1
|
Zhu Y, Gao Z, Feng X, Hu Y, Liu N, Liu C, Yang Q, Zou Q, Li M, Song G, He Y. Comprehensive preclinical characterization of IPB29, a pan-coronavirus fusion inhibitor under clinical trials. Antiviral Res 2025; 237:106154. [PMID: 40158858 DOI: 10.1016/j.antiviral.2025.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
IPB29 is a lipopeptide-based coronavirus fusion inhibitor with the potent, broad-spectrum antiviral activity, and it has already been advanced to phase III clinical trials for the treatment of SARS-CoV-2 infection. We recently reported its design strategy and initial preclinical characterization; herein, we focused on characterizing its efficacies against newly-emerged Omicron variants, as well as its chronic general toxicity, toxicokinetics, immunogenicity, and reproductive toxicity in animal models. As anticipated, IPB29 demonstrated improved activity in inhibiting JN.1 and KP.2 variants, effectively blocking cell fusion and pseudovirus infections. Nebulized inhalation of IPB29 exhibited high therapeutic efficacy against live BA.5 and EG.5.1 infections in Syrian hamsters. The 26-week toxicity studies revealed that nebulized IPB29 has a favorable safety profile, with well-characterized toxicokinetics in SD rats and Beagle dogs. Notably, short-term nebulization of IPB29 did not elicit anti-drug antibody (ADA) responses in either species. However, IPB29-specific antibodies were detected after long-term administration. Finally, a three-stage reproductive toxicity study in SD rats indicated that IPB29 had no significant toxic effects on fertility, embryo-fetal development, or the development of offspring. In summary, our findings demonstrate that IPB29 is a safe and effective SARS-CoV-2 inhibitor with promising potential for clinical applications.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhongcai Gao
- Research Institute of Youcare Pharmaceutical Group Co., Ltd., Beijing, 100176, China
| | - Xiaoli Feng
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chao Liu
- Research Institute of Youcare Pharmaceutical Group Co., Ltd., Beijing, 100176, China
| | - Qiaojiang Yang
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Qingcui Zou
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Minghua Li
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Gengshen Song
- Research Institute of Youcare Pharmaceutical Group Co., Ltd., Beijing, 100176, China.
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Zhang C, Sun Y, Hu P. An interpretable deep geometric learning model to predict the effects of mutations on protein-protein interactions using large-scale protein language model. J Cheminform 2025; 17:35. [PMID: 40119464 PMCID: PMC11927297 DOI: 10.1186/s13321-025-00979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Protein-protein interactions (PPIs) are central to the mechanisms of signaling pathways and immune responses, which can help us understand disease etiology. Therefore, there is a significant need for efficient and rapid automated approaches to predict changes in PPIs. In recent years, there has been a significant increase in applying deep learning techniques to predict changes in binding affinity between the original protein complex and its mutant variants. Particularly, the adoption of graph neural networks (GNNs) has gained prominence for their ability to learn representations of protein-protein complexes. However, the conventional GNNs have mainly concentrated on capturing local features, often disregarding the interactions among distant elements that hold potential important information. In this study, we have developed a transformer-based graph neural network to extract features of the mutant segment from the three-dimensional structure of protein-protein complexes. By embracing both local and global features, the approach ensures a more comprehensive understanding of the intricate relationships, thus promising more accurate predictions of binding affinity changes. To enhance the representation capability of protein features, we incorporate a large-scale pre-trained protein language model into our approach and employ the global protein feature it provides. The proposed model is shown to be able to predict the mutation changes in binding affinity with a root mean square error of 1.10 and a Pearson correlation coefficient of near 0.71, as demonstrated by performance on test and validation cases. Our experiments on all five datasets, including both single mutant and multiple mutant cases, demonstrate that our model outperforms four state-of-the-art baseline methods, and the efficacy was subjected to comprehensive experimental evaluation. Our study introduces a transformer-based graph neural network approach to accurately predict changes in protein-protein interactions (PPIs). By integrating local and global features and leveraging pretrained protein language models, our model outperforms state-of-the-art methods across diverse datasets. The results of this study can provide new views for studying immune responses and disease etiology related to protein mutations. Furthermore, this approach may contribute to other biological or biochemical studies related to PPIs.Scientific contribution Our scientific contribution lies in the development of a novel transformer-based graph neural network tailored to predict changes in protein-protein interactions (PPIs) with excellent accuracy. By seamlessly integrating both local and global features extracted from the three-dimensional structure of protein-protein complexes, and leveraging the rich representations provided by pretrained protein language models, our approach surpasses existing methods across diverse datasets. Our findings may offer novel insights for the understanding of complex disease etiology associated with protein mutations. The novel tool can be applicable to various biological and biochemical investigations involving protein mutations.
Collapse
Affiliation(s)
- Caiya Zhang
- Department of Computer Science, Western University, London, ON, Canada
| | - Yan Sun
- Department of Computer Science, Western University, London, ON, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry, Western University, London, ON, Canada
| | - Pingzhao Hu
- Department of Computer Science, Western University, London, ON, Canada.
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada.
- Department of Biochemistry, Western University, London, ON, Canada.
- Department of Oncology, Western University, London, ON, Canada.
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.
- The Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
3
|
Chakraborty S, Nguyen KN, Zhao M, Gnanakaran S. Allosteric Control and Glycan Shielding Adaptations in the SARS-CoV-2 Spike from Early to Peak Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642723. [PMID: 40161746 PMCID: PMC11952406 DOI: 10.1101/2025.03.11.642723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The SARS-CoV-2 Spike glycoprotein is central to viral infectivity and immune evasion, making it a key target for vaccine and therapeutic design. This trimeric peplomer undergoes dynamic conformational changes, particularly in its Receptor Binding Domain (RBD), which transitions between closed (down) and ACE2-accessible (up) states relative to the rest of the protein, to facilitate host cell entry. Structural understanding of such critical inter-domain motions, as well as epitope exposure quantification, is essential for obtaining an effective molecular handle over this protein and, in turn, exploiting it towards improved immunogen development. Focusing on the early circulating D614G form and the later emerging Delta (B.1.617.2) variant with higher virulence, we performed large-scale molecular dynamics simulations of the soluble form of the Spike in both 'down' and 'up' conformations of the RBD. Guided by differences in overall fluctuations, we described reaction coordinates based on domain rotations and tilting to extract features that distinguish D614G versus Delta structural behavior of the N-terminal Domain (NTD) and RBD. Using reaction coordinate analysis and Principal Component Analysis (PCA), we identify allosteric coupling between the N-terminal Domain (NTD) and RBD, where NTD tilting influences RBD gating. While some of these motions are conserved across variants, Delta exhibits an optimized RBD-gating mechanism that enhances ACE2 accessibility. Additionally, glycan remodeling in Delta enhances shielding at the NTD supersite, contributing to reduced sensitivity to neutralizing antibodies. Finally, we uncover the impact of the D950N mutation in the HR1 region, which modulates downstream Spike dynamics and immune evasion. Together, our findings reveal variant-specific and conserved structural determinants of SARS-CoV-2 Spike function, providing a mechanistic basis for allosteric modulation, glycan-mediated immune evasion, and viral adaptation. These insights offer valuable guidance for rational vaccine and therapeutic design against SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | | | - Mingfei Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
4
|
Mougari S, Favède V, Predella C, Reynard O, Durand S, Mazelier M, Pizzioli E, Decimo D, Bovier FT, Lapsley LM, Castagna C, Lieberman NAP, Noel G, Mathieu C, Malissen B, Briese T, Greninger AL, Alabi CA, Dorrello NV, Marot S, Marcelin AG, Zarubica A, Moscona A, Porotto M, Horvat B. Intranasally administrated fusion-inhibitory lipopeptides block SARS-CoV-2 infection in mice and enable long-term protective immunity. Commun Biol 2025; 8:57. [PMID: 39814955 PMCID: PMC11735783 DOI: 10.1038/s42003-025-07491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
We have assessed antiviral activity and induction of protective immunity of fusion-inhibitory lipopeptides derived from the C-terminal heptad-repeat domain of SARS-CoV-2 spike glycoprotein in transgenic mice expressing human ACE2 (K18-hACE2). The lipopeptides block SARS-CoV-2 infection in cell lines and lung-derived organotypic cultures. Intranasal administration in mice allows the maintenance of homeostatic transcriptomic immune profile in lungs, prevents body-weight loss, decreases viral load and shedding, and protects mice from death caused by SARS-CoV-2 variants. Prolonged administration of high-dose lipopeptides has neither adverse effects nor impairs peptide efficacy in subsequent SARS-CoV-2 challenges. The peptide-protected mice develop cross-reactive neutralizing antibodies against both SARS-CoV-2 used for the initial infection and recently circulating variants, and are completely protected from a second lethal infection, suggesting that they developed SARS-CoV-2-specific immunity. This strategy provides an additional antiviral approach in the global effort against COVID-19 and may contribute to development of rapid responses against emerging pathogenic viruses.
Collapse
Affiliation(s)
- Said Mougari
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Valérie Favède
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Département du Rhône, Lyon, France
| | - Camilla Predella
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Chemistry, Materials and Chemical Engineering "G. Natta and Department of Electronics, Information and Bioengineering, Politecnico of Milan, Milan, Italy
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stephanie Durand
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magalie Mazelier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Didier Decimo
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Francesca T Bovier
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren M Lapsley
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Candace Castagna
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Guillaume Noel
- Institut Claude Bourgelat, VetAgro Sup, Marcy l'Etoile, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bernard Malissen
- Centre d'Immunophénomique, Aix Marseille Université, Inserm, CNRS, PHENOMIN, Celphedia, Marseille, France
| | - Thomas Briese
- Center for Infection and Immunity and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - N Valerio Dorrello
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Stéphane Marot
- Sorbonne Université, Virology department, Pitié-Salpêtrière hospital, AP-HP, Pierre Louis Epidemiology and Public Health institute, INSERM 1136, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, Virology department, Pitié-Salpêtrière hospital, AP-HP, Pierre Louis Epidemiology and Public Health institute, INSERM 1136, Paris, France
| | - Ana Zarubica
- Centre d'Immunophénomique, Aix Marseille Université, Inserm, CNRS, PHENOMIN, Celphedia, Marseille, France
| | - Anne Moscona
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology & Immunology and Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matteo Porotto
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Caserta, Italy.
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
5
|
Kim TH, Bae S, Myoung J. Differential Impact of Spike Protein Mutations on SARS-CoV-2 Infectivity and Immune Evasion: Insights from Delta and Kappa Variants. J Microbiol Biotechnol 2024; 34:2506-2515. [PMID: 39631784 PMCID: PMC11733546 DOI: 10.4014/jmb.2411.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
SARS-CoV-2 continues to pose a global health challenge due to its high transmissibility and mutability, with new variants emerging that potentially undermine vaccination and therapeutic efforts. Mutations in the spike protein, particularly in the receptor-binding domain (RBD), significantly influence viral transmissibility and immune escape. However, the complex interplay of these mutations and their combined effects on viral fitness remain to be analyzed. In this study, we investigated the functional impact of key mutations found in the Delta and Kappa variants of SARS-CoV-2. Using pseudovirus assays, we demonstrated that the T478K and L452R mutations characteristic of the Delta variant primarily enhance viral infectivity, with minimal effect on antibody-mediated neutralization. Conversely, the E484Q mutation of the Kappa variant, alone or in combination with L452R, significantly improved evasion of antibody-mediated neutralization but appeared to compromise viral fitness and infectivity. Notably, contrary to previous reports, we found that the P681R mutation contributed neither to increased infectivity nor immune evasion at least in the assay system employed in this study. Our findings suggest that the Delta variant's global dominance over the Kappa variant may be attributed to its superior infectivity and transmissibility rather than enhanced immune evasion capabilities. These results provide valuable insights into the functional consequences of spike protein mutations and may aid in predicting the emergence and spread of future SARS-CoV-2 variants. Such understanding is crucial for enhancing public health preparedness and informing the development of next-generation vaccines and therapeutics.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
6
|
Lyukmanova EN, Pichkur EB, Nolde DE, Kocharovskaya MV, Manuvera VA, Shirokov DA, Kharlampieva DD, Grafskaia EN, Svetlova JI, Lazarev VN, Varizhuk AM, Kirpichnikov MP, Shenkarev ZO. Structure and dynamics of the interaction of Delta and Omicron BA.1 SARS-CoV-2 variants with REGN10987 Fab reveal mechanism of antibody action. Commun Biol 2024; 7:1698. [PMID: 39719448 DOI: 10.1038/s42003-024-07422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody. S-protein adopts "two RBD-down and one RBD-up" conformation. Fab interacts with RBDs in both conformations, blocking the recognition of angiotensin converting enzyme-2. Three-dimensional variability analysis reveals high mobility of the RBD/Fab regions. Interaction of REGN10987 with Wuhan, Delta, Omicron BA.1, and mutated variants of RBDs is analyzed by microscale thermophoresis, molecular dynamics simulations, and ΔG calculations with umbrella sampling and one-dimensional potential of mean force. Variability in molecular dynamics trajectories results in a large scatter of calculated ΔG values, but Boltzmann weighting provides an acceptable correlation with experiment. REGN10987 evasion of the Omicron variant is found to be due to the additive effect of the N440K and G446S mutations located at the RBD/Fab binding interface with a small effect of Q498R mutation. Our study explains the influence of known-to-date SARS-CoV-2 RBD mutations on REGN10987 recognition and highlights the importance of dynamics data beyond the static structure of the RBD/Fab complex.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny B Pichkur
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitriy A Shirokov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina N Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Julia I Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vassili N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Nan X, Li Y, Zhang R, Wang R, Lv N, Li J, Chen Y, Zhou B, Wang Y, Wang Z, Zhu J, Chen J, Li J, Chen W, Zhang Q, Shi X, Zhao C, Chen C, Liu Z, Zhao Y, Liu D, Wang X, Yan LT, Li T, Zhang L, Yang YR. Exploring distinct modes of inter-spike cross-linking for enhanced neutralization by SARS-CoV-2 antibodies. Nat Commun 2024; 15:10578. [PMID: 39632831 PMCID: PMC11618796 DOI: 10.1038/s41467-024-54746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its Omicron subvariants drastically amplifies transmissibility, infectivity, and immune escape, mainly due to their resistance to most neutralizing antibodies. Thus, exploring the mechanisms underlying antibody evasion is crucial. Although the full-length native form of antibody, immunoglobulin G (IgG), offers valuable insights into the neutralization, structural investigations primarily focus on the fragment of antigen-binding (Fab). Here, we employ single-particle cryo-electron microscopy (cryo-EM) to characterize a W328-6H2 antibody, in its native IgG form complexed with severe acute respiratory syndrome (SARS), severe acute respiratory syndrome coronavirus 2 wild-type (WT) and Omicron variant BA.1 spike protein (S). Three high-resolution structures reveal that the full-length IgG forms a centered head-to-head dimer of trimer when binds fully stoichiometrically with both SARS and WT S, while adopting a distinct offset configuration with Omicron BA.1 S. Combined with functional assays, our results suggest that, beyond the binding affinity between the RBD epitope and Fab, the higher-order architectures of S trimer and full-length IgG play an additional role in neutralization, enriching our understanding of enhanced neutralization by SARS-CoV-2 antibodies.
Collapse
Grants
- 22277017, 92169205, 82241072, 82150205, and 32270983 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China (2022YFA1206400), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0770000), National Key Plan for Scientific Research and Development of China (2022YFF1203100, 2021YFC0864500,2022YFC2604100,2022YFC2303400 and 2023YFC3043300), the Wanke Scientific Research Program (20221080056), Special Research Fund for the Central High-level Hospitals of Peking Union Medical College Hospital (2022-PUMCH-D-008), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2021-I2M-1-037), National Key Technologies R&D Program for the 13th Five-year Plan (2017ZX10202101-001), CAMS Innovation Fund for Medical Sciences (CIFMS 2019-I2M-5-018),Tencent Foundation, Shuidi Foundation, and TH Capital for financial support.
Collapse
Affiliation(s)
- Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Rui Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruoke Wang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Niannian Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfang Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Jing Chen
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinqian Li
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Wenlong Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Zhihua Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
- Center for AIDS Research, Chinese Academy of Medical Sciences, Beijing, China.
| | - Linqi Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Ke Z, Peacock TP, Brown JC, Sheppard CM, Croll TI, Kotecha A, Goldhill DH, Barclay WS, Briggs JAG. Virion morphology and on-virus spike protein structures of diverse SARS-CoV-2 variants. EMBO J 2024; 43:6469-6495. [PMID: 39543395 PMCID: PMC11649927 DOI: 10.1038/s44318-024-00303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
The evolution of SARS-CoV-2 variants with increased fitness has been accompanied by structural changes in the spike (S) proteins, which are the major target for the adaptive immune response. Single-particle cryo-EM analysis of soluble S protein from SARS-CoV-2 variants has revealed this structural adaptation at high resolution. The analysis of S trimers in situ on intact virions has the potential to provide more functionally relevant insights into S structure and virion morphology. Here, we characterized B.1, Alpha, Beta, Gamma, Delta, Kappa, and Mu variants by cryo-electron microscopy and tomography, assessing S cleavage, virion morphology, S incorporation, "in-situ" high-resolution S structures, and the range of S conformational states. We found no evidence for adaptive changes in virion morphology, but describe multiple different positions in the S protein where amino acid changes alter local protein structure. Taken together, our data are consistent with a model where amino acid changes at multiple positions from the top to the base of the spike cause structural changes that can modulate the conformational dynamics of the S protein.
Collapse
Affiliation(s)
- Zunlong Ke
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
- The Pirbright Institute, Woking, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Altos Labs, Cambridge, UK
| | - Abhay Kotecha
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
9
|
Yoshida N, Thomas JR, Appios A, Brember MP, Aye IL, Edgar JR, Firth AE, Chung BY, McGovern N, Stewart H. Human placental cells are resistant to SARS-CoV-2 infection and replication. Wellcome Open Res 2024; 9:209. [PMID: 39640372 PMCID: PMC11617822 DOI: 10.12688/wellcomeopenres.20514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Infection during pregnancy with SARS-CoV-2 can have a serious impact on both maternal and foetal health. Clinical studies have shown that SARS-CoV-2 transmission from the mother to the foetus typically does not occur. However, there is evidence that SARS-CoV-2 can infect the placenta in utero. Here we sought to quantify the permissiveness of placental cells to SARS-CoV-2 infection and to determine if they support viral release. Methods By using publicly available single-cell RNA sequencing (scRNAseq) data sets and confocal microscopy we compared ACE2 transcript and protein expression across human first trimester and term placental cells. We also used in vitro infection assays to quantify the infection rates of a range of placenta-derived cells. Finally, we quantified the viral egress from these cells. Results ACE2 transcripts are found in a range of placental cell types across gestation, including trophoblast. However, ACE2 protein expression does not significantly change across placental cell types from first trimester to term. We find that 0.5±0.15 % of term trophoblast cells can be infected with SARS-CoV-2 while primary placental fibroblasts and macrophages, and JEG-3, JAR and HUVEC cell lines are resistant to infection. Furthermore, primary trophoblast cells poorly support viral release while JEG-3 cells allow relatively high levels of viral release. Conclusions The low level of viral release by primary placental cells provides insight into how the virus is impaired from crossing the placenta to the foetus.
Collapse
Affiliation(s)
- Nagisa Yoshida
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Jake R. Thomas
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Anna Appios
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Matthew P. Brember
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Irving L.M.H. Aye
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, England, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Betty Y.W. Chung
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
10
|
Schillings J, Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. Pomotrelvir and Nirmatrelvir Binding and Reactivity with SARS-CoV-2 Main Protease: Implications for Resistance Mechanisms from Computations. Angew Chem Int Ed Engl 2024; 63:e202409527. [PMID: 38959351 DOI: 10.1002/anie.202409527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
We investigate the inhibition mechanism between pomotrelvir and the SARS-CoV-2 main protease using molecular mechanics and quantum mechanics/molecular mechanics simulations. Alchemical transformations where each Pi group of pomotrelvir was transformed into its counterpart in nirmatrelvir were performed to unravel the individual contribution of each group to the binding and reaction processes. We have shown that while a γ-lactam ring is preferred at position P1, a δ-lactam ring is a good alternative for the design of inhibitors for variants presenting mutations at position 166. For the P2 position, tertiary amines are preferred with respect to secondary amines. Flexible side chains at the P2 position can disrupt the preorganization of the active site, favouring the exploration of non-reactive conformations. The substitution of the P2 group of pomotrelvir by that of nirmatrelvir resulted in a compound, named as C2, that presents a better binding free energy and a higher population of reactive conformations in the Michaelis complex. Analysis of the chemical reaction to form the covalent complex has shown a similar reaction mechanism and activation free energies for pomotrelvir, nirmatrelvir and C2. We hope that these findings could be useful to design better inhibitors to fight present and future variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Johanna Schillings
- Departamento de Química Física, Universitat de València, 46100, Burjassot, Spain
| | - Carlos A Ramos-Guzmán
- Departamento de Química Física, Universitat de València, 46100, Burjassot, Spain
- Instituto de Materiales Avanzados, Universidad Jaume I, 12071, Castelló, Spain
| | - J Javier Ruiz-Pernía
- Departamento de Química Física, Universitat de València, 46100, Burjassot, Spain
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de València, 46100, Burjassot, Spain
| |
Collapse
|
11
|
Zhu Y, Gao Z, Feng X, Cheng L, Liu N, Liu C, Han S, Yang Q, Zou Q, Chong H, Zhang Z, Li M, Song G, He Y. Development of potent pan-coronavirus fusion inhibitors with a new design strategy. MedComm (Beijing) 2024; 5:e666. [PMID: 39070180 PMCID: PMC11283584 DOI: 10.1002/mco2.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024] Open
Abstract
Development of potent and broad-spectrum drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains one of the top priorities, especially in the cases of the emergence of mutant viruses and inability of current vaccines to prevent viral transmission. In this study, we have generated a novel membrane fusion-inhibitory lipopeptide IPB29, which is currently under clinical trials; herein, we report its design strategy and preclinical data. First, we surprisingly found that IPB29 with a rigid linker between the peptide sequence and lipid molecule had greatly improved α-helical structure and antiviral activity. Second, IPB29 potently inhibited a large panel of SARS-CoV-2 variants including the previously and currently circulating viruses, such as Omicron XBB.5.1 and EG.5.1. Third, IPB29 could also cross-neutralize the bat- and pangolin-isolated SARS-CoV-2-related CoVs (RatG13, PCoV-GD, and PCoV-GX) and other human CoVs (SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229E). Fourth, IPB29 administrated as an inhalation solution (IPB29-IS) in Syrian hamsters exhibited high therapeutic and preventive efficacies against SARS-CoV-2 Delta or Omicron variant. Fifth, the pharmacokinetic profiles and safety pharmacology of IPB29-IS were extensively characterized, providing data to support its evaluation in humans. In conclusion, our studies have demonstrated a novel design strategy for viral fusion inhibitors and offered an ideal drug candidate against SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhongcai Gao
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Xiaoli Feng
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Lin Cheng
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated Hospital, School of Medicine, Southern University of Science and TechnologyShenzhenGuangdongChina
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Liu
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Shaowei Han
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Qiaojiang Yang
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Qingcui Zou
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Zhang
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated Hospital, School of Medicine, Southern University of Science and TechnologyShenzhenGuangdongChina
| | - Minghua Li
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Gengshen Song
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Exploring conformational landscapes and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variant complexes with the ACE2 receptor using AlphaFold2-based structural ensembles and molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:17720-17744. [PMID: 38869513 DOI: 10.1039/d4cp01372g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamics (MD) simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and MD simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and MD simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
14
|
An K, Yang X, Luo M, Yan J, Xu P, Zhang H, Li Y, Wu S, Warshel A, Bai C. Mechanistic study of the transmission pattern of the SARS-CoV-2 omicron variant. Proteins 2024; 92:705-719. [PMID: 38183172 PMCID: PMC11059747 DOI: 10.1002/prot.26663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) characterized by 30 mutations in its spike protein, has rapidly spread worldwide since November 2021, significantly exacerbating the ongoing COVID-19 pandemic. In order to investigate the relationship between these mutations and the variant's high transmissibility, we conducted a systematic analysis of the mutational effect on spike-angiotensin-converting enzyme-2 (ACE2) interactions and explored the structural/energy correlation of key mutations, utilizing a reliable coarse-grained model. Our study extended beyond the receptor-binding domain (RBD) of spike trimer through comprehensive modeling of the full-length spike trimer rather than just the RBD. Our free-energy calculation revealed that the enhanced binding affinity between the spike protein and the ACE2 receptor is correlated with the increased structural stability of the isolated spike protein, thus explaining the omicron variant's heightened transmissibility. The conclusion was supported by our experimental analyses involving the expression and purification of the full-length spike trimer. Furthermore, the energy decomposition analysis established those electrostatic interactions make major contributions to this effect. We categorized the mutations into four groups and established an analytical framework that can be employed in studying future mutations. Additionally, our calculations rationalized the reduced affinity of the omicron variant towards most available therapeutic neutralizing antibodies, when compared with the wild type. By providing concrete experimental data and offering a solid explanation, this study contributes to a better understanding of the relationship between theories and observations and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Ke An
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| | - Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen, 518060, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| |
Collapse
|
15
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2 Predictions of Conformational Ensembles and Atomistic Simulations of the SARS-CoV-2 Spike XBB Lineages Reveal Epistatic Couplings between Convergent Mutational Hotspots that Control ACE2 Affinity. J Phys Chem B 2024; 128:4696-4715. [PMID: 38696745 DOI: 10.1021/acs.jpcb.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In this study, we combined AlphaFold-based atomistic structural modeling, microsecond molecular simulations, mutational profiling, and network analysis to characterize binding mechanisms of the SARS-CoV-2 spike protein with the host receptor ACE2 for a series of Omicron XBB variants including XBB.1.5, XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L. AlphaFold-based structural and dynamic modeling of SARS-CoV-2 Spike XBB lineages can accurately predict the experimental structures and characterize conformational ensembles of the spike protein complexes with the ACE2. Microsecond molecular dynamics simulations identified important differences in the conformational landscapes and equilibrium ensembles of the XBB variants, suggesting that combining AlphaFold predictions of multiple conformations with molecular dynamics simulations can provide a complementary approach for the characterization of functional protein states and binding mechanisms. Using the ensemble-based mutational profiling of protein residues and physics-based rigorous calculations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of the Q493 hotspot in the synchronization of epistatic couplings between L455F and F456L mutations, providing a quantitative insight into the energetic determinants underlying binding differences between XBB lineages. We also proposed a network-based perturbation approach for mutational profiling of allosteric communications and uncovered the important relationships between allosteric centers mediating long-range communication and binding hotspots of epistatic couplings. The results of this study support a mechanism in which the binding mechanisms of the XBB variants may be determined by epistatic effects between convergent evolutionary hotspots that control ACE2 binding.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
17
|
Ketaren NE, Mast FD, Fridy PC, Olivier JP, Sanyal T, Sali A, Chait BT, Rout MP, Aitchison JD. Nanobody repertoire generated against the spike protein of ancestral SARS-CoV-2 remains efficacious against the rapidly evolving virus. eLife 2024; 12:RP89423. [PMID: 38712823 PMCID: PMC11076045 DOI: 10.7554/elife.89423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, University of California, San FranciscoSan FranciscoUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, University of California, San FranciscoSan FranciscoUnited States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| |
Collapse
|
18
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
19
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Ensemble-Based Mutational Profiling and Network Analysis of the SARS-CoV-2 Spike Omicron XBB Lineages for Interactions with the ACE2 Receptor and Antibodies: Cooperation of Binding Hotspots in Mediating Epistatic Couplings Underlies Binding Mechanism and Immune Escape. Int J Mol Sci 2024; 25:4281. [PMID: 38673865 PMCID: PMC11049863 DOI: 10.3390/ijms25084281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding affinity hotspots that are consistent with the results of biochemical studies. In agreement with the results of deep mutational scanning experiments, our quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors and a panel of class one antibodies provide a quantitative rationale for the experimental evidence that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are instrumental in mediating broad antibody resistance. The study supports a mechanism in which the impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots, while the effect of immune evasion could be more variant-dependent and modulated by convergent mutational sites in the conformationally adaptable spike regions.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
20
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Predicting Functional Conformational Ensembles and Binding Mechanisms of Convergent Evolution for SARS-CoV-2 Spike Omicron Variants Using AlphaFold2 Sequence Scanning Adaptations and Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587850. [PMID: 38617283 PMCID: PMC11014522 DOI: 10.1101/2024.04.02.587850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron Spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamic simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron Spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and molecular dynamics simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and molecular dynamics simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
|
21
|
Pegg CL, Modhiran N, Parry RH, Liang B, Amarilla AA, Khromykh AA, Burr L, Young PR, Chappell K, Schulz BL, Watterson D. The role of N-glycosylation in spike antigenicity for the SARS-CoV-2 gamma variant. Glycobiology 2024; 34:cwad097. [PMID: 38048640 PMCID: PMC10969516 DOI: 10.1093/glycob/cwad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.
Collapse
Affiliation(s)
- Cassandra L Pegg
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rhys H Parry
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Services, Raymond Terrace, South Brisbane, Queensland 4101, Australia
| | - Paul R Young
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| |
Collapse
|
22
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2-Enabled Atomistic Modeling of Structure, Conformational Ensembles, and Binding Energetics of the SARS-CoV-2 Omicron BA.2.86 Spike Protein with ACE2 Host Receptor and Antibodies: Compensatory Functional Effects of Binding Hotspots in Modulating Mechanisms of Receptor Binding and Immune Escape. J Chem Inf Model 2024; 64:1657-1681. [PMID: 38373700 DOI: 10.1021/acs.jcim.3c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The latest wave of SARS-CoV-2 Omicron variants displayed a growth advantage and increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with atomistic simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both the structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that the AlphaFold2-predicted structural ensemble of the BA.2.86 spike protein complex with ACE2 can accurately capture the main conformational states of the Omicron variant. Complementary to AlphaFold2 structural predictions, microsecond molecular dynamics simulations reveal the details of the conformational landscape and produced equilibrium ensembles of the BA.2.86 structures that are used to perform mutational scanning of spike residues and characterize structural stability and binding energy hotspots. The ensemble-based mutational profiling of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 revealed a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 convergent mutational hotspots R403K, F486P, and R493Q. To examine the immune evasion properties of BA.2.86 in atomistic detail, we performed structure-based mutational profiling of the spike protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against the BA.2.86 variant. The results revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have evolved to outcompete other Omicron subvariants by improving immune evasion while preserving binding affinity with ACE2 via through a compensatory effect of R493Q and F486P convergent mutational hotspots. This study demonstrated that an integrative approach combining AlphaFold2 predictions with complementary atomistic molecular dynamics simulations and robust ensemble-based mutational profiling of spike residues can enable accurate and comprehensive characterization of structure, dynamics, and binding mechanisms of newly emerging Omicron variants.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States of America
| |
Collapse
|
23
|
Kumar S, Dasgupta S, Sajadi MM, Snyder GA, DeVico AL, Ray K. Discordant Antigenic Properties of Soluble and Virion SARS-CoV-2 Spike Proteins. Viruses 2024; 16:407. [PMID: 38543772 PMCID: PMC10974403 DOI: 10.3390/v16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sameer Kumar
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Mohammad M. Sajadi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Division of Clinical Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Greg A. Snyder
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Kim TH, Song MJ, Lim SY, Lee YJ, Cho YJ. Factors related to lung function outcomes in critically ill COVID-19 patients in South Korea. Acute Crit Care 2024; 39:100-107. [PMID: 38476063 PMCID: PMC11002626 DOI: 10.4266/acc.2023.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND New variants of the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic continue to emerge. However, little is known about the effect of these variants on clinical outcomes. This study evaluated the risk factors for poor pulmonary lung function test (PFT). METHODS The study retrospectively analyzed 87 patients in a single hospital and followed up by performing PFTs at an outpatient clinic from January 2020 to December 2021. COVID-19 variants were categorized as either a non-delta variant (November 13, 2020-July 6, 2021) or the delta variant (July 7, 2021-January 29, 2022). RESULTS The median age of the patients was 62 years, and 56 patients (64.4%) were male. Mechanical ventilation (MV) was provided for 52 patients, and 36 (41.4%) had restrictive lung defects. Forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide (DLCO ) were lower in patients on MV. Male sex (odds ratio [OR], 0.228) and MV (OR, 4.663) were significant factors for decreased DLCO . The duration of MV was associated with decreased FVC and DLCO . However, the type of variant did not affect the decrease in FVC (P=0.750) and DLCO (P=0.639). CONCLUSIONS Among critically ill COVID-19 patients, 40% had restrictive patterns with decreased DLCO . The reduction of PFT was associated with MV, type of variants.
Collapse
Affiliation(s)
- Tae Hun Kim
- 1Division of Pulmonary Medicine, Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myung Jin Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yeon Joo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
25
|
Ketaren NE, Mast FD, Fridy PC, Olivier JP, Sanyal T, Sali A, Chait BT, Rout MP, Aitchison JD. Nanobody repertoire generated against the spike protein of ancestral SARS-CoV-2 remains efficacious against the rapidly evolving virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.14.549041. [PMID: 37503298 PMCID: PMC10369967 DOI: 10.1101/2023.07.14.549041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast, Fridy et al. 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia E. Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
| | - Peter C. Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94143, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94143, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
26
|
Lebatteux D, Soudeyns H, Boucoiran I, Gantt S, Diallo AB. Machine learning-based approach KEVOLVE efficiently identifies SARS-CoV-2 variant-specific genomic signatures. PLoS One 2024; 19:e0296627. [PMID: 38241279 PMCID: PMC10798494 DOI: 10.1371/journal.pone.0296627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Machine learning was shown to be effective at identifying distinctive genomic signatures among viral sequences. These signatures are defined as pervasive motifs in the viral genome that allow discrimination between species or variants. In the context of SARS-CoV-2, the identification of these signatures can assist in taxonomic and phylogenetic studies, improve in the recognition and definition of emerging variants, and aid in the characterization of functional properties of polymorphic gene products. In this paper, we assess KEVOLVE, an approach based on a genetic algorithm with a machine-learning kernel, to identify multiple genomic signatures based on minimal sets of k-mers. In a comparative study, in which we analyzed large SARS-CoV-2 genome dataset, KEVOLVE was more effective at identifying variant-discriminative signatures than several gold-standard statistical tools. Subsequently, these signatures were characterized using a new extension of KEVOLVE (KANALYZER) to highlight variations of the discriminative signatures among different classes of variants, their genomic location, and the mutations involved. The majority of identified signatures were associated with known mutations among the different variants, in terms of functional and pathological impact based on available literature. Here we showed that KEVOLVE is a robust machine learning approach to identify discriminative signatures among SARS-CoV-2 variants, which are frequently also biologically relevant, while bypassing multiple sequence alignments. The source code of the method and additional resources are available at: https://github.com/bioinfoUQAM/KEVOLVE.
Collapse
Affiliation(s)
- Dylan Lebatteux
- Department of Computer Science, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Hugo Soudeyns
- CHU Sainte-Justine Research Centre, Montréal, Québec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Pediatrics, Faculty of Medicine, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Isabelle Boucoiran
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Soren Gantt
- CHU Sainte-Justine Research Centre, Montréal, Québec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
27
|
Mei S, Zou Y, Jiang S, Xue L, Wang Y, Jing H, Yang P, Niu MM, Li J, Yuan K, Zhang Y. Highly potent dual-targeting angiotensin-converting enzyme 2 (ACE2) and Neuropilin-1 (NRP1) peptides: A promising broad-spectrum therapeutic strategy against SARS-CoV-2 infection. Eur J Med Chem 2024; 263:115908. [PMID: 37981444 DOI: 10.1016/j.ejmech.2023.115908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
The efficacy of approved vaccines has been diminishing due to the increasing advent of SARS-CoV-2 variants with diverse mutations that favor sneak entry. Nonetheless, these variants recognize the conservative host receptors angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) for entry, rendering the dual blockade of ACE2 and NRP1 an advantageous pan-inhibition strategy. Here, we identified a highly potent dual-targeting peptide AP-1 using structure-based virtual screening protocol. AP-1 had nanoscale binding affinities for ACE2 (Kd = 6.1 ± 0.2 nM) and NRP1 (Kd = 13.4 ± 1.2 nM) and approximately 102- and 8-fold stronger than positive inhibitors S471-503 and NMTP-5, respectively. Further evidence in pseudovirus cell infection and cytotoxicity assays demonstrated that AP-1 exhibited remarkable entry inhibition of variants of concern (VOCs) of SARS-CoV-2 without impairing host cell viability. Together, our findings suggest that AP-1 with dual-targeting ACE2/NRP1 efficacy could be a promising broad-spectrum agent for treating SARS-CoV-2 emerging VOCs.
Collapse
Affiliation(s)
- Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Su Jiang
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Lu Xue
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yuting Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Han Jing
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Jindong Li
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yan Zhang
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
28
|
He Y, Henley J, Sell P, Comai L. Differential Outcomes of Infection by Wild-Type SARS-CoV-2 and the B.1.617.2 and B.1.1.529 Variants of Concern in K18-hACE2 Transgenic Mice. Viruses 2023; 16:60. [PMID: 38257760 PMCID: PMC10820160 DOI: 10.3390/v16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND SARS-CoV-2 is a respiratory virus with neurological complications including the loss of smell and taste, headache, and confusion that can persist for months or longer. Severe neuronal cell damage has also been reported in some cases. The objective of this study was to compare the infectivity of the wild-type virus, Delta (B.1.617.2) and Omicron (B.1.1.529) variants in transgenic mice that express the human angiotensin-converting enzyme 2 (hACE2) receptor under the control of the keratin 18 promoter (K18) and characterize the progression of infection and inflammatory response in the lungs, brain, medulla oblongata, and olfactory bulbs of these animals. We hypothesized that wild type, Delta and Omicron differentially infect K18-hACE2 mice, thereby inducing distinct cellular responses. METHODS K18-hACE2 female mice were intranasally infected with wild-type, Delta, or Omicron variants and euthanized either at 3 days post-infection (dpi) or at the humane endpoint. None of the animals infected with the Omicron variant reached the humane endpoint and were euthanized at day 8 dpi. Virological and immunological analyses were performed in the lungs, brains, medulla oblongata and olfactory bulbs isolated from infected mice. RESULTS At 3 dpi, mice infected with wild type and Delta displayed significantly higher levels of viral RNA in the lungs than mice infected with Omicron, while in the brain, Delta and Omicron resulted in higher levels of viral RNA than with the wild type. Viral RNA was also detected in the medulla oblongata of mice infected by all these virus strains. At this time point, the mice infected with wild type and Delta displayed a marked upregulation of many inflammatory markers in the lungs. On the other hand, the upregulation of inflammatory markers was observed only in the brains of mice infected with Delta and Omicron. At the humane endpoint, we observed a significant increase in the levels of viral RNA in the lungs and brains of mice infected with wild type and Delta, which was accompanied by the elevated expression of many inflammatory markers. In contrast, mice which survived infection with the Omicron variant showed high levels of viral RNA and the upregulation of cytokine and chemokine expression only in the lungs at 8 dpi, suggesting that infection and inflammatory response by this variant is attenuated in the brain. Reduced RNA levels and the downregulation of inflammatory markers was also observed in the medulla oblongata and olfactory bulbs of mice infected with Omicron at 8 dpi as compared with mice infected with wild-type and Delta at the humane end point. Collectively, these data demonstrate that wild-type, Delta, and Omicron SARS-CoV-2 induce distinct levels of infection and inflammatory responses in K18-hACE2 mice. Notably, sustained brain infection accompanied by the upregulation of inflammatory markers is a critical outcome in mice infected with wild type and Delta but not Omicron.
Collapse
Affiliation(s)
- Yicheng He
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Jill Henley
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Philip Sell
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
29
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep 2023; 42:113478. [PMID: 37991919 PMCID: PMC10785701 DOI: 10.1016/j.celrep.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jonathan D Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Madison M Uyemura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Su Min Hong
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Kozlova
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Arne Müller
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tanvi Saxena
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan R Posey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Taru Muranen
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Baboo S, Diedrich JK, Torres JL, Copps J, Singh B, Garrett PT, Ward AB, Paulson JC, Yates JR. Evolving spike-protein N-glycosylation in SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539897. [PMID: 37214937 PMCID: PMC10197516 DOI: 10.1101/2023.05.08.539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bhavya Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2-Enabled Atomistic Modeling of Epistatic Binding Mechanisms for the SARS-CoV-2 Spike Omicron XBB.1.5, EG.5 and FLip Variants: Convergent Evolution Hotspots Cooperate to Control Stability and Conformational Adaptability in Balancing ACE2 Binding and Antibody Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571185. [PMID: 38168257 PMCID: PMC10760024 DOI: 10.1101/2023.12.11.571185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we combined AI-based atomistic structural modeling and microsecond molecular simulations of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for XBB.1.5+L455F, XBB.1.5+F456L(EG.5) and XBB.1.5+L455F/F456L (FLip) lineages to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and physics-based rigorous computations of binding affinities, we identified binding energy hotspots and characterized molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of Q493 hotspot in synchronization of epistatic couplings between L455F and F456L mutations providing a quantitative insight into the mechanism underlying differences between XBB lineages. Mutational profiling is combined with network-based model of epistatic couplings showing that the Q493, L455 and F456 sites mediate stable communities at the binding interface with ACE2 and can serve as stable mediators of non-additive couplings. Structure-based mutational analysis of Spike protein binding with the class 1 antibodies quantified the critical role of F456L and F486P mutations in eliciting strong immune evasion response. The results of this analysis support a mechanism in which the emergence of EG.5 and FLip variants may have been dictated by leveraging strong epistatic effects between several convergent revolutionary hotspots that provide synergy between the improved ACE2 binding and broad neutralization resistance. This interpretation is consistent with the notion that functionally balanced substitutions which simultaneously optimize immune evasion and high ACE2 affinity may continue to emerge through lineages with beneficial pair or triplet combinations of RBD mutations involving mediators of epistatic couplings and sites in highly adaptable RBD regions.
Collapse
|
32
|
Yeh YJ, Chao TL, Chang YJ, Chang SY, Lu CH, Chao CH, Su WC, Tseng CP, Lai MM, Cheng JC. Dual Effects of 3- epi-betulin from Daphniphyllum glaucescens in Suppressing SARS-CoV-2-Induced Inflammation and Inhibiting Virus Entry. Int J Mol Sci 2023; 24:17040. [PMID: 38069363 PMCID: PMC10707724 DOI: 10.3390/ijms242317040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The continuous emergence of SARS-CoV-2 variants has led to a protracted global COVID-19 pandemic with significant impacts on public health and global economy. While there are currently available SARS-CoV-2 vaccines and therapeutics, most of the FDA-approved antiviral agents directly target viral proteins. However, inflammation is the initial immune pathogenesis induced by SARS-CoV-2 infection, there is still a need to find additional agents that can control the virus in the early stages of infection to alleviate disease progression for the next pandemic. Here, we find that both the spike protein and its receptor CD147 are crucial for inducing inflammation by SARS-CoV-2 in THP-1 monocytic cells. Moreover, we find that 3-epi-betulin, isolated from Daphniphyllum glaucescens, reduces the level of proinflammatory cytokines induced by SARS-CoV-2, consequently resulting in a decreased viral RNA accumulation and plaque formation. In addition, 3-epi-betulin displays a broad-spectrum inhibition of entry of SARS-CoV-2 pseudoviruses, including Alpha (B.1.1.7), Eplison (B.1.429), Gamma (P1), Delta (B.1.617.2) and Omicron (BA.1). Moreover, 3-epi-betulin potently inhibits SARS-CoV-2 infection with an EC50 of <20 μM in Calu-3 lung epithelial cells. Bioinformatic analysis reveals the chemical interaction between the 3-epi-betulin and the spike protein, along with the critical amino acid residues in the spike protein that contribute to the inhibitory activity of 3-epi-betulin against virus entry. Taken together, our results suggest that 3-epi-betulin exhibits dual effect: it reduces SARS-CoV-2-induced inflammation and inhibits virus entry, positioning it as a potential antiviral agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Yung-Ju Yeh
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 404328, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 100229, Taiwan
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 100229, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College Medicine, Taipei 100229, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 4060404, Taiwan
| | - Wen-Chi Su
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 404328, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404328, Taiwan
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
| | - Michael M.C. Lai
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 404328, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
33
|
Desai PJ. Expression and fusogenic activity of SARS CoV-2 Spike protein displayed in the HSV-1 Virion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568860. [PMID: 38076893 PMCID: PMC10705244 DOI: 10.1101/2023.11.28.568860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a zoonotic pathogen that can cause severe respiratory disease in humans. The new SARS-CoV-2 is the cause of the current global pandemic termed coronavirus disease 2019 (COVID-19) that has resulted in many millions of deaths world-wide. The virus is a member of the Betacoronavirus family, its genome is a positive strand RNA molecule that encodes for many genes which are required for virus genome replication as well as for structural proteins that are required for virion assembly and maturation. A key determinant of this virus is the Spike (S) protein embedded in the virion membrane and mediates attachment of the virus to the receptor (ACE2). This protein also is required for cell-cell fusion (syncytia) that is an important pathogenic determinant. We have developed a pseudotyped herpes simplex virus type 1 (HSV-1) recombinant virus expressing S protein in the virion envelop. This virus has also been modified to express a Venus fluorescent protein fusion to VP16, a virion protein of HSV-1. The virus expressing Spike can enter cells and generates large multi-nucleated syncytia which are evident by the Venus fluorescence. The HSV-1 recombinant virus is genetically stable and virus amplification can be easily done by infecting cells. This recombinant virus provides a reproducible platform for Spike function analysis and thus adds to the repertoire of pseudotyped viruses expressing Spike.
Collapse
Affiliation(s)
- Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Accurate Characterization of Conformational Ensembles and Binding Mechanisms of the SARS-CoV-2 Omicron BA.2 and BA.2.86 Spike Protein with the Host Receptor and Distinct Classes of Antibodies Using AlphaFold2-Augmented Integrative Computational Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567697. [PMID: 38045395 PMCID: PMC10690158 DOI: 10.1101/2023.11.18.567697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The latest wave SARS-CoV-2 Omicron variants displayed a growth advantage and the increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with all-atom MD simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that AlphaFold2-predicted conformational ensemble of the BA.2.86 spike protein complex can accurately capture the main dynamics signatures obtained from microscond molecular dynamics simulations. The ensemble-based dynamic mutational scanning of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 dissected the role of the BA.2 and BA.2.86 backgrounds in modulating binding free energy changes revealing a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 mutational sites R403K, F486P and R493Q. To examine immune evasion properties of BA.2.86 in atomistic detail, we performed large scale structure-based mutational profiling of the S protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against BA.2.86 variant. The results quantified specific function of the BA.2.86 mutations to ensure broad resistance against different classes of RBD antibodies. This study revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have primarily evolved to improve immune escape while modulating binding affinity with ACE2 through cooperative effect of R403K, F486P and R493Q mutations. The study supports a hypothesis that the impact of the increased ACE2 binding affinity on viral fitness is more universal and is mediated through cross-talk between convergent mutational hotspots, while the effect of immune evasion could be more variant-dependent.
Collapse
|
35
|
Yánez Arcos DL, Thirumuruganandham SP. Structural and pKa Estimation of the Amphipathic HR1 in SARS-CoV-2: Insights from Constant pH MD, Linear vs. Nonlinear Normal Mode Analysis. Int J Mol Sci 2023; 24:16190. [PMID: 38003380 PMCID: PMC10671649 DOI: 10.3390/ijms242216190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
A comprehensive understanding of molecular interactions and functions is imperative for unraveling the intricacies of viral protein behavior and conformational dynamics during cellular entry. Focusing on the SARS-CoV-2 spike protein (SARS-CoV-2 sp), a Principal Component Analysis (PCA) on a subset comprising 131 A-chain structures in presence of various inhibitors was conducted. Our analyses unveiled a compelling correlation between PCA modes and Anisotropic Network Model (ANM) modes, underscoring the reliability and functional significance of low-frequency modes in adapting to diverse inhibitor binding scenarios. The role of HR1 in viral processing, both linear Normal Mode Analysis (NMA) and Nonlinear NMA were implemented. Linear NMA exhibited substantial inter-structure variability, as evident from a higher Root Mean Square Deviation (RMSD) range (7.30 Å), nonlinear NMA show stability throughout the simulations (RMSD 4.85 Å). Frequency analysis further emphasized that the energy requirements for conformational changes in nonlinear modes are notably lower compared to their linear counterparts. Using simulations of molecular dynamics at constant pH (cpH-MD), we successfully predicted the pKa order of the interconnected residues within the HR1 mutations at lower pH values, suggesting a transition to a post-fusion structure. The pKa determination study illustrates the profound effects of pH variations on protein structure. Key results include pKa values of 9.5179 for lys-921 in the D936H mutant, 9.50 for the D950N mutant, and a slightly higher value of 10.49 for the D936Y variant. To further understand the behavior and physicochemical characteristics of the protein in a biologically relevant setting, we also examine hydrophobic regions in the prefused states of the HR1 protein mutants D950N, D936Y, and D936H in our study. This analysis was conducted to ascertain the hydrophobic moment of the protein within a lipid environment, shedding light on its behavior and physicochemical properties in a biologically relevant context.
Collapse
|
36
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
37
|
Mo C, Li X, Wu Q, Fan Y, Liu D, Zhu Y, Yang Y, Liao X, Zhou Z, Zhou L, Li Q, Zhang Q, Liu W, Zhou R, Tian X. SARS-CoV-2 mRNA vaccine requires signal peptide to induce antibody responses. Vaccine 2023; 41:6863-6869. [PMID: 37821314 DOI: 10.1016/j.vaccine.2023.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
New SARS-CoV-2 variants continue to prevail worldwide, and effective vaccines are needed to prevent an epidemic. mRNA vaccines are gradually being applied to the prevention and control of infectious diseases with significant safety and effectiveness. The spike (S) protein of SARS-CoV-2 is the main target of mRNA vaccine design, but the impact of the signal peptide (SP), transmembrane region (TM), and cytoplasmic tail (CT) on mRNA vaccine remains unclear. In this study, we constructed three forms of mRNA vaccines related to the S protein: full-length, deletion of the TM and CT, and simultaneous deletion of the SP, TM and CT, and compared their immunogenicity. Our experimental data show that full-length S protein and deletion of the TM and CT could effectively induce neutralizing antibody production in mice, while S protein without the SP and TM could not. This indicates that the S protein SP is necessary for the design of mRNA vaccine.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- COVID-19 Vaccines/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Protein Sorting Signals/genetics
- mRNA Vaccines/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- COVID-19/prevention & control
- COVID-19/immunology
- Mice, Inbred BALB C
- Female
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Humans
- Immunogenicity, Vaccine
- Antibody Formation/immunology
Collapse
Affiliation(s)
- Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qianying Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuhui Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Liao
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qiuru Li
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Qiong Zhang
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
38
|
de Souza AS, Amorim VMDF, de Souza RF, Guzzo CR. Molecular dynamics simulations of the spike trimeric ectodomain of the SARS-CoV-2 Omicron variant: structural relationships with infectivity, evasion to immune system and transmissibility. J Biomol Struct Dyn 2023; 41:9326-9343. [PMID: 36345794 DOI: 10.1080/07391102.2022.2142296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron is currently the most prevalent SARS-CoV-2 variant worldwide. Herein, we calculated molecular dynamics simulations of the trimeric spikeWT and SpikeBA.1 for 300 ns. Our results show that SpikeBA.1 has more conformational flexibility than SpikeWT. Our principal component analysis (PCA) allowed us to observe a broader spectrum of different conformations for SpikeBA.1, mainly at N-terminal domain (NTD) and receptor-binding domain (RBD). Such increased flexibility could contribute to decreased neutralizing antibody recognition of this variant. Our molecular dynamics data show that the RBDBA.1 easily visits an up-conformational state and the prevalent D614G mutation is pivotal to explain molecular dynamics results for this variant because to lost hydrogen bonding interactions between the residue pairs K854SC/D614SC, Y837MC/D614MC, K835SC/D614SC, T859SC/D614SC. In addition, SpikeBA.1 residues near the furin cleavage site are more flexible than in SpikeWT, probably due to P681H and D614G substitutions. Finally, dynamical cross-correlation matrix (DCCM) analysis reveals that D614G and P681H may allosterically affect the cleavage site S1/S2. Conversely, S2' site may be influenced by residues located between NTD and RBD of a neighboring protomer of the SpikeWT. Such communication may be lost in SpikeBA.1, explaining the changes of the cell tropism in the viral infection. In addition, the movements of the NTDWT and NTDBA.1 may modulate the RBD conformation through allosteric effects. Taken together, our results explain how the structural aspects may explain the observed gains in infectivity, immune system evasion and transmissibility of the Omicron variant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Singh J, Vashishtha S, Kundu B. Spike Protein Mutation-Induced Changes in the Kinetic and Thermodynamic Behavior of Its Receptor Binding Domains Explain Their Higher Propensity to Attain Open States in SARS-CoV-2 Variants of Concern. ACS CENTRAL SCIENCE 2023; 9:1894-1904. [PMID: 37901170 PMCID: PMC10604015 DOI: 10.1021/acscentsci.3c00810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 10/31/2023]
Abstract
Spike (S) protein opening in SARS-CoV-2 controls the accessibility of its receptor binding domains (RBDs) to host receptors and immune recognition. Along the evolution of SARS-CoV-2 to its variants of concern (VOC)-alpha, beta, gamma, delta, and omicron-their S proteins showed a higher propensity to attain open states. Deciphering how mutations in S protein can shape its conformational dynamics will contribute to the understanding of viral host tropism. Here using microsecond-scale multiple molecular dynamics simulations (MDS), we provide insights into the kinetic and thermodynamic contributions of these mutations to RBD opening pathways in S proteins of SARS-CoV-2 VOCs. Mutational effects were analyzed using atomistic (i) equilibrium MDS of closed and open states of S proteins and (ii) nonequilibrium MDS for closed-to-open transitions. In MDS of closed or open states, RBDs in S proteins of VOCs showed lower thermodynamic stability with higher kinetic fluctuations, compared to S proteins of ancestral SARS-CoV-2. For closed-to-open transitions in S proteins of VOCs, we observed apparently faster RBD opening with a 1.5-2-fold decrease in the thermodynamic free-energy barrier (ΔGclosed→open). Saturation mutagenesis studies highlighted S protein mutations that may control its conformational dynamics and presentation to host receptors.
Collapse
Affiliation(s)
- Jasdeep Singh
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80208, United States
| | - Shubham Vashishtha
- Kusuma
School of Biological Sciences, Indian Institute
of Technology-Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma
School of Biological Sciences, Indian Institute
of Technology-Delhi, New Delhi 110016, India
| |
Collapse
|
40
|
Boshah H, Samkari F, Valle-Pérez AU, Alsawaf SM, Aldoukhi AH, Bilalis P, Alshehri SA, Susapto HH, Hauser CAE. Evaluation of Potential Peptide-Based Inhibitors against SARS-CoV-2 and Variants of Concern. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3892370. [PMID: 37869628 PMCID: PMC10589072 DOI: 10.1155/2023/3892370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has greatly affected all aspect of life. Although several vaccines and pharmaceuticals have been developed against SARS-CoV-2, the emergence of mutated variants has raised several concerns. The angiotensin-converting enzyme (ACE2) receptor cell entry mechanism of this virus has not changed despite the vast mutation in emerging variants. Inhibiting the spike protein by which the virus identifies the host ACE2 receptor is a promising therapeutic countermeasure to keep pace with rapidly emerging variants. Here, we synthesized two ACE2-derived peptides, P1 and P25, to target and potentially inhibit SARS-CoV-2 cell entry. These peptides were evaluated in vitro using pseudoviruses that contained the SARS-CoV-2 original spike protein, the Delta-mutated spike protein, or the Omicron spike protein. An in silico investigation was also done for these peptides to evaluate the interaction of the synthesized peptides and the SARS-CoV-2 variants. The P25 peptide showed a promising inhibition potency against the tested pseudoviruses and an even higher inhibition against the Omicron variant. The IC50 of the Omicron variant was 60.8 μM, while the IC50s of the SARS-CoV-2 original strain and the Delta variant were 455.2 μM and 546.4 μM, respectively. The in silico experiments also showed that the amino acid composition design and structure of P25 boosted the interaction with the spike protein. These findings suggest that ACE2-derived peptides, such as P25, have the potential to inhibit SARS-CoV-2 cell entry in vitro. However, further in vivo studies are needed to confirm their therapeutic efficacy against emerging variants.
Collapse
Affiliation(s)
- Hattan Boshah
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Sarah M. Alsawaf
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ali H. Aldoukhi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Salwa A. Alshehri
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hepi H. Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
41
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
42
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
43
|
Xu C, Han W, Cong Y. Cryo-EM and cryo-ET of the spike, virion, and antibody neutralization of SARS-CoV-2 and VOCs. Curr Opin Struct Biol 2023; 82:102664. [PMID: 37544111 DOI: 10.1016/j.sbi.2023.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/14/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) have been demonstrated to be powerful and efficient tools in structural studies of distinct conformational states of the trimeric spike protein of SARS-CoV-2 and the VOCs as well as the intact virion. Cryo-EM has also contributed greatly to revealing the molecular basis of receptor recognition and antibody neutralization of the S trimer. Additionally, it has provided structural insights into the enhanced transformation and immune evasion of the VOCs, thus facilitating antiviral antibody and drug discovery. In this review, we summarize the contributions of cryo-EM and cryo-ET in revealing the structures of SARS-CoV-2 S trimer and intact virion and the mechanisms of receptor binding and antibody neutralization. We also highlight their prospective utilities in the development of vaccines and future therapeutics against emerging SARS-CoV-2 variants and other epidemic viruses.
Collapse
Affiliation(s)
- Cong Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
44
|
Verkhivker G, Alshahrani M, Gupta G. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites. Viruses 2023; 15:2009. [PMID: 37896786 PMCID: PMC10610873 DOI: 10.3390/v15102009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron variants. By using a combination of atomistic simulations, a dynamics network analysis, and an allostery-guided network screening of binding pockets in the conformational ensembles of the BA.1 and BA.2 spike conformations, we identified all experimentally known allosteric sites and discovered significant variant-specific differences in the distribution of binding sites in the BA.1 and BA.2 trimers. This study provided a structural characterization of the predicted cryptic pockets and captured the experimentally known allosteric sites, revealing the critical role of conformational plasticity in modulating the distribution and cross-talk between functional binding sites. We found that mutational and dynamic changes in the BA.1 variant can induce the remodeling and stabilization of a known druggable pocket in the N-terminal domain, while this pocket is drastically altered and may no longer be available for ligand binding in the BA.2 variant. Our results predicted the experimentally known allosteric site in the receptor-binding domain that remains stable and ranks as the most favorable site in the conformational ensembles of the BA.2 variant but could become fragmented and less probable in BA.1 conformations. We also uncovered several cryptic pockets formed at the inter-domain and inter-protomer interface, including functional regions of the S2 subunit and stem helix region, which are consistent with the known role of pocket residues in modulating conformational transitions and antibody recognition. The results of this study are particularly significant for understanding the dynamic and network features of the universe of available binding pockets in spike proteins, as well as the effects of the Omicron-variant-specific modulation of preferential druggable pockets. The exploration of predicted druggable sites can present a new and previously underappreciated opportunity for therapeutic interventions for Omicron variants through the conformation-selective and variant-specific targeting of functional sites involved in allosteric changes.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| |
Collapse
|
45
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
46
|
Zhang Q, Tang W, Stancanelli E, Jung E, Syed Z, Pagadala V, Saidi L, Chen CZ, Gao P, Xu M, Pavlinov I, Li B, Huang W, Chen L, Liu J, Xie H, Zheng W, Ye Y. Host heparan sulfate promotes ACE2 super-cluster assembly and enhances SARS-CoV-2-associated syncytium formation. Nat Commun 2023; 14:5777. [PMID: 37723160 PMCID: PMC10507024 DOI: 10.1038/s41467-023-41453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
SARS-CoV-2 infection causes spike-dependent fusion of infected cells with ACE2 positive neighboring cells, generating multi-nuclear syncytia that are often associated with severe COVID. To better elucidate the mechanism of spike-induced syncytium formation, we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical stimulator for spike-induced cell-cell fusion. We show that HS binds spike and promotes spike-induced ACE2 clustering, forming synapse-like cell-cell contacts that facilitate fusion pore formation between ACE2-expresing and spike-transfected human cells. Chemical or genetic inhibition of HS mitigates ACE2 clustering, and thus, syncytium formation, whereas in a cell-free system comprising purified HS and lipid-anchored ACE2, HS stimulates ACE2 clustering directly in the presence of spike. Furthermore, HS-stimulated syncytium formation and receptor clustering require a conserved ACE2 linker distal from the spike-binding site. Importantly, the cell fusion-boosting function of HS can be targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice. Thus, HS, as a host factor exploited by SARS-CoV-2 to facilitate receptor clustering and a stimulator of infection-associated syncytium formation, may be a promising therapeutic target for severe COVID.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Eduardo Stancanelli
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eunkyung Jung
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zulfeqhar Syed
- Electron Microscopy Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijayakanth Pagadala
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC, 27606, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Z Chen
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Peng Gao
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Miao Xu
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Ivan Pavlinov
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Bing Li
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Wenwei Huang
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jian Liu
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Wei Zheng
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Duong-Quy S, Huynh-Truong-Anh D, Nguyen-Thi-Kim T, Nguyen-Quang T, Tran-Ngoc-Anh T, Nguyen-Van-Hoai N, Do-Thi-Thu M, Nguyen-Chi T, Nguyen-Van T, Tang-Thi-Thao T, Nguyen-Tuan A, Nguyen-Hoang Q, Hoang-Phi-Tuyet P, Vu-Van G, Nguyen-Lan H, Nguyen-Hong C, Dinh-Ngoc S, Truong-Viet D, Nguyen-Nhu V, Nguyen-Duy T. Predictive Factors of Mortality in Patients with Severe COVID-19 Treated in the Intensive Care Unit: A Single-Center Study in Vietnam. Pulm Ther 2023; 9:377-394. [PMID: 37415031 PMCID: PMC10447826 DOI: 10.1007/s41030-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION The fourth outbreak of COVID-19 with the delta variant in Vietnam was very fierce due to the limited availability of vaccines and the lack of healthcare resources. During that period, the high mortality of patients with severe and critical COVID-19 caused many concerns for the health system, especially the intensive care units. This study aimed to analyze the predictive factors of death and survival in patients with severe and critical COVID-19. METHODS We conducted a cross-sectional and descriptive study on 151 patients with severe and critical COVID-19 hospitalized in the Intensive Care Unit of Binh Duong General Hospital. RESULTS Common clinical symptoms of severe and critical COVID-19 included shortness of breath (97.4%), fatigue (89.4%), cough (76.8%), chest pain (47.7%), loss of smell (48.3%), loss of taste (39.1%), and headache (21.2%). The abnormal biochemical features were leukopenia (2.1%), anemia, thrombocytopenia (18%), hypoxia with low PaO2 (34.6%), hypocapnia with reduced PaCO2 (29.6%), and blood acidosis (18.4%). Common complications during hospitalization were septic shock (15.2%), cardiogenic shock (5.3%), and embolism (2.6%). The predictive factors of death were being female, age > 65 years, cardiovascular comorbidity, thrombocytopenia (< 137.109/l), and hypoxia at inclusion or after the first week or blood acidosis (pH < 7.28). The use of a high dose of corticosteroids reduced the mortality during the first 3 weeks of hospitalization but significantly increased risk of death after 3 and 4 weeks. CONCLUSIONS Common clinical symptoms, laboratory features, and death-related complications of critical and severe COVID-19 patients were found in Vietnamese patients during the fourth wave of the COVID-19 pandemic. The results of this study provide new insight into the predictive factors of mortality for patients with severe and critical COVID-19.
Collapse
Affiliation(s)
- Sy Duong-Quy
- Biomedical Research Center, Lam Dong Medical College, Dalat City, Vietnam
- Hershey Medical Center, Penn State Medical College, State College, PA, USA
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Duc Huynh-Truong-Anh
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Thanh Nguyen-Thi-Kim
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Tien Nguyen-Quang
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Thuy Tran-Ngoc-Anh
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Nam Nguyen-Van-Hoai
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Mai Do-Thi-Thu
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Thanh Nguyen-Chi
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Toi Nguyen-Van
- Biomedical Research Center, Lam Dong Medical College, Dalat City, Vietnam
| | - Tram Tang-Thi-Thao
- Biomedical Research Center, Lam Dong Medical College, Dalat City, Vietnam
| | - Anh Nguyen-Tuan
- Biomedical Research Center, Lam Dong Medical College, Dalat City, Vietnam
| | - Quan Nguyen-Hoang
- Biomedical Research Center, Lam Dong Medical College, Dalat City, Vietnam
| | | | - Giap Vu-Van
- Respiratory Center, Bach Mai Hospital, Hanoi City, Vietnam
| | - Hieu Nguyen-Lan
- Phu Chanh Covid-19 Hospital, Binh Duong General Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | | | - Sy Dinh-Ngoc
- Respiratory Department, National Hospital of Lung Diseases, Hanoi City, Vietnam
| | - Dung Truong-Viet
- Department of Public Health, Thang Long University, Ha Noi City, Vietnam
| | - Vinh Nguyen-Nhu
- Department of Respiratory Functional Exploration. University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Thai Nguyen-Duy
- National Institute for Control of Vaccines and Biologicals, Ministry of Health, Hanoi City, Vietnam.
- Department of Biomedical Sciences, Vietnam University of Traditional Medicine, Ministry of Health, Hanoi City, Vietnam.
| |
Collapse
|
48
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555625. [PMID: 37693555 PMCID: PMC10491142 DOI: 10.1101/2023.08.31.555625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
|
49
|
Ramasamy R. Overview of immunological & virological factors driving the evolution & global spread of SARS-CoV-2 variants. Indian J Med Res 2023; 158:257-268. [PMID: 37815068 PMCID: PMC10720969 DOI: 10.4103/ijmr.ijmr_2591_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 10/11/2023] Open
Abstract
The SARS-CoV-2, a highly infectious positive strand RNA virus first identified in December 2019, has produced multiple genetic variants that have rapidly and sequentially spread worldwide during the coronavirus disease 2019 (COVID-19) pandemic. Genetic changes in SARS-CoV-2 for greater infectivity, replication and transmission were selected during the early stages of the pandemic. More recently, after widespread infection and vaccination, SARS-CoV-2 variants that evade antigen-specific adaptive immunity, have begun to be selected. This article provides an overview of the molecular immunological and virological factors underlying the origin and global spread of important SARS-CoV-2 variant lineages.
Collapse
|
50
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. J Chem Inf Model 2023; 63:5272-5296. [PMID: 37549201 PMCID: PMC11162552 DOI: 10.1021/acs.jcim.3c00778] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|