1
|
Wang M, Liu C, Fan Q, Sun Y, Tang S, Guo H, Zhou B, Wang H, Ge X, Zhang Z, Ju B. Rapid clonal expansion and somatic hypermutation contribute to the fate of SARS-CoV-2 broadly neutralizing antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:278-289. [PMID: 40073246 DOI: 10.1093/jimmun/vkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 03/14/2025]
Abstract
Several vaccines and immunization strategies, including inactivated vaccines, have proven effective in eliciting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing an opportunity to characterize the antibody response. In this study, we investigated the monoclonal antibody responses elicited by wild-type SARS-CoV-2 inactivated vaccination compared to those elicited by natural infection and mRNA vaccination. The analysis showed that antibodies encoded by biased germline genes were shared between SARS-CoV-2 vaccinated and naturally infected individuals. Among the 35 shared clonotypes identified, besides the well-known IGHV3-53 and IGHV1-58, we identified a class of IGHV4-59 antibodies characterized by rapid response and neutralizing activity, elicited by 3 doses of inactivated vaccine. Members of this lineage exhibited similar sensitivity against wild-type SARS-CoV-2, whereas different neutralizing activities against SARS-CoV-2 variants, especially against various Omicron subvariants, BA.1, BA.2, BA.2.12.1, BA.4/5, and BA.2.75. Structural analysis of BA.1 spike complexed with VacBB-639 revealed that the IGHV4-59-lineage antibodies belonged to the Class 2/3 group. Using sequence alignment, site-mutation assays, and functional verification, we identified two substitutions, N60K in HFR3 and S56G in HCDR2, contributing to opposite neutralization changes of IGHV4-59-lineage antibodies against these Omicron subvariants. These results demonstrate the importance of somatic hypermutation in the evolution of prototypical antigen-elicited antibodies in terms of their neutralization breadth and potency against SARS-CoV-2 Omicron variants.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Congcong Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qing Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuehong Sun
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shilong Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huimin Guo
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Bing Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Seow J, Jefferson GCE, Keegan MD, Yau Y, Snell LB, Doores KJ. Profiling serum immunodominance following SARS-CoV-2 primary and breakthrough infection reveals distinct variant-specific epitope usage and immune imprinting. PLoS Pathog 2024; 20:e1012724. [PMID: 39556615 DOI: 10.1371/journal.ppat.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
Over the course of the COVID-19 pandemic, variants have emerged with increased mutations and immune evasive capabilities. This has led to breakthrough infections (BTI) in vaccinated individuals, with a large proportion of the neutralizing antibody response targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike glycoprotein. Immune imprinting, where prior exposure of the immune system to an antigen can influence the response to subsequent exposures, and its role in a population with heterogenous exposure histories has important implications in future vaccine design. Here, we develop an accessible approach to map epitope immunodominance of the neutralizing antibody response in sera. By using a panel of mutant Spike proteins in a pseudotyped virus neutralization assay, we observed distinct epitope usage in convalescent donors infected during wave 1, or infected with the Delta, or BA.1 variants, highlighting the antigenic diversity of the variant Spikes. Analysis of longitudinal serum samples taken spanning 3 doses of COVID-19 vaccine and subsequent breakthrough infection, showed the influence of immune imprinting from the ancestral-based vaccine, where reactivation of existing B cells elicited by the vaccine resulted in the enrichment of the pre-existing epitope immunodominance. However, subtle shifts in epitope usage in sera were observed following BTI by Omicron sub-lineage variants. Antigenic distance of Spike, time after last exposure, and number of vaccine boosters may play a role in the persistence of imprinting from the vaccine. This study provides insight into RBD neutralizing epitope usage in individuals with varying exposure histories and has implications for design of future SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - George C E Jefferson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Michael D Keegan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Yeuk Yau
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Chewaskulyong B, Satjaritanun P, Ketpueak T, Suksombooncharoen T, Charoentum C, Nuchpong N, Tantraworasin A. Neutralizing antibodies and safety of a COVID-19 vaccine against SARS-CoV-2 wild-type and Omicron variants in solid cancer patients. PLoS One 2024; 19:e0310781. [PMID: 39509358 PMCID: PMC11542819 DOI: 10.1371/journal.pone.0310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE The aim of this study was to assess the seroconversion rate and percent inhibition of neutralizing antibodies against the wild-type and Omicron variants of SARS-CoV-2 in patients with solid cancer who received two COVID-19 vaccine doses by comparing chemotherapy and nonchemotherapy groups. METHODS This prospective cohort study enrolled 115 cancer patients from Maharaj Nakorn Chiang Mai Hospital, Sriphat Medical Center, Faculty of Medicine, Chiang Mai University, and Chiang Mai Klaimor Hospital, Chiang Mai, Thailand, between August 2021 and February 2022, with data from 91 patients who received two COVID-19 vaccine doses analyzed. Participants received vaccines as part of their personal vaccination programs, including various mRNA and non-mRNA vaccine combinations. Blood samples were collected at baseline, on day 28, and at 6 months post-second dose to assess neutralizing antibodies. The primary outcome was the seroconversion rate against the wild-type and Omicron variants on day 28. Secondary outcomes included seroconversion at 6 months, factors associated with seroconversion, and safety. RESULTS Among the participants, 45% were receiving chemotherapy. On day 28, seroconversion rates were 77% and 62% for the wild-type and Omicron variants, respectively. Chemotherapy did not significantly affect seroconversion rates (p = 0.789 for wild type, p = 0.597 for Omicron). The vaccine type administered was positively correlated with seroconversion, with an adjusted odds ratio (95% confidence interval) of 25.86 (1.39-478.06) for the wild type and 17.38 (3.65-82.66) for the Omicron variant with the primary heterologous vaccine regimen. Grades 1 and 2 adverse events were observed in 34.0% and 19.7% of participants, respectively. CONCLUSIONS Despite the lower seroconversion rate against the Omicron variant, no significant difference was observed between the chemotherapy and nonchemotherapy groups. COVID-19 vaccinations demonstrated good tolerability in this cohort. These findings highlight the importance of vaccine safety and immunogenicity in cancer patients and can inform tailored vaccination strategies for this vulnerable population.
Collapse
Affiliation(s)
- Busyamas Chewaskulyong
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattarapong Satjaritanun
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanika Ketpueak
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thatthan Suksombooncharoen
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiyut Charoentum
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttaphoom Nuchpong
- Medical Oncology Outpatient Clinic, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai, Thailand
| | - Apichat Tantraworasin
- Department of Surgery, General Thoracic Unit, Faculty of Medicine, and Clinical Surgical Research Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Li D, Bian L, Cui L, Zhou J, Li G, Zhao X, Xing L, Cui J, Sun B, Jiang C, Kong W, Zhang Y, Chen Y. Heterologous Prime-Boost Immunization Strategies Using Varicella-Zoster Virus gE mRNA Vaccine and Adjuvanted Protein Subunit Vaccine Triggered Superior Cell Immune Response in Middle-Aged Mice. Int J Nanomedicine 2024; 19:8029-8042. [PMID: 39130684 PMCID: PMC11316494 DOI: 10.2147/ijn.s464720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.
Collapse
Affiliation(s)
- Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Lili Cui
- Beijing Institute of Drug Metabolism, Beijing, People’s Republic of China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Gaotian Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xiaoyan Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Liao Xing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jiaxing Cui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Suwarti S, Lazarus G, Zanjabila S, Sinto R, Fransiska F, Deborah T, Oktavia D, Junaidah J, Santayana S, Surendra H, Yuliana J, Pardosi H, Nuraeni N, Soebianto S, Susilowati ND, Subekti D, Pradipta A, Baird JK, Tan LV, Dunachie S, Shankar AH, Nelwan EJ, Hamers RL. Anti-SARS-CoV-2 antibody dynamics after primary vaccination with two-dose inactivated whole-virus vaccine, heterologous mRNA-1273 vaccine booster, and Omicron breakthrough infection in Indonesian health care workers. BMC Infect Dis 2024; 24:768. [PMID: 39090537 PMCID: PMC11292869 DOI: 10.1186/s12879-024-09644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Data on the dynamics and persistence of humoral immunity against SARS-CoV-2 after primary vaccination with two-dose inactivated vaccine (CoronaVac) are limited. This study evaluated the sequential effects of prior infection, heterologous boosting with mRNA-1273 (Moderna), and the occurrence of Omicron vaccine-breakthrough infection (VBI) thereafter. METHODS We evaluated anti-spike IgG (Abbott) and neutralising (cPASS/GenScript) antibody (nAb) titers up to one year after mRNA-1273 boost in two-dose-CoronaVac-primed Indonesian healthcare workers (August 2021-August 2022). We used linear mixed modeling to estimate the rate of change in antibody levels, and logistic regression to examine associations between antibody levels and VBI. RESULTS Of 138 participants, 52 (37.7%) had a prior infection and 78 (56.5%) received an mRNA-1273 booster. After two-dose CoronaVac, antibody titers had significantly declined within 180 days, irrespective of prior infection. After mRNA-1273 booster, anti-spike IgG (1.47% decline/day) and Omicron B.1.1.529/BA.2 nAbs declined between day 28-90, and IgG titers plateaued between day 90-360. During the BA.1/BA.2 wave (February-March 2022), 34.6% (27/78) of individuals experienced a VBI (median 181 days after mRNA-1273), although none developed severe illness. VBI was associated with low pre-VBI anti-spike IgG and B.1.1.529/BA.2 nAbs, which were restored post-VBI. CONCLUSIONS mRNA-1273 booster after two-dose CoronaVac did not prevent BA.1/BA.2 VBI. Periodic vaccine boosters may be warranted against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Suwarti Suwarti
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Infectious Disease and Immunology Research Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| | - Gilbert Lazarus
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sabighoh Zanjabila
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Robert Sinto
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- St Carolus Hospital, Jakarta, Indonesia
| | | | | | - Dwi Oktavia
- Jakarta Health Office, Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - Junaidah Junaidah
- Jakarta Health Office, Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - Santayana Santayana
- Jakarta Health Office, Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - Henry Surendra
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Monash University, Tangerang, Indonesia
| | - Jeng Yuliana
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Herlina Pardosi
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Nunung Nuraeni
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Saraswati Soebianto
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Novi Dwi Susilowati
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Decy Subekti
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Ariel Pradipta
- Genomik Solidaritas Indonesia Lab, Jakarta, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - J Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Le Van Tan
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Susanna Dunachie
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Anuraj H Shankar
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Erni J Nelwan
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Hartley GE, Fryer HA, Gill PA, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, Edwards ESJ, van Zelm MC. Homologous but not heterologous COVID-19 vaccine booster elicits IgG4+ B-cells and enhanced Omicron subvariant binding. NPJ Vaccines 2024; 9:129. [PMID: 39013889 PMCID: PMC11252355 DOI: 10.1038/s41541-024-00919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.
Collapse
Affiliation(s)
- Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul A Gill
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Clever S, Limpinsel L, Meyer zu Natrup C, Schünemann LM, Beythien G, Rosiak M, Hülskötter K, Gregor KM, Tuchel T, Kalodimou G, Freudenstein A, Kumar S, Baumgärtner W, Sutter G, Tscherne A, Volz A. Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection. Viruses 2024; 16:417. [PMID: 38543782 PMCID: PMC10974247 DOI: 10.3390/v16030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Katharina Manuela Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| |
Collapse
|
8
|
Huang J, Qiu Y, Luo L, Wu J, Hu D, Zhong X, Lin J, Guo L, Yang H, Li C, Wang X. Long-term immunogenicity and safety of heterologous boosting with a SARS-CoV-2 mRNA vaccine (SYS6006) in Chinese participants who had received two or three doses of inactivated vaccine. J Med Virol 2024; 96:e29542. [PMID: 38506170 DOI: 10.1002/jmv.29542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
The emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs booster vaccination. We evaluated the long-term safety and immunogenicity of heterologous boosting with a SARS-CoV-2 messenger RNA vaccine SYS6006. A total of 1000 participants aged 18 years or more who had received two (Group A) or three (Group B) doses of SARS-CoV-2 inactivated vaccine were enrolled and vaccinated with one dose of SYS6006 which was designed based on the prototype spike protein and introduced mutation sites. Adverse events (AEs) through 30 days and serious AEs during the study were collected. Live-virus and pseudovirus neutralizing antibody (Nab), binding antibody (immunoglobulin G [IgG]) and cellular immunity were tested through 180 days. Solicited all, injection-site and systemic AEs were reported by 618 (61.8%), 498 (49.8%), and 386 (38.6%) participants, respectively. Most AEs were grade 1. The two groups had similar safety profile. No vaccination-related SAEs were reported. Robust wild-type (WT) live-virus Nab response was elicited with peak geometric mean titers (GMTs) of 3769.5 (Group A) and 5994.7 (Group B) on day 14, corresponding to 1602.5- and 290.8-fold increase versus baseline, respectively. The BA.5 live-virus Nab GMTs were 87.7 (Group A) and 93.2 (Group B) on day 14. All participants seroconverted for WT live-virus Nab. Robust pseudovirus Nab and IgG responses to wild type and BA.5 were also elicited. ELISpot assay showed robust cellular immune response, which was not obviously affected by virus variation. In conclusion, SYS6006 heterologous boosting demonstrated long-term good safety and immunogenicity in participants who had received two or three doses of SARS-CoV-2 inactivated vaccine.
Collapse
Affiliation(s)
- Jianying Huang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuanzheng Qiu
- CSPC Megalith Biopharmaceutical Co. Ltd., Shijiazhuang, Hebei, China
| | - Lin Luo
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Di Hu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Zhong
- CSPC Megalith Biopharmaceutical Co. Ltd., Shijiazhuang, Hebei, China
| | - Jiawei Lin
- CSPC Megalith Biopharmaceutical Co. Ltd., Shijiazhuang, Hebei, China
| | - Lixian Guo
- CSPC Megalith Biopharmaceutical Co. Ltd., Shijiazhuang, Hebei, China
| | - Hanyu Yang
- CSPC Megalith Biopharmaceutical Co. Ltd., Shijiazhuang, Hebei, China
| | - Chunlei Li
- CSPC Megalith Biopharmaceutical Co. Ltd., Shijiazhuang, Hebei, China
| | - Xinghuan Wang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
10
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Fang Y, Li JX, Duangdany D, Li Y, Guo XL, Phamisith C, Yu B, Shen MY, Luo B, Wang YZ, Liu SJ, Zhao FF, Xu CC, Qiu XH, Yan R, Gui YZ, Pei RJ, Wang J, Shen H, Guan WX, Li HW, Mayxay M. Safety, immunogenicity, and efficacy of a modified COVID-19 mRNA vaccine, SW-BIC-213, in healthy people aged 18 years and above: a phase 3 double-blinded, randomized, parallel controlled clinical trial in Lao PDR (Laos). EClinicalMedicine 2024; 67:102372. [PMID: 38169790 PMCID: PMC10758727 DOI: 10.1016/j.eclinm.2023.102372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background The mRNA vaccine has demonstrated significant effectiveness in protecting against SARS-CoV-2 during the pandemic, including against severe forms of the disease caused by emerging variants. In this study, we examined safety, immunogenicity, and relative efficacy of a heterologous booster of the lipopolyplex (LPP)-based mRNA vaccine (SW-BIC-213) versus a homologous booster of an inactivated vaccine (BBIBP) in Laos. Methods In this phase 3 clinical trial, which was randomized, parallel controlled and double-blinded, healthy adults aged 18 years and above were recruited from the Southern Savannakhet Provincial Hospital and Champhone District Hospital. The primary outcomes were safety and immunogenicity, with efficacy as an exploratory endpoint. Participants who were fully immunized with a two-dose inactivated vaccine for more than 6 months were assigned equally to either the SW-BIC-213 group (25 μg) or BBIBP group. The primary safety endpoint was to describe the safety profile of all participants in each group up to 6 months post-booster immunization. The primary immunogenic outcome was to demonstrate the superiority of the neutralizing antibody response, in terms of geometric mean titers (GMTs) of SW-BIC-213, compared with BBIBP 28 days after the booster dose. The exploratory efficacy endpoint aimed to assess the relative efficacy of SW-BIC-213 compared to BBIBP against virologically confirmed symptomatic COVID-19 over a 6-month period. The trial was registered with ClinicalTrials.gov (NCT05580159). Findings Between October 10, 2022, and January 13, 2023, 1200 participants were assigned to SW-BIC-213 group and 1203 participants in the BBIBP group. All adverse reactions observed during the study were tolerable, transient, and resolved spontaneously. Solicited local reactions were the main adverse reactions in both the SW-BIC-213 group (43.8%) and BBIBP group (14.8%) (p < 0.001). Heterologous boosting with SW-BIC-213 induced higher live virus neutralizing antibodies to SARS-CoV-2 wildtype and BA.5 strains with GMTs reaching 750.1 and 192.9 than homologous boosting with BBIBP with GMTs of 131.5 (p < 0.001) and 47.5 (p < 0.001) on day 29. The statistical findings revealed that, following a period of 14-day to 6-month after booster vaccination, the SW-BIC-213 group exhibited a relative vaccine efficacy (VE) of 70.1% (95% CI: 34.2-86.4) against symptomatic COVID-19 when compared to the BBIBP group. Interpretation A heterologous booster with the COVID-19 mRNA vaccine SW-BIC-213 manifests a favorable safety profile and proves highly immunogenic and efficacious in preventing symptomatic COVID-19 in individuals who have previously received two doses of inactivated vaccine. Funding Shanghai Strategic Emerging Industries Development Special Fund, Biomedical Technology Support Special Project of Shanghai "Science and Technology Innovation Action Plan", Shanghai Municipal Science and Technology Commission.
Collapse
Affiliation(s)
- Yi Fang
- Stemirna Therapeutics, Shanghai, China
| | - Jing-Xin Li
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | | | - Yang Li
- Stemirna Therapeutics, Shanghai, China
| | - Xi-Lin Guo
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | | | - Bo Yu
- Stemirna Therapeutics, Shanghai, China
| | | | - Bin Luo
- Stemirna Therapeutics, Shanghai, China
| | | | | | | | | | | | - Rong Yan
- Stemirna Therapeutics, Shanghai, China
| | - Yu-Zhou Gui
- Shanghai Xuhui Central Hospital/Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai, China
| | | | - Jie Wang
- Stemirna Therapeutics, Shanghai, China
| | | | | | | | - Mayfong Mayxay
- University of Health Sciences, Ministry of Health, Vientiane, Laos
| |
Collapse
|
12
|
Dietler D, Kahn F, Inghammar M, Björk J. Waning protection after vaccination and prior infection against COVID-19-related mortality over 18 months. Clin Microbiol Infect 2023; 29:1573-1580. [PMID: 37580016 DOI: 10.1016/j.cmi.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Evidence on waning patterns in protection from vaccine-induced, infection-induced, and hybrid immunity against death is scarce. The aim of this study is to assess the temporal trends in protection against mortality. METHODS Population-based case-control study nested in the total population of Scania Region, Sweden using individual-level registry data of COVID-19-related deaths (<30 days after positive SARS-CoV-2 test) between 27 December 2020 and 3 June 2022. Controls were matched for age, sex, and index date. Conditional logistic regression was used to estimate the preventable fraction (PF) from vaccination (PFvac corresponding to vaccine effectiveness; ≥2 vaccine doses vs. 0 doses), prior infection (PFinf), and hybrid immunity (PFhybrid). PF was calculated as one minus odds ratio. Models were adjusted for comorbidities, long-term care facility residence, prior infection (for PFvac), country of birth, socio-economic conditions, and time since last vaccination (for PFinf). RESULTS In total, 14 936 individuals (1440 COVID-19-related deaths and 13 496 controls) were included in the case-control analyses (45% females, median age: 84 years). PFvac was above 90% during the first month after vaccination, regardless of the number of vaccine doses. After 6 months, PFvac of two doses waned to 34% (95% CI: -30% to 66%). PFinf for people surviving a SARS-CoV-2 infection waned from 88% (-16% to 99%) 3 months after infection to 62% (34-79%) after 9 months. No differences in waning patterns in PFvac were seen between virus variants, gender, and age. DISCUSSION Given the waning of protection against death, continuous surveillance of population immunity status, particularly among the most vulnerable population groups, could help to further fine-tune vaccination recommendations.
Collapse
Affiliation(s)
- Dominik Dietler
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.
| | - Fredrik Kahn
- Department of Clinical Sciences Lund, Section for Infection Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Malin Inghammar
- Department of Clinical Sciences Lund, Section for Infection Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jonas Björk
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Bottero D, Rudi E, Martin Aispuro P, Zurita E, Gaillard E, Gonzalez Lopez Ledesma MM, Malito J, Stuible M, Ambrosis N, Durocher Y, Gamarnik AV, Wigdorovitz A, Hozbor D. Heterologous booster with a novel formulation containing glycosylated trimeric S protein is effective against Omicron. Front Immunol 2023; 14:1271209. [PMID: 38022542 PMCID: PMC10667599 DOI: 10.3389/fimmu.2023.1271209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Maria M. Gonzalez Lopez Ledesma
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Malito
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Nicolas Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Andrea V. Gamarnik
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
14
|
Fryer HA, Hartley GE, Edwards ESJ, Varese N, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, van Zelm MC. COVID-19 Adenoviral Vector Vaccination Elicits a Robust Memory B Cell Response with the Capacity to Recognize Omicron BA.2 and BA.5 Variants. J Clin Immunol 2023; 43:1506-1518. [PMID: 37322095 PMCID: PMC10499924 DOI: 10.1007/s10875-023-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.
Collapse
Affiliation(s)
- Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Yang Y, Kong WP, Liu C, Ruckwardt TJ, Tsybovsky Y, Wang L, Wang S, Biner DW, Chen M, Liu T, Merriam J, Olia AS, Ou L, Qiu Q, Shi W, Stephens T, Yang ES, Zhang B, Zhang Y, Zhou Q, Rawi R, Koup RA, Mascola JR, Kwong PD. Enhancing Anti-SARS-CoV-2 Neutralizing Immunity by Genetic Delivery of Enveloped Virus-like Particles Displaying SARS-CoV-2 Spikes. Vaccines (Basel) 2023; 11:1438. [PMID: 37766115 PMCID: PMC10537688 DOI: 10.3390/vaccines11091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.
Collapse
Affiliation(s)
- Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Daniel W. Biner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Jonah Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| |
Collapse
|
16
|
Guo S, Zheng Y, Gao Z, Duan M, Liu S, Du P, Xu X, Xu K, Zhao X, Chai Y, Wang P, Zhao Q, Gao GF, Dai L. Dosing interval regimen shapes potency and breadth of antibody repertoire after vaccination of SARS-CoV-2 RBD protein subunit vaccine. Cell Discov 2023; 9:79. [PMID: 37507370 PMCID: PMC10382582 DOI: 10.1038/s41421-023-00585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Vaccination with different vaccines has been implemented globally to counter the continuous COVID-19 pandemic. However, the vaccine-elicited antibodies have reduced efficiency against the highly mutated Omicron sub-variants. Previously, we developed a protein subunit COVID-19 vaccine called ZF2001, based on the dimeric receptor-binding domain (RBD). This vaccine has been administered using different dosing intervals in real-world setting. Some individuals received three doses of ZF2001, with a one-month interval between each dose, due to urgent clinical requirements. Others had an extended dosing interval of up to five months between the second and third dose, a standard vaccination regimen for the protein subunit vaccine against hepatitis B. In this study, we profile B cell responses in individuals who received three doses of ZF2001, and compared those with long or short dosing intervals. We observed that the long-interval group exhibited higher and broader serologic antibody responses. These responses were associated with the increased size and evolution of vaccine-elicited B-cell receptor repertoires, characterized by the elevation of expanded clonotypes and somatic hypermutations. Both groups of individuals generated substantial amounts of broadly neutralizing antibodies (bnAbs) against various SARS-CoV-2 variants, including Omicron sub-variants such as XBB. These bnAbs target four antigenic sites within the RBD. To determine the vulnerable site of SARS-CoV-2, we employed cryo-electron microscopy to identify the epitopes of highly potent bnAbs that targeted two major sites. Our findings provide immunological insights into the B cell responses elicited by RBD-based vaccine, and suggest that a vaccination regimen of prolonging time interval should be used in practice.
Collapse
Affiliation(s)
- Shuxin Guo
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhengrong Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Minrun Duan
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Sheng Liu
- Department of Biology, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Pan Du
- Vazyme Biotech, Nanjing, Jiangsu, China
| | - XiaoYu Xu
- Vazyme Biotech, Nanjing, Jiangsu, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peiyi Wang
- Department of Biology, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Xiao L, Yu W, Shen L, Yan W, Qi J, Hu T. Mucosal SARS-CoV-2 Nanoparticle Vaccine Based on Mucosal Adjuvants and Its Immune Effectiveness by Intranasal Administration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466148 DOI: 10.1021/acsami.3c05456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 is a respiratory virus that causes significant threats to human health. Mucosal immunity provides a first-line defense to prevent the infection of SARS-CoV-2 in the respiratory tract. Because most SARS-CoV-2 vaccines could not stimulate mucosal immunity in the respiratory tract, appropriate mucosal adjuvants or delivery systems are needed for mucosal vaccine development. Mannan, polyarginine, and 2',3'-cGAMP are three mucosal adjuvants that could stimulate mucosal immunity. In the present study, the three adjuvants were assembled with a receptor-binding domain (RBD) by electrostatic interaction to generate a nanoparticle vaccine (RBD-MP-cG). RBD-MP-cG elicited mucosal IgA and IgG response in bronchoalveolar lavage and nasal lavage by intranasal administration. It induced a robust RBD-specific antibody response, high levels of protective neutralizing antibody, and ACE2-blocking activity in the mouse sera. It stimulated the splenic secretion of high levels of Th1-, Th2-, and Th17-type cytokines. Thus, RBD-MP-cG elicited strong mucosal immunity and systematic immunity by intranasal administration. RBD-MP-cG was expected to act as a safe, effective, and easily produced mucosal nanoparticle vaccine to combat the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| |
Collapse
|
18
|
Kim WJ, Roberts CC, Song JY, Yoon JG, Seong H, Hyun HJ, Lee H, Gil A, Oh Y, Park JE, Lee JE, Jeon B, Kane D, Spruill S, Kudchodkar SB, Muthumani K, Park YK, Kwon I, Maslow JN. Immune response enhancement with GLS-5310 DNA primary vaccine against SARS-CoV-2 followed by administration of an mRNA vaccine heterologous boost. Vaccine 2023:S0264-410X(23)00683-7. [PMID: 37296017 DOI: 10.1016/j.vaccine.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Heterologous boost regimens are being increasingly considered against SARS-CoV-2. We report results for the 32 of 45 participants in the Phase 1 CoV2-001 clinical trial (Kim et al., Int J Iinfect Dis 2023, 128:112-120) who elected to receive an EUA-approved SARS-CoV-2 mRNA vaccine 6 to 8 months following a two-dose primary vaccination with the GLS-5310 bi-cistronic DNA vaccine given intradermally and followed by application of suction using the GeneDerm device. Receipt of EUA-approved mRNA vaccines after GLS-5310 vaccination was well-tolerated, with no reported adverse events. Immune responses were enhanced such that binding antibody titers, neutralizing antibody titers, and T-cell responses increased 1,187-fold, 110-fold, and 2.9-fold, respectively. This paper is the first description of the immune responses following heterologous vaccination with a DNA primary series and mRNA boost.
Collapse
Affiliation(s)
- Woo Joo Kim
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | | | - Joon Young Song
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hak-Jun Hyun
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Areum Gil
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Yeeun Oh
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Bohyun Jeon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Deborah Kane
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Susan Spruill
- Applied Statistics and Consulting, Spruce Pine, NC, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ijoo Kwon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul, Republic of Korea; Department of Medicine, Morristown Medical Center, Morristown, NJ, USA.
| |
Collapse
|
19
|
Yu M, Charles A, Cagigi A, Christ W, Österberg B, Falck-Jones S, Azizmohammadi L, Åhlberg E, Falck-Jones R, Svensson J, Nie M, Warnqvist A, Hellgren F, Lenart K, Arcoverde Cerveira R, Ols S, Lindgren G, Lin A, Maecker H, Bell M, Johansson N, Albert J, Sundling C, Czarnewski P, Klingström J, Färnert A, Loré K, Smed-Sörensen A. Delayed generation of functional virus-specific circulating T follicular helper cells correlates with severe COVID-19. Nat Commun 2023; 14:2164. [PMID: 37061513 PMCID: PMC10105364 DOI: 10.1038/s41467-023-37835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Collapse
Affiliation(s)
- Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lida Azizmohammadi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mu Nie
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Warnqvist
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Lindgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- The Human Immune Monitoring Center, Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Marking U, Havervall S, Norin NG, Bladh O, Christ W, Gordon M, Ng H, Blom K, Phillipson M, Mangsbo S, Alm JJ, Smed-Sörensen A, Nilsson P, Hober S, Åberg M, Klingström J, Thålin C. Correlates of protection and viral load trajectories in omicron breakthrough infections in triple vaccinated healthcare workers. Nat Commun 2023; 14:1577. [PMID: 36949041 PMCID: PMC10031702 DOI: 10.1038/s41467-023-36984-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023] Open
Abstract
Vaccination offers protection against severe COVID-19 caused by SARS-CoV-2 omicron but is less effective against infection. Characteristics such as serum antibody titer correlation to protection, viral abundance and clearance of omicron infection in vaccinated individuals are scarce. We present a 4-week twice-weekly SARS-CoV-2 qPCR screening in 368 triple vaccinated healthcare workers. Spike-specific IgG levels, neutralization titers and mucosal spike-specific IgA-levels were determined at study start and qPCR-positive participants were sampled repeatedly for two weeks. 81 (cumulative incidence 22%) BA.1, BA.1.1 and BA.2 infections were detected. High serum antibody titers are shown to be protective against infection (p < 0.01), linked to reduced viral load (p < 0.01) and time to viral clearance (p < 0.05). Pre-omicron SARS-CoV-2 infection is independently associated to increased protection against omicron, largely mediated by mucosal spike specific IgA responses (nested models lr test p = 0.02 and 0.008). Only 10% of infected participants remain asymptomatic through the course of their infection. We demonstrate that high levels of vaccine-induced spike-specific WT antibodies are linked to increased protection against infection and to reduced viral load if infected, and suggest that the additional protection offered by pre-omicron SARS-CoV-2 infection largely is mediated by mucosal spike-specific IgA.
Collapse
Affiliation(s)
- Ulrika Marking
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Sebastian Havervall
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Nina Greilert Norin
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Oscar Bladh
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Max Gordon
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Henry Ng
- Department of Medical Cell Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Kim Blom
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Sara Mangsbo
- Department of Pharmacy and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jessica J Alm
- Department of Microbiology, Tumor and Cell Biology & National Pandemic Center, Karolinska Institutet, Solna, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Nilsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Thålin
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Underwood AP, Sølund C, Fernandez-Antunez C, Villadsen SL, Mikkelsen LS, Fahnøe U, Bollerup S, Winckelmann AA, Schneider UV, Binderup A, Vizgirda G, Sørensen AL, Vinten CN, Dalegaard MI, Ramirez S, Weis N, Bukh J. Durability and breadth of neutralisation following multiple antigen exposures to SARS-CoV-2 infection and/or COVID-19 vaccination. EBioMedicine 2023; 89:104475. [PMID: 36870117 PMCID: PMC9978324 DOI: 10.1016/j.ebiom.2023.104475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Given the importance of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the prevention of severe coronavirus disease 2019 (COVID-19), detailed long-term analyses of neutralising antibody responses are required to inform immunisation strategies. METHODS In this study, longitudinal neutralising antibody titres to an ancestral SARS-CoV-2 isolate and cross-neutralisation to delta and omicron isolates were analysed in individuals previously infected with SARS-CoV-2, vaccinated against COVID-19, or a complex mix thereof with up to two years of follow-up. FINDINGS Both infection-induced and vaccine-induced neutralising responses against SARS-CoV-2 appeared to follow similar decay patterns. Following vaccination in previously infected individuals, neutralising antibody responses were more durable than prior to vaccination. Further, this study shows that vaccination after infection, as well as booster vaccination, increases the cross-neutralising potential to both delta and omicron SARS-CoV-2 variants. INTERPRETATION Taken together, these results suggest that neither type of antigen exposure is superior for neutralising antibody durability. However, these results support vaccination to increase the durability and cross-neutralisation potential of neutralising responses, thereby enhancing protection against severe COVID-19. FUNDING This work was supported by grants from The Capital Region of Denmark's Research Foundation, the Novo Nordisk Foundation, the Independent Research Fund Denmark, the Candys Foundation, and the Danish Agency for Science and Higher Education.
Collapse
Affiliation(s)
- Alexander P Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Signe Lysemose Villadsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Signe Bollerup
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Anni Assing Winckelmann
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Greta Vizgirda
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Anna-Louise Sørensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
22
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Kuo HC, Kuo KC, Du PX, Keskin BB, Su WY, Ho TS, Tsai PS, Pau CH, Shih HC, Huang YH, Weng KP, Syu GD. Profiling humoral immunity after mixing and matching COVID-19 vaccines using SARS-CoV-2 variant protein microarrays. Mol Cell Proteomics 2023; 22:100507. [PMID: 36787877 PMCID: PMC9922205 DOI: 10.1016/j.mcpro.2023.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Due to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared to AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared to Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302
| | - Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan R.O.C.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan R.O.C.,Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan R.O.C
| | - Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi Ho Pau
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
24
|
Debie Y, Van Audenaerde JRM, Vandamme T, Croes L, Teuwen LA, Verbruggen L, Vanhoutte G, Marcq E, Verheggen L, Le Blon D, Peeters B, Goossens ME, Pannus P, Ariën KK, Anguille S, Janssens A, Prenen H, Smits ELJ, Vulsteke C, Lion E, Peeters M, van Dam PA. Humoral and Cellular Immune Responses against SARS-CoV-2 after Third Dose BNT162b2 following Double-Dose Vaccination with BNT162b2 versus ChAdOx1 in Patients with Cancer. Clin Cancer Res 2023; 29:635-646. [PMID: 36341493 DOI: 10.1158/1078-0432.ccr-22-2185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. EXPERIMENTAL DESIGN A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARS-CoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T-cell responses against SARS-CoV-2-specific S1 and S2 peptides. RESULTS Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95-2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48-1,977.46)]. However, homologous-boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.
Collapse
Affiliation(s)
- Yana Debie
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Jonas R M Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Timon Vandamme
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lieselot Croes
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Laure-Anne Teuwen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lise Verbruggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Greetje Vanhoutte
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lisa Verheggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Debbie Le Blon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Bart Peeters
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Maria E Goossens
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Pieter Pannus
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Division of Hematology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Annelies Janssens
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christof Vulsteke
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marc Peeters
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
25
|
Huang KYA, Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Tan TK, Rijal P, Vester SK, Hills RA, Howarth M, Keeffe JR, Cohen AA, Kakutani LM, Wu YM, Shahed-Al-Mahmud M, Chou YC, Bjorkman PJ, Townsend AR, Ma C. Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nat Commun 2023; 14:311. [PMID: 36658148 PMCID: PMC9852238 DOI: 10.1038/s41467-023-35949-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Antibody-mediated immunity plays a crucial role in protection against SARS-CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding domain (RBD) antibodies elicited upon natural infection and vaccination and showed that they recognize an immunogenic patch on the internal surface of the core RBD, which faces inwards and is hidden in the "down" state. These antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and Delta variants and some are effective against other sarbecoviruses. We observed a continuum of partially overlapping antibody epitopes from lower to upper part of the inner face of the RBD and some antibodies extend towards the receptor-binding motif. The majority of antibodies are substantially compromised by three mutational hotspots (S371L/F, S373P and S375F) in the lower part of the Omicron BA.1, BA.2 and BA.4/5 RBD. By contrast, antibody IY-2A induces a partial unfolding of this variable region and interacts with a conserved conformational epitope to tolerate all antigenic variations and neutralize diverse sarbecoviruses as well. This finding establishes that antibody recognition is not limited to the normal surface structures on the RBD. In conclusion, the delineation of functionally and structurally conserved RBD epitopes highlights potential vaccine and therapeutic candidates for COVID-19.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Susan K Vester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Yi-Min Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Alain R Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
26
|
Shen K, Yang C, Chen C, Ho H, Chiu F, Huang C, Liao H, Hsu C, Yu G, Liao C, Chen H, Huang M, Liu S. Omicron-specific mRNA vaccine induced cross-protective immunity against ancestral SARS-CoV-2 infection with low neutralizing antibodies. J Med Virol 2023; 95:e28370. [PMID: 36458553 PMCID: PMC9877661 DOI: 10.1002/jmv.28370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The major challenge in COVID-19 vaccine effectiveness is immune escape by SARS-CoV-2 variants. To overcome this, an Omicron-specific messenger RNA (mRNA) vaccine was designed. The extracellular domain of the spike of the Omicron variant was fused with a modified GCN4 trimerization domain with low immunogenicity (TSomi). After immunization with TSomi mRNA in hamsters, animals were challenged with SARS-CoV-2 virus. The raised nonneutralizing antibodies or cytokine secretion responses can recognize both Wuhan S and Omicron S. However, the raised antibodies neutralized SARS-CoV-2 Omicron virus infection but failed to generate Wuhan virus neutralizing antibodies. Surprisingly, TSomi mRNA immunization protected animals from Wuhan virus challenge. These data indicated that non-neutralizing antibodies or cellular immunity may play a more important role in vaccine-induced protection than previously believed. Next-generation COVID-19 vaccines using the Omicron S antigen may provide sufficient protection against ancestral or current SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Kuan‐Yin Shen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chung‐Hsiang Yang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chiung‐Tong Chen
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoliTaiwan
| | - Hui‐Min Ho
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Fang‐Feng Chiu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chiung‐Yi Huang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Hung‐Chun Liao
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chia‐Wei Hsu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Guann‐Yi Yu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Ching‐Len Liao
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Hsin‐Wei Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan,Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ming‐Hsi Huang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan,Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Jen Liu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan,Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
27
|
Ruhl L, Kühne JF, Beushausen K, Keil J, Christoph S, Sauer J, Falk CS. Third SARS-CoV-2 vaccination and breakthrough infections enhance humoral and cellular immunity against variants of concern. Front Immunol 2023; 14:1120010. [PMID: 37033958 PMCID: PMC10073596 DOI: 10.3389/fimmu.2023.1120010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction SARS-CoV-2 vaccination is the leading strategy to prevent severe courses after SARS-CoV-2 infection. In our study, we analyzed humoral and cellular immune responses in detail to three consecutive homologous or heterologous SARS-CoV-2 vaccinations and breakthrough infections. Methods Peripheral blood samples of n=20 individuals were analyzed in the time course of three SARS-CoV-2 vaccinations and/or breakthrough infection. S1-, RBD-, S2- and N-specific IgG antibodies were quantified using Luminex-based multiplex assays and electrochemiluminescence multiplex assays for surrogate neutralization in plasma. Changes in cellular immune components were determined via flow cytometry of whole blood samples. Results All individuals (n=20) responded to vaccination with increasing S1-/RBD-/S2-specific IgG levels, whereas specific plasma IgA displayed individual variability. The third dose increased antibody inhibitory capacity (AIC) against immune-escape variants Beta and Omicron BA.1 independently of age. The mRNA-primed vaccination induced IgG and IgA immunity more efficiently, whereas vector-primed individuals displayed higher levels of memory T and B cells. Vaccinees showed SARS-CoV-2-specific T cell responses, which were further improved and specified after Omicron breakthrough infections in parallel to the appearance of new variant-specific antibodies. Discussion In conclusion, the third vaccination was essential to increase IgG levels, mandatory to boost AIC against immune-escape variants, and induced SARS-CoV-2-specific T cells. Breakthrough infection with Omicron generates additional spike specificities covering all known variants.
Collapse
Affiliation(s)
- Louisa Ruhl
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
| | - Jenny F. Kühne
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
| | - Kerstin Beushausen
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
| | - Jana Keil
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
| | - Stella Christoph
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
| | - Jasper Sauer
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
| | - Christine S. Falk
- Hannover Medical School, Institute of Transplant Immunology, Hannover, Germany
- BREATH Site, German Center for Lung Research (DZL), Hannover, Germany
- TTU-IICH, German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- *Correspondence: Christine S. Falk,
| |
Collapse
|
28
|
Hasanpourghadi M, Novikov M, Ambrose R, Chekaoui A, Newman D, Ding J, Giles-Davis W, Xiang Z, Zhou XY, Liu Q, Swagata K, Ertl HCJ. Heterologous chimpanzee adenovirus vector immunizations for SARS-CoV-2 spike and nucleocapsid protect hamsters against COVID-19. Microbes Infect 2022; 25:105082. [PMID: 36539010 PMCID: PMC9758783 DOI: 10.1016/j.micinf.2022.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Available COVID-19 vaccine only provide protection for a limited time due in part to the rapid emergence of viral variants with spike protein mutations, necessitating the generation of new vaccines to combat SARS-CoV-2. Two serologically distinct replication-defective chimpanzee-origin adenovirus (Ad) vectors (AdC) called AdC6 and AdC7 expressing early SARS-CoV-2 isolate spike (S) or nucleocapsid (N) proteins, the latter expressed as a fusion protein within herpes simplex virus glycoprotein D (gD), were tested individually or as a mixture in a hamster COVID-19 SARS-CoV-2 challenge model. The S protein expressing AdC (AdC-S) vectors induced antibodies including those with neutralizing activity that in part cross-reacted with viral variants. Hamsters vaccinated with the AdC-S vectors were protected against serious disease and showed accelerated recovery upon SARS-CoV-2 challenge. Protection was enhanced if AdC-S vectors were given together with the AdC vaccines that expressed the gD N fusion protein (AdC-gDN). In contrast hamsters that just received the AdC-gDN vaccines showed only marginal lessening of symptoms compared to control animals. These results indicate that immune response to the N protein that is less variable than the S protein may potentiate and prolong protection achieved by the currently used S protein based genetic COVID-19 vaccines.
Collapse
Affiliation(s)
| | - Mikhail Novikov
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Robert Ambrose
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Arezki Chekaoui
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Dakota Newman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Jianyi Ding
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | - Zhiquan Xiang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Xiang Yang Zhou
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Qin Liu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Kar Swagata
- Bioqual Inc., 9600 Medical Center Dr #101, Rockville, MD 20850
| | - Hildegund CJ. Ertl
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA,Corresponding author. Tel.: +1 215-898-3863
| |
Collapse
|
29
|
Fryer HA, Hartley GE, Edwards ES, O'Hehir RE, van Zelm MC. Humoral immunity and B-cell memory in response to SARS-CoV-2 infection and vaccination. Biochem Soc Trans 2022; 50:1643-1658. [PMID: 36421662 PMCID: PMC9788580 DOI: 10.1042/bst20220415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2024]
Abstract
Natural infection with SARS-CoV-2 induces a robust circulating memory B cell (Bmem) population, which remains stable in number at least 8 months post-infection despite the contraction of antibody levels after 1 month. Multiple vaccines have been developed to combat the virus. These include two new formulations, mRNA and adenoviral vector vaccines, which have varying efficacy rates, potentially related to their distinct capacities to induce humoral immune responses. The mRNA vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) elicit significantly higher serum IgG and neutralizing antibody levels than the adenoviral vector ChAdOx1 (AstraZeneca) and Ad26.COV2.S (Janssen) vaccines. However, all vaccines induce Spike- and RBD-specific Bmem, which are vital in providing long-lasting protection in the form of rapid recall responses to subsequent infections. Past and current SARS-CoV-2 variants of concern (VoC) have shown the capacity to escape antibody neutralization to varying degrees. A booster dose with an mRNA vaccine following primary vaccination restores antibody levels and improves the capacity of these antibodies and Bmem to bind viral variants, including the current VoC Omicron. Future experimental research will be essential to evaluate the durability of protection against VoC provided by each vaccine and to identify immune markers of protection to enable prognostication of people who are at risk of severe complications from COVID-19.
Collapse
Affiliation(s)
- Holly A. Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S.J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn E. O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Dürrwald R, Kolodziejek J, Oh DY, Herzog S, Liebermann H, Osterrieder N, Nowotny N. Vaccination against Borna Disease: Overview, Vaccine Virus Characterization and Investigation of Live and Inactivated Vaccines. Viruses 2022; 14:2706. [PMID: 36560710 PMCID: PMC9788498 DOI: 10.3390/v14122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Vaccination of horses and sheep against Borna disease (BD) was common in endemic areas of Germany in the 20th century but was abandoned in the early 1990s. The recent occurrence of fatal cases of human encephalitis due to Borna disease virus 1 (BoDV-1) has rekindled the interest in vaccination. (2) Methods: The full genomes of the BD live vaccine viruses "Dessau" and "Giessen" were sequenced and analyzed for the first time. All vaccination experiments followed a proof-of-concept approach. Dose-titration infection experiments were performed in rabbits, based on both cell culture- and brain-derived viruses at various doses. Inactivated vaccines against BD were produced from concentrated cell culture supernatants and investigated in rabbits and horses. The BoDV-1 live vaccine "Dessau" was administered to horses and antibody profiles were determined. (3) Results: The BD live vaccine viruses "Dessau" and "Giessen" belong to clusters 3 and 4 of BoDV-1. Whereas the "Giessen" virus does not differ substantially from field viruses, the "Dessau" virus shows striking differences in the M gene and the N-terminal part of the G gene. Rabbits infected with high doses of cell-cultured virus developed neutralizing antibodies and were protected from disease, whereas rabbits infected with low doses of cell-cultured virus, or with brain-derived virus did not. Inactivated vaccines were administered to rabbits and horses, following pre-defined vaccination schemes consisting of three vaccine doses of either adjuvanted or nonadjuvanted inactivated virus. Their immunogenicity and protective efficacy were compared to the BD live vaccine "Dessau". Seventy per cent of horses vaccinated with the BD live vaccine "Dessau" developed neutralizing antibodies after vaccination. (4) Conclusion: Despite a complex evasion of immunological responses by bornaviruses, some vaccination approaches can protect against clinical disease. For optimal effectiveness, vaccines should be administered at high doses, following vaccination schemes consisting of three vaccine doses as basic immunization. Further investigations are necessary in order to investigate and improve protection against infection and to avoid side effects.
Collapse
Affiliation(s)
- Ralf Dürrwald
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Djin-Ye Oh
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Heinrich Liebermann
- retd., former Institute of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
31
|
Zhang J, He Q, Yan X, Liu J, Bai Y, An C, Cui B, Gao F, Mao Q, Wang J, Xu M, Liang Z. Mixed formulation of mRNA and protein-based COVID-19 vaccines triggered superior neutralizing antibody responses. MedComm (Beijing) 2022; 3:e188. [PMID: 36474858 PMCID: PMC9717706 DOI: 10.1002/mco2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID-19) vaccine candidates. To optimize the immunization strategy of the novel mRNA-based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID-19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA-RBD) and protein subunit vaccine (PS-RBD) in mice. Compared with homologous immunization of RNA-RBD or PS-RBD, heterologous prime-boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody-dependent cell-mediated cytotoxicity for "PS-RBD prime, RNA-RBD boost" and robust Th1 type cellular response for "RNA-RBD prime, PS-RBD boost". Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1-type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Jianyang Liu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Junzhi Wang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Miao Xu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| |
Collapse
|
32
|
Tsamadou C, Ludwig C, Scholz J, Proffen M, Hägele J, Rode I, Körper S, Fabricius D, Jahrsdörfer B, Neuchel C, Amann E, Schrezenmeier H, Fürst D. Differentially induced immunity in buccal and nasal mucosae after vaccination for SARS–CoV–2: Prospects for mass scale immunity-screening in large populations. Front Immunol 2022; 13:999693. [DOI: 10.3389/fimmu.2022.999693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
IntroductionHumoral immunity after SARS-CoV-2 vaccination has been extensively investigated in blood. Aim of this study was to develop an ELISA method in order to determine the prevalence of IgG and IgA SARS-CoV-2 domain 1 spike-protein (S) specific antibodies (Abs) in buccal and nasal mucosal surfaces of vaccinees.MethodsTo this end, we analyzed 69 individuals who received their first vaccine dose between February and July 2021. Vaccines administered were BNT162b2, mRNA-1273 or ChAdOx1-nCoV-19. Detection of IgG and IgA Abs was performed using commercial ELISA kits for both blood and swab samples after protocol modification for the latter.ResultsAnti-spike IgG and IgA Abs in the buccal and/or nasal swabs were detectable in >81% of the study subjects after the second dose. The IgG measurements in buccal swabs appeared to correlate in a more consistent way with the respective measurements in blood with a correlation coefficient of r=0.74. It is of note that IgA Abs appeared to be significantly more prevalent in the nasal compared to the buccal mucosa. Optimal selection of the assay cut-off for the IgG antibody detection in buccal swabs conferred a sensitivity of 91.8% and a specificity of 100%. Last, individuals vaccinated with mRNA-based vaccines exhibited higher antibody levels in both blood and mucosal surfaces compared to those receiving ChAdOx1-nCoV-19 confirming previously reported results.ConclusionIn conclusion, our findings show a differential prevalence of anti-S Abs on mucosal surfaces after vaccination for SARS-CoV-2, while they also set the basis for potential future use of IgG antibody detection in buccal swabs for extended immunity screening in large populations.
Collapse
|
33
|
Khong KW, Zhang R, Hung IFN. The Four Ws of the Fourth Dose COVID-19 Vaccines: Why, Who, When and What. Vaccines (Basel) 2022; 10:1924. [PMID: 36423020 PMCID: PMC9694140 DOI: 10.3390/vaccines10111924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 10/13/2023] Open
Abstract
With the emergence of SARS-CoV-2 variants, vaccine breakthrough is a major public health concern. With evidence of reduced neutralizing antibody activity against Omicron variants and fading antibody level after the third-dose booster vaccine, there are suggestions of a fourth-dose booster vaccine. In this review, the benefits of a fourth-dose booster is evaluated from four perspectives, including the effectiveness of the booster dose against virus variants (Why), susceptible groups of individuals who may benefit from additional booster dose (Who), selection of vaccine platforms to better enhance immunity (What) and appropriate intervals between the third and fourth booster dose (When). In summary, a fourth dose can temporarily boost the immune response against SARS-CoV-2 variants and can be considered for specific groups of individuals. A heterologous vaccine strategy using mRNA vaccine in individuals primed with inactivated vaccine may boost immunity against variants. The timing of the fourth dose should be individualized but an interval of 4 months after the third-dose booster is appropriate. A universal fourth booster dose is not necessary.
Collapse
Affiliation(s)
- Ka-Wa Khong
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- State Key Laboratory for Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Blanco S, Spinsanti L, Javier Aguilar J, Diaz A, Elisa Rivarola M, Beranek M, Fernández E, Mangeaud A, Salomé Konigheim B, Verónica Gallego S. Neutralizing response elicited by homologous and heterologous prime booster vaccination against ancestral SARS-CoV-2 B.1, P.1, C.37 and B.1.617.2 variants. Vaccine 2022; 40:6706-6710. [PMID: 36280564 PMCID: PMC9581801 DOI: 10.1016/j.vaccine.2022.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Heterologous Covid-19 vaccination strategies arose due to interruption of vaccination programs plus delay and shortage of vaccine supplies. We analysed neutralizing response against ancestral SARS-CoV-2 B.1 and P.1, C.37 and B.1.67.2 variants elicited by 16 homologous and heterologous protocols combining Gam-COVID-Vac, ChAdOx1-S, Ad5-nCorV, BBIBP-CorV and mRNA-1273 vaccines. Homologous mRNA-1273 and heterologous schemes of a non-replicative viral vector/inactivated virus-based vaccine combined with mRNA-1273 induced significantly broader and greater neutralizing antibody-response. Moreover, serum from participants vaccinated with combinations of ChAdOx1-S/Ad5-nCorV and BBIBP-CorV/non-replicative viral vector-based vaccines showed higher or equivalent neutralizing response compared to homologous protocols, pointing them as good alternative platforms. BBIBP-CorV used as second dose exhibited significantly lower neutralizing response compared to other protocols, demonstrating that it should not be recommended as second dose. The information provided herein is valuable to redesign vaccination strategies, especially for low-income countries that still struggle with low percentages of immunized populations and vaccine supply shortage.
Collapse
Affiliation(s)
- Sebastián Blanco
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina,Corresponding author at: Caseros 1576, Barrio Alberdi. CP: 5000, Córdoba, Argentina
| | - Lorena Spinsanti
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Javier Aguilar
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Diaz
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Elisa Rivarola
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mauricio Beranek
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Elmer Fernández
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Universidad Católica de Córdoba, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Arnaldo Mangeaud
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda Salomé Konigheim
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sandra Verónica Gallego
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
35
|
Kim DI, Lee SJ, Park S, Kim P, Lee SM, Lee N, Shum D, Kim DH, Kim EH. Immunogenicity and Durability of Antibody Responses to Homologous and Heterologous Vaccinations with BNT162b2 and ChAdOx1 Vaccines for COVID-19. Vaccines (Basel) 2022; 10:1864. [PMID: 36366372 PMCID: PMC9692595 DOI: 10.3390/vaccines10111864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/29/2023] Open
Abstract
During the COVID-19 pandemic, vaccines were developed based on various platform technologies and were approved for emergency use. However, the comparative analysis of immunogenicity and durability of vaccine-induced antibody responses depending on vaccine platforms or vaccination regimens has not been thoroughly examined for mRNA- or viral vector-based vaccines. In this study, we assessed spike-binding IgG levels and neutralizing capacity in 66 vaccinated individuals prime-boost immunized either by homologous (BNT162b2-BNT162b2 or ChAdOx1-ChAdOx1) or heterologous (ChAdOx1-BNT162b2) vaccination for six months after the first vaccination. Despite the discrepancy in intervals for the prime-boost vaccination regimen of different COVID-19 vaccines, we found stronger induction and relatively rapid waning of antibody responses by homologous vaccination of the mRNA vaccine, while weaker boost effect and stable maintenance of humoral immune responses were observed in the viral vector vaccine group over 6 months. Heterologous vaccination with ChAdOx1 and BNT162b2 resulted in an effective boost effect with the highest remaining antibody responses at six months post-primary vaccination.
Collapse
Affiliation(s)
- Dong-In Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Seo Jin Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Soonju Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Paul Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Nakyung Lee
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam 13488, Korea
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
36
|
Chi WY, Li YD, Huang HC, Chan TEH, Chow SY, Su JH, Ferrall L, Hung CF, Wu TC. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci 2022; 29:82. [PMID: 36243868 PMCID: PMC9569411 DOI: 10.1186/s12929-022-00853-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has been the most severe public health challenge in this century. Two years after its emergence, the rapid development and deployment of effective COVID-19 vaccines have successfully controlled this pandemic and greatly reduced the risk of severe illness and death associated with COVID-19. However, due to its ability to rapidly evolve, the SARS-CoV-2 virus may never be eradicated, and there are many important new topics to work on if we need to live with this virus for a long time. To this end, we hope to provide essential knowledge for researchers who work on the improvement of future COVID-19 vaccines. In this review, we provided an up-to-date summary for current COVID-19 vaccines, discussed the biological basis and clinical impact of SARS-CoV-2 variants and subvariants, and analyzed the effectiveness of various vaccine booster regimens against different SARS-CoV-2 strains. Additionally, we reviewed potential mechanisms of vaccine-induced severe adverse events, summarized current studies regarding immune correlates of protection, and finally, discussed the development of next-generation vaccines.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yen-Der Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy En Haw Chan
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Urology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sih-Yao Chow
- Downstream Process Science, EirGenix Inc., Zhubei, Hsinchu, Taiwan R.O.C
| | - Jun-Han Su
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Louise Ferrall
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Medical Institutions, CRB II Room 309, 1550 Orleans St, MD, 21231, Baltimore, USA.
| |
Collapse
|
37
|
Fu Y, Zhao J, Wei X, Han P, Yang L, Ren T, Zhan S, Li L. Cost-Effectiveness of COVID-19 Sequential Vaccination Strategies in Inactivated Vaccinated Individuals in China. Vaccines (Basel) 2022; 10:1712. [PMID: 36298577 PMCID: PMC9610874 DOI: 10.3390/vaccines10101712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
To effectively prevent and control the COVID-19 pandemic, countries have adopted a booster vaccination strategy. This study aimed to estimate the cost-effectiveness of sequential booster COVID-19 vaccination compared to two-dose inactivated vaccination in China from a societal perspective. A Markov model was developed to estimate the cost-effectiveness of sequential vaccination, including two doses of an inactivated vaccine followed by a booster shot of an inactivated vaccine, adenovirus vectored vaccine, protein subunit vaccine, or mRNA vaccine. The incremental effects of a booster shot with an inactivated vaccine, protein subunit vaccine, adenovirus vectored vaccine, and mRNA vaccine were 0.0075, 0.0110, 0.0208, and 0.0249 QALYs and saved costs of US$163.96, US$261.73, US$583.21, and US$724.49, respectively. Under the Omicron virus pandemic, the sequential vaccination among adults and the elderly (aged 60-69, 70-79, over 80) was consistently cost-saving, and a booster shot of the mRNA vaccine was more cost-saving. The results indicate that the sequential vaccination strategy is cost-effective in addressing the COVID-19 pandemic, and improving vaccination coverage among the elderly is of great importance in avoiding severe cases and deaths.
Collapse
Affiliation(s)
- Yaqun Fu
- School of Public Health, Peking University, Beijing 100191, China
| | - Jingyu Zhao
- School of Public Health, Peking University, Beijing 100191, China
| | - Xia Wei
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Peien Han
- School of Public Health, Peking University, Beijing 100191, China
| | - Li Yang
- School of Public Health, Peking University, Beijing 100191, China
| | - Tao Ren
- School of Public Health, Peking University, Beijing 100191, China
| | - Siyan Zhan
- School of Public Health, Peking University, Beijing 100191, China
| | - Liming Li
- School of Public Health, Peking University, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing 100191, China
| |
Collapse
|
38
|
Rakshit S, Adiga V, Ahmed A, Parthiban C, Chetan Kumar N, Dwarkanath P, Shivalingaiah S, Rao S, D’Souza G, Dias M, Maguire TJA, Doores KJ, Zoodsma M, Geckin B, Dasgupta P, Babji S, van Meijgaarden KE, Joosten SA, Ottenhoff THM, Li Y, Netea MG, Stuart KD, De Rosa SC, McElrath MJ, Vyakarnam A. Evidence for the heterologous benefits of prior BCG vaccination on COVISHIELD™ vaccine-induced immune responses in SARS-CoV-2 seronegative young Indian adults. Front Immunol 2022; 13:985938. [PMID: 36268023 PMCID: PMC9577398 DOI: 10.3389/fimmu.2022.985938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth; latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1β and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Biotechnology, PES University, Bangalore, India
| | - Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Chaitra Parthiban
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Nirutha Chetan Kumar
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | | | - Srishti Rao
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - George D’Souza
- Division of Nutrition, St. John’s Research Institute, Bangalore, India
| | - Mary Dias
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | - Katie J. Doores
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Martijn Zoodsma
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Computational Biology for Individualized Infection Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Busranur Geckin
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research, (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Prokar Dasgupta
- Department of Internal Medicine and Radboud Center for infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sudhir Babji
- Peter Gorer Department of Immunobiology, Liver Renal Urology Transplant Gastro/Gastrointestinal Surgery, Inflammation Biology, King’s College London, London, United Kingdom
| | | | - Simone A. Joosten
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Tom H. M. Ottenhoff
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Yang Li
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Computational Biology for Individualized Infection Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G. Netea
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research, (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Kenneth D. Stuart
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Stephen C. De Rosa
- Centre for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - M. Juliana McElrath
- Centre for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, United States
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Annapurna Vyakarnam, ;
| |
Collapse
|
39
|
Vogel E, Kocher K, Priller A, Cheng CC, Steininger P, Liao BH, Körber N, Willmann A, Irrgang P, Held J, Moosmann C, Schmidt V, Beileke S, Wytopil M, Heringer S, Bauer T, Brockhoff R, Jeske S, Mijocevic H, Christa C, Salmanton-García J, Tinnefeld K, Bogdan C, Yazici S, Knolle P, Cornely OA, Überla K, Protzer U, Schober K, Tenbusch M. Dynamics of humoral and cellular immune responses after homologous and heterologous SARS-CoV-2 vaccination with ChAdOx1 nCoV-19 and BNT162b2. EBioMedicine 2022; 85:104294. [PMID: 36206622 PMCID: PMC9530590 DOI: 10.1016/j.ebiom.2022.104294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Vaccines are an important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 180 days after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. METHODS Various tests were used to determine the humoral and cellular immune response. To quantify the antibody levels, we used the surrogate neutralization (sVNT) assay from YHLO, which we augmented with pseudo- and real virus neutralization tests (pVNT and rVNT). Antibody avidity was measured by a modified ELISA. To determine cellular reactivity, we used an IFN-γ Elispot, IFN-γ/IL Flurospot, and intracellular cytokine staining. FINDINGS Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. All vaccination regimens induced stable, polyfunctional T-cell responses. INTERPRETATION These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent alternative to induce humoral and cellular immune protection in comparison to the homologous vaccination regimens. FUNDING The study was funded by the German Centre for Infection Research (DZIF), the European Union's "Horizon 2020 Research and Innovation Programme" under grant agreement No. 101037867 (VACCELERATE), the "Bayerisches Staatsministerium für Wissenschaft und Kunst" for the CoVaKo-2021 and the For-COVID projects and the Helmholtz Association via the collaborative research program "CoViPa". Further support was obtained from the Federal Ministry of Education and Science (BMBF) through the "Netzwerk Universitätsmedizin", project "B-Fast" and "Cov-Immune". KS is supported by the German Federal Ministry of Education and Research (BMBF, 01KI2013) and the Else Kröner-Stiftung (2020_EKEA.127).
Collapse
Affiliation(s)
- Emanuel Vogel
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Katharina Kocher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Alina Priller
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 München, Germany
| | - Cho-Chin Cheng
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Bo-Hung Liao
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Nina Körber
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Annika Willmann
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Jürgen Held
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Carolin Moosmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Viviane Schmidt
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Monika Wytopil
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Sarah Heringer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Herderstr. 52, 50931 Cologne, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Ronja Brockhoff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Herderstr. 52, 50931 Cologne, Germany
| | - Samuel Jeske
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Hrvoje Mijocevic
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Catharina Christa
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Herderstr. 52, 50931 Cologne, Germany
| | - Kathrin Tinnefeld
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Sarah Yazici
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 München, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 München, Germany,German Center for Infection Research (DZIF), partner sites Munich and Cologne
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Herderstr. 52, 50931 Cologne, Germany,German Center for Infection Research (DZIF), partner sites Munich and Cologne,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Kerpener Str. 62, 50937 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München, Germany,German Center for Infection Research (DZIF), partner sites Munich and Cologne,Corresponding authors.
| | - Kilian Schober
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany,Corresponding authors.
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
40
|
Wang Z, Muecksch F, Muenn F, Cho A, Zong S, Raspe R, Ramos V, Johnson B, Ben Tanfous T, DaSilva J, Bednarski E, Guzman-Cardozo C, Turroja M, Millard KG, Tober-Lau P, Hillus D, Yao KH, Shimeliovich I, Dizon J, Kaczynska A, Jankovic M, Gazumyan A, Oliveira TY, Caskey M, Bieniasz PD, Hatziioannou T, Kurth F, Sander LE, Nussenzweig MC, Gaebler C. Humoral immunity to SARS-CoV-2 elicited by combination COVID-19 vaccination regimens. J Exp Med 2022; 219:e20220826. [PMID: 36006380 PMCID: PMC9418484 DOI: 10.1084/jem.20220826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
The SARS-CoV-2 pandemic prompted a global vaccination effort and the development of numerous COVID-19 vaccines at an unprecedented scale and pace. As a result, current COVID-19 vaccination regimens comprise diverse vaccine modalities, immunogen combinations, and dosing intervals. Here, we compare vaccine-specific antibody and memory B cell responses following two-dose mRNA, single-dose Ad26.COV.2S, and two-dose ChAdOx1, or combination ChAdOx1/mRNA vaccination. Plasma-neutralizing activity, as well as the magnitude, clonal composition, and antibody maturation of the RBD-specific memory B cell compartments, showed substantial differences between the vaccination regimens. While individual monoclonal antibodies derived from memory B cells exhibited similar binding affinities and neutralizing potency against Wuhan-Hu-1 SARS-CoV-2, there were significant differences in epitope specificity and neutralizing breadth against viral variants of concern. Although the ChAdOx1 vaccine was inferior to mRNA and Ad26.COV.2S in several respects, biochemical and structural analyses revealed enrichment in a subgroup of memory B cell neutralizing antibodies with distinct RBD-binding properties resulting in remarkable potency and breadth.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Friederike Muenn
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Shuai Zong
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | | | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Katrina G. Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - David Hillus
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Kaczynska
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | | | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Grasselli G, Zanella A, Carlesso E, Florio G, Canakoglu A, Bellani G, Bottino N, Cabrini L, Castelli GP, Catena E, Cecconi M, Cereda D, Chiumello D, Forastieri A, Foti G, Gemma M, Giudici R, Grazioli L, Lombardo A, Lorini FL, Madotto F, Mantovani A, Mistraletti G, Mojoli F, Mongodi S, Monti G, Muttini S, Piva S, Protti A, Rasulo F, Scandroglio AM, Severgnini P, Storti E, Fumagalli R, Pesenti A. Association of COVID-19 Vaccinations With Intensive Care Unit Admissions and Outcome of Critically Ill Patients With COVID-19 Pneumonia in Lombardy, Italy. JAMA Netw Open 2022; 5:e2238871. [PMID: 36301541 PMCID: PMC9614574 DOI: 10.1001/jamanetworkopen.2022.38871] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/14/2022] Open
Abstract
Importance Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.
Collapse
Affiliation(s)
- Giacomo Grasselli
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Zanella
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Carlesso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Arif Canakoglu
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Bellani
- Department of Anesthesia and Intensive Care Medicine, ASST Monza Ospedale San Gerardo, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicola Bottino
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Cabrini
- Azienda Ospedaliera Ospedale di Circolo e Fondazione Macchi, Varese, Italy
- Università degli Studi dell'Insubria, Varese, Italy
| | - Gian Paolo Castelli
- Dipartimento di Anestesia e Rianimazione, ASST Mantova Ospedale Carlo Poma, Mantova Italy
| | - Emanuele Catena
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco Luigi Sacco Hospital, Polo Universitario, Milan, Italy
| | - Maurizio Cecconi
- Department of Anaesthesia and Intensive Care Medicine, IRCCS Humanitas Clinical and Research Centre, Rozzano, Italy
- Humanitas University, Pieve Emanuele, Italy
| | - Danilo Cereda
- Directorate General for Health, Lombardy Region, Milano, Italy
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, San Paolo Hospital, Milano, Italy
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Andrea Forastieri
- Dipartimento di Anestesia e Rianimazione ASST Lecco Ospedale di Lecco, Lecco, Italy
| | - Giuseppe Foti
- Department of Anesthesia and Intensive Care Medicine, ASST Monza Ospedale San Gerardo, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Gemma
- Terapia Intensiva–Neuroanestesia e Rianimazione. Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Riccardo Giudici
- Dipartimento di Anestesia e Rianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Lorenzo Grazioli
- Department of Anaesthesia and Intensive Care, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Lombardo
- Dipartimento Di Emergenza, Rianimazione, Anestesia–UO Anestesia e Rianimazione 2–ASST Lariana Ospedale Sant'Anna, Como, Italy
| | | | - Fabiana Madotto
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Giovanni Mistraletti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia and critical care, ASST Ovest Milanese Ospedale Nuovo di Legnano, Legnano, Italy
| | - Francesco Mojoli
- Anestesia e Rianimazione 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Dipartimento di Scienze Clinico-Chirurgiche Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Mongodi
- Anestesia e Rianimazione 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gianpaola Monti
- Dipartimento di Anestesia e Rianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefano Muttini
- SC Anestesia e Rianimazione II, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo–Polo Universitario, Milano, Italy
| | - Simone Piva
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Alessandro Protti
- Department of Anaesthesia and Intensive Care Medicine, IRCCS Humanitas Clinical and Research Centre, Rozzano, Italy
- Humanitas University, Pieve Emanuele, Italy
| | - Frank Rasulo
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Paolo Severgnini
- Azienda Ospedaliera Ospedale di Circolo e Fondazione Macchi, Varese, Italy
- Università degli Studi dell'Insubria, Varese, Italy
| | - Enrico Storti
- Dipartimento di Anestesia e Rianimazione ASST Cremona Ospedale di Cremona, Cremona, Italy
| | - Roberto Fumagalli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Dipartimento di Anestesia e Rianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonio Pesenti
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Hvidt AK, Baerends EAM, Søgaard OS, Stærke NB, Raben D, Reekie J, Nielsen H, Johansen IS, Wiese L, Benfield TL, Iversen KK, Mustafa AB, Juhl MR, Petersen KT, Ostrowski SR, Lindvig SO, Rasmussen LD, Schleimann MH, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Lundgren J, Østergaard L, Tolstrup M. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front Med (Lausanne) 2022; 9:994160. [PMID: 36262278 PMCID: PMC9574042 DOI: 10.3389/fmed.2022.994160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,*Correspondence: Astrid K. Hvidt,
| | - Eva A. M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Eva A. M. Baerends,
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas L. Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Deparment of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Ahmed B. Mustafa
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sisse R. Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Immunology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Line D. Rasmussen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
43
|
Xu W, Song D, Liu J, Han X, Xu J, Zhu A, Long F. Development of chemiluminescent lab-on-fiber immunosensors for rapid point-of-care testing of anti-SARS-CoV-2 antibodies and evaluation of longitudinal immune response kinetics following three-dose inactivation virus vaccination. J Med Virol 2022; 95:e28190. [PMID: 36180404 PMCID: PMC9539144 DOI: 10.1002/jmv.28190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Developing reliable, rapid, and quantitative point-of-care testing (POCT) technology of SARS-CoV-2-specific antibodies and understanding longitudinal vaccination response kinetics are highly required to restrain the ongoing coronavirus disease 2019 (COVID-19) pandemic. We demonstrate a novel portable, sensitive, and rapid chemiluminescent lab-on-fiber detection platform for detection of anti-SARS-CoV-2 antibodies: the chemiluminescent lab-on-fiber immunosensor (c-LOFI). Using SARS-CoV-2 Spike S1 RBD protein functionalized fiber bio-probe, the c-LOFI can detect anti-SARS-CoV-2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies with high sensitivity based on their respective horseradish peroxidase-labeled secondary antibodies. The limits of detection of anti-SARS-CoV-2 IgG and IgM antibodies were 0.6 and 0.3 ng/ml, respectively. The c-LOFI was successfully applied for direct detection of anti-SARS-CoV-2 antibodies in whole blood samples with simple dilution, which can serve as a finger prick test to rapidly detect antibodies. Furthermore, the longitudinal immune response (>12 months) kinetics following three-dose inactivated virus vaccines was evaluated based on anti-SARS-CoV-2 IgG detection results, which can provide important significance for understanding the immune mechanism against COVID-19 and identify individuals who may benefit from the vaccination and booster vaccination. The c-LOFI has great potential to become a sensitive, low-cost, rapid, high-frequency POCT tool for the detection of both SARS-CoV-2-specific antibodies and other biomarkers.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Dan Song
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Jiayao Liu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Xiangzhi Han
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Jiaxin Xu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Feng Long
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China,Department of ChemistryRenmin University of ChinaBeijing100872China
| |
Collapse
|
44
|
Agrati C, Castilletti C, Battella S, Cimini E, Matusali G, Sommella A, Sacchi A, Colavita F, Contino AM, Bordoni V, Meschi S, Gramigna G, Barra F, Grassi G, Bordi L, Lapa D, Notari S, Casetti R, Bettini A, Francalancia M, Ciufoli F, Vergori A, Vita S, Gentile M, Raggioli A, Plazzi MM, Bacchieri A, Nicastri E, Antinori A, Milleri S, Lanini S, Colloca S, Girardi E, Camerini R, Ippolito G, Vaia F, Folgori A, Capone S. Safety and immune response kinetics of GRAd-COV2 vaccine: phase 1 clinical trial results. NPJ Vaccines 2022; 7:111. [PMID: 36153335 PMCID: PMC9509317 DOI: 10.1038/s41541-022-00531-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the successful deployment of efficacious vaccines and therapeutics, the development of novel vaccines for SARS-CoV-2 remains a major goal to increase vaccine doses availability and accessibility for lower income setting. We report here on the kinetics of Spike-specific humoral and T-cell response in young and old volunteers over 6 months follow-up after a single intramuscular administration of GRAd-COV2, a gorilla adenoviral vector-based vaccine candidate currently in phase-2 of clinical development. At all three tested vaccine dosages, Spike binding and neutralizing antibodies were induced and substantially maintained up to 3 months, to then contract at 6 months. Potent T-cell responses were readily induced and sustained throughout the study period, with only minor decline. No major differences in immune response to GRAd-COV2 vaccination were observed in the two age cohorts. In light of its favorable safety and immunogenicity, GRAd-COV2 is a valuable candidate for further clinical development and potential addition to the COVID-19 vaccine toolbox to help fighting SARS-CoV-2 pandemic.
Collapse
|
45
|
Kierkegaard H, Røge BT, Nissen A, Madsen JS. Long-Term Antibody Response against SARS-CoV-2 in Health Care Workers: Effectiveness of Homologous and Heterologous Regimens and Their Relation to Systemic Vaccine-Associated Symptoms. Vaccines (Basel) 2022; 10:vaccines10101599. [PMID: 36298464 PMCID: PMC9611514 DOI: 10.3390/vaccines10101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
This prospective study provides data on the long-term humoral immunogenicity of a heterologous off-label vaccine regimen combining the adenoviral-vectored ChAdOx1 nCoV-19 from Astra-Zeneca (ChAd) with the mRNA-1273 vaccine from Moderna (m1273) in comparison with two different homologous mRNA vaccine schedules. Of the 316 COVID-19 naïve adult health care workers (HCW) included to complete a survey on vaccine-associated symptoms (VAS), 197 had received the homologous BNT162b2 mRNA vaccine from Pfizer/BioNTech (BNT/BNT), 76 the homologous m1273/m1273, and 43 the heterologous ChAd/m1273 vaccine regimen. The concentration of antibodies against SARS-CoV-2 spike protein in plasma 5−7 months after the second vaccine dose was higher in the m1273/m1273 and ChAd/m1273 than the BNT/BNT vaccine group. The frequency of systemic VAS after the first vaccine dose was 86% after ChAd compared with 35% and 39% after BNT and m1273, respectively (p < 0.0001), and after the second vaccine dose, the highest (89%) in the m1273/m1273 group (p < 0.001). Individuals with systemic VAS achieved higher levels of antibodies irrespective of vaccine regimen. In conclusion, VAS serve as a strong predictor of long-term humoral immune response, and the heterologous ChAd/m1273 vaccine regimen provides an at least equal long-term humoral immune response compared with the standard vaccine regimens used in Denmark.
Collapse
Affiliation(s)
- Helene Kierkegaard
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
- Department of Internal Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
- Correspondence:
| | - Birgit Thorup Røge
- Department of Internal Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Amanda Nissen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
46
|
A randomized controlled trial of heterologous ChAdOx1 nCoV-19 and recombinant subunit vaccine MVC-COV1901 against COVID-19. Nat Commun 2022; 13:5466. [PMID: 36115850 PMCID: PMC9482645 DOI: 10.1038/s41467-022-33146-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Heterologous prime-boost COVID-19 vaccine strategy may facilitate mass COVID-19 immunization. We reported early immunogenicity and safety outcomes of heterologous immunization with a viral vector vaccine (ChAdOx1) and a spike-2P subunit vaccine (MVC-COV1901) in a participant-blinded, randomized, non-inferiority trial (NCT05054621). A total of 100 healthy adults aged 20–70 years having the first dose of ChAdOx1 were 1:1 randomly assigned to receive a booster dose either with ChAdOx1 (n = 50) or MVC-COV1901 (n = 50) at an interval of 4–6 or 8–10 weeks. At day 28 post-boosting, the neutralizing antibody geometric mean titer against wild-type SARS-CoV-2 in MVC-COV1901 recipients (236 IU/mL) was superior to that in ChAdOx1 recipients (115 IU/mL), with a GMT ratio of 2.1 (95% CI, 1.4 to 2.9). Superiority in the neutralizing antibody titer against Delta variant was also found for heterologous MVC-COV1901 immunization with a GMT ratio of 2.6 (95% CI, 1.8 to 3.8). Both spike-specific antibody-secreting B and T cell responses were substantially enhanced by the heterologous schedule. Heterologous boosting was particularly prominent at a short prime-boost interval. No serious adverse events occurred across all groups. The findings support the use of heterologous prime-boost with ChAdOx1 and protein-based subunit vaccines. Public safety concern of the ChAdOx1 vaccine has led to an alternative immunisation strategy against SARS-CoV-2, with this heterologous schedule widely adopted and officially recommended in many countries. Here, the authors report the immunogenicity and safety outcomes of heterologous prime-boost immunisation with ChAdOx1 and a spike-2P subunit vaccine in a single-blinded, randomised trial.
Collapse
|
47
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
48
|
Lindahl H, Klingström J, Da Silva Rodrigues R, Christ W, Chen P, Ljunggren HG, Buggert M, Aleman S, Smith CIE, Bergman P. Neutralizing SARS-CoV-2 Antibodies in Commercial Immunoglobulin Products Give Patients with X-Linked Agammaglobulinemia Limited Passive Immunity to the Omicron Variant. J Clin Immunol 2022; 42:1130-1136. [PMID: 35538387 PMCID: PMC9090539 DOI: 10.1007/s10875-022-01283-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022]
Abstract
Immunodeficient individuals often rely on donor-derived immunoglobulin (Ig) replacement therapy (IGRT) to prevent infections. The passive immunity obtained by IGRT is limited and reflects the state of immunity in the plasma donor population at the time of donation. The objective of the current study was to describe how the potential of passive immunity to SARS-CoV-2 in commercial off-the-shelf Ig products used for IGRT has evolved during the pandemic. Samples were collected from all consecutive Ig batches (n = 60) from three Ig producers used at the Immunodeficiency Unit at Karolinska University Hospital from the start of the SARS-CoV-2 pandemic until January 2022. SARS-CoV-2 antibody concentrations and neutralizing capacity were assessed in all samples. In vivo relevance was assessed by sampling patients with XLA (n = 4), lacking endogenous immunoglobulin synthesis and on continuous Ig substitution, for plasma SARS-CoV-2 antibody concentration. SARS-CoV-2 antibody concentrations in commercial Ig products increased over time but remained inconsistently present. Moreover, Ig batches with high neutralizing capacity towards the Wuhan-strain of SARS-CoV-2 had 32-fold lower activity against the Omicron variant. Despite increasing SARS-CoV-2 antibody concentrations in commercial Ig products, four XLA patients on IGRT had relatively low plasma concentrations of SARS-CoV-2 antibodies with no potential to neutralize the Omicron variant in vitro. In line with this observation, three out the four XLA patients had symptomatic COVID-19 during the Omicron wave. In conclusion, 2 years into the pandemic the amounts of antibodies to SARS-CoV-2 vary considerably among commercial Ig batches obtained from three commercial producers. Importantly, in batches with high concentrations of antibodies directed against the original virus strain, protective passive immunity to the Omicron variant appears to be insufficient.
Collapse
Affiliation(s)
- Hannes Lindahl
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Rui Da Silva Rodrigues
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Marcus Buggert
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Edwards DK, Carfi A. Messenger ribonucleic acid vaccines against infectious diseases: current concepts and future prospects. Curr Opin Immunol 2022; 77:102214. [PMID: 35671599 PMCID: PMC9612403 DOI: 10.1016/j.coi.2022.102214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 01/06/2023]
Abstract
Over the past two decades, scientific and technological advancements have revealed messenger ribonucleic acid (mRNA)-based vaccines as a well-tolerated and effective platform to combat infectious disease. The potential of mRNA-based vaccines was epitomized during the severe acute respiratory syndrome coronavirus 2 pandemic, wherein mRNA-based vaccines were rapidly developed and found highly efficacious with an acceptable safety profile. These properties together with the capability to quickly address pathogens of pandemic potential, pathogens with complex antigens, and multiple pathogens within a single vaccine have revitalized the field, and multiple mRNA-based vaccines have now entered clinical development. This review summarizes current mRNA-based vaccine technology, perspectives on ongoing clinical studies, and future prospects for the field.
Collapse
Affiliation(s)
| | - Andrea Carfi
- Moderna, Inc., 200 Technology Square, Cambridge, MA, USA.
| |
Collapse
|
50
|
Seidel A, Zanoni M, Groß R, Krnavek D, Erdemci-Evin S, von Maltitz P, Albers DPJ, Conzelmann C, Liu S, Weil T, Mayer B, Hoffmann M, Pöhlmann S, Beil A, Kroschel J, Kirchhoff F, Münch J, Müller JA. BNT162b2 booster after heterologous prime-boost vaccination induces potent neutralizing antibodies and T cell reactivity against SARS-CoV-2 Omicron BA.1 in young adults. Front Immunol 2022; 13:882918. [PMID: 35958601 PMCID: PMC9357986 DOI: 10.3389/fimmu.2022.882918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 01/14/2023] Open
Abstract
In light of the decreasing immune protection against symptomatic SARS-CoV-2 infection after initial vaccinations and the now dominant immune-evasive Omicron variants, 'booster' vaccinations are regularly performed to restore immune responses. Many individuals have received a primary heterologous prime-boost vaccination with long intervals between vaccinations, but the resulting long-term immunity and the effects of a subsequent 'booster', particularly against Omicron BA.1, have not been defined. We followed a cohort of 23 young adults, who received a primary heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, over a 7-month period and analysed how they responded to a BNT162b2 'booster'. We show that already after the primary heterologous vaccination, neutralization titers against Omicron BA.1 are recognizable but that humoral and cellular immunity wanes over the course of half a year. Residual responsive memory T cells recognized spike epitopes of the early SARS-CoV-2 B.1 strain as well as the Delta and BA.1 variants of concern (VOCs). However, the remaining antibody titers hardly neutralized these VOCs. The 'booster' vaccination was well tolerated and elicited both high antibody titers and increased memory T cell responses against SARS-CoV-2 including BA.1. Strikingly, in this young heterologously vaccinated cohort the neutralizing activity after the 'booster' was almost as potent against BA.1 as against the early B.1 strain. Our results suggest that a 'booster' after heterologous vaccination results in effective immune maturation and potent protection against the Omicron BA.1 variant in young adults.
Collapse
Affiliation(s)
- Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Michelle Zanoni
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan P. J. Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sichen Liu
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Alexandra Beil
- Central Department for Clinical Chemistry, University Hospital Ulm, Ulm, Germany
| | - Joris Kroschel
- Central Department for Clinical Chemistry, University Hospital Ulm, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Janis A. Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|