1
|
Nanashima N, Norikura T, Nakano M, Hata C, Horie K. Silencing of ERRα gene represses cell proliferation and induces apoptosis in human skin fibroblasts. Mol Med Rep 2025; 31:6. [PMID: 39450559 PMCID: PMC11529168 DOI: 10.3892/mmr.2024.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 10/26/2024] Open
Abstract
Estrogen‑related receptor (ERR) is an orphan nuclear receptor structurally akin to the estrogen receptor. ERR is expressed in tissues with active energy metabolism and regulates intracellular metabolic functions. Additionally, ERRs are known to be strongly expressed in the epidermis of skin tissue, but their functions are unknown. The present study investigated the function of ERRα in human skin fibroblasts. ERRα expressed in human dermal fibroblast TIG113 was knocked down using small interfering (si)RNA and gene expression was comprehensively analyzed using microarrays 48 h later. Pathway analysis was performed using Wikipathways on genes exhibiting expression changes of ≥1.5‑fold. Expression of cell cycle‑related and apoptosis‑related genes was compared using reverse transcription‑quantitative PCR. After treating TIG113 cells with siERRα for 72 h, cell proliferation was assessed using the Cell Counting Kit‑8 or a scratch wound healing assay and apoptotic cells were measured using the Poly Caspase Assay Kit. Cell cycle analysis was performed using flow cytometry. The expression of the ERRα gene was suppressed by siRNA. The expression of genes associated with cell cycle‑related pathways were decreased while that of those associated with apoptosis‑related pathways increased. Furthermore, the expression of cell cycle‑related genes such as cell division cycle 25C, cyclin E and cyclin B1 was decreased and the expression of apoptosis‑related genes such as caspase3 and Fas cell surface death receptor was increased. Cell proliferation was suppressed and the number of apoptotic cells increased ~2‑fold in ERRα‑knockdown TIG113 cells. Cell cycle analysis revealed that the number of cells in the Sub‑G1 phase increased and that in the S and G2/M phases decreased. The present study suggested that ERRα is an essential for the survival of human skin fibroblasts.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Aomori 030-8505, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshio Norikura
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Manabu Nakano
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Chie Hata
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
2
|
Vimalkumar PS, Sivadas N, Murali VP, Sherin DR, Murali M, Joseph AG, Radhakrishnan KV, Maiti KK. Exploring apoptotic induction of malabaricone A in triple-negative breast cancer cells: an acylphenol phyto-entity isolated from the fruit rind of Myristica malabarica Lam. RSC Med Chem 2024:d4md00391h. [PMID: 39263684 PMCID: PMC11382570 DOI: 10.1039/d4md00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Myristica malabarica Lam., commonly known as Malabar nutmeg or false nutmeg, is used in traditional medicine and as a spice. Our exploration focuses on malabaricones, a distinct group of secondary metabolites isolated from the fruit rind of M. malabarica. We investigated the selective cytotoxicity of malabaricones against the triple-negative breast cancer (TNBC) cell line. In particular, malabaricone A (Mal-A) displays heightened toxicity towards TNBC cells (MDA-MB-231), with an IC50 of 8.81 ± 0.03 μM. In vitro fluorimetric assays confirmed the apoptotic capability of Mal-A and its capacity to induce nuclear fragmentation. Additionally, ultrasensitive surface-enhanced Raman spectroscopy confirms DNA fragmentation during cellular apoptosis. Cell cycle analysis indicates arrest during the sub-G0 phase by downregulating key regulatory proteins involved in cell cycle progression. Increased expression levels of caspase 3, 9, and 8 suggest involvement of both extrinsic and intrinsic apoptotic pathways. Finally, assessment of protein expression patterns within apoptotic pathways reveals upregulation of key apoptotic proteins like Fas/FasL, TNF/TNFR1, and p53, coupled with downregulation of several inhibitors of apoptosis proteins such as XIAP, cIAP-2, and Livin. These findings are further verified with in silico molecular docking. Mal-A reveals a strong affinity towards apoptotic proteins, including TNF, Fas, HTRA, Smac, and XIAP, with docking scores ranging from -5.1 to -7.2 kcal mol-1. Subsequently, molecular dynamics simulation confirms the binding stability. This conclusive in vitro evaluation validates Mal-A as a potent phyto-entity against TNBC. To the best of our knowledge, this study represents the first comprehensive anticancer evaluation of Mal-A in TNBC cells.
Collapse
Affiliation(s)
- Pothiyil S Vimalkumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Neethu Sivadas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vishnu Priya Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
| | - Daisy R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Digital University Kerala Thiruvananthapuram-695317 India
| | - Madhukrishnan Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
3
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
4
|
Papadaki MA, Papadaki E, Chatziavraam S, Aggouraki D, Michaelidou K, Fotsitzoudis C, Vassilakopoulou M, Mavroudis D, Agelaki S. Prognostic Value of Fas/Fas Ligand Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Patients with Metastatic Breast Cancer. Cancers (Basel) 2024; 16:2927. [PMID: 39272785 PMCID: PMC11393959 DOI: 10.3390/cancers16172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Eleni Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Sofia Chatziavraam
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Despoina Aggouraki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Maria Vassilakopoulou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
5
|
Kostopoulou E, Katsa ME, Ioannidis A, Foti M, Dimopoulos I, Spiliotis BE, Rojas Gil AP. Association of the apoptotic markers Apo1/Fas and cCK-18 and the adhesion molecule ICAM-1 with Type 1 diabetes mellitus in children and adolescents. BMC Pediatr 2024; 24:493. [PMID: 39095736 PMCID: PMC11295842 DOI: 10.1186/s12887-024-04926-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is characterized by immune and metabolic dysregulation. Apo1/Fas is implicated in maintaining homeostasis of the immune system. Cytokeratin-18 (cCK-18) is a predictive marker of liver disorders in T2DM. Intercellular adhesion molecule-1 (ICAM-1) is considered to increase susceptibility to diabetes mellitus. All three markers are associated with endothelial function, apoptosis and diabetes-related complications. The possible role of Apo1/Fas, cCK-18 and ICAM-1 was investigated in children and adolescents with T1DM. METHOD Forty-nine (49) children and adolescents with T1DM and 49 controls were included in the study. Somatometric measurements were obtained and the Body Mass Index (BMI) of the participants was calculated. Biochemical parameters were measured by standard laboratory methods and Apo1/Fas, cCK-18 and ICAM-1 were measured using appropriate ELISA kits. The statistical analysis was performed using the IBM SPSS Statistics 23 program. RESULTS Apo1/Fas (p = 0.001), cCK-18 (p < 0.001) and ICAM-1 (p < 0.001) were higher in patients with T1DM compared to the controls. Apo1Fas was negatively correlated with glucose (p = 0.042), uric acid (p = 0.026), creatinine (p = 0.022), total cholesterol (p = 0.023) and LDL (p = 0.005) in the controls. In children and adolescents with T1DM, Apo1/Fas was positively correlated with total cholesterol (p = 0.013) and LDL (p = 0.003). ICAM-1 was negatively correlated with creatinine (p = 0.019) in the controls, whereas in patients with T1DM it was negatively correlated with HbA1c (p = 0.05). CONCLUSIONS Apo1/Fas, cCK-18 and ICAM-1 may be useful as serological markers for immune and metabolic dysregulation in children and adolescents with T1DM. Also, Apo1/Fas may have a protective role against metabolic complications in healthy children.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras, 26504, Greece.
| | - Maria Efthymia Katsa
- Department of Nursing, Laboratory of Basic Health Sciences, Faculty of Health Sciences, University of Peloponnese, Panarcadian Hospital Erythrou Stavrou End Administrative Services 2 Floor, Tripoli, 22100, Greece
| | - Anastasios Ioannidis
- Department of Nursing, Laboratory of Basic Health Sciences, Faculty of Health Sciences, University of Peloponnese, Panarcadian Hospital Erythrou Stavrou End Administrative Services 2 Floor, Tripoli, 22100, Greece
| | - Maria Foti
- Department of Nursing, Laboratory of Basic Health Sciences, Faculty of Health Sciences, University of Peloponnese, Panarcadian Hospital Erythrou Stavrou End Administrative Services 2 Floor, Tripoli, 22100, Greece
| | - Ioannis Dimopoulos
- School of Management, University of Peloponnese, Kalamata, 24100, Greece
| | - Bessie E Spiliotis
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Patras School of Medicine, Patras, 26504, Greece
| | - Andrea Paola Rojas Gil
- Department of Nursing, Laboratory of Basic Health Sciences, Faculty of Health Sciences, University of Peloponnese, Panarcadian Hospital Erythrou Stavrou End Administrative Services 2 Floor, Tripoli, 22100, Greece.
| |
Collapse
|
6
|
Kaur G, Bae E, Zhang Y, Ciacciofera N, Jung KM, Barreda H, Paleti C, Oh JY, Lee RH. Biopotency and surrogate assays to validate the immunomodulatory potency of extracellular vesicles derived from mesenchymal stem/stromal cells for the treatment of experimental autoimmune uveitis. J Extracell Vesicles 2024; 13:e12497. [PMID: 39140452 PMCID: PMC11322862 DOI: 10.1002/jev2.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been recognized as promising cytotherapeutics due to their demonstrated immunomodulatory effects in various preclinical models. The immunomodulatory capabilities of EVs stem from the proteins and genetic materials they carry from parent cells, but the cargo contents of EVs are significantly influenced by MSC tissues and donors, cellular age and culture conditions, resulting in functional variations. However, there are no surrogate assays available to validate the immunomodulatory potency of MSC-EVs before in vivo administration. In previous work, we discovered that microcarrier culture conditions enhance the immunomodulatory function of MSC-EVs, as well as the levels of immunosuppressive molecules such as TGF-β1 and let-7b in MSC-EVs. Building on these findings, we investigated whether TGF-β1 levels in MSC-EVs could serve as a surrogate biomarker for predicting their potency in vivo. Our studies revealed a strong correlation between TGF-β1 and let-7b levels in MSC-EVs, as well as their capacity to suppress IFN-γ secretion in stimulated splenocytes, establishing biopotency and surrogate assays for MSC-EVs. Subsequently, we validated MSC-EVs generated from monolayer cultures (ML-EVs) or microcarrier cultures (MC-EVs) using murine models of experimental autoimmune uveoretinitis (EAU) and additional in vitro assays reflecting the Mode of Action of MSC-EVs in vivo. Our findings demonstrated that MC-EVs carrying high levels of TGF-β1 exhibited greater efficacy than ML-EVs in halting disease progression in mice with EAU as well as inducing apoptosis and inhibiting the chemotaxis of retina-reactive T cells. Additionally, MSC-EVs suppressed the MAPK/ERK pathway in activated T cells, with treatment using TGF-β1 or let-7b showing similar effects on the MAPK/ERK pathway. Collectively, our data suggest that MSC-EVs directly inhibit the infiltration of retina-reactive T cells toward the eyes, thereby halting the disease progression in EAU mice, and their immunomodulatory potency in vivo can be predicted by their TGF-β1 levels.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Eun‐Hye Bae
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Yu Zhang
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Nicole Ciacciofera
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Kyung Min Jung
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Heather Barreda
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Carol Paleti
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Joo Youn Oh
- Department of OphthalmologySeoul National University College of MedicineSeoulSouth Korea
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| |
Collapse
|
7
|
Ancer-Rodríguez J, Gopar-Cuevas Y, García-Aguilar K, Chávez-Briones MDL, Miranda-Maldonado I, Ancer-Arellano A, Ortega-Martínez M, Jaramillo-Rangel G. Cell Proliferation and Apoptosis-Key Players in the Lung Aging Process. Int J Mol Sci 2024; 25:7867. [PMID: 39063108 PMCID: PMC11276691 DOI: 10.3390/ijms25147867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the global lifespan has increased, resulting in a higher proportion of the population over 65 years. Changes that occur in the lung during aging increase the risk of developing acute and chronic lung diseases, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. During normal tissue homeostasis, cell proliferation and apoptosis create a dynamic balance that constitutes the physiological cell turnover. In basal conditions, the lungs have a low rate of cell turnover compared to other organs. During aging, changes in the rate of cell turnover in the lung are observed. In this work, we review the literature that evaluates the role of molecules involved in cell proliferation and apoptosis in lung aging and in the development of age-related lung diseases. The list of molecules that regulate cell proliferation, apoptosis, or both processes in lung aging includes TNC, FOXM1, DNA-PKcs, MicroRNAs, BCL-W, BCL-XL, TCF21, p16, NOX4, NRF2, MDM4, RPIA, DHEA, and MMP28. However, despite the studies carried out to date, the complete signaling pathways that regulate cell turnover in lung aging are still unknown. More research is needed to understand the changes that lead to the development of age-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (J.A.-R.); (Y.G.-C.); (M.-d.-L.C.-B.); (I.M.-M.); (A.A.-A.); (M.O.-M.)
| |
Collapse
|
8
|
Liu Y, Sardana R, Nemirovsky D, Frosina D, Jungbluth A, Johnson WT, Vardhana S, Arcila M, Horwitz SM, Derkach A, Dogan A, Xiao W. Somatic mutations in FAS pathway increase hemophagocytic lymphohistiocytosis risk in patients with T- and/or NK-cell lymphoma. Blood Adv 2024; 8:3064-3075. [PMID: 38593227 PMCID: PMC11222957 DOI: 10.1182/bloodadvances.2023011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Although significant progress has been made in understanding the genetic basis of primary hemophagocytic lymphohistiocytosis (HLH), the pathogenesis of secondary HLH, the more prevalent form, remains unclear. Among the various conditions giving rise to secondary HLH, HLH in patients with lymphoma (HLH-L) accounts for a substantial proportion. In this study, we investigated the role of somatic mutations in the pathogenesis of HLH-L in a cohort of patients with T- and/or natural killer-cell lymphoma. We identified a 3-time higher frequency of mutations in FAS pathway in patients with HLH-L. Patients harboring these mutations had a 5-time increased HLH-L risk. These mutations were independently associated with inferior outcome. Hence, our study demonstrates the association between somatic mutations in FAS pathway and HLH-L. Further studies are warranted on the mechanistic role of these mutations in HLH-L.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Diagnostic Molecular Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rohan Sardana
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David Nemirovsky
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Denise Frosina
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Achim Jungbluth
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William T. Johnson
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
| | - Santosha Vardhana
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology and Laboratory Medicine, Diagnostic Molecular Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven M. Horwitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
9
|
Purbey PK, Seo J, Paul MK, Iwamoto KS, Daly AE, Feng AC, Champhekar AS, Langerman J, Campbell KM, Schaue D, McBride WH, Dubinett SM, Ribas A, Smale ST, Scumpia PO. Opposing tumor-cell-intrinsic and -extrinsic roles of the IRF1 transcription factor in antitumor immunity. Cell Rep 2024; 43:114289. [PMID: 38833371 PMCID: PMC11315447 DOI: 10.1016/j.celrep.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Joowon Seo
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Keisuke S Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ameya S Champhekar
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steven M Dubinett
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
10
|
Živančević K, Živanović J, Baralić K, Božić D, Marić Đ, Vukelić D, Miljaković EA, Djordjevic AB, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Integrative investigation of hematotoxic effects induced by low doses of lead, cadmium, mercury and arsenic mixture: In vivo and in silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172608. [PMID: 38653421 DOI: 10.1016/j.scitotenv.2024.172608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The effect of the lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) mixture (MIX) on hematotoxicity development was investigated trough combined approach. In vivo subacute study (28 days) was performed on rats (5 per group): a control group and five groups orally exposed to increasing metal(loid) mixture doses, MIX 1- MIX 5 (mg/kg bw./day) (Pb: 0.003, 0.01, 0.1, 0.3, 1; Cd: 0.01, 0.03, 0.3, 0.9, 3; Hg: 0.0002, 0.0006, 0.006, 0.018, 0.06; As: 0.002, 0.006, 0.06, 0.18, 0.6). Blood was taken for analysis of hematological parameters and serum iron (Fe) analysis. MIX treatment increased thrombocyte/platelet count and MCHC and decreased Hb, HCT, MCV and MCH values compared to control, indicating the development of anemia and thrombocytosis. BMDIs with the narrowest width were identified for MCH [pg] (6.030E-03 - 1.287E-01 mg Pb/kg bw./day; 2.010E-02 - 4.290E-01 mg Cd/kg bw./day; 4.020E-04 - 8.580E-03 mg Hg/kg bw./day; 4.020E-03 - 8.580E-02 mg As/kg bw./day). In silico analysis showed target genes connected with MIX and the development of: anemia - ACHE, GSR, PARP1, TNF; thrombocytosis - JAK2, CALR, MPL, THPO; hematological diseases - FAS and ALAD. The main extracted pathways for anemia were related to apoptosis and oxidative stress; for thrombocytosis were signaling pathways of Jak-STAT and TPO. Changes in miRNAs and transcription factors enabled the mode of action (MoA) development based on the obtained results, contributing to mechanistic understanding and hematological risk related to MIX exposure.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Department of General Physiology and Biophysics, Center for Laser Microscopy, Studentski trg 16, 11158 Belgrade, Serbia.
| | - Jovana Živanović
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragica Božić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
11
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
12
|
Vafaeian A, Mahmoudi H, Daneshpazhooh M. What is novel in the clinical management of pemphigus vulgaris? Expert Rev Clin Pharmacol 2024; 17:489-503. [PMID: 38712540 DOI: 10.1080/17512433.2024.2350943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Pemphigus, an uncommon autoimmune blistering disorder affecting the skin and mucous membranes, currently with mortality primarily attributed to adverse reactions resulting from treatment protocols. Additionally, the existing treatments exhibit a notable recurrence rate. The high incidence of relapse and the considerable adverse effects associated with treatment underscore the imperative to explore safer and more effective therapeutic approaches. Numerous potential therapeutic targets have demonstrated promising outcomes in trials or preliminary research stages. These encompass anti-CD-20 agents, anti-CD-25 agents, TNF-α inhibition, FAS Ligand Inhibition, FcRn inhibition, BAFF inhibition, Bruton's tyrosine kinase (BTK) inhibition, CAAR T Cells, JAK inhibition, mTOR inhibition, abatacept, IL-4 inhibition, IL-17 inhibition, IL-6 inhibition, polyclonal Regulatory T Cells, and autologous hematopoietic stem cell transplantation. AREAS COVERED The most significant studies regarding the impact and efficacy of the mentioned treatments on pemphigus were meticulously curated through a comprehensive search conducted on the PubMed database. Moreover, the investigations of interest cited in these studies were also integrated. EXPERT OPINION The efficacy and safety profiles of the other treatments under discussion do not exhibit the same level of robustness as anti-CD20 therapy, which is anticipated to endure as a critical element in pemphigus treatment well into the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Nishii T, Osuka K, Nishimura Y, Ohmichi Y, Ohmichi M, Suzuki C, Nagashima Y, Oyama T, Abe T, Kato H, Saito R. Protective Mechanism of Stem Cells from Human Exfoliated Deciduous Teeth in Treating Spinal Cord Injury. J Neurotrauma 2024; 41:1196-1210. [PMID: 38185837 DOI: 10.1089/neu.2023.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Spinal cord injury (SCI) induces devastating permanent deficits. Recently, cell transplantation therapy has become a notable treatment for SCI. Although stem cells from human exfoliated deciduous teeth (SHED) are an attractive therapy, their precise mechanism of action remains to be elucidated. In this study, we explored one of the neuroprotective mechanisms of SHED treatment at the subacute stage after SCI. We used a rat clip compression SCI model. The animals were randomly divided into three groups: SCI, SCI + phosphate-buffered saline (PBS), and SCI + SHED. The SHED or PBS intramedullary injection was administered immediately after SCI. After SCI, we explored the effects of SHED on motor function, as assessed by the Basso-Beattie-Bresnahan score and the inclined plane method, the signal transduction pathway, especially the Janus kinase (JAK) and the signal transducer and activator of transcription 3 (STAT3) pathway, the apoptotic pathway, and the expression of neurocan, one of the chondroitin sulfate proteoglycans. SHED treatment significantly improved functional recovery from Day 14 relative to the controls. Western blot analysis showed that SHED significantly reduced the expression of glial fibrillary acidic protein (GFAP) and phosphorylated STAT3 (p-STAT3) at Tyr705 on Day 10 but not on Day 5. However, SHED had no effect on the expression levels of Iba-1 on Days 5 or 10. Immunohistochemistry revealed that p-STAT3 at Tyr705 was mainly expressed in GFAP-positive astrocytes on Day 10 after SCI, and its expression was reduced by administration of SHED. Moreover, SHED treatment significantly induced expression of cleaved caspase 3 in GFAP-positive astrocytes only in the epicenter lesions on Day 10 after SCI but not on Day 5. The expression of neurocan was also significantly reduced by SHED injection on Day 10 after SCI. Our results show that SHED plays an important role in reducing astrogliosis and glial scar formation between Days 5 and 10 after SCI, possibly via apoptosis of astrocytes, ultimately resulting in improvement in neurological functions thereafter. Our data revealed one of the neuroprotective mechanisms of SHED at the subacute stage after SCI, which improved functional recovery after SCI, a serious condition.
Collapse
Affiliation(s)
- Tomoya Nishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Ohmichi
- Department of Anatomy II, Kanazawa Medical University, Ishikawa, Japan
| | - Mika Ohmichi
- Department of Anatomy II, Kanazawa Medical University, Ishikawa, Japan
| | - Chiharu Suzuki
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Nagashima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Oyama
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Abe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Wan W, Qian X, Zhou B, Gao J, Deng J, Zhao D. Integrative analysis and validation of necroptosis-related molecular signature for evaluating diagnosis and immune features in Rheumatoid arthritis. Int Immunopharmacol 2024; 131:111809. [PMID: 38484666 DOI: 10.1016/j.intimp.2024.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that is characterized by persistent morning stiffness, joint pain, and swelling. However, there is a lack of reliable diagnostic markers and therapeutic targets that are both effective and trustworthy. METHODS In this study, gene expression profiles (GSE89408, GSE55235, GSE55457, and GSE77298) were obtained from the Gene Expression Omnibus database. Differentially expressed necroptosis-related genes were attained from intersection of necroptosis-related gene set, differentially expressed genes, and weighted gene co-expression network analysis. The LASSO, random forest, and SVM-RFE machine learning algorithms were utilized to further screen potential diagnostic genes for RA. Immune cell infiltration was analyzed using the CIBERSORT method. The expressions of diagnostic genes were validated through quantitative real-time PCR, western blotting, immunohistochemistry, and immunofluorescence staining in synovial tissues collected from three trauma controls and three RA patients. RESULTS Five core necroptosis-related genes (FAS, CYBB, TNFSF10, EIF2AK2, and BIRC2) were identified as potential biomarkers for RA. Two different necroptosis patterns based on these five genes were confirmed to significantly correlated with immune cells (especially macrophages). In vitro experiments showed significantly higher mRNA and protein expression levels of CYBB and EIF2AK2 in RA patients compared to normal controls, consistent with the bioinformatics analysis results. CONCLUSION Our study identified a novel necroptosis-related subtype and five diagnostic biomarkers of RA, revealed vital roles in the development and occurrence of RA, and offered potential targets for clinical diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Wei Wan
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xinyu Qian
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bole Zhou
- Department of Joint Bone Disease Surgery, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jiewen Deng
- Department of Cardiovascular Diseases, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
15
|
Radunskaya A, Sack J. Kill rates by immune cells: Ratio-dependent, or mass action? J Theor Biol 2024; 582:111748. [PMID: 38336242 DOI: 10.1016/j.jtbi.2024.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
We describe a cell-based fixed-lattice model to simulate immune cell and tumor cell interaction involving MHC recognition, and FasL vs perforin lysis. We are motivated by open questions about the mechanisms behind observed kill rates of tumor cells by different types of effector cells. These mechanisms play a big role in the effectiveness of many cancer immunotherapies. The model is a stochastic cellular automaton on a hexagonal grid.
Collapse
Affiliation(s)
| | - Joshua Sack
- California State University, Long Beach, United States of America.
| |
Collapse
|
16
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
17
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Kumar P, Rajasekaran K, Malarkannan S. Novel PI(3)K-p85α/p110δ-ITK-LAT-PLC-γ2 and Fyn-ADAP-Carma1-TAK1 Pathways Define Reverse Signaling via FasL. Crit Rev Immunol 2024; 44:55-77. [PMID: 37947072 DOI: 10.1615/critrevimmunol.2023049638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226; Departments of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
19
|
Mehranpour M, Sani M, Beirami A, Hasanzadeh M, Taghizadeh M, Banihashemi M, Moghaddam MH, Fathi M, Vakili K, Yaghoobpoor S, Eskandari N, Abdollahifar MA, Bayat AH, Aliaghaei A, Heidari MH. Grafted Sertoli cells prevent neuronal cell death and memory loss induced by seizures. Metab Brain Dis 2023; 38:2735-2750. [PMID: 37851137 DOI: 10.1007/s11011-023-01309-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Epilepsy significantly reduces the patient's quality of life, and we still need to develop new therapeutic approaches to control it. Transplantation of cells such as Sertoli cells (SCs), having a potent ability to release a variety of growth and immunoprotective substances, have made them a potential candidate to deal with neurological diseases like epilepsy. Hence, this study aims to evaluate whether SCs transplant effectively protects the hippocampus astrocytes and neurons to oppose seizure damage. For this purpose, the effects of bilateral intrahippocampal transplantation of SCs were investigated on the rats with the pentylenetetrazol (PTZ) induced seizure. After one-month, post-graft analysis was performed regarding behavior, immunohistopathology, and the distribution of the hippocampal cells. Our findings showed SCs transplantation reduced astrogliosis, astrocytes process length, the number of branches, and intersections distal to the soma of the hippocampus in the seizure group. In rats with grafted SCs, there was a drop in the hippocampal caspase-3 expression. Moreover, the SCs showed another protective impact, as shown by an improvement in pyramidal neurons' number and spatial distribution. The findings suggested that SCs transplantation can potently modify astrocytes' reactivation and inflammatory responses.
Collapse
Affiliation(s)
- Maryam Mehranpour
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Amirreza Beirami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Hasanzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Banihashemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossain Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Paskiewicz A, Niu J, Chang C. Autoimmune lymphoproliferative syndrome: A disorder of immune dysregulation. Autoimmun Rev 2023; 22:103442. [PMID: 37683818 DOI: 10.1016/j.autrev.2023.103442] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Autoimmune Lymphoproliferative Syndrome (ALPS) is an autoimmune disease that has been reported in over 2200 patients. It is a rare, genetic disease where pathogenic variants occur in the extrinsic pathway of apoptosis. Various mutations in different genes, such as FAS, FASL, and CASP10, can result in ALPS. Most commonly, pathogenic variants occur in the FAS receptor. This malfunctioning pathway allows for the abnormal accumulation of lymphocytes, namely CD3 + TCRαβ+CD4 - CD8- (double negative (DN) T) cells, which are a hallmark of the disease. This disease usually presents in childhood with lymphadenopathy and splenomegaly as a result of lymphoproliferation. Over time, these patients may develop cytopenias or lymphomas because of irregularities in the immune system. Current treatments include glucocorticoids, mycophenolate mofetil, sirolimus, immunoglobulin G, and rituximab. These medications serve to manage the symptoms and there are no standardized recommendations for the management of ALPS. The only curative therapy is a bone marrow transplant, but this is rarely done because of the complications. This review serves to broaden the understanding of ALPS by discussing the mechanism of immune dysregulation, how the symptoms manifest, and the mechanisms of treatment. Additionally, we discuss the epidemiology, comorbidities, and medications relating to ALPS patients across the United States using data from Cosmos.
Collapse
Affiliation(s)
- Amy Paskiewicz
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL 33021, USA.
| | - Christopher Chang
- Division of Immunology, Allergy and Pediatric Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL 33021, USA.
| |
Collapse
|
21
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
22
|
Choy JC. The complex web of FasL: cell type-specific roles in affecting and controlling acute graft-vs-host disease. J Leukoc Biol 2023; 114:202-204. [PMID: 37431614 DOI: 10.1093/jleuko/qiad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
FasL has divergent roles in both causing graft-vs-host disease and preventing this condition, which depends on the immune cell type that expresses it.
Collapse
Affiliation(s)
- Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
23
|
Bernard-Bloch R, Lebrault E, Li X, Sutra Del Galy A, Garcia A, Doliger C, Parietti V, Legembre P, Socié G, Karray S. Ambivalent role of FasL in murine acute graft-versus-host-disease. J Leukoc Biol 2023; 114:205-211. [PMID: 37013690 DOI: 10.1093/jleuko/qiad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Fas ligand is increased in several immune-mediated diseases, including acute graft-versus-host disease, a donor cell-mediated disorder post-hematopoietic stem cell transplantation. In this disease, Fas ligand is involved in T-cell-mediated damage to host tissues. However, the role of its expression on donor non-T cells has, so far, never been addressed. Using a well-established CD4- and CD8-mediated graft-versus-host disease murine model, we found that precocious gut damage and mice mortality are increased with a graft of donor T- and B-depleted bone marrow cells devoid of Fas ligand as compared with their wild-type counterparts. Interestingly, serum levels of both soluble Fas ligand and IL-18 are drastically reduced in the recipients of Fas ligand-deficient grafts, indicating that soluble Fas ligand stems from donor bone marrow-derived cells. In addition, the correlation between the concentrations of these 2 cytokines suggests that IL-18 production arises through a soluble Fas ligand-driven mechanism. These data highlight the importance of Fas ligand-dependent production in IL-18 production and in mitigating acute graft-versus-host disease. Overall, our data reveal the functional duality of Fas ligand according to its source.
Collapse
Affiliation(s)
- Robin Bernard-Bloch
- Département d'Immunologie, Université de Paris Cité, INSERM U976, Institut de Recherche Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Eden Lebrault
- Département of CRIBL, UMR, CNRS 7276, INSERM 1262, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France
| | - Xiaofan Li
- Département d'Immunologie, Université de Paris Cité, INSERM U976, Institut de Recherche Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Aurélien Sutra Del Galy
- AP-HP, Département d'hématologie-greffe, Hôpital Saint Louis, 1 avenue Claude Villefaux, 75010 Paris, France
| | - Arlette Garcia
- Département d'Immunologie, Université de Paris Cité, INSERM U976, Institut de Recherche Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Christelle Doliger
- Université de Paris Cité, Institut de Recherche Saint Louis, Département Technologique, 1 avenue Claude Villefaux, 75010 Paris, France
| | - Véronique Parietti
- Département Expérimentation Animale, Université de Paris Cité, Institut de Recherche Saint Louis, 1 avenue Claude Villefaux, 75010 Paris, France
| | - Patrick Legembre
- Département of CRIBL, UMR, CNRS 7276, INSERM 1262, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France
| | - Gérard Socié
- Département d'Immunologie, Université de Paris Cité, INSERM U976, Institut de Recherche Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
- AP-HP, Département d'hématologie-greffe, Hôpital Saint Louis, 1 avenue Claude Villefaux, 75010 Paris, France
| | - Saoussen Karray
- Département d'Immunologie, Université de Paris Cité, INSERM U976, Institut de Recherche Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
- CNRS, Délégation Régionale 01, 7 rue Guy Môquet, 94800 Villejuif, France
| |
Collapse
|
24
|
Pudjihartono N, Ho D, Golovina E, Fadason T, Kempa-Liehr AW, O'Sullivan JM. Juvenile idiopathic arthritis-associated genetic loci exhibit spatially constrained gene regulatory effects across multiple tissues and immune cell types. J Autoimmun 2023; 138:103046. [PMID: 37229810 DOI: 10.1016/j.jaut.2023.103046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is an autoimmune, inflammatory joint disease with complex genetic etiology. Previous GWAS have found many genetic loci associated with JIA. However, the biological mechanism behind JIA remains unknown mainly because most risk loci are located in non-coding genetic regions. Interestingly, increasing evidence has found that regulatory elements in the non-coding regions can regulate the expression of distant target genes through spatial (physical) interactions. Here, we used information on the 3D genome organization (Hi-C data) to identify target genes that physically interact with SNPs within JIA risk loci. Subsequent analysis of these SNP-gene pairs using data from tissue and immune cell type-specific expression quantitative trait loci (eQTL) databases allowed the identification of risk loci that regulate the expression of their target genes. In total, we identified 59 JIA-risk loci that regulate the expression of 210 target genes across diverse tissues and immune cell types. Functional annotation of spatial eQTLs within JIA risk loci identified significant overlap with gene regulatory elements (i.e., enhancers and transcription factor binding sites). We found target genes involved in immune-related pathways such as antigen processing and presentation (e.g., ERAP2, HLA class I and II), the release of pro-inflammatory cytokines (e.g., LTBR, TYK2), proliferation and differentiation of specific immune cell types (e.g., AURKA in Th17 cells), and genes involved in physiological mechanisms related to pathological joint inflammation (e.g., LRG1 in arteries). Notably, many of the tissues where JIA-risk loci act as spatial eQTLs are not classically considered central to JIA pathology. Overall, our findings highlight the potential tissue and immune cell type-specific regulatory changes contributing to JIA pathogenesis. Future integration of our data with clinical studies can contribute to the development of improved JIA therapy.
Collapse
Affiliation(s)
- N Pudjihartono
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
| | - D Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - E Golovina
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - T Fadason
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - A W Kempa-Liehr
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - J M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand; MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom; Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore.
| |
Collapse
|
25
|
Watanabe H, Kubo M, Taniguchi A, Asano Y, Hiramatsu-Asano S, Ohashi K, Zeggar S, Katsuyama E, Katsuyama T, Sunahori-Watanabe K, Sada KE, Matsumoto Y, Yamamoto Y, Yamamoto H, Son M, Wada J. Amelioration of nephritis in receptor for advanced glycation end-products (RAGE)-deficient lupus-prone mice through neutrophil extracellular traps. Clin Immunol 2023; 250:109317. [PMID: 37015317 PMCID: PMC10234279 DOI: 10.1016/j.clim.2023.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor that regulates inflammation, cell migration, and cell fate. Systemic lupus erythematosus (SLE) is a chronic multiorgan autoimmune disease. To understand the function of RAGE in SLE, we generated RAGE-deficient (Ager-/-) lupus-prone mice by backcrossing MRL/MpJ-Faslpr/J (MRL-lpr) mice with Ager-/- C57BL/6 mice. In 18-week-old Ager-/- MRL-lpr, the weights of the spleen and lymph nodes, as well as the frequency of CD3+CD4-CD8- cells, were significantly decreased. Ager-/- MRL-lpr mice had significantly reduced urine albumin/creatinine ratios and markedly improved renal pathological scores. Moreover, neutrophil infiltration and neutrophil extracellular trap formation in the glomerulus were significantly reduced in Ager-/- MRL-lpr. Our study is the first to reveal that RAGE can have a pathologic role in immune cells, particularly neutrophils and T cells, in inflammatory tissues and suggests that the inhibition of RAGE may be a potential therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Haruki Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | - Masataka Kubo
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumie Hiramatsu-Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiji Ohashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsue Sunahori-Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Komatsu University, Komatsu, Japan
| | - Myoungsun Son
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Patil S, Yadalam PK, Hosmani J, Khan ZA, Shankar VG, Shaukat L, Khan SS, Awan KH. Modulation of oral cancer and periodontitis using chemotherapeutic agents - A narrative review. Dis Mon 2023; 69:101348. [PMID: 35341589 DOI: 10.1016/j.disamonth.2022.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontitis, an inflammatory condition, is linked to a higher risk of developing oral cancer. Periodontitis may be a precipitating factor for tumorigenesis and the aggressiveness of specific cancer variants. Although genetics is considered the primary etiologic factor for the development of most cancers, many factors have come to be recognized in the initiation and progression of oral cancer. Consecutively, it is suggestive that periodontitis and oral cancer are distinct disease entities but share common pathogenic mechanisms. Oxidative stress and epigenetic mechanisms are among the most researched mechanisms responsible for initiating apoptotic mechanisms implicated in periodontitis and oral cancer. Current research aims to formulate therapeutic agents to intercede in these mechanisms via host modulation therapy and epigenetic therapy. These advances can revolutionize the treatment of periodontitis and oral cancer. This review aims to shed light on the common pathogenic mechanisms of these diseases and the various host modulation agents that could be beneficial in their treatment.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, India
| | - Jagadish Hosmani
- Oral Pathology Division, Department of Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Zafar Ali Khan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | | - Lubna Shaukat
- Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States.
| |
Collapse
|
27
|
Lee KN, Cho I, Im EM, Oh E, Park KH. Plasma IGFBP-1, Fas, kallistatin, and P-selectin as predictive biomarkers of histologic chorioamnionitis and associated intra-amniotic infection in women with preterm labor. Am J Reprod Immunol 2023; 89:e13645. [PMID: 36318832 DOI: 10.1111/aji.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022] Open
Abstract
PROBLEM To determine whether altered levels of 13 plasma biomarkers, alone or in combination, could be independently associated with histologic chorioamnionitis (HCA) and microbial-associated HCA (defined as the presence of HCA along with microbial invasion) in women with preterm labor (PTL). METHODS OF STUDY This was a retrospective cohort study involving 77 singleton pregnant women with PTL (23-34 gestational weeks) who delivered within 96 h of plasma and amniotic fluid (AF) sampling. DKK-3, E-selectin, Fas, haptoglobin, IGFBP-1, kallistatin, MMP-2, MMP-8, pentraxin 3, progranulin, P-selectin, SAA4, and TGFBI levels were assayed in plasma samples by ELISA. AF obtained via amniocentesis was used for microorganism identification. RESULTS Multiple logistic regression analyses revealed significant associations between low plasma IGFBP-1 levels and acute HCA, and between low plasma Fas and kallistatin levels, and elevated plasma P-selectin levels and microbial-associated HCA (all p < .05), after adjusting for gestational age. Using a stepwise regression procedure, a multi-biomarker panel for microbial-associated HCA was developed, which included plasma MMP-2, kallistatin, and P-selectin levels (area under the curve [AUC], .867). The AUC for this three-marker panel was significantly or borderline significantly greater than that of any single variable included in the panel. However, a predictive model for acute HCA could not be developed because only one variable (MMP-2) was selected. CONCLUSIONS These findings demonstrate that IGFBP-1, Fas, kallistatin, and P-selectin are associated with acute HCA and microbial-associated HCA in women with PTL. Their combined use can significantly improve the diagnostic ability for the detection of microbial-associated HCA.
Collapse
Affiliation(s)
- Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Mi Im
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunji Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
28
|
Boeren M, Meysman P, Laukens K, Ponsaerts P, Ogunjimi B, Delputte P. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol 2023; 31:51-61. [PMID: 35987880 DOI: 10.1016/j.tim.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Herpesviruses hijack the MHC class I (MHC I) and class II (MHC II) antigen-presentation pathways to manipulate immune recognition by T cells. First, we illustrate herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV) MHC immune evasion strategies. Next, we describe MHC-T cell interactions in HSV-1- and VZV- infected neural ganglia. Although studies on the topic are scarce, and use different models, most reports indicate that neuronal HSV-1 infection is mainly controlled by CD8+ T cells through noncytolytic mechanisms, whereas VZV seems to be largely controlled through CD4+ T cell-specific immune responses. Autologous human stem-cell-derived in vitro models could substantially aid in elucidating these neuroimmune interactions and are fit for studies on both herpesviruses.
Collapse
Affiliation(s)
- Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Infla-med, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
29
|
Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G. Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview. Biol Trace Elem Res 2023; 201:98-113. [PMID: 35167029 DOI: 10.1007/s12011-022-03153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Arsenic is an abundant element in the earth's crust. In the environment and within the human body, this toxic element can be found in both organic and inorganic forms. Chronic exposure to arsenic can predispose humans to cardiovascular diseases including hypertension, stroke, atherosclerosis, and blackfoot disease. Oxidative damage induced by reactive oxygen species is a major player in arsenic-induced toxicity, and it can affect genes expression, inflammatory responses, and/or nitric oxide homeostasis. Exposure to arsenic in drinking water can lead to vascular endothelial dysfunction which is reflected by an imbalance between vascular relaxation and contraction. Arsenic has been shown to inactivate endothelial nitric oxide synthase leading to a reduction of the generation and bioavailability of nitric oxide. Ultimately, these effects increase the risk of vascular diseases such as hypertension and atherosclerosis. The present article reviews how arsenic exposure contributes to hypertension and atherosclerosis development.
Collapse
Affiliation(s)
- Soudabeh Balarastaghi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Mehranpour M, Azimi H, Abdollahifar MA, Moghaddam MH, Eskandari N, Vakili K, Fathi M, Peyvandi AA, Aliaghaei A. Tramadol-induced apoptosis in auditory hair cells of adult male rats. J Chem Neuroanat 2022; 126:102172. [DOI: 10.1016/j.jchemneu.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
31
|
Frequency and functional profile of circulating TCRαβ + double negative T cells in HIV/TB co-infection. BMC Infect Dis 2022; 22:890. [PMID: 36443691 PMCID: PMC9703676 DOI: 10.1186/s12879-022-07807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increased frequency of circulating double negative T (DNT, CD4-CD8-CD3+) cells with protective immune function has been observed in human immunodeficiency virus (HIV) infection and tuberculosis (TB). Here the role of circulating TCRαβ+ DNT cells was further investigated in HIV/TB co-infection. METHODS A cross-sectional study was conducted to investigate the frequency and functional profiles of peripheral TCRαβ+ DNT cells including apoptosis, chemokine and cytokine expression among healthy individuals and patients with TB, HIV infection and HIV/TB co-infection by cell surface staining and intracellular cytokine staining combined with flow cytometry. RESULTS Significantly increased frequency of TCRαβ+ DNT cells was observed in HIV/TB co-infection than that in TB (p < 0.001), HIV infection (p = 0.039) and healthy controls (p < 0.001). Compared with TB, HIV/TB co-infection had higher frequency of Fas expression (p = 0.007) and lower frequency of Annexin V expression on TCRαβ+ DNT cells (p = 0.049), and the frequency of Annexin V expression on Fas+TCRαβ+ DNT cells had no significant difference. TCRαβ+ DNT cells expressed less CCR5 in HIV/TB co-infection than that in TB (p = 0.014), and more CXCR4 in HIV/TB co-infection than that in HIV infection (p = 0.043). Compared with healthy controls, TB and HIV/TB co-infection had higher frequency of TCRαβ+ DNT cells secreting Granzyme A (p = 0.046; p = 0.005). In TB and HIV/TB co-infection, TCRαβ+ DNT cells secreted more granzyme A (p = 0.002; p = 0.002) and perforin (p < 0.001; p = 0.017) than CD4+ T cells but similar to CD8+ T cells. CONCLUSIONS Reduced apoptosis may take part in the mechanism of increased frequency of peripheral TCRαβ+ DNT cells in HIV/TB co-infection. TCRαβ+ DNT cells may play a cytotoxic T cells-like function in HIV/TB co-infection.
Collapse
|
32
|
Testicular Tissue Vitrification: a Promising Strategy for Male Fertility Preservation. Reprod Sci 2022; 30:1687-1700. [DOI: 10.1007/s43032-022-01113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
|
33
|
Yu F, Yan L, Sun J, Zhao Y, Yuan Y, Gu J, Bian J, Zou H, Liu Z. Gap junction intercellular communication mediates cadmium-induced apoptosis in hepatocytes via the Fas/FasL pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2692-2702. [PMID: 35920667 DOI: 10.1002/tox.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
As a common environmental pollutant, cadmium (Cd) causes damage to many organs of the body. Gap junction intercellular communication (GJIC) represents one of the most important routes of rapid signaling between cells. However, the mechanisms underlying GJIC's role in hepatotoxicity induced by Cd remain unknown. We established a Cd poisoning model in vitro by co-culturing Cd-exposed and unexposed hepatocytes and found that 18β-glycyrrhetinic acid (GA), a GJIC inhibitor, can effectively reduce the apoptosis rate of healthy cells co-cultured with apoptotic cells treated with Cd. We also found that anti-FasL antibody had the same effect. However, in mono-cultured cells, GA treatment in combination with Cd was found to aggravate the damage induced by Cd exposure, increase the level of oxidative stress and protein expression of HO-1, decrease the mitochondrial membrane potential, incur more serious morphological damage to mitochondria than Cd treatment alone. Moreover, compared with Cd-only exposure, GA and Cd co-treatment further increased the expression levels of the apoptosis-related proteins Fas, FasL, FADD and the ratio of Bax/Bcl-2, inhibited the protein expression of ASK1 and Daxx. We also found that the protein expression of Daxx in siFADD + Cd hepatocytes was significantly higher than in Cd-treated cells. Thus, our study suggests that gap junction inhibition may play a dual role in Cd-induced cell damage by inhibiting the transmission of death signals from damaged cells to healthy cells but also aggravating the transmission of death signals between damaged cells, and that the Fas/FasL-mediated death receptor pathway may play an important role in this process.
Collapse
Affiliation(s)
- Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
34
|
Gut commensal bacteria enhance pathogenesis of a tumorigenic murine retrovirus. Cell Rep 2022; 40:111341. [PMID: 36103821 DOI: 10.1016/j.celrep.2022.111341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The influence of the microbiota on viral transmission and replication is well appreciated. However, its impact on retroviral pathogenesis outside of transmission/replication control remains unknown. Using murine leukemia virus (MuLV), we found that some commensal bacteria promoted the development of leukemia induced by this retrovirus. The promotion of leukemia development by commensals is due to suppression of the adaptive immune response through upregulation of several negative regulators of immunity. These negative regulators include Serpinb9b and Rnf128, which are associated with a poor prognosis of some spontaneous human cancers. Upregulation of Serpinb9b is mediated by sensing of bacteria by the NOD1/NOD2/RIPK2 pathway. This work describes a mechanism by which the microbiota enhances tumorigenesis within gut-distant organs and points at potential targets for cancer therapy.
Collapse
|
35
|
Zhang L, Ni R, Li J, Fan L, Song Y, Wang H, Wang A, Liu B. Dioscin Regulating Bone Marrow Apoptosis in Aplastic Anemia. Drug Des Devel Ther 2022; 16:3041-3053. [PMID: 36105320 PMCID: PMC9467696 DOI: 10.2147/dddt.s370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Aplastic anemia (AA), a disease of bone marrow failure, is caused by CD8+T mediated apoptosis of hematopoietic cells. However, traditional immunosuppressive therapy (IST) has severe liver and kidney toxicity and even cannot achieve the expected therapeutic effect in some patients. Purpose Our study is aimed to investigate the effect and mechanism of dioscin (DNS) for treating AA. Methods Briefly, we established and evaluated the AA mouse model, DNS and positive control drugs were used for intervention treatment. After 14 days of intervention, femoral bone marrow pathology, bone marrow mononuclear cells (BMMCs) apoptosis rate, bone marrow CD34+ cell surface Fas (CD95) expression and Fas signaling pathway key proteins were detected. Results After the establishment of the AA mouse model, the number of peripheral blood cells including granulocytes, erythrocytes, hemoglobin, platelets and reticulocytes in the AA group model was significantly decreased compared with the group control (P < 0.01). The degree of bone marrow hyperplasia in the sternum and femur is extremely low. After different drug interventions, compared with the group model, the number of peripheral blood cells in the AA mice rebounded significantly in group DNS (P < 0.01). Not only that the apoptosis rate of BM-MCs decreased (P < 0.01), meanwhile, the CD95 molecule expressed on the CD34+ bone marrow cells had a significant decline (P < 0.01), and the expression level of the key proteins of Fas signaling pathway was also significantly decreased (P < 0.01). Conclusion DNS recovered the peripheral pancytopenia and bone marrow failure in AA mice. DNS reduced the key protein of Fas signaling pathway level to inhibit apoptosis of bone marrow cells to treat AA.
Collapse
Affiliation(s)
- Le Zhang
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
| | - Runfeng Ni
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
| | - Jiani Li
- Department of Gynecology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People’s Republic of China
| | - Liwei Fan
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
| | - Yanqi Song
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
| | - Haijin Wang
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
| | - Aidi Wang
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
| | - Baoshan Liu
- Department of Traditional Chinese Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China
- Correspondence: Baoshan Liu; Aidi Wang, Department of traditional Chinese medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, People’s Republic of China, Email ;
| |
Collapse
|
36
|
Lai HT, Naumova N, Marchais A, Gaspar N, Geoerger B, Brenner C. Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Front Cell Dev Biol 2022; 10:948097. [PMID: 36072341 PMCID: PMC9441498 DOI: 10.3389/fcell.2022.948097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is a pediatric malignant bone tumor that predominantly affects adolescent and young adults. It has high risk for relapse and over the last four decades no improvement of prognosis was achieved. It is therefore crucial to identify new drug candidates for OS treatment to combat drug resistance, limit relapse, and stop metastatic spread. Two acquired hallmarks of cancer cells, mitochondria-related regulated cell death (RCD) and metabolism are intimately connected. Both have been shown to be dysregulated in OS, making them attractive targets for novel treatment. Promising OS treatment strategies focus on promoting RCD by targeting key molecular actors in metabolic reprogramming. The exact interplay in OS, however, has not been systematically analyzed. We therefore review these aspects by synthesizing current knowledge in apoptosis, ferroptosis, necroptosis, pyroptosis, and autophagy in OS. Additionally, we outline an overview of mitochondrial function and metabolic profiles in different preclinical OS models. Finally, we discuss the mechanism of action of two novel molecule combinations currently investigated in active clinical trials: metformin and the combination of ADI-PEG20, Docetaxel and Gemcitabine.
Collapse
Affiliation(s)
- Hong Toan Lai
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Nataliia Naumova
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Gaspar
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
- *Correspondence: Catherine Brenner,
| |
Collapse
|
37
|
Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, Hashemian SMR, Mirzaei H. Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cell Mol Biol Lett 2022; 27:63. [PMID: 35907817 PMCID: PMC9338538 DOI: 10.1186/s11658-022-00363-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
38
|
Pham K, Frost S, Parikh K, Puvvula N, Oeung B, Heinrich EC. Inflammatory gene expression during acute high‐altitude exposure. J Physiol 2022; 600:4169-4186. [PMID: 35875936 PMCID: PMC9481729 DOI: 10.1113/jp282772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The molecular signalling pathways that regulate inflammation and the response to hypoxia share significant crosstalk and appear to play major roles in high‐altitude acclimatization and adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers during acute high‐altitude exposure, but significant gaps remain in our understanding of how inflammation and immune function change at high altitude and whether these responses contribute to high‐altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased transcriptomic approach, including RNA sequencing and direct digital mRNA detection with NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days of high‐altitude acclimatization in healthy sea‐level residents (n = 15; five women). Several inflammation‐related genes were upregulated on the first day of high‐altitude exposure, including a large increase in HMGB1 (high mobility group box 1), a damage‐associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed genes on the first and third days of acclimatization were enriched for several inflammatory pathways, including nuclear factor‐κB and Toll‐like receptor (TLR) signalling. Indeed, both TLR4 and LY96, which encodes the lipopolysaccharide binding protein (MD‐2), were upregulated at high altitude. Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune regulation in response to high‐altitude hypoxia. These results indicate that acute high‐altitude exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling pathway to subsequent inflammatory stimuli.
![]() Key points Inflammation plays a crucial role in the physiological response to hypoxia. High‐altitude hypoxia exposure causes alterations in the inflammatory profile that might play an adaptive or maladaptive role in acclimatization. In this study, we characterized changes in the inflammatory profile following acute high‐altitude exposure. We report upregulation of novel inflammation‐related genes in the first 3 days of high‐altitude exposure, which might play a role in immune system sensitization. These results provide insight into how hypoxia‐induced inflammation might contribute to high‐altitude pathologies and exacerbate inflammatory responses in critical illnesses associated with hypoxaemia.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Shyleen Frost
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Keval Parikh
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Britney Oeung
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| |
Collapse
|
39
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
40
|
Mo Y, Zhang X, Lao Y, Wang B, Li X, Zheng Y, Ding W. Fentanyl alleviates intestinal mucosal barrier damage in rats with severe acute pancreatitis by inhibiting the MMP-9/FasL/Fas pathway. Immunopharmacol Immunotoxicol 2022; 44:757-765. [PMID: 35616237 DOI: 10.1080/08923973.2022.2082304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fentanyl is an analgesic used against pancreatitis-related pain, while whether it ameliorates severe acute pancreatitis (SAP) has yet to be checked. The present study aims to determine fentanyl-delivered effect on SAP and the mechanism underlying this effect. METHODS Rat SAP models were established, following fentanyl treatment. The serum activity of amylase (AMY), lipase (LIP) and diamine oxidase (DAO) was detected by enzyme-linked immunosorbent assay. Histological examination was performed in the pancreatic and intestinal tissues with hematoxylin-eosin staining. After transfection with matrix metalloproteinase (MMP)9 overexpression plasmids, Caco-2 monolayers were treated with fentanyl and subsequently exposed to lipopolysaccharide (LPS). The transepithelial electrical resistance (TEER) value was determined in rat intestinal mucosa through an Ussing chamber assisted by Analyze & Acquire, and in Caco-2 cell monolayers through a voltohmmeter. Intestinal mucosa and paracellular permeabilities were determined by fluorescein isothiocyanate (FITC)-labeled dextran assay. The expressions of ZO-1, Occludin, MMP9, Fas and Fas ligand (FasL) in rat intestinal mucosa and/or Caco-2 monolayers were analyzed by qRT-PCR or/and western blot. RESULTS Fentanyl alleviated SAP-related histological alterations in the pancreas and intestines, reduced the elevated levels of SAP-related AMY, LIP and DAO, but promoted the levels of ZO-1 and Occludin. In SAP rats and Caco-2 monolayers, SAP-related or LPS-induced TEER value decreases, permeability increases, and increases in the expressions of MMP9, Fas and FasL were reversed partly by fentanyl. Notably, MMP9 overexpression could reverse the above fentanyl-delivered in vitro effects. CONCLUSION Fentanyl alleviates intestinal mucosal barrier damage in rats with SAP by inhibiting the MMP9/FasL/Fas pathway.
Collapse
Affiliation(s)
- Yunchao Mo
- Clinical Pharmacy, Central People's Hospital of Zhanjiang
| | - Xiangdong Zhang
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Yongguang Lao
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Bizhu Wang
- Pharmacy Department, Central People's Hospital of Zhanjiang
| | - Xinmei Li
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Yuhong Zheng
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Weihua Ding
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| |
Collapse
|
41
|
Thomas JM, Huuskes BM, Sobey CG, Drummond GR, Vinh A. The IL-18/IL-18R1 signalling axis: Diagnostic and therapeutic potential in hypertension and chronic kidney disease. Pharmacol Ther 2022; 239:108191. [PMID: 35461924 DOI: 10.1016/j.pharmthera.2022.108191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is inherently an inflammatory condition, which ultimately results in the development of end stage renal disease or cardiovascular events. Low-grade inflammatory diseases such as hypertension and diabetes are leading causes of CKD. Declines in renal function correlate with elevated circulating pro-inflammatory cytokines in patients with these conditions. The inflammasome is an important inflammatory signalling platform that has been associated with low-grade chronic inflammatory diseases. Notably, activation and assembly of the inflammasome causes the auto cleavage of pro-caspase-1 into its active form, which then processes the pro-inflammatory cytokines pro-interleukin (IL)-1β and pro-IL-18 into their active forms. Currently, the nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in the development of CKD in pre-clinical and clinical settings, and the ablation or inhibition of inflammasome components have been shown to be reno-protective in models of CKD. While clinical trials have demonstrated that neutralisation of IL-1β signalling by the drug anakinra lowers inflammation markers in haemodialysis patients, ongoing preclinical studies are showing that this ability to attenuate disease is limited in progressive models of kidney disease. These results suggest a potential predominant role for IL-18 in the development of CKD. This review will discuss the role of the inflammasome and its pro-inflammatory product IL-18 in the development of renal fibrosis and inflammation that contribute to the pathophysiology of CKD. Furthermore, we will examine the potential of the IL-18 signalling axis as an anti-inflammatory target in CKD and its usefulness as diagnostic biomarker to predict acute kidney injury.
Collapse
Affiliation(s)
- Jordyn M Thomas
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Brooke M Huuskes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
42
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Maragkakis G, Korou LM, Chaintoutis SC, Christodoulopoulos G, Dovas CI, Perrea D, Athansiou LV, Konstantopoulos P, Maes D, Papatsiros VG. Investigation of Fas (APO-1)-Related Apoptosis in Piglets Intradermally or Intramuscularly Vaccinated with a Commercial PRRSV MLV. Viral Immunol 2022; 35:129-137. [PMID: 35196156 DOI: 10.1089/vim.2021.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces apoptosis through the activation of death receptors, including cell-surface Fas receptor. The aim of this study was to investigate the impact of intradermal (ID) and intramuscular (IM) vaccination with a commercial PRRSV-modified live vaccine in piglets on Fas-related apoptosis. The study included 104 suckling piglets from a commercial farrow-to-finish pig farm, suffering from positive unstable PRRSV status. Animals were assigned in four groups: group A-Porcilis PRRS ID-vaccinated pigs, group B-Porcilis PRRS IM-vaccinated pigs, group C-Diluvac ID adjuvant-administered pigs, and group D-Diluvac IM adjuvant-administered pigs. Vaccines were administered at 2 weeks of age. Blood samples were collected from the same pigs at 4, 7, and 10 weeks of age. Sera were examined by quantitative real-time reverse transcription-PCR (qRT-PCR) for PRRSV and by ELISA for soluble Fas (sFas). At 4 weeks of age, all groups were negative qRT-PCR for PRRSV; at 7 weeks only group A was negative; and at 10 weeks all groups were positive. sFas was significantly increased in groups C (4 vs. 7, 4 vs. 10, and 7 vs. 10 weeks) and D (7 vs. 10 weeks). Significant differences among groups were noticed only at 10 weeks (A vs. C, A vs. D, B vs. C, B vs. D). A significant positive and moderate correlation between PRRSV viral load and Fas level was observed. In unvaccinated piglets, increased serum sFas levels reveal apoptotic suppression compared with vaccinated piglets. In the latter, vaccine-derived antibodies limit the infection and may attribute to the reduced Fas expression, suggesting a weak induction of lymphocyte-mediated cytotoxicity.
Collapse
Affiliation(s)
- Georgios Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Laskarina-Maria Korou
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Labrini V Athansiou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Panagiotis Konstantopoulos
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominiek Maes
- Department of Obstetrics-Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| |
Collapse
|
44
|
de Freitas Rego Y, Morais Costa NE, Martins de Lacerda R, Faleiros da Silva Maia A, Moreira da Silva C, de Fátima Â. Anticancer properties of arylchromenes and arylchromans: an overview. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancers are a set of pathologies originated by cells that have the ability to divide and multiply uncontrollably, associated with the capacity to invade and colonize adjacent tissues. Chemotherapy is one of the main approaches of treatment for cancer patients. Despite of the numerous antineoplastic drugs available, cancer cannot be cured; particularly at the late stages deprived of any side effect. Arylchromenes and arylchromans are a group of small molecules, of natural or synthetic origin, of great interest as prototypes for the drug development, especially against cancer. In this chapter, we will present the antineoplastic activity studies of the most promising examples of these arylchromenes and arylchroman derivatives.
Collapse
Affiliation(s)
- Yuri de Freitas Rego
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Nathália Evelyn Morais Costa
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Rodrigo Martins de Lacerda
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Angélica Faleiros da Silva Maia
- Departamento de Ensino, Pesquisa e Extensão - CCO , Instituto Federal do Amazonas - Campus Coari (IFAM/CCO) , Coari , AM , Brazil
| | - Cleiton Moreira da Silva
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Ângelo de Fátima
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| |
Collapse
|
45
|
Abstract
Apoptosis plays a key role in removing abnormal or senescent cells, maintaining the overall health of the tissue, and coordinating individual development. Recently, it has been discovered that the intracellular cytoskeleton plays a role in the apoptotic process. In addition, the regulatory role of extracellular matrix (ECM) fibrous proteins, which can be considered as the extracellular skeleton, in the process of apoptosis is rarely summarized. In this review, we collect the latest knowledge about how fibrous proteins inside and outside cells regulate apoptosis. We describe how ECM fibrous proteins participate in the regulation of death receptor and mitochondrial pathways through various signaling cascades mediated by integrins. We then explore the molecular mechanisms by which intracellular intermediate filaments regulate cell apoptosis by regulating death receptors on the cell membrane surface. Similarly, we report on novel supporting functions of microtubules in the execution phase of apoptosis and discuss their formation mechanisms. Finally, we discuss that the polypeptide fragments formed by caspase degradation of ECM fibrous proteins and intracellular intermediate filament act as local regulatory signals to play different regulatory roles in apoptosis.
Collapse
Affiliation(s)
- Jia-Hao Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Chen R, Hao Z, Wang Y, Zhu H, Hu Y, Chen T, Zhang P, Li J. Mesenchymal Stem Cell-Immune Cell Interaction and Related Modulations for Bone Tissue Engineering. Stem Cells Int 2022; 2022:7153584. [PMID: 35154331 PMCID: PMC8825274 DOI: 10.1155/2022/7153584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Critical bone defects and related delayed union and nonunion are still worldwide problems to be solved. Bone tissue engineering is mainly aimed at achieving satisfactory bone reconstruction. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells that can differentiate into bone cells and can be used as one of the key pillars of bone tissue engineering. In recent decades, immune responses play an important role in bone regeneration. Innate immune responses provide a suitable inflammatory microenvironment for bone regeneration and initiate bone regeneration in the early stage of fracture repair. Adaptive immune responses maintain bone regeneration and bone remodeling. MSCs and immune cells regulate each other. All kinds of immune cells and secreted cytokines can regulate the migration, proliferation, and osteogenic differentiation of MSCs, which have a strong immunomodulatory ability to these immune cells. This review mainly introduces the interaction between MSCs and immune cells on bone regeneration and its potential mechanism, and discusses the practical application in bone tissue engineering by modulating this kind of cell-to-cell crosstalk. Thus, an in-depth understanding of these principles of bone immunology can provide a new way for bone tissue engineering.
Collapse
Affiliation(s)
- Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongzhen Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
47
|
Huijbers EJM, Khan KA, Kerbel RS, Griffioen AW. Tumors resurrect an embryonic vascular program to escape immunity. Sci Immunol 2022; 7:eabm6388. [PMID: 35030032 DOI: 10.1126/sciimmunol.abm6388] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Yao Y, Zhang J, Tian P, Li L, Huang X, Nawutayi M, Huang Y, Zhang C. Passive smoking induces rat testicular injury via the FAS/FASL pathway. Drug Chem Toxicol 2022; 45:61-69. [PMID: 31476926 DOI: 10.1080/01480545.2019.1659807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms by which cigarette smoke (CS) exposure has a detrimental effect on the male reproductive system is still not fully understood. We aimed to elucidate the role of cigarette smoke-induced injury by the Fas/FasL pathway by using a Sprague-Dawley rat model of cigarette smoking exposure. Here, 200 rats were randomaly divided into five groups with different smoking exposure durations. Forty animals per group were further divided into four groups: a control group, and groups exposed to cigarette smoke at doses of 10, 20 or 30 cigarettes/day. The testes were harvested and the effects of CS exposure on the testis were characterized on the basis of morphological changes, oxidative stress, and a significant elevation in the expression of FAS/FASL pathway related genes, such as FAS, FASL, FADD, caspase 8 and caspase 3. Oxidative stress was reflected by significant time-dependent changes in SOD and GSH-Px activity, and MDA content. Taken together, our data suggest that CS exposure induces testis injury, which is related to the increased oxidative stress and activation of the FAS/FASL apoptotic pathway in the testes.
Collapse
Affiliation(s)
- Yanling Yao
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Jing Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Ping Tian
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Linlin Li
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Xiaoxi Huang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Maitinashi Nawutayi
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Yunfei Huang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Chen Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
49
|
Mustafa N, Mitxelena J, Infante A, Zenarruzabeitia O, Eriz A, Iglesias-Ara A, Zubiaga AM. E2f2 Attenuates Apoptosis of Activated T Lymphocytes and Protects from Immune-Mediated Injury through Repression of Fas and FasL. Int J Mol Sci 2021; 23:ijms23010311. [PMID: 35008734 PMCID: PMC8745065 DOI: 10.3390/ijms23010311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/03/2022] Open
Abstract
Targeted disruption of E2f2 in mice causes T-cell hyperactivation and a disproportionate cell cycle entry upon stimulation. However, E2f2−/− mice do not develop a lymphoproliferative condition. We report that E2f2 plays a Fas-dependent anti-apoptotic function in vitro and in vivo. TCR-stimulated murine E2f2−/− T cells overexpress the proapoptotic genes Fas and FasL and exhibit enhanced apoptosis, which is prevented by treatment with neutralizing anti-FasL antibodies. p53 pathway is activated in TCR-stimulated E2f2−/− lymphocytes, but targeted disruption of p53 in E2f2−/− mice does not abrogate Fas/FasL expression or apoptosis, implying a p53-independent apoptotic mechanism. We show that E2f2 is recruited to Fas and FasL gene promoters to repress their expression. in vivo, E2f2−/− mice are prone to develop immune-mediated liver injury owing to an aberrant lymphoid Fas/FasL activation. Taken together, our results suggest that E2f2-dependent inhibition of Fas/FasL pathway may play a direct role in limiting the development of immune-mediated pathologies.
Collapse
Affiliation(s)
- Noor Mustafa
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
| | - Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Ainhoa Eriz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| |
Collapse
|
50
|
Li B, Qin Y, Yu X, Xu X, Yu W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif 2021; 55:e13167. [PMID: 34939255 PMCID: PMC8780926 DOI: 10.1111/cpr.13167] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid rafts are cholesterol‐ and sphingolipid‐enriched specialized membrane domains within the plasma membrane. Lipid rafts regulate the density and activity of signal receptors by compartmentalizing them, promoting signalling cascades that play important roles in the survival, death and metastasis of cancer cells. In this review, we emphasize the current concept initially postulated by F. Mollinedo and C. Gajate on the importance of lipid rafts in cancer survival, death and metastasis by describing representative signalling pathways, including the IGF system and the PI3K/AKT, Fas/CD95, VEGF/VEGFR2 and CD44 signalling pathways, and we also discuss the concept of CASMER (cluster of apoptotic signalling molecule‐enriched rafts), coined, originally introduced and further advanced by F. Mollinedo and C. Gajate in the period 2005–2010. Then, we summarize relevant research progress and suggest that lipid rafts play important roles in the survival, death and metastasis of cancer cells, making them promising targets for cancer therapy.
Collapse
Affiliation(s)
- Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|