progressive proximal tubular cystic enlargement. Cellular hyperplasia of epithelial walls of normally formed tubules was a prominent feature of cyst formation and progressive enlargement in collecting tubules. Such data form the basis for future studies into specific pathophysiological processes which may be operative in specific nephron segments during different stages of cyst formation in the CPK mouse.
Collapse
Affiliation(s)
- E D Avner
- Department of Pediatrics and Pathology, University of Pittsburgh School of Medicine, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
47
|
Davis CW, Finn AL. Interactions of sodium transport, cell volume, and calcium in frog urinary bladder. J Gen Physiol 1987; 89:687-702. [PMID: 3496423 PMCID: PMC2215924 DOI: 10.1085/jgp.89.5.687] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The volume of individual cells in intact frog urinary bladders was determined by quantitative microscopy and changes in volume were used to monitor the movement of solute across the basolateral membrane. When exposed to a serosal hyposmotic solution, the cells swell as expected for an osmometer, but then regulate their volume back to near control in a process that involves the loss of KCl. We show here that volume regulation is abolished by Ba++, which suggests that KCl movements are mediated by conductive channels for both ions. Volume regulation is also inhibited by removing Ca++ from the serosal perfusate, which suggests that the channels are activated by this cation. Previously, amiloride was observed to inhibit volume regulation: in this study, amiloride-inhibited, hyposmotically swollen cells lost volume when the Ca++ ionophore A23187 was added to Ca++-replete media. We attempted to effect volume changes under isosmotic conditions by suddenly inhibiting Na+ entry across the apical membrane with amiloride, or Na+ exit across the basolateral membrane with ouabain. Neither of these Na+ transport inhibitors produced the expected results. Amiloride, instead of causing a decrease in cell volume, had no effect, and ouabain, instead of causing cell swelling, caused cell shrinkage. However, increasing cell Ca++ with A23187, in both the absence and presence of amiloride, caused cells to lose volume, and Ca++-free Ringer's solution (serosal perfusate only) caused ouabain-blocked cells to swell. Finally, again under isosmotic conditions, removal of Na+ from the serosal perfusate caused a loss of volume from cells exposed to amiloride. These results strongly suggest that intracellular Ca++ mediates cell volume regulation by exerting a negative control on apical membrane Na+ permeability and a positive control on basolateral membrane K+ permeability. They also are compatible with the existence of a basolateral Na+/Ca++ exchanger.
Collapse
|
48
|
Abstract
The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to a sodium-free solution, or to amiloride. Serosal exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9 +/- 1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to -100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent Cl conductance. Volume increase and conductance activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at -100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (Ki) to 0.5 mM, but was independent of whether Ki was 2.4, 5, or 10 mM. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when Ki is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E H Larsen
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
49
|
Volume Maintenance in Isosmotic Conditions. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0070-2161(08)60366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
50
|
Foskett JK, Ussing HH. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium. J Membr Biol 1986; 91:251-8. [PMID: 3489099 DOI: 10.1007/bf01868818] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell volume determinations and electrophysiological measurements have been made in an attempt to determine if mitochondria-rich (MR) cells are localized pathways for conductive movements of Cl across frog skin epithelium. Determinations of cell volume with video microscope techniques during transepithelial passage of current showed that most MR cells swell when the tissue is voltage clamped to serosa-positive voltages. Voltage-induced cell swelling was eliminated when Cl was removed from the mucosal bath solution. Using a modified vibrating probe technique, it was possible to electrically localize a conductance specifically to some MR cells in some tissues. These data are evidence supporting the idea that MR cells are pathways for conductive movements of Cl through frog skin epithelium.
Collapse
|