1
|
Zhang Q, Chen B, Ma Q, Fang Z, Li S, He X, Wang Y, Qi X, Chen Q, Cai T, Zhang L, Zou M, Wang C, Ma Q. Single-atom oxide-decorated AuNPs for universal enhancement in SERS detection of pesticide residues. Anal Chim Acta 2024; 1329:343192. [PMID: 39396282 DOI: 10.1016/j.aca.2024.343192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND In the context of modern agriculture, the proliferation of chemical use calls for enhanced pesticide detection to safeguard food quality and public health. The development of accurate testing methodologies is imperative to mitigate the environmental impact of pesticides and ensure the integrity of ecosystems, thereby reflecting the pressing need for advancements in agricultural safety protocols. Therefore, the development of highly sensitive monitoring technology for detecting pesticide residues in agricultural products is necessary for safeguarding human health, ensuring food safety, and maintaining environmental sustainability. RESULTS Herein, a controllable surface charge on single tungsten atom-modified gold nanoparticles was used to create an electrostatic force with positively charged pesticide residues. Moreover, hydrogen bonds formed by single-atom sites can induce analyte-adsorbed nanoparticle aggregation, and the sizes of single-tungsten-atom-decorated AuNPs can maintain a gap between each other, resulting in improved SERS detection sensitivity through analyte enrichment at gold nanoparticle hotspots. In terms of the detection limits for pesticide residue analysis, we can effectively achieve an ultrahigh sensitivity of 0.1 ppb for acetamiprid, paraquat and carbendazim, which is among the best SERS sensitivities at the state of the art. For apple sample analysis, our work demonstrated good reproductivity (RSD<6 %) and a strong linear relationship (R2 ≥ 0.97) for 4 pesticide residues after optimizing the pretreatment process, which proves the enormous potential in quantitative analysis. SIGNIFICANCE Single-atom sites hotspot are firstly successfully achieved and uniformly dispersed between Au nanoparticle, which can effectively increase the sensitivity, keep stability of the Raman scattering signals and possess a significant improvement beyond that of undecorated hotspots when applied in pesticide residue detection. This method can be employed as a universal strategy to capture pesticide residues at hotspots for SERS detection.
Collapse
Affiliation(s)
- Qi Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Qingbian Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Zunlong Fang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shu Li
- Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyu He
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yufeng Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Qian Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Cong Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| |
Collapse
|
2
|
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E, Talebi K. Unveiling six novel bacterial strains for fipronil and thiobencarb biodegradation: efficacy, metabolic pathways, and bioaugmentation potential in paddy soil. Front Microbiol 2024; 15:1462912. [PMID: 39502414 PMCID: PMC11536974 DOI: 10.3389/fmicb.2024.1462912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Soil bacteria offer a promising approach to bioremediate pesticide contamination in agricultural ecosystems. This study investigated the potential of bacteria isolated from rice paddy soil for bioremediating fipronil and thiobencarb, common agricultural pesticides. Methods Bacterial isolates capable of degrading fipronil and thiobencarb were enriched in a mineral salt medium. A response surface methodology with a Box-Behnken design was utilized to optimize pesticide degradation with the isolated bacteria. Bioaugmentation tests were performed in paddy soils with varying conditions. Results and discussion Six strains, including single isolates and their mixture, efficiently degraded these pesticides at high concentrations (up to 800 µg/mL). Enterobacter sp., Brucella sp. (alone and combined), and a mixture of Stenotrophomonas sp., Bordetella sp., and Citrobacter sp. effectively degraded fipronil and thiobencarb, respectively. Notably, a single Pseudomonas sp. strain degraded a mixture of both pesticides. Optimal degradation conditions were identified as a slightly acidic pH (6-7), moderate pesticide concentrations (20-50 µg/mL), and a specific inoculum size. Bioaugmentation assays in real-world paddy soils (sterile/non-sterile, varying moisture) demonstrated that these bacteria significantly increased degradation rates (up to 14.15-fold for fipronil and 5.13-fold for thiobencarb). The study identifies these novel bacterial strains as promising tools for bioremediation and bioaugmentation strategies to tackle fipronil and thiobencarb contamination in paddy ecosystems.
Collapse
Affiliation(s)
- Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Axelman J, Aldrich A, Duquesne S, Backhaus T, Brendel S, Focks A, Holz S, Knillmann S, Pieper S, Silva E, Schmied-Tobies M, Topping CJ, Wipfler L, Williams J, Sousa JP. A systems-based analysis to rethink the European environmental risk assessment of regulated chemicals using pesticides as a pilot case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174526. [PMID: 38972402 DOI: 10.1016/j.scitotenv.2024.174526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A growing body of scientific literature stresses the need to advance current environmental risk assessment (ERA) methodologies and associated regulatory frameworks to better address the landscape-scale and long-term impact of pesticide use on biodiversity and the ecosystem. Moreover, more collaborative and integrative approaches are needed to meet sustainability goals. The One Health approach is increasingly applied by the European Food Safety Authority (EFSA) to support the transition towards safer, healthier and more sustainable food. To this end, EFSA commissioned the development of a roadmap for action to establish a European Partnership for next-generation, systems-based Environmental Risk Assessment (PERA). Here, we summarise the main conclusions and recommendations reported in the 2022 PERA Roadmap. This roadmap highlights that fragmentation of data, knowledge and expertise across regulatory sectors results in suboptimal processes and hinders the implementation of integrative ERA approaches needed to better protect the environment. To advance ERA, we revisited the underlying assumptions of the current ERA paradigm; that chemical risks are generally assessed and managed in isolation with a substance-by-substance, realistic worst-case and tiered approach. We suggest optimising the use of the vast amount of information and expertise available with pesticides as a pilot area. It is recommended to as soon as possible adopt a systems-based approach, i.e. within the current regulatory framework, to spark a step-wise transition towards an ERA framed at a system level of ecological and societal relevance. Tangible systems-based and integrative steps are available. For instance, the rich sources of existing data for prospective and retrospective ERA of pesticides could be used to reality-benchmark existing and new ERA methods. To achieve these goals, collaboration among stakeholders across scientific disciplines and regulatory sectors must be strengthened.
Collapse
Affiliation(s)
| | | | | | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | | | | | - Sheila Holz
- Centre for Social Studies, University of Coimbra, Portugal
| | | | | | - Emilia Silva
- LEAF Research Centre, Associate Laboratory TERRA Institute Superior of Agronomy, University of Lisboa, Portugal
| | | | | | | | | | - José Paulo Sousa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal
| |
Collapse
|
4
|
Zhang Q, Yan J, Ma X, Zhao L, Song P, Xia L. Self-calibrated paper-based nanoarrays for background-free quantitative detection of pesticides using self-assembly and mask-assisted techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136195. [PMID: 39432932 DOI: 10.1016/j.jhazmat.2024.136195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) has received considerable attention in the field of rapid analysis. However, obtaining accurate quantitative SERS results remains challenging. Here, we develop a SERS sensor based on self-assembly and mask-assisted techniques for the precise transfer of Au@PB@Ag nanoarrays onto filter paper. Prussian blue (PB) as an internal standard (IS) is used to calibrate the fluctuations in the SERS signal induced by the microstructure of the filter paper, and can generate a local plasmon resonance under a Raman laser at a wavelength of 633 nm, which enables a dual electromagnetic enhancement of the internal self-calibration and external target molecule signals. The SERS substrate has a low limit of detection of 3.96 × 10-9, a uniformity relative standard deviation (RSD) of 9.94 % (16.85 % uncalibrated), a repeatability RSD of 9.43 % (31.2 % for Au@Ag NPs), and remains stable for more than 45 days. Thiram and thiabendazole in fruit juices can be quantitatively detected using patterned transfer monolayer arrays with a common dropper. The R2 coefficients of the pesticide concentration and Raman intensity fitting curves improved from 0.9659 and 0.9499 to 0.9976 and 0.9928, respectively. Thus, paper-based Au@PB@Ag nanoarrays have facilitated the development of SERS technology for practical applications.
Collapse
Affiliation(s)
- Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinkun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaodi Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lefa Zhao
- Teaching & Research Department of Common Course, Shenyang Sport University, Shenyang 110115, China.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
5
|
Azpiazu C, Sgolastra F, Ippolito A, Albacete S, Brandt A, Colli M, Grossar D, Jeker L, Malagnini V, Sancho G, Splitt A, Straub L, Strobl V, Boranski M, Jachuła J, Martins C, Medrzycki P, Simon-Delso N, Tosi S, Bosch J. Chronic oral toxicity protocol for adult solitary bees (Osmia bicornis L.): Reduced survival under long-term exposure to a "bee-safe" insecticide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125129. [PMID: 39414062 DOI: 10.1016/j.envpol.2024.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Pollinators are essential for crop productivity. Yet, in agricultural areas, they may be threatened by pesticide exposure. Current pesticide risk assessments predominantly focus on honey bees, with a lack of standardized protocols for solitary bees. This study addresses this gap by developing a long-term oral exposure protocol tailored for O. bicornis. We conducted initial trials to determine optimal container sizes and feeding methods, ensuring high survival rates and accurate syrup consumption measurements. A validation test involving five laboratories was then conducted with the insecticide Flupyradifurone (FPF). Control mortality thresholds were set at ≤ 15% at 10 days. Three laboratories achieved ≤10%, demonstrating the protocol's effectiveness in maintaining healthy test populations. The seasonal timing of experiments influenced control mortality, underscoring the importance of aligning tests with the natural flight period of the population used. Our findings revealed dose-dependent effects of FPF on syrup consumption, showing stimulatory effects at lower concentrations and inhibitory effects at higher ones. The 10-day median lethal daily dose (LDD50) of FPF for O. bicornis (531.92 ng/bee/day) was 3.4-fold lower than that reported for Apis mellifera (1830 ng/bee/day), indicating Osmia's higher susceptibility. Unlike other insecticides, FPF did not exhibit time-reinforced toxicity. This study introduces a robust protocol for chronic pesticide exposure in solitary bees, addressing a critical gap in current risk assessment. Based on its low risk to honey bees and bumblebees, FPF is approved for application during flowering. However, our results suggest that it may threaten Osmia populations under realistic field conditions. Our findings underscore the need for comparative toxicity studies to ensure comprehensive protection of all pollinators and the importance of accounting for long term exposure scenarios in risk assessment. By enhancing our understanding of chronic pesticide effects in solitary bees, our study should contribute to the development of more effective conservation strategies and sustainable agricultural practices.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Alessio Ippolito
- European Food Safety Authority, Environment, Plants & Ecotoxicology Unit, 43126 Parma, Italy
| | - Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Annely Brandt
- LLH-Bee Institute Kirchhain, Erlenstr. 9, 35274 Kirchhain, Germany
| | - Monica Colli
- Biotecnologie BT Srl - Fraz. Pantalla 06059 Todi (PG), Italy
| | - Daniela Grossar
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Valeria Malagnini
- Centro Trasferimento Tecnologico Fondazione Ednund Mach, Via E. Mach, 1 38098 San Michele all'Adige (TN), Italy
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Aleksandra Splitt
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mikolaj Boranski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Jacek Jachuła
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Cátia Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Piotr Medrzycki
- CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura ed Ambiente, 40128 Bologna, Italy
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
6
|
Kim H, Kim SD. Pesticides in wastewater treatment plant effluents in the Yeongsan River Basin, Korea: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174388. [PMID: 38969125 DOI: 10.1016/j.scitotenv.2024.174388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Pesticides are among the main drivers posing risks to aquatic environments, with effluents from wastewater treatment plants (WWTPs) serving as a major source. This study aimed to identify the primary pesticides for which there was a risk of release into aquatic environments through WWTP effluents, thereby enabling more effective contamination management in public water bodies. In this study, monitoring, risk assessment, and risk-based prioritization of 87 pesticides in effluents from three WWTPs in the Yeongsan River Basin, Korea, were conducted. A total of 59 pesticides were detected at concentrations from 0.852 ng/L to 82.044 μg/L and exhibited variable patterns across different WWTP locations. An environmental risk assessment based on the risk quotient (RQ) of individual pesticides identified 13 substances implicated in significant ecotoxicological risks, as they exceeded RQ values of 1 at least once. An optimized risk (RQf)-based prioritization, considering the frequency of the measured environmental concentration (MEC) exceeding the predicted environmental concentration (PNEC), was conducted to identify pesticides that potentially posed risks and thus should be managed as a priority. Four pesticides had an RQf value >1; metribuzin exhibited the highest RQf value of 4.951, followed by 3-phenoxybenzoic acid, atrazin-2-hydroxy, and atrazine. Additionally, five pesticides (terbuthylazine, methabenzthiazuron, diuron, thiacloprid, and fipronil) and another four pesticides (propazine, imidacloprid, hexaconazole, and hexazione) had RQf values >0.1 and > 0.01, respectively. By calculating the contributions of individual pesticides to the RQf of these mixtures (RQf, mix) based on the concentration addition model, it was determined that >95 % of the sum of RQf, mix was driven by the top seven pesticides. These findings highlight the importance of prioritizing pesticides for effective management of contamination sources.
Collapse
Affiliation(s)
- Hyewon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Di W, Wang Z, Qi P, Liu Z, Zhao H, Ding W, Di S. Cadmium stress alleviates lipid accumulation caused by chiral penthiopyrad through regulating endoplasmic reticulum stress and mitochondrial dysfunction in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135560. [PMID: 39173367 DOI: 10.1016/j.jhazmat.2024.135560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The coexistence of cadmium (Cd) can potentiate (synergism) or reduce (antagonism) the pesticide effects on organisms, which may change with chiral pesticide enantiomers. Previous studies have reported the toxic effects of chiral penthiopyrad on lipid metabolism in zebrafish (Danio rerio) liver. The Cd effects and toxic mechanism on lipid accumulation were investigated from the perspective of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The coexistence of Cd increased the concentrations of penthiopyrad and its metabolites in zebrafish. Penthiopyrad exposure exhibited significant effects on lipid metabolism and mitochondrial function-related indicators, which were verified by lipid droplets and mitochondrial damage in subcellular structures. Moreover, penthiopyrad activated the genes of ER unfolded protein reaction (UPR) and Ca2+ permeable channels, and S-penthiopyrad exhibited more serious effects on ER stress with ER hyperplasia than R-penthiopyrad. As a mitochondrial uncoupler, the coexistence of Cd could decrease lipid accumulation by alleviating ER stress and mitochondrial dysfunction, and these effects were the most significant for R-penthiopyrad. There were antagonistic effects between Cd and penthiopyrad, which could reduce the damage caused by penthiopyrad in zebrafish, thus increasing the bioaccumulation of penthiopyrad in zebrafish. These findings highlighted the importance and necessity of evaluating the ecological risks of metal-chiral pesticide mixtures.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Weixuan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China; College of Plant Protection, Northeast agricultural university, Harbin 150030, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Wei Ding
- College of Plant Protection, Northeast agricultural university, Harbin 150030, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
8
|
Molenaar E, Viechtbauer W, van de Crommenacker J, Kingma SA. Neonicotinoids Impact All Aspects of Bird Life: A Meta-Analysis. Ecol Lett 2024; 27:e14534. [PMID: 39385588 DOI: 10.1111/ele.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
Worldwide, bird populations are declining dramatically. This is especially the case in intensely used agricultural areas where the application of neonicotinoid insecticides is thought to-unintendedly-cause a cascade of negative impacts throughout food webs. Additionally, there could be direct (sub-) lethal impacts of neonicotinoids on birds, but to date there is no comprehensive quantitative assessment to confirm or rule out this possibility. Therefore, we use a meta-analytical approach synthesising 1612 effect sizes from 49 studies and show that neonicotinoids consistently harm bird health, behaviour, reproduction, and survival. Thus, in addition to reduced food availability, the negative direct effects of exposure to neonicotinoids likely contribute to bird population declines globally. Our outcomes are pivotal to consider in future risk assessments and pesticide policy: despite localised bans, the metabolites and residues of neonicotinoids remain present in the environment and in birds and will thus have long-lasting direct effects on both the individual and the population levels.
Collapse
Affiliation(s)
- Elke Molenaar
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Sjouke A Kingma
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
9
|
Linguadoca A, Morrison MA, Menaballi L, Šima P, Brown MJF. No impact of cyantraniliprole on the hibernation success of bumble bees ( Bombus terrestris audax) in a soil-mediated laboratory exposure study. Ecol Evol 2024; 14:e70328. [PMID: 39360125 PMCID: PMC11445450 DOI: 10.1002/ece3.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Increasing evidence shows that wild bees, including bumble bees, are in decline due to a range of stressors, including pesticides. Our knowledge of pesticide impacts has consequently grown to enable the design of increasingly realistic risk assessment methods. However, one area where knowledge gaps may still hinder our ability to assess the full range of bee-pesticide interactions is the field of exposure. Exposure has historically been linked to either direct contact with pesticides or the ingestion of contaminated pollen and nectar by bees. However, bumble bees, and other wild bees, may also be exposed to pesticides while using contaminated soil as an overwintering substrate. Yet knowledge of how soil-mediated exposure affects bumble bee health is lacking. Here we take one of the first steps towards addressing this knowledge gap by designing a method for testing the effects of soil-mediated pesticide exposure on bumble bee queen hibernation success. We measured hibernation survival, body weight change and abdominal fat content and found that none of these responses were affected by a field realistic soil exposure to the novel insecticide cyantraniliprole. Our study may help in developing a standardised method to test the effects of the soil-mediated pesticide exposure route in bumble bee queens.
Collapse
Affiliation(s)
- Alberto Linguadoca
- Department of Biological Sciences Royal Holloway University of London Egham UK
- Environment, Plants & Ecotoxicology Unit, European Food Safety Authority (EFSA) Parma Italy
| | - Morgan A Morrison
- Department of Biological Sciences Royal Holloway University of London Egham UK
| | - Luca Menaballi
- International Centre for Pesticides and Health Risk Prevention L. Sacco University Hospital Milan Italy
| | | | - Mark J F Brown
- Department of Biological Sciences Royal Holloway University of London Egham UK
| |
Collapse
|
10
|
Welch SA, Grung M, Madsen AL, Jannicke Moe S. Development of a probabilistic risk model for pharmaceuticals in the environment under population and wastewater treatment scenarios. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1715-1735. [PMID: 38771172 DOI: 10.1002/ieam.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Preparing for future environmental pressures requires projections of how relevant risks will change over time. Current regulatory models of environmental risk assessment (ERA) of pollutants such as pharmaceuticals could be improved by considering the influence of global change factors (e.g., population growth) and by presenting uncertainty more transparently. In this article, we present the development of a prototype object-oriented Bayesian network (BN) for the prediction of environmental risk for six high-priority pharmaceuticals across 36 scenarios: current and three future population scenarios, combined with infrastructure scenarios, in three Norwegian counties. We compare the risk, characterized by probability distributions of risk quotients (RQs), across scenarios and pharmaceuticals. Our results suggest that RQs would be greatest in rural counties, due to the lower development of current wastewater treatment facilities, but that these areas consequently have the most potential for risk mitigation. This pattern intensifies under higher population growth scenarios. With this prototype, we developed a hierarchical probabilistic model and demonstrated its potential in forecasting the environmental risk of chemical stressors under plausible demographic and management scenarios, contributing to the further development of BNs for ERA. Integr Environ Assess Manag 2024;20:1715-1735. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Samuel A Welch
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
11
|
Jaiswal A, Pandey AK, Mishra Y, Dubey SK. Insights into the biodegradation of fipronil through soil microcosm-omics analyses of Pseudomonas sp. FIP_ A4. CHEMOSPHERE 2024; 363:142944. [PMID: 39067829 DOI: 10.1016/j.chemosphere.2024.142944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Fipronil, a phenylpyrazole insecticide, is used to kill insects resistant to conventional insecticides. Though its regular and widespread use has substantially reduced agricultural losses, it has also caused its accumulation in various environmental niches. The biodegradation is an effective natural process that helps in reducing the amount of residual insecticides. This study deals with an in-depth investigation of fipronil degradation kinetics and pathways in Pseudomonas sp. FIP_A4 using multi-omics approaches. Soil-microcosm results revealed ∼87% degradation within 40 days. The whole genome of strain FIP_A4 comprises 4.09 Mbp with 64.6% GC content. Cytochrome P450 monooxygenase and enoyl-CoA hydratase-related protein, having 30% identity with dehalogenase detected in the genome, can mediate the initial degradation process. Proteome analysis revealed differential enzyme expression of dioxygenases, decarboxylase, and hydratase responsible for subsequent degradation. Metabolome analysis displayed fipronil metabolites in the presence of the bacterium, supporting the proposed degradation pathway. Molecular docking and dynamic simulation of each identified enzyme in complex with the specific metabolite disclosed adequate binding and high stability in the enzyme-metabolite complex. This study provides in-depth insight into genes and their encoded enzymes involved in the fipronil degradation and formation of different metabolites during pollutant degradation. The outcome of this study can contribute immensely to developing efficient technologies for the bioremediation of fipronil-contaminated soils.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
12
|
Garinie T, Nusillard W, Lelièvre Y, Taranu ZE, Goubault M, Thiéry D, Moreau J, Louâpre P. Adverse effects of the Bordeaux mixture copper-based fungicide on the non-target vineyard pest Lobesia botrana. PEST MANAGEMENT SCIENCE 2024; 80:4790-4799. [PMID: 38801156 DOI: 10.1002/ps.8195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Bordeaux mixture is a copper-based fungicide commonly used in vineyards to prevent fungal and bacterial infections in grapevines. However, this fungicide may adversely affect the entomological component, including insect pests. Understanding the impacts of Bordeaux mixture on the vineyard pest Lobesia botrana is an increasing concern in the viticultural production. RESULTS Bordeaux mixture had detrimental effects on the development and reproductive performance of L. botrana. Several physiological traits were adversely affected by copper-based fungicide exposure, including a decrease in larval survival and a delayed larval development to moth emergence, as well as a reduced reproductive performance through a decrease in female fecundity and fertility and male sperm quality. However, we did not detect any effect of Bordeaux mixture on the measured reproductive behaviors (mating success, pre-mating latency and mating duration). CONCLUSION Ingestion by larvae of food contaminated with Bordeaux mixture had a negative effect on the reproductive performance of the pest L. botrana, which could affect its population dynamics in vineyards. Although this study highlighted collateral damage of Bordeaux mixture on L. botrana, the potential impact of copper-based fungicides on vineyard diversity, including natural predators is discussed and needs to be taken in consideration in integrated pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tessie Garinie
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - William Nusillard
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
- AgroParisTech, Palaiseau, France
| | - Yann Lelièvre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - Zofia E Taranu
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, ECCC, Montréal, Canada
| | - Marlène Goubault
- Institut de la Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, France
| | - Denis Thiéry
- INRA (French National Institute for Agricultural Research), UMR 1065 Save, BSA, Centre de recherches INRAe Nouvelle-Aquitaine-Bordeaux, Villenave d'Ornon Cedex, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
- Centre d'Études Biologiques de Chizé, CNRS and La Rochelle Université, Villiers-en-Bois, France
| | - Philippe Louâpre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| |
Collapse
|
13
|
Tarazona JV, de Alba-Gonzalez M, Bedos C, Benoit P, Bertrand C, Crouzet O, Dagès C, Dorne JLC, Fernandez-Agudo A, Focks A, Gonzalez-Caballero MDC, Kroll A, Liess M, Loureiro S, Ortiz-Santaliestra ME, Rasmussen JJ, Royauté R, Rundlöf M, Schäfer RB, Short S, Siddique A, Sousa JP, Spurgeon D, Staub PF, Topping CJ, Voltz M, Axelman J, Aldrich A, Duquesne S, Mazerolles V, Devos Y. A conceptual framework for landscape-based environmental risk assessment (ERA) of pesticides. ENVIRONMENT INTERNATIONAL 2024; 191:108999. [PMID: 39276592 DOI: 10.1016/j.envint.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
While pesticide use is subject to strict regulatory oversight worldwide, it remains a main concern for environmental protection, including biodiversity conservation. This is partly due to the current regulatory approach that relies on separate assessments for each single pesticide, crop use, and non-target organism group at local scales. Such assessments tend to overlook the combined effects of overall pesticide usage at larger spatial scales. Integrative landscape-based approaches are emerging, enabling the consideration of agricultural management, the environmental characteristics, and the combined effects of pesticides applied in a same or in different crops within an area. These developments offer the opportunity to deliver informative risk predictions relevant for different decision contexts including their connection to larger spatial scales and to combine environmental risks of pesticides, with those from other environmental stressors. We discuss the needs, challenges, opportunities and available tools for implementing landscape-based approaches for prospective and retrospective pesticide Environmental Risk Assessments (ERA). A set of "building blocks" that emerged from the discussions have been integrated into a conceptual framework. The framework includes elements to facilitate its implementation, in particular: flexibility to address the needs of relevant users and stakeholders; means to address the inherent complexity of environmental systems; connections to make use of and integrate data derived from monitoring programs; and options for validation and approaches to facilitate future use in a regulatory context. The conceptual model can be applied to existing ERA methodologies, facilitating its comparability, and highlighting interoperability drivers at landscape level. The benefits of landscape-based pesticide ERA extend beyond regulation. Linking and validating risk predictions with relevant environmental impacts under a solid science-based approach will support the setting of protection goals and the formulation of sustainable agricultural strategies. Moreover, landscape ERA offers a communication tool on realistic pesticide impacts in a multistressors environment for stakeholders and citizens.
Collapse
Affiliation(s)
- Jose V Tarazona
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Carole Bedos
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Pierre Benoit
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Colette Bertrand
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Olivier Crouzet
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Cécile Dagès
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | - Ana Fernandez-Agudo
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | - Andreas Focks
- Research Center Environmental Systems Research, Osnabrück University, Osnabrück, Germany
| | | | - Alexandra Kroll
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Dübendorf, Switzerland
| | - Matthias Liess
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Aachen, Germany
| | - Susana Loureiro
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | - Raphaël Royauté
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Ralf B Schäfer
- Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany; Research Centre One Health Ruhr, Research Alliance Ruhr, Germany
| | | | - Ayesha Siddique
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Pierre-François Staub
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Chris J Topping
- Social-Ecological Systems Simulation Centre, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Marc Voltz
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | | | | | - Vanessa Mazerolles
- Regulated Products Assessment Directorate, Anses (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Yann Devos
- European Food Safety Authority (EFSA), Parma, Italy
| |
Collapse
|
14
|
Wang J, Xiong Z, Fan Y, Wang H, An C, Wang B, Yang M, Li X, Wang Y, Wang Y. Lignin/Surfactin Coacervate as an Eco-Friendly Pesticide Carrier and Antifungal Agent against Phytopathogen. ACS NANO 2024; 18:22415-22430. [PMID: 39126678 DOI: 10.1021/acsnano.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Excessive usage of biologically toxic fungicides and their matrix materials poses a serious threat to public health. Leveraging fungicide carriers with inherent pathogen inhibition properties is highly promising for enhancing fungicide efficacy and reducing required dosage. Herein, a series of coacervates have been crafted with lignin and surfactin, both of which are naturally derived and demonstrate substantial antifungal properties. This hierarchically assembled carrier not only effectively loads fungicides with a maximum encapsulation efficiency of 95% but also stably deposits on hydrophobic leaves for high-speed impacting droplets. Intriguingly, these coacervates exhibit broad spectrum fungicidal activity against eight ubiquitous phytopathogens and even act as a standalone biofungicide to replace fungicides. This performance can significantly reduce the fungicide usage and be further strengthened by an encapsulated fungicide. The inhibition rate reaches 87.0% when 0.30 mM pyraclostrobin (Pyr) is encapsulated within this coacervate, comparable to the effectiveness of 0.80 mM Pyr alone. Additionally, the preventive effects against tomato gray mold reached 53%, significantly surpassing those of commercial adjuvants. Thus, it demonstrates that utilizing biosurfactants and biomass with intrinsic antifungal activity to fabricate fully biobased coacervates can synergistically combine the functions of a fungicide carrier and antifungal agent against phytopathogens and guarantee environmental friendliness. This pioneering approach provides deeper insights into synergistically enhancing the effectiveness of agrochemicals from multiple aspects, including fungicide encapsulation, cooperative antifungal action, and droplet deposition.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming Yang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Li
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Sun YX, Ji BT, Chen JH, Gao LL, Sun Y, Deng ZP, Zhao B, Li JG. Ratiometric emission of Tb(III)-functionalized Cd-based layered MOFs for portable visual detection of trace amounts of diquat in apples, potatoes and corn. Food Chem 2024; 449:139259. [PMID: 38626667 DOI: 10.1016/j.foodchem.2024.139259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Diquat (DQ) is a typical bipyridine herbicide widely used to control weeds in fields and orchards. The severe toxicity of diquat poses a serious threat to the environment and human health. Metal-organic frameworks (MOFs) have received widespread attention due to their unique physical and chemical properties and applications in the detection of toxic and harmful substances. In this work, a two-dimensional (2D) Tb(III) functionalized MOF Tb(III)@1 (1 = [Cd(HTATB)(bimb)]n·H2O (Cd-MOF), H3TATB = 4,4',4″-triazine-2,4,6-tribenzoicacid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene) has been prepared and characterized. Tb(III)@1 has excellent optical properties and high water and chemical stability. After the Tb(III) is fixed by the uncoordinated -COO- in the 1 framework, Tb(III)@1 emits the typical green fluorescence of the lanthanide ion Tb(III) through the "antenna effect". It is worth noting that Tb(III)@1 can be used as a dual emission fluorescence chemical sensor for the ratio fluorescence detection of pesticide DQ, exhibiting a relatively low detection limit of 0.06 nM and a wide detection range of 0-50 nM. After the addition of DQ, a rapid color change of Tb(III)@1 fluorescence from green to blue was observed due to the combined effects of IFE, FRET and dynamic quenching. Therefore, a simple test paper box has been designed for direct on-site determination of pesticide DQ. In addition, the developed sensor has been successfully applied to the detection of DQ in real samples (fruits a Yin-Xia Sun and Bo-Tao Ji contributed equally to this work and should be considered co-first authors.nd vegetables) with satisfactory results. The results indicate that the probe developed in this study has broad application prospects in both real sample detection and actual on-site testing.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jiang-Hai Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
16
|
Lamonica D, Charvy L, Kuo D, Fritsch C, Coeurdassier M, Berny P, Charles S. A brief review on models for birds exposed to chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34628-5. [PMID: 39133414 DOI: 10.1007/s11356-024-34628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
"A Who's Who of pesticides is therefore of concern to us all. If we are going to live so intimately with these chemicals eating and drinking them, taking them into the very marrow of our bones - we had better know something about their nature and their power."-Rachel Carson, Silent Spring. In her day, Rachel Carson was right: plant protection products (PPP), like all the other chemical substances that humans increasingly release into the environment without further precaution, are among our worst enemies today (Bruhl and Zaller, 2019; Naidu et al., 2021; Tang et al., 2021; Topping et al., 2020). All compartments of the biosphere, air, soil and water, are potential reservoirs within which all species that live there are impaired. Birds are particularly concerned: PPP are recognized as a factor in the decline of their abundance and diversity predominantly in agricultural landscapes. Due to the restrictions on vertebrates testing, in silico-based approaches are an ideal choice alternative given input data are available. This is where the problem lies as we will illustrate in this paper. We performed an extensive literature search covering a long period of time, a wide diversity of bird species, a large range of chemical substances, and as many model types as possible to encompass all our future need to improve environmental risk assessment of chemicals for birds. In the end, we show that poultry species exposed to pesticides are the most studied at the individual level with physiologically based toxicokinetic models. To go beyond, with more species, more chemical types, over several levels of biological organization, we show that observed data are crucially missing (Gilbert, 2011). As a consequence, improving existing models or developing new ones could be like climbing Everest if no additional data can be gathered, especially on chemical effects and toxicodynamic aspects.
Collapse
Affiliation(s)
- Dominique Lamonica
- University Lyon 1, Laboratory of Biometry and Evolutionary Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France.
- Research Institute for Development, BotAny and Modeling of Plant Architecture and Vegetation - UMR AMAP, TA A51/PS2, Montpellier Cedex 05, 34398, France.
| | - Lison Charvy
- INSA Lyon, Biosciences department, 20 avenue Albert Einstein, Villeurbanne, 69100, France
| | - Dave Kuo
- Institute of Environmental Engineering (GIEE), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
| | - Michaël Coeurdassier
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
| | - Philippe Berny
- UR ICE, VetAgro Sup Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, Marcy l'étoile, F-69280, France
| | - Sandrine Charles
- University Lyon 1, Laboratory of Biometry and Evolutionary Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France
| |
Collapse
|
17
|
Zeeshan M, Li H, Yousaf G, Ren H, Liu Y, Arshad M, Dou Z, Han X. Effect of formulations and adjuvants on the properties of acetamiprid solution and droplet deposition characteristics sprayed by UAV. FRONTIERS IN PLANT SCIENCE 2024; 15:1441193. [PMID: 39157513 PMCID: PMC11327081 DOI: 10.3389/fpls.2024.1441193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
While the pesticide formulations are widely used for pest control, the combined effects of these formulations with adjuvants on droplet behavior, spraying characteristics, and pest control still need to be studied. To clarify their impact on droplet behavior, spraying characteristics, and control efficacy, six formulations of acetamiprid and six adjuvants were examined. A series of laboratory and field experiments were conducted to analyze the physicochemical properties, toxicity against cotton aphids, droplet deposition characteristics, and droplet drift. The results indicated that 5% acetamiprid micro-emulsion (ME) enhanced the physicochemical features and effectiveness in pest control compared to other formulations. The nongjianfei considerably enhanced the efficiency of all acetamiprid formulations when added. The addition of selected adjuvants to pesticide formulations improved the performance of certain physicochemical properties such as viscosity and surface tension and led to higher aphid mortality rates, demonstrating enhanced pest control effectiveness during the present study. In the field experiments, the combination effect of acetamiprid formulations and adjuvants exhibited a higher droplet size, coverage, and density within the cotton canopy. However, 5% acetamiprid ME was found to be most effective followed by nongjianfei. Furthermore, 5% acetamiprid ME with adjuvant reduced the droplet drift and provided better deposition when compared with other formulations. Overall, the combination of specific formulations and adjuvants led to improved physicochemical properties, enhanced droplet deposition characteristics, reduced spray drift, and increased pesticide deposition. These findings highlighted the significance of selecting appropriate pesticide formulations and adjuvants and provided a solid foundation for efficient pesticide spraying through UAVs.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Haoran Li
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Gulfam Yousaf
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Hao Ren
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Yapeng Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Muhammad Arshad
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Zechen Dou
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Albacete S, Sancho G, Azpiazu C, Sgolastra F, Rodrigo A, Bosch J. Exposure to sublethal levels of insecticide-fungicide mixtures affect reproductive success and population growth rates in the solitary bee Osmia cornuta. ENVIRONMENT INTERNATIONAL 2024; 190:108919. [PMID: 39094406 DOI: 10.1016/j.envint.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain.
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain; Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
19
|
Zha Y, Li Y, Zhou J, Liu X, Park KS, Zhou Y. Dual-Mode Fluorescent/Intelligent Lateral Flow Immunoassay Based on Machine Learning Algorithm for Ultrasensitive Analysis of Chloroacetamide Herbicides. Anal Chem 2024; 96:12197-12204. [PMID: 38990191 DOI: 10.1021/acs.analchem.4c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Given the harmful effect of pesticide residues, it is essential to develop portable and accurate biosensors for the analysis of pesticides in agricultural products. In this paper, we demonstrated a dual-mode fluorescent/intelligent (DM-f/DM-i) lateral flow immunoassay (LFIA) for chloroacetamide herbicides, which utilized horseradish peroxidase-IgG conjugated time-resolved fluorescent nanoparticle probes as both a signal label and amplification tool. With the newly developed LFIA in the DM-f mode, the limits of detection (LODs) were 0.08 ng/mL of acetochlor, 0.29 ng/mL of metolachlor, 0.51 ng/mL of Propisochlor, and 0.13 ng/mL of their mixture. In the DM-i mode, machine learning (ML) algorithms were used for image segmentation, feature extraction, and correlation analysis to obtain multivariate fitted equations, which had high reliability in the regression model with R2 of 0.95 in the range of 2 × 102-2 × 105 pg/mL. Importantly, the practical applicability was successfully validated by determining chloroacetamide herbicides in the corn sample with good recovery rates (85.4 to 109.3%) that correlate well with the regression model. The newly developed dual-mode LFIA with reduced detection time (12 min) holds great potential for pesticide monitoring in equipment-limited environments using a portable test strip reader and laboratory conditions using ML algorithms.
Collapse
Affiliation(s)
- Yonghong Zha
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaolan Liu
- Shenzhen Media Digital Technology Co. Ltd, Shenzhen 518038, China
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yu Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
20
|
Nehru R, Chen CW, Dong CD. A review of smart electrochemical devices for pesticide detection in agricultural food and runoff contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173360. [PMID: 38777059 DOI: 10.1016/j.scitotenv.2024.173360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
In the evolving field of food and agriculture, pesticide utilization is inevitable for food production and poses an increasing threat to the ecosystem and human health. This review systematically investigates and provides a comprehensive overview of recent developments in smart electrochemical devices for detecting pesticides in agricultural food and runoff contaminants. The focus encompasses recent progress in lab-scale and portable electrochemical sensors, highlighting their significance in agricultural pesticide monitoring. This review compares these sensors comprehensively and provides a scientific guide for future sensor development for infield agricultural pesticide monitoring and food safety. Smart devices address challenges related to power consumption, low cost, wearability, and portability, contributing to the advancement of agricultural sustainability. By elucidating the intricate details of these smart devices, this review offers a comprehensive discussion and roadmap for future research aimed at cost-effective, flexible, and smart handy devices, including novel electrocatalysts, to foster the development of next-generation agricultural sensor technology, opportunity and future direction for food security.
Collapse
Affiliation(s)
- Raja Nehru
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
21
|
Frizzera D, Zanni V, Seffin E, de Miranda JR, Marroni F, Annoscia D, Nazzi F. Assessing lethal and sublethal effects of pesticides on honey bees in a multifactorial context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174892. [PMID: 39034005 DOI: 10.1016/j.scitotenv.2024.174892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The registration of novel pesticides that are subsequently banned because of their unexpected negative effects on non-target species can have a huge environmental impact. Therefore, the pre-emptive evaluation of the potential effects of new compounds is essential. To this aim both lethal and sublethal effects should be assessed in a realistic scenario including the other stressors that can interact with pesticides. However, laboratory studies addressing such interactive effects are rare, while standardized laboratory-based protocols focus on lethal effects and not on sub-lethal effects. We propose to assess both lethal and sublethal effects in a multifactorial context including the other stressors affecting the non-target species. We tested this approach by studying the impact on honey bees of the insecticide sulfoxaflor in combination with a common parasite, a sub-optimal temperature and food deprivation. We studied the survival and the transcriptome of honey bees, to assess both the lethal and the potential sublethal effects of the insecticide, respectively. With this method we show that a field realistic concentration of sulfoxaflor in food does not affect the survival of honey bees; however, the significant impact on some key genes indicates that sublethal effects are possible in a realistically complex scenario. Moreover, our results demonstrate the feasibility and reliability of a novel approach to hazard assessment considering the interactive effects of pesticides. We anticipate our approach to be a starting point for a paradigm shift in toxicology: from an unifactorial, mortality-centered assessment to a multifactorial, comprehensive approach. This is something of the utmost importance to preserve pollination, thus contributing to the sustainability of our food production system.
Collapse
Affiliation(s)
- Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Elisa Seffin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | | | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy.
| |
Collapse
|
22
|
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E, Talebi K. Efficacy of novel bacterial consortia in degrading fipronil and thiobencarb in paddy soil: a survey for community structure and metabolic pathways. Front Microbiol 2024; 15:1366951. [PMID: 38812693 PMCID: PMC11133635 DOI: 10.3389/fmicb.2024.1366951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Fipronil (FIP) and thiobencarb (THIO) represent widely utilized pesticides in paddy fields, presenting environmental challenges that necessitate effective remediation approaches. Despite the recognized need, exploring bacterial consortia efficiently degrading FIP and THIO remains limited. Methods This study isolated three unique bacterial consortia-FD, TD, and MD-demonstrating the capability to degrade FIP, THIO, and an FIP + THIO mixture within a 10-day timeframe. Furthermore, the bioaugmentation abilities of the selected consortia were evaluated in paddy soils under various conditions. Results Sequencing results shed light on the consortia's composition, revealing a diverse bacterial population prominently featuring Azospirillum, Ochrobactrum, Sphingobium, and Sphingomonas genera. All consortia efficiently degraded pesticides at 800 µg/mL concentrations, primarily through oxidative and hydrolytic processes. This metabolic activity yields more hydrophilic metabolites, including 4-(Trifluoromethyl)-phenol and 1,4-Benzenediol, 2-methyl-, for FIP, and carbamothioic acid, diethyl-, S-ethyl ester, and Benzenecarbothioic acid, S-methyl ester for THIO. Soil bioaugmentation tests highlight the consortia's effectiveness, showcasing accelerated degradation of FIP and THIO-individually or in a mixture-by 1.3 to 13-fold. These assessments encompass diverse soil moisture levels (20 and 100% v/v), pesticide concentrations (15 and 150 µg/g), and sterile conditions (sterile and non-sterile soils). Discussion This study offers an understanding of bacterial communities adept at degrading FIP and THIO, introducing FD, TD, and MD consortia as promising contenders for bioremediation endeavors.
Collapse
Affiliation(s)
- Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
23
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
24
|
Gensch L, Jantke K, Rasche L, Schneider UA. Pesticide risk assessment in European agriculture: Distribution patterns, ban-substitution effects and regulatory implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123836. [PMID: 38522603 DOI: 10.1016/j.envpol.2024.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
This study estimates the risks of agricultural pesticides on non-target organisms and the environment by combining detailed pesticide application data for 2015 with the Danish risk indicator Pesticide Load. We quantify and map the pesticide load of 59 pesticides on 28 crops and pastures in the EU. Furthermore, we investigate how recent bans on 14 pesticides in the EU could reduce pesticide use and load. Key findings show that the highest pesticide loads per hectare occur in Cyprus and the Netherlands due to high application rates and a high proportion of vegetable production. Chlorpyrifos caused the highest pesticide load per hectare on more than half of the assessed crops before its ban. The ban of 14 pesticides between 2018 and 2023 potentially reduced pesticide loads by 94%, but unobserved substitution effects could offset pesticide load reductions. Although bans on active substances are justified to control certain endpoint risks, our results highlight the potential weaknesses of bans that merely shift risks. These findings contribute to the ongoing scientific and societal discourse on efficiently mitigating pesticides' impacts on non-target organisms and the environment. However, to improve the evaluation of pesticide use, it is vital to enhance the reporting on detailed pesticide use for individual crop-pesticide combinations.
Collapse
Affiliation(s)
- Luisa Gensch
- Max Planck Institute for Meteorology, Hamburg, Germany; International Max Planck Research School on Earth System Modelling, Hamburg, Germany; Research Unit Sustainability and Climate Risks, University of Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.
| | - Kerstin Jantke
- Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| | - Livia Rasche
- Research Unit Sustainability and Climate Risks, University of Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany; Land Use Economics, University of Hohenheim, Stuttgart, Germany
| | - Uwe A Schneider
- Research Unit Sustainability and Climate Risks, University of Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| |
Collapse
|
25
|
Doussan I, Barthélémy C, Berny P, Bureau-Point E, Corio-Costet MF, Le Perchec S, Mamy L. Regulatory framework for the assessment of the impacts of plant protection products on biodiversity: review of strengths and limits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36577-36590. [PMID: 38760600 DOI: 10.1007/s11356-024-33638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The placing of plant protection products (PPPs) on the market in the European Union is governed by numerous regulations. These regulations are among the most stringent in the world, however they have been the subject of criticisms especially because of the decline in biodiversity. The objectives of this work were to review (1) the functioning and actors involved in the PPP framework processes, (2) the construction of the environmental risk assessment focused on biodiversity, and (3) the suggested ways to respond to the identified limits. Both literature from social sciences and ecotoxicology were examined. Despite the protective nature of the European regulation on PPPs, the very imperfect consideration of biodiversity in the evaluation process was underlined. The main limits are the multiplicity of applicable rules, the routinization of the evaluation procedures, the lack of consideration of social data, and the lack of independence of the evaluation. Strengths of the regulation are the decision to integrate a systemic approach in the evaluation of PPPs, the development of modeling tools, and the phytopharmacovigilance systems. The avenues for improvement concern the realism of the risk assessment (species used, cocktail effects…), a greater transparency and independence in the conduct of evaluations, and the opening of the evaluation and decision-making processes to actors such as beekeepers or NGOs. Truly interdisciplinary reflections crossing the functioning of the living world, its alteration by PPPs, and how these elements question the users of PPPs would allow to specify social actions, public policies, and their regulation to better protect biodiversity.
Collapse
Affiliation(s)
- Isabelle Doussan
- GREDEG, CNRS, INRAE, Université Côte d'Azur, Valbonne, 06560, France
| | | | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire de Lyon, 69670, Marcy l'étoile, France
| | - Eve Bureau-Point
- Centre Norbert Elias, UMR 8562, CNRS, UAPV, 13002, Marseille, AMU, France
| | | | | | - Laure Mamy
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, France.
| |
Collapse
|
26
|
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T. Advancing exposure assessment approaches to improve wildlife risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:674-698. [PMID: 36688277 DOI: 10.1002/ieam.4743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.
Collapse
Affiliation(s)
- Christy Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katharine Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Igor Eulaers
- FRAM Centre, Norwegian Polar Institute, Tromsø, Norway
| | - Frank Gobas
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | | | - Nico van den Brink
- Division of Toxicology, University of Wageningen, Wageningen, The Netherlands
| | - Ted Wickwire
- Woods Hole Group Inc., Bourne, Massachusetts, USA
| |
Collapse
|
27
|
Henriques Martins CA, Azpiazu C, Bosch J, Burgio G, Dindo ML, Francati S, Sommaggio D, Sgolastra F. Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach. INSECTS 2024; 15:317. [PMID: 38786873 PMCID: PMC11122312 DOI: 10.3390/insects15050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Insects play an essential role as pollinators of wild flowers and crops. At the same time, pollinators in agricultural environments are commonly exposed to pesticides, compromising their survival and the provision of pollination services. Although pollinators include a wide range of species from several insect orders, information on pesticide sensitivity is mostly restricted to bees. In addition, the disparity of methodological procedures used for different insect groups hinders the comparison of toxicity data between bees and other pollinators. Dipterans are a highly diverse insect order that includes some important pollinators. Therefore, in this study, we assessed the sensitivity of two hoverflies (Sphaerophoria rueppellii, Eristalinus aeneus) and one tachinid fly (Exorista larvarum) to a neonicotinoid insecticide (Confidor®, imidacloprid) following a comparative approach. We adapted the standardized methodology of acute contact exposure in honey bees to build dose-response curves and calculate median lethal doses (LD50) for the three species. The methodology consisted in applying 1 µL of the test solution on the thorax of each insect. Sphaerophoria rueppelli was the most sensitive species (LD50 = 10.23 ng/insect), and E. aeneus (LD50 = 18,176 ng/insect) the least. We then compared our results with those available in the literature for other pollinator species using species sensitivity distribution (SSD). Based on the SSD curve, the 95th percentile of pollinator species would be protected by a safety factor of 100 times the Apis mellifera endpoint. Overall, dipterans were less sensitive to imidacloprid than most bee species. As opposed to most bee species, oviposition and fecundity of many dipteran species can be reliably assessed in the laboratory. We measured the number of eggs laid following exposure to different insecticide doses and assessed the potential trade-off between oviposition and survival through the sublethal sensitivity index (SSI). Exposure to imidacloprid had a significant effect on fecundity, and SSI values indicated that oviposition is a sensitive endpoint for the three dipteran species tested. Future studies should integrate this information related to population dynamics in simulation models for environmental risk assessment.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Celeste Azpiazu
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
- Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jordi Bosch
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
| | - Giovanni Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Maria Luisa Dindo
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Santolo Francati
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Daniele Sommaggio
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41121 Modena, Italy;
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| |
Collapse
|
28
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33026-1. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
29
|
Lei M, Ding X, Liu J, Tang Y, Chen H, Zhou Y, Zhu C, Yan H. Trace Amount of Bi-Doped Core-Shell Pd@Pt Mesoporous Nanospheres with Specifically Enhanced Peroxidase-Like Activity Enable Sensitive and Accurate Detection of Acetylcholinesterase and Organophosphorus Nerve Agents. Anal Chem 2024; 96:6072-6078. [PMID: 38577757 DOI: 10.1021/acs.analchem.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.
Collapse
Affiliation(s)
- Mengdie Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xilin Ding
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jin Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hongye Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
30
|
Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat MP, Costa C, De la Rúa P, Klein AM, Mänd M, Potts SG, Schweiger O, Bottero I, Cini E, de Miranda JR, Di Prisco G, Dominik C, Hodge S, Kaunath V, Knauer A, Laurent M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Raimets R, Schwarz JM, Senapathi D, Tamburini G, Brown MJF, Stout JC, Rundlöf M. Pesticide use negatively affects bumble bees across European landscapes. Nature 2024; 628:355-358. [PMID: 38030722 PMCID: PMC11006599 DOI: 10.1038/s41586-023-06773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
Collapse
Affiliation(s)
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden.
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Marie-Pierre Chauzat
- Laboratory for Animal Health, ANSES, Paris-Est University, Maisons-Alfort, France
| | - Cecilia Costa
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, University of Murcia, Murcia, Spain
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Oliver Schweiger
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Irene Bottero
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Portici, Italy
| | - Christophe Dominik
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Simon Hodge
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Vera Kaunath
- Department of Biology, Lund University, Lund, Sweden
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Marion Laurent
- Unit of Honey Bee Pathology, Sophia Antipolis Laboratory, ANSES, Sophia Antipolis, France
| | | | - Piotr Medrzycki
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | | | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Oldenkamp R, Benestad RE, Hader JD, Mentzel S, Nathan R, Madsen AL, Jannicke Moe S. Incorporating climate projections in the environmental risk assessment of pesticides in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:384-400. [PMID: 37795750 DOI: 10.1002/ieam.4849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Global climate change will significantly impact the biodiversity of freshwater ecosystems, both directly and indirectly via the exacerbation of impacts from other stressors. Pesticides form a prime example of chemical stressors that are expected to synergize with climate change. Aquatic exposures to pesticides might change in magnitude due to increased runoff from agricultural fields, and in composition, as application patterns will change due to changes in pest pressures and crop types. Any prospective chemical risk assessment that aims to capture the influence of climate change should properly and comprehensively account for the variabilities and uncertainties that are inherent to projections of future climate. This is only feasible if they probabilistically propagate extensive ensembles of climate model projections. However, current prospective risk assessments typically make use of process-based models of chemical fate that do not typically allow for such high-throughput applications. Here, we describe a Bayesian network model that does. It incorporates a two-step univariate regression model based on a 30-day antecedent precipitation index, circumventing the need for computationally laborious mechanistic models. We show its feasibility and application potential in a case study with two pesticides in a Norwegian stream: the fungicide trifloxystrobin and herbicide clopyralid. Our analysis showed that variations in pesticide application rates as well as precipitation intensity lead to variations in in-stream exposures. When relating to aquatic risks, the influence of these processes is reduced and distributions of risk are dominated by effect-related parameters. Predicted risks for clopyralid were negligible, but the probability of unacceptable future environmental risks due to exposure to trifloxystrobin (i.e., a risk quotient >1) was 8%-12%. This percentage further increased to 30%-35% when a more conservative precautionary factor of 100 instead of 30 was used. Integr Environ Assess Manag 2024;20:384-400. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Rik Oldenkamp
- Amsterdam Institute for Life and Environment (A-LIFE)-Section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - John D Hader
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Sophie Mentzel
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rory Nathan
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Anders L Madsen
- Hugin Expert A/S, Alborg, Denmark
- Department of Computer Science, Aalborg University, Aalborg, Denmark
| | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
32
|
Landis WG, Mitchell CJ, Hader JD, Nathan R, Sharpe EE. Incorporation of climate change into a multiple stressor risk assessment for the Chinook salmon (Oncorhynchus tshawytscha) population in the Yakima River, Washington, USA. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:419-432. [PMID: 38062648 DOI: 10.1002/ieam.4878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
One outcome of the 2022 Society of Environmental Toxicology and Chemistry Pellston Workshop on incorporating climate change predictions into ecological risk assessments was the key question of how to integrate ecological risk assessments that focus on contaminants with the environmental alterations from climate projections. This article summarizes the results of integrating selected direct and indirect effects of climate change into an existing Bayesian network previously used for ecological risk assessment. The existing Bayesian Network Relative Risk Model integrated the effects of two organophosphate pesticides (malathion and diazinon), water temperature, and dissolved oxygen levels on the Chinook salmon population in the Yakima River Basin (YRB), Washington, USA. The endpoint was defined as the entity, Yakima River metapopulation, and the attribute was defined as no decline to a subpopulation or the overall metapopulation. In this manner, we addressed the management objective of no net loss of Chinook salmon, an iconic and protected species. Climate change-induced changes in water quality parameters (temperature and dissolved oxygen levels) used models based on projected climatic conditions in the 2050s and 2080s by the use of a probabilistic model. Pesticide concentrations in the original model were modified assuming different scenarios of pest control strategies in the future, because climate change may alter pest numbers and species. Our results predict that future direct and indirect changes to the YRB will result in a greater probability that the salmon population will continue to fail to meet the management objective of no net loss. As indicated by the sensitivity analysis, the key driver in salmon population risk was found to be current and future changes in temperature and dissolved oxygen, with pesticide concentrations being not as important. Integr Environ Assess Manag 2024;20:419-432. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Wayne G Landis
- Institute of Environmental Toxicology and Chemistry, Western Washington University, Bellingham, Washington, USA
| | | | - John D Hader
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Rory Nathan
- Department of Infrastructure Engineering, University of Melbourne Faculty of Veterinary and Agricultural Sciences, Parkville, Victoria, Australia
| | - Emma E Sharpe
- Institute of Environmental Toxicology and Chemistry, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
33
|
Rogalski MA, Baker ES, Benadon CM, Tatgenhorst C, Nichols BR. Lake water chemistry and local adaptation shape NaCl toxicity in Daphnia ambigua. Evol Appl 2024; 17:e13668. [PMID: 38524683 PMCID: PMC10960079 DOI: 10.1111/eva.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
The increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to the water chemistry of their natal environment, toxicity responses may also vary among populations in a given test medium. We examined the potential for this evolutionary and environmental context to interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea Daphnia ambigua collected from three lakes that vary in ion availability and composition. We observed a strong effect of the lake water environment on NaCl toxicity in both trials. NaCl caused a much greater decline in reproduction and r in lake water from a low-ion/calcium-poor environment (20 μS/cm specific conductance; 1.7 mg/L Ca2+) compared with water from both a Ca2+-rich lake (55 μS/cm; 7.2 mg/L Ca2+) and an ion-rich coastal lake (420 μS/cm; 3.4 mg/L Ca2+). Daphnia from this coastal lake were most robust to the effects of NaCl on reproduction and r. A significant interaction between the population and lake water environment shaped survival in both trials, suggesting that local adaptation to the test waters used may have contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a contaminant of interest may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.
Collapse
|
34
|
Sun Z, Zhao R, Yu M, Liu Y, Ma Y, Guo X, Gu YC, Formstone C, Xu Y, Wu X. Enhanced dosage delivery of pesticide under unmanned aerial vehicle condition for peanut plant protection: tank-mix adjuvants and formulation improvement. PEST MANAGEMENT SCIENCE 2024; 80:1632-1644. [PMID: 37987532 DOI: 10.1002/ps.7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Suspension concentrate (SC) is one of the most widely used formulations for agricultural plant protection. With the rapid development of unmanned aerial vehicle (UAV) plant protection, the problems of spray drift, droplet rebound and poor wettability in the application of SC from UAVs have attracted wide attention. Although some tank-mix adjuvants have been used to enhance dosage delivery for UAV, their effects and mechanisms are not fully clear, and few formulations are specifically designed for UAV. RESULTS The type and concentration of tank-mix adjuvant affect the dosage delivery of SC. MO501 can significantly reduce DV<100μm , and inhibit droplet rebound on peanut leaves at concentrations ≥0.5%. Silwet 408 can achieve complete wetting and superspreading after adding ≥0.2% concentrations, but only ≥0.5% can inhibit rebound. XL-70 shows excellent regulation ability even at low concentration, and 0.2% concentration can simultaneously suppress impact and promote spreading. Besides, the formulation oil dispersion (OD) can significantly reduce the driftable fine fraction and inhibit rebound at dilution ratios of ≤250-fold, thus enhancing dosage delivery. CONCLUSION SC is prone to rebound on hydrophobic leaf surfaces and shows poor wetting and spreading properties. Appropriate types and concentrations of tank-mix adjuvants and formulation improvement are two effective strategies for improving the dosage delivery of pesticides, whereas the addition of inappropriate adjuvants may cause potential risks instead. These findings provide guidance for the rational selection of tank-mix adjuvants and potential applications of OD for UAV plant protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Rui Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Meng Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Yabo Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Yingjian Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Xinyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| | - Carl Formstone
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Chen H, Carley DS, Muñoz-Carpena R, Ferruzzi G, Yuan Y, Henry E, Blankinship A, Veith TL, Breckels R, Fox G, Luo Y, Osmond D, Preisendanz HE, Tang Z, Armbrust K, Costello K, McConnell LL, Rice P, Westgate J, Whiteside M. Incorporating the benefits of vegetative filter strips into risk assessment and risk management of pesticides. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:454-464. [PMID: 37527952 DOI: 10.1002/ieam.4824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The pesticide registration process in North America, including the USA and Canada, involves conducting a risk assessment based on relatively conservative modeling to predict pesticide concentrations in receiving waterbodies. The modeling framework does not consider some commonly adopted best management practices that can reduce the amount of pesticide that may reach a waterbody, such as vegetative filter strips (VFS). Currently, VFS are being used by growers as an effective way to reduce off-site movement of pesticides, and they are being required or recommended on pesticide labels as a mitigation measure. Given the regulatory need, a pair of multistakeholder workshops were held in Raleigh, North Carolina, to discuss how to incorporate VFS into pesticide risk assessment and risk management procedures within the North American regulatory framework. Because the risk assessment process depends heavily on modeling, one key question was how to quantitatively incorporate VFS into the existing modeling approach. Key outcomes from the workshops include the following: VFS have proven effective in reducing pesticide runoff to surface waterbodies when properly located, designed, implemented, and maintained; Vegetative Filter Strip Modeling System (VFSMOD), a science-based and widely validated mechanistic model, is suitable for further vetting as a quantitative simulation approach to pesticide mitigation with VFS in current regulatory settings; and VFSMOD parametrization rules need to be developed for the North American aquatic exposure assessment. Integr Environ Assess Manag 2024;20:454-464. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Huajin Chen
- Bayer Crop Science, Chesterfield, Missouri, USA
| | - Danesha Seth Carley
- NSF Center of Integrated Pest Management, North Carolina State University, Raleigh, North Carolina, USA
| | - Rafael Muñoz-Carpena
- Department of Agricultural & Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Giulio Ferruzzi
- Natural Resources Conservation Service, US Department of Agriculture, Portland, Oregon, USA
| | - Yongping Yuan
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Eric Henry
- BASF, Research Triangle Park, North Carolina, USA
| | - Amy Blankinship
- Office of Pesticide Programs, US Environmental Protection Agency, Washington, District of Columbia, USA
| | - Tamie L Veith
- Agricultural Research Service, US Department of Agriculture, University Park, Pennsylvania, USA
| | - Ross Breckels
- Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario, Canada
| | - Garey Fox
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Canada, USA
| | - Yuzhou Luo
- California Department of Pesticide Regulation, Sacramento, California, USA
| | - Deanna Osmond
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Heather E Preisendanz
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zhenxu Tang
- Bayer Crop Science, Chesterfield, Missouri, USA
| | - Kevin Armbrust
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kevin Costello
- Office of Pesticide Programs, US Environmental Protection Agency, Washington, District of Columbia, USA
| | | | | | - Johnny Westgate
- Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario, Canada
| | - Mélanie Whiteside
- Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Liu Y, Qin Z, Liang A, Wen G, Jiang Z. A new N/Fe doped carbon dot nanosurface molecularly imprinted polymethacrylate nanoprobe for trace fipronil with SERS/RRS dimode technique. Talanta 2024; 269:125417. [PMID: 38006731 DOI: 10.1016/j.talanta.2023.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The N and Fe doped carbon dot (CDNFe) was prepared by microwave procedure. Using CDNFe as the nano-substrate, fipronil (FL) as the template molecule and α-methacrylic acid as the functional monomer, the molecular imprinted polymethacrylic acid nanoprobe (CDNFe@MIP) with difunction was synthesized by microwave procedure. The CDNFe@MIP was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier infrared spectroscopy, and other techniques. The results show that the nanoprobe not only distinguish FL but also has a strong catalytic effect on the HAuCl4-Na2C2O4 nanogold indicator reaction. When the nanoprobes specifically recognize FL, their catalytic effect is significantly reduced. Since the AuNPs generated by HAuCl4 reduction have strong surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) effects, a SERS/RRS dual-mode sensing platform for detecting 5-500 ng/L FL was constructed. The new analytical method was applied to detect FL in food samples with a relative standard deviation (RSD) of 3.3-8.1 % and a recovery rate of 94.6-104.5 %.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Zhiyu Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| |
Collapse
|
37
|
Wang J, Zheng Y, Wang X, Zhou X, Qiu Y, Qin W, ShenTu X, Wang S, Yu X, Ye Z. Dosage-sensitive and simultaneous detection of multiple small-molecule pollutants in environmental water and agriproducts using portable SERS-based lateral flow immunosensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169440. [PMID: 38123096 DOI: 10.1016/j.scitotenv.2023.169440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The co-contamination of pesticide residues and mycotoxins in agricultural products is a global concern, with the potential for cumulative and synergistic damaging effects, imposing substantial health and economic burdens to the public. The dosage-sensitive and simultaneous detection of multiple pollutants, with a heightened sensitivity in real samples, poses a significant demand and challenge. Herein, we propose a portable detection method integrating surface-enhanced Raman scattering (SERS)-with lateral flow immunoassay (LFIA), offering high sensitivity and multiplex analysis capabilities. This approach enables the simultaneous detection of imidacloprid (IMI), pyraclostrobin (PYR) and aflatoxin B1 (AFB1) through a single test strip. Utilizing the immune-specific binding between antigen and antibodies, we immobilised antibody- conjugated SERS nanotags on three test lines of the strips to generate Raman signal amplification in the proposed biosensor. Accurate quantitative analysis was performed by measuring the SERS signal intensity on the test lines. The limits of detection were 8.6 pg/mL for IMI, 97.4 pg/mL for PYR and 8.9 pg/mL for AFB1, exhibiting sensitivities 12-fold, 102-fold and11-fold higher than the colorimetric signals, respectively. Importantly, the SERS-LFIA immunosensor demonstrated robust performance when applied to real samples, yielding recoveries ranging from 86.16 % to 115.0 %, with relative standard deviation values below 8.67 %. These results underscore the excellent stability, high selectivity and reliability the proposed SERS-LFIA immunosensor. Consequently, it holds promise for the detection of multiple pesticides and mycotoxins in both environmental and agricultural samples.
Collapse
Affiliation(s)
- Jianping Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuanyuan Zheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoying Zhou
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yulou Qiu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xuping ShenTu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
38
|
Asefa EM, Mergia MT, Ayele S, Damtew YT, Teklu BM, Weldemariam ED. Pesticides in Ethiopian surface waters: A meta-analytic based ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168727. [PMID: 38007129 DOI: 10.1016/j.scitotenv.2023.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
In most developing countries, including Ethiopia, a conspicuous gap exists in understanding risk of pesticides and establishing robust regulatory frameworks for their effective management. In this context, we present a detailed assessment of pesticide risks within Ethiopian aquatic ecosystems in at least 18 distinct surface water bodies, including 46 unique sample locations. Measured environmental concentrations (MECs; n = 388) of current-use pesticides (n = 52), sourced from existing field studies, were compared against their respective regulatory threshold levels (RTLs). The results indicated a scarcity of pesticide exposure data across the majority of Ethiopian water bodies situated within agricultural watersheds. Importantly, surface water pesticide concentrations ranged from 0.0001 to 142.66 μg/L, with a median concentration of 0.415 μg/L. The available dataset revealed that 142 out of 356 MECs (approximately 40 %) of the identified pesticides entail significant acute risks to aquatic ecosystems, with the highest RTL exceedances up to a factor of 8695. Among the pesticide use groups, insecticides exhibited the highest exceedance rate, while this was rarer for fungicides and herbicides. Furthermore, a species-specific insecticide risk assessment indicated aquatic invertebrates (54.4 %) and fishes (38.4 %) are more exposed to pesticide risks, attributable to pyrethroids and organophosphates. In conclusion, our findings demonstrate that the presently registered pesticides in Ethiopia carry elevated risks towards aquatic environments under real-world settings. This challenges the notion that pesticides approved through Ethiopian pesticide regulatory risk assessment entail minimal environmental hazards. Consequently, we advocate for the adoption of more refined risk assessment strategies, a post-registration reevaluation process, and, if deemed necessary, the imposition of bans or restrictions on highly toxic pesticides.
Collapse
Affiliation(s)
- Elsai Mati Asefa
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, 235 Harar, Ethiopia; Department of Biology, College of Computational and Natural Science, Hawassa University, 05 Hawassa, Ethiopia.
| | - Mekuria Theshome Mergia
- Department of Biology, College of Computational and Natural Science, Hawassa University, 05 Hawassa, Ethiopia
| | - Shiferaw Ayele
- Department of Biology, College of Computational and Natural Science, Hawassa University, 05 Hawassa, Ethiopia
| | - Yohannes Tefera Damtew
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, 235 Harar, Ethiopia; School of Public Health, The University of Adelaide, Adelaide 5005, Australia
| | - Berhan Mellese Teklu
- Plant Quarantine and Regulatory Lead Executive, Ethiopian Agricultural Authority, 313003 Addis Ababa, Ethiopia
| | - Ermias Deribe Weldemariam
- Department of Environmental Management, Faculty of Urban Development Studies, Kotebe University of Education, 31248 Addis Ababa, Ethiopia
| |
Collapse
|
39
|
García Carriquiry I, Silva V, Raevel F, Harkes P, Osman R, Bentancur O, Fernandez G, Geissen V. Effects of mixtures of herbicides on nutrient cycling and plant support considering current agriculture practices. CHEMOSPHERE 2024; 349:140925. [PMID: 38086451 DOI: 10.1016/j.chemosphere.2023.140925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The use of mixtures of pesticides and consecutive pesticide applications challenge current regulations aimed at protecting ecosystem health due to unpredictable effects of complex and dynamic mixtures. In this study, we tested the ecotoxicological effects of mixtures of herbicides, applied following a real application scheme of soybean production on soil health in a mesocosm experiment. The experiment included two sequential applications; first, glyphosate + dicamba + clethodim, and 30 days later, flumioxazin + metolachlor. Commercial products were used at the recommended doses and at two other concentrations: half and double the recommended dose. Soybean plants were exposed to the herbicide-contaminated soil from the time of sowing to the beginning of pod formation. Half of the plants were harvested at the vegetative stage and the remaining plants at the reproductive stage to evaluate endpoints related to plant support and nutrient cycling. Plant biomass was significantly affected during the vegetative stage at the recommended and double the recommended dose, with the effects being mixture-dose dependent. Lower total and arbuscular colonization of mycorrhizas were also observed in double the recommended dose, and intermediate results were observed for the recommended dose. Nodule mass and phosphorous concentration in plants decreased with increasing herbicide doses. By the end of the experiment, nodule mass and total mycorrhizal colonization were low in the plants treated with double the recommended dose of herbicides. However, both endpoints reached similar values to the control at lower herbicide doses. Plant height and phenology were only lower at double the recommended dose during the experiment. The use of non-standard endpoints evidenced that important soil functions were transiently or permanently affected, while the realistic application scheme accounted for the impact of the management practice currently used. Pesticide risk assessment should therefore, incorporate both issues to effectively protect the ecosystems.
Collapse
Affiliation(s)
- I García Carriquiry
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands; CENUR Litoral Norte, Universidad de la República, Uruguay.
| | - V Silva
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - F Raevel
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - P Harkes
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - R Osman
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - O Bentancur
- Facultad de Agronomía, Universidad de la República, Uruguay
| | - G Fernandez
- Facultad de Agronomía, Universidad de la República, Uruguay
| | - V Geissen
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| |
Collapse
|
40
|
Liang R, Maltby L. Spatial variation in the recovery potential of freshwater macroinvertebrate assemblages: Moving towards spatially defined assemblage vulnerability to chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168402. [PMID: 37939950 DOI: 10.1016/j.scitotenv.2023.168402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The vulnerability of freshwater biodiversity to chemical stressors is dependent on its ability to resist chemical stress and recover from any stress-induced effects. Spatial variation in recovery has the potential to exacerbate or mitigate assemblage vulnerability but this has not been explored in detail. By combining information on assemblage-specific recovery potential with information on assemblage-specific chemical sensitivity, we have demonstrated that the vulnerability of 3307 macroinvertebrate assemblages to 18 different chemicals is spatially dependent and that recovery potential may reduce chemical risk. The recovery potential of each assemblage was quantified based on trait information and landscape factors using a weighted sum method, but it did not consider succession processes. Recovery potential varied by river type with assemblages in mid-altitude siliceous rivers with small catchments in the west of England having the lowest recovery potential. For 17 or the 18 chemicals investigated, there was a positive correlation between the recovery potential and sensitivity and this was strongest for assemblages exposed to metals. More sensitive assemblages had a higher recovery potential and were therefore potentially less vulnerable than would be expected based on sensitivity alone. Assemblages in rivers with small catchments were the most vulnerable to chemical exposure. Furthermore, assemblages with high vulnerability to insecticide exposure were more prevalent in mid-altitude rivers with siliceous geology in the west of England, whereas assemblages with high vulnerability to metals were more prevalent in lowland rivers with calcareous or mixed geology in the midlands. This study: (i) highlights the importance of spatial context in determining the risk of chemical pollution to freshwater biodiversity; (ii) demonstrates how spatial variation in taxonomic composition influences both the internal and external recovery of assemblages and how landscape factors modify trait-based recovery capabilities; (iii) provides the foundations for spatially-defined vulnerability assessment by identifying ecological scenarios for assessing chemical risk.
Collapse
Affiliation(s)
- Ruoyu Liang
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom.
| | - Lorraine Maltby
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| |
Collapse
|
41
|
Lonsdorf EV, Rundlöf M, Nicholson CC, Williams NM. A spatially explicit model of landscape pesticide exposure to bees: Development, exploration, and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168146. [PMID: 37914120 DOI: 10.1016/j.scitotenv.2023.168146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Pesticides represent one of the greatest threats to bees and other beneficial insects in agricultural landscapes. Potential exposure is generated through compound- and crop-specific patterns of pesticide use over space and time and unique degradation behavior among compounds. Realized exposure develops through bees foraging from their nests across the spatiotemporal mosaic of floral resources and associated pesticides throughout the landscape. Despite the recognized importance of a landscape-wide approach to assessing exposure, we lack a sufficiently-evaluated predictive framework to inform mitigation decisions and environmental risk assessment for bees. We address this gap by developing a bee pesticide exposure model that incorporates spatiotemporal pesticide use patterns, estimated rates of pesticide degradation, floral resource dynamics across habitats, and bee foraging movements. We parameterized the model with pesticide use data from a public database containing crop-field- and date-specific records of uses throughout our study region over an entire year. We evaluate the model performance in predicting bee pesticide exposure using a dataset of pesticide residues in pollens gathered by bumble bees (Bombus vosnesenskii) returning to colonies across 14 spatially independent landscapes in Northern California. We applied alternative model formulations of pesticide accumulation and degradation, floral resource seasonality, and bee foraging behavior to evaluate different levels of detail for predicting observed pesticide exposure. Our best model explained 73 % of observed variation in pesticide exposure of bumble bee colonies, with generally positive correlations for the dominant compounds. Timing and location of pesticide use were integral, but more detailed parameterizations of pesticide degradation, floral resources, and bee foraging improved the predictions little if at all. Our results suggest that this approach to predict bees' pesticide exposure has value in extending from the local field scale to the landscape in environmental risk assessment and for exploring mitigation options to support bees in agricultural landscapes.
Collapse
Affiliation(s)
- Eric V Lonsdorf
- Department of Environmental Sciences, 400 Dowman Drive, 5th floor, Math & Science Center, Emory University, Atlanta 30322, GA, United States of America.
| | - Maj Rundlöf
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America; Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Charlie C Nicholson
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America; Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Neal M Williams
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America
| |
Collapse
|
42
|
Mentzel S, Martínez-Megías C, Grung M, Rico A, Tollefsen KE, Van den Brink PJ, Moe SJ. Using a Bayesian Network Model to Predict Risk of Pesticides on Aquatic Community Endpoints in a Rice Field-A Southern European Case Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:182-196. [PMID: 37750580 DOI: 10.1002/etc.5755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assessments (ERAs), because they can better account for uncertainty compared with the simpler approaches commonly used in traditional ERA. We used BNs as metamodels to link various sources of information in a probabilistic framework, to predict the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding the Albufera Natural Park (Valencia, Spain), and considered three selected pesticides: acetamiprid (an insecticide), 2-methyl-4-chlorophenoxyacetic acid (MCPA; a herbicide), and azoxystrobin (a fungicide). The developed BN linked the inputs and outputs of two pesticide models: a process-based exposure model (Rice Water Quality [RICEWQ]), and a probabilistic effects model (Predicts the Ecological Risk of Pesticides [PERPEST]) using case-based reasoning with data from microcosm and mesocosm experiments. The model characterized risk at three levels in a hierarchy: biological endpoints (e.g., molluscs, zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community. The pesticide risk to a biological endpoint was characterized as the probability of an effect for a given pesticide concentration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the group. Likewise, community-level risk was calculated as the joint probability of any of the endpoint groups being affected. This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for the year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to invertebrates (36% risk). In contrast, herbicide-related risk to the community (63%) resulted from risk to both plants (35%) and invertebrates (38%); the latter might represent (in the present study) indirect effects of toxicity through the food chain. This novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different components of aquatic ecosystems. Environ Toxicol Chem 2024;43:182-196. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Sophie Mentzel
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Claudia Martínez-Megías
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
- Water Institute, Madrid Institute for Advanced Studies, Parque Científico Tecnológico de la Universidad de Alcalá, Alcalá de Henares, Spain
| | - Merete Grung
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Andreu Rico
- Water Institute, Madrid Institute for Advanced Studies, Parque Científico Tecnológico de la Universidad de Alcalá, Alcalá de Henares, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Knut Erik Tollefsen
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Paul J Van den Brink
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - S Jannicke Moe
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| |
Collapse
|
43
|
Fu F, Sun Y, Yang D, Zhao L, Li X, Weng L, Li Y. Combined pollution and soil microbial effect of pesticides and microplastics in greenhouse soil of suburban Tianjin, Northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122898. [PMID: 37944885 DOI: 10.1016/j.envpol.2023.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Current-used pesticides (CUPs) and plastic films are essential materials used in greenhouse cultivation, which can lead to the residual accumulation of CUPs and microplastics (MPs) over time. The impact of CUPs and MPs on soil quality and food safety cannot be overlooked. However, the combined pollution resulting from CUPs and MPs in greenhouse soil remains poorly understood. In this study, we conducted a survey at 30 greenhouse sites in the Wuqing District of Tianjin, China, to investigate the pollution levels and characteristics of CUPs and MPs using QuEChERS combined with LC-MS/MS, and density extraction, 30% H2O2 digestion and micro-fourier transform infrared spectroscopy, respectively. Additionally, we aimed to evaluate the interactions among these two pollutants, soil physicochemical properties, and the bacterial community in the soil. CUPs were frequently detected in the examined soil samples; however, they posed no significant ecological risks due to their low levels. Furthermore, MPs, which predominantly comprised fragmented and fibrous polyethylene (PE) and polypropylene (PP) particles smaller than 1.0 mm, could potentially degrade into nanoplastics, which might subsequently enter the food chain and pose a serious threat to human health. We observed no substantial correlations between CUPs and MPs, except for a negative correlation between dimethomorph and film MPs. The soil pH and total organic carbon (TOC) exhibited interactions with both types of pollutants, whereas soil clay content (CC) only correlated with CUPs, and soil available nitrogen (AN) only correlated with MPs. The variability of soil bacterial communities among the 30 sampling sites was minimal, with the dominant genus being Bacillus. Soil pH, TOC, and CC collectively exerted a strong influence on the microbial community across all samples; however, the effects of CUPs and MPs on the soil microbial structure were marginal. These results contribute to a comprehensive understanding of the environmental stress and ecological risks associated with the combined pollution of CUPs and MPs.
Collapse
Affiliation(s)
- Furong Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Dan Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
44
|
Huang X, Luo J, Cao H, Wang A, Zhou F, Liu F, Li B, Mu W, Zhang Y. A multidimensional optimization strategy of pyraclostrobin-loaded microcapsules to improve the selectivity between toxicological risk in zebrafish and efficacy in controlling rice blast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166587. [PMID: 37659543 DOI: 10.1016/j.scitotenv.2023.166587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Developing microcapsules (MCs) delivery systems can effectively mitigate toxicological risk of highly active/toxic pesticides; whereas the controlled release functions also limiting their practical effectiveness. Therefore, designing a precise regulating strategy to balance the toxicity and bioactivity of MCs is urgently needed. Here, we prepared a series of pyraclostrobin-loaded MCs with different wall materials, particle sizes, core density and shell compactness using interfacial polymerization. The results showed that the MCs released more slowly in water with increasing particle sizes and capsule compactness, and they sunk more quickly with the increasing particle sizes and core density. Additionally, MCs with slower release speed was always accompanied with lower acute toxicity levels to zebrafish. When the release dynamics slowed down to the threshold dose on demand for disease control, facilitating settlement of MCs can further reduce toxicity within spatial and temporal dimensions. The poor accumulation of MCs with larger particle sizes or dense shell in gills was closely related to their efficient detoxification. Importantly, seven of the MCs samples possessed superior selectivity between bio-performance in controlling rice blast and toxicological hazard to fish compared to commercial formulations. The results provide a comprehensive guidance for developing an efficient and safe pesticide delivery system.
Collapse
Affiliation(s)
- Xueping Huang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230001, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haichao Cao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Aiping Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengyan Zhou
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230001, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yong Zhang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230001, PR China.
| |
Collapse
|
45
|
Fischer LR, Ramesh D, Weidenmüller A. Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166097. [PMID: 37562619 DOI: 10.1016/j.scitotenv.2023.166097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The worldwide decline in pollinating insects is alarming. One of the main anthropogenic drivers is the massive use of pesticides in agriculture. Risk assessment procedures test pesticides for mortality rates of well-fed, parasite free individuals of a few non-target species. Sublethal and synergistic effects of co-occurring stressors are usually not addressed. Here, we present a simple, wildly applicable bio-essay to assess such effects. Using brood thermoregulation in bumblebee microcolonies as readout, we investigate how this collective ability is affected by long-term feeding exposure to the herbicide glyphosate (5 mg/l), the insecticide flupyradifurone (0.4 mg/l) and the combination of both, when co-occurring with the natural stressor of resource limitation. Documenting brood temperature and development in 53 microcolonies we find no significant effect of glyphosate, while flupyradifurone significantly impaired the collective ability to maintain the necessary brood temperatures, resulting in prolonged developmental times and a decrease in colony growth by over 50 %. This reduction in colony growth has the potential to significantly curtail the reproductive chances of colonies in the field. Our findings highlight the potentially devastating consequences of flupyradifurone use in agriculture even at sub-lethal doses and underline the urgent need for improved risk assessment procedures.
Collapse
Affiliation(s)
- Liliana R Fischer
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; School of Biological Sciences, University of East Anglia, UK.
| | - Divya Ramesh
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| |
Collapse
|
46
|
Tadei R, Menezes-Oliveira VB, Silva CI, Mathias da Silva EC, Malaspina O. Sensitivity of the Neotropical Solitary Bee Centris analis F. (Hymenoptera, Apidae) to the Reference Insecticide Dimethoate for Pesticide Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2758-2767. [PMID: 37638658 DOI: 10.1002/etc.5738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Currently, only Apis mellifera is used in environmental regulation to evaluate the hazard of pesticides to pollinators. The low representativeness of pollinators and bee diversity in this approach may result in insufficient protection for the wild species. This scenario is intensified in tropical environments, where little is known about the effects of pesticides on solitary bees. We aimed to calculate the medium lethal dose (LD50) and medium lethal concentration (LC50) of the insecticide dimethoate in the Neotropical solitary bee Centris analis, a cavity-nesting, oil-collecting bee distributed from Brazil to Mexico. Males and females of C. analis were exposed orally to dimethoate for 48 h under laboratory conditions. Lethality was assessed every 24 h until 144 h after the beginning of the test. After the LD50 calculation, we compared the value with available LD50 values in the literature of other bee species using the species sensitivity distribution curve. In 48 h of exposure, males showed an LD50 value 1.33 times lower than females (32.78 and 43.84 ng active ingredient/bee, respectively). Centris analis was more sensitive to dimethoate than the model species A. mellifera and the solitary bee from temperate zones, Osmia lignaria. However, on a body weight basis, C. analis and A. mellifera had similar LD50 values. Ours is the first study that calculated an LD50 for a Neotropical solitary bee. Besides, the results are of crucial importance for a better understanding of the effects of pesticides on the tropical bee fauna and will help to improve the risk assessment of pesticides to bees under tropical conditions, giving attention to wild species, which are commonly neglected. Environ Toxicol Chem 2023;42:2758-2767. © 2023 SETAC.
Collapse
Affiliation(s)
- Rafaela Tadei
- Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
- Department of Environmental Sciences, Federal University of São Carlos, Sorocaba, Brazil
| | - Vanessa B Menezes-Oliveira
- Course Coordination on Environmental Engineering, Federal University of Tocantins, Palmas, Tocantins, Brazil
| | - Claudia I Silva
- Consultoria Inteligente em Serviços Ecossistêmicos, Sorocaba, Brazil
| | | | - Osmar Malaspina
- Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
47
|
Li Y, Feng F, Mu Q, Li M, Ma L, Wan Q, Jousset A, Liu C, Yu X. Foliar Spraying of Chlorpyrifos Triggers Plant Production of Linolenic Acid Recruiting Rhizosphere Bacterial Sphingomonas sp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17312-17323. [PMID: 37907425 DOI: 10.1021/acs.est.3c04593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Plants have developed an adaptive strategy for coping with biotic or abiotic stress by recruiting specific microorganisms from the soil pool. Recent studies have shown that the foliar spraying of pesticides causes oxidative stress in plants and leads to changes in the rhizosphere microbiota, but the mechanisms by which these microbiota change and rebuild remain unclear. Herein, we provide for the first-time concrete evidence that rice plants respond to the stress of application of the insecticide chlorpyrifos (CP) by enhancing the release of amino acids, lipids, and nucleotides in root exudates, leading to a shift in rhizosphere bacterial community composition and a strong enrichment of the genus Sphingomonas sp. In order to investigate the underlying mechanisms, we isolated a Sphingomonas representative isolate and demonstrated that it is both attracted by and able to consume linolenic acid, one of the root exudates overproduced after pesticide application. We further show that this strain selectively colonizes roots of treated plants and alleviates pesticide stress by degrading CP and releasing plant-beneficial metabolites. These results indicate a feedback loop between plants and their associated microbiota allowing to respond to pesticide-induced stress.
Collapse
Affiliation(s)
- Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Fayun Feng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qi'er Mu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Mei Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Liya Ma
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Alexandre Jousset
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
48
|
Nouvian M, Foster JJ, Weidenmüller A. Glyphosate impairs aversive learning in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165527. [PMID: 37451452 DOI: 10.1016/j.scitotenv.2023.165527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Agrochemicals represent prominent anthropogenic stressors contributing to the ongoing global insect decline. While their impact is generally assessed in terms of mortality rates, non-lethal effects on fitness are equally important to insect conservation. Glyphosate, a commonly used herbicide, is toxic to many animal species, and thought to impact a range of physiological functions. In this study, we investigate the impact of long-term exposure to glyphosate on locomotion, phototaxis and learning abilities in bumblebees, using a fully automated high-throughput assay. We find that glyphosate exposure had a very slight and transient impact on locomotion, while leaving the phototactic drive unaffected. Glyphosate exposure also reduced attraction towards UV light when blue was given as an alternative and, most strikingly, impaired learning of aversive stimuli. Thus, glyphosate had specific actions on sensory and cognitive processes. These non-lethal perceptual and cognitive impairments likely represent a significant obstacle to foraging and predator avoidance for wild bumblebees exposed to glyphosate. Similar effects in other species could contribute to a widespread reduction in foraging efficiency across ecosystems, driven by the large-scale application of this herbicide. The high-throughput paradigm presented in this study can be adapted to investigate sublethal effects of other agrochemicals on bumblebees or other important pollinator species, opening up a critical new avenue for the study of anthropogenic stressors.
Collapse
Affiliation(s)
- Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany.
| | - James J Foster
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
50
|
Buddendorf WB, Wipfler L, Beltman W, Baveco H, Braakhekke MC, Bub S, Gergs A, Schad T. Aquatic Risks at the Landscape Scale: A Case Study for Pyrethroid Use in Pome Fruit Orchards in Belgium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15608-15616. [PMID: 37796045 PMCID: PMC10586366 DOI: 10.1021/acs.est.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Procedures for environmental risk assessment for pesticides are under continuous development and subject to debate, especially at higher tier levels. Spatiotemporal dynamics of both pesticide exposure and effects at the landscape scale are largely ignored, which is a major flaw of the current risk assessment system. Furthermore, concrete guidance on risk assessment at landscape scales in the regulatory context is lacking. In this regard, we present an integrated modular simulation model system that includes spatiotemporally explicit simulation of pesticide application, fate, and effects on aquatic organisms. As a case study, the landscape model was applied to the Rummen, a river catchment in Belgium with a high density of pome fruit orchards. The application of a pyrethroid to pome fruit and the corresponding drift deposition on surface water and fate dynamics were simulated. Risk to aquatic organisms was quantified using a toxicokinetic/toxicodynamic model for individual survival at different levels of spatial aggregation, ranging from the catchment scale to individual stream segments. Although the derivation of landscape-scale risk assessment end points from model outputs is straightforward, a dialogue within the community, building on concrete examples as provided by this case study, is urgently needed in order to decide on the appropriate end points and on the definition of representative landscape scenarios for use in risk assessment.
Collapse
Affiliation(s)
- Willem B. Buddendorf
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Louise Wipfler
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Wim Beltman
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Hans Baveco
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | | | - Sascha Bub
- iES Landau, Institute for Environmental
Sciences, University of Kaiserslautern-Landau
(RPTU), Fortstraße 7, D-76829 Landau, Germany
| | - André Gergs
- Research
& Development, Crop Science, Environmental Modelling, Bayer AG, 40789 Monheim, Germany
| | - Thorsten Schad
- Research
& Development, Crop Science, Environmental Modelling, Bayer AG, 40789 Monheim, Germany
| |
Collapse
|