1
|
Fryer HA, Geers D, Gommers L, Zaeck LM, Tan NH, Jones-Freeman B, Goorhuis A, Postma DF, Visser LG, Hogarth PM, Koopmans MPG, GeurtsvanKessel CH, O'Hehir RE, van der Kuy PHM, de Vries RD, van Zelm MC. Fourth dose bivalent COVID-19 vaccines outperform monovalent boosters in eliciting cross-reactive memory B cells to Omicron subvariants. J Infect 2024; 89:106246. [PMID: 39127451 DOI: 10.1016/j.jinf.2024.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. Here, we characterized the RBD-specific memory B cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, in direct comparison with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one month after a fourth dose with a monovalent or a BA.1 or BA.5 bivalent vaccine. Serum neutralizing antibodies (NAb) were quantified, as well as RBD-specific Bmem with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. Both bivalent vaccines elicited higher NAb titers against Omicron subvariants compared to the monovalent vaccine. Following either vaccine type, recipients had slightly increased WH1 RBD-specific Bmem numbers. Both bivalent vaccines significantly increased WH1 RBD-specific Bmem binding of all Omicron subvariants tested by flow cytometry, while recognition of Omicron subvariants was not enhanced following monovalent vaccination. IgG1+ Bmem dominated the response, with substantial IgG4+ Bmem only detected in recipients of an mRNA vaccine for their primary dose. Thus, Omicron-based bivalent vaccines can significantly boost NAb and Bmem specific for ancestral WH1 and Omicron variants and improve recognition of descendent subvariants by pre-existing, WH1-specific Bmem beyond that of a monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants and potentially protect against severe disease. ONE-SENTENCE SUMMARY: Omicron BA.1 and BA.5 bivalent COVID-19 boosters, used as a fourth dose, increase RBD-specific Bmem cross-recognition of Omicron subvariants, both those encoded by the vaccines and antigenically distinct subvariants, further than a monovalent booster.
Collapse
Affiliation(s)
- Holly A Fryer
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Daryl Geers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lennert Gommers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Luca M Zaeck
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ngoc H Tan
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Bernadette Jones-Freeman
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Douwe F Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - P Mark Hogarth
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Marion P G Koopmans
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Robyn E O'Hehir
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - P Hugo M van der Kuy
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Rory D de Vries
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia; Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Wan D, Bai Z, Zhang Y, Chen L, Que H, Lan T, Hong W, Huang J, He C, Wei Y, Pu Q, Wei X. Simultaneous enhancement of cellular and humoral immunity by the lymph node-targeted cholesterolized TLR7 agonist liposomes. Acta Pharm Sin B 2024; 14:4577-4590. [PMID: 39525596 PMCID: PMC11544185 DOI: 10.1016/j.apsb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 11/16/2024] Open
Abstract
Toll-like receptor (TLR) agonists, as promising adjuvants and immunotherapeutic agents, have the potential to enhance immune responses and modulate antigen-dependent T-cell immune memory through activation of distinct signaling pathways. However, their clinical application is hindered by uncontrolled systemic inflammatory reactions. Therefore, it is imperative to create a vaccine adjuvant for TLR receptors that ensures both safety and efficacy. In this study, we designed lymph node-targeted cholesterolized TLR7 agonist cationic liposomes (1V209-Cho-Lip+) to mitigate undesired side effects. Co-delivery of the model antigen OVA and cholesterolized TLR7 agonist facilitated DC maturation through TLR activation while ensuring optimal presentation of the antigen to CD8+ T cells. The main aim of the present study is to evaluate the adjuvant effectiveness of 1V209-Cho-Lip+ in tumor vaccines. Following immunization with 1V209-Cho-Lip++OVA, we observed a pronounced "depot effect" and enhanced trafficking to secondary lymphoid organs. Prophylactic vaccination with 1V209-Cho-Lip++OVA significantly delays tumor development, prolongs mouse survival, and establishes durable immunity against tumor recurrence. Additionally, 1V209-Cho-Lip++OVA, while used therapeutic tumor vaccine, has demonstrated its efficacy in inhibiting tumor progression, and when combined with anti-PD-1, it further enhances antitumor effects. Therefore, the co-delivery of antigen and lymph node-targeted cholesterolized TLR7 agonist shows great promise as a cancer vaccine.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayu Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Martens B, Van Caeseele P, Bullard J, Loeppky C, Wei Y, Reimer J, McKinnon LR, Shaw SY, Kindrachuk J, Stein DR. A Population-Based Study of SARS-CoV-2 IgG Antibody Responses to Vaccination in Manitoba. Vaccines (Basel) 2024; 12:1095. [PMID: 39460263 PMCID: PMC11511381 DOI: 10.3390/vaccines12101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding variables that influence antibody responses to COVID-19 vaccination within a population can provide valuable information on future vaccination strategies. In this population-based study, we examined the antibody responses to COVID-19 vaccination in Manitoba using residual serum specimens collected between January 2021 and March 2022 (n = 20,365). Samples were tested for spike and nucleocapsid IgG against SARS-CoV-2 using clinically validated assays. We assessed the impacts of multiple factors on post-vaccination antibody titres including type of vaccine, age, sex, geographic location, number of doses received, and timing of vaccination. Our investigation demonstrated that vaccination with one dose of Moderna mRNA-1273 elicited higher anti-spike IgG titres overall compared to Pfizer BNT162b2 vaccination, while one dose of Pfizer BNT162b2 followed by a second dose of Moderna mRNA-1273 exhibited higher titres than two doses of Pfizer BNT162b2 or Moderna mRNA-1273, irrespective of age. Age and time post-vaccination had considerable effects on antibody responses, with older age groups exhibiting lower anti-spike IgG titres than younger ages, and titres of those vaccinated with Pfizer BNT162b2 waning faster than those vaccinated with Moderna mRNA-1273 or a combination of Pfizer BNT162b2 and Moderna mRNA-1273. Antibody titres did not appear to be affected by sex or geographic location. Our results identify how factors such as age and type of vaccine can influence antibody responses to vaccination, and how antibody titres wane over time. This information highlights the importance of tailoring vaccine regimens to specific populations, especially those at increased risk of severe COVID-19 and can be used to inform future vaccination strategies, scheduling of booster doses, and public health measures.
Collapse
Affiliation(s)
- Brielle Martens
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Paul Van Caeseele
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada;
- Cadham Provincial Laboratory, Winnipeg, MB R3E 3J7, Canada
| | - Jared Bullard
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Cadham Provincial Laboratory, Winnipeg, MB R3E 3J7, Canada
| | - Carla Loeppky
- Epidemiology & Surveillance, Manitoba Health, Seniors and Active Living, Winnipeg, MB R3B 3M9, Canada
| | - Yichun Wei
- Epidemiology & Surveillance, Manitoba Health, Seniors and Active Living, Winnipeg, MB R3B 3M9, Canada
| | - Joss Reimer
- Winnipeg Regional Health Authority, Winnipeg, MB R3B 1E2, Canada
| | - Lyle R. McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi P.O. Box 19676 00202, Kenya
| | - Souradet Y. Shaw
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Derek R. Stein
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Cadham Provincial Laboratory, Winnipeg, MB R3E 3J7, Canada
| |
Collapse
|
4
|
Rothoeft T, Maier C, Talarico A, Hoffmann A, Schlegtendal A, Lange B, Petersmann A, Denz R, Timmesfeld N, Toepfner N, Vidal-Blanco E, Pfaender S, Lücke T, Brinkmann F. Natural and hybrid immunity after SARS-CoV-2 infection in children and adolescents. Infection 2024; 52:1449-1458. [PMID: 38499828 PMCID: PMC11288991 DOI: 10.1007/s15010-024-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE In contrast to adults, immune protection against SARS-CoV-2 in children and adolescents with natural or hybrid immunity is still poorly understood. The aim of this study was to analyze different immune compartments in different age groups and whether humoral immune reactions correlate with a cellular immune response. METHODS 72 children and adolescents with a preceding SARS-CoV-2 infection were recruited. 37 were vaccinated with an RNA vaccine (BNT162b2). Humoral immunity was analyzed 3-26 months (median 10 months) after infection by measuring Spike protein (S), nucleocapsid (NCP), and neutralizing antibodies (nAB). Cellular immunity was analyzed using a SARS-CoV-2-specific interferon-γ release assay (IGRA). RESULTS All children and adolescents had S antibodies; titers were higher in those with hybrid immunity (14,900 BAU/ml vs. 2118 BAU/ml). NCP antibodies were detectable in > 90%. Neutralizing antibodies (nAB) were more frequently detected (90%) with higher titers (1914 RLU) in adolescents with hybrid immunity than in children with natural immunity (62.5%, 476 RLU). Children with natural immunity were less likely to have reactive IGRAs (43.8%) than adolescents with hybrid immunity (85%). The amount of interferon-γ released by T cells was comparable in natural and hybrid immunity. CONCLUSION Spike antibodies are the most reliable markers to monitor an immune reaction against SARS-CoV-2. High antibody titers of spike antibodies and nAB correlated with cellular immunity, a phenomenon found only in adolescents with hybrid immunity. Hybrid immunity is associated with markedly higher antibody titers and a higher probability of a cellular immune response than a natural immunity.
Collapse
Affiliation(s)
- T Rothoeft
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.
| | - C Maier
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Talarico
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Hoffmann
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Schlegtendal
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - B Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - A Petersmann
- University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
- University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - R Denz
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany
| | - N Timmesfeld
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany
| | - N Toepfner
- Department of Pediatrics, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - E Vidal-Blanco
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - S Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - T Lücke
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - F Brinkmann
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
- University Children's Hospital, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
5
|
Tharmaraj D, Boo I, O'Hara J, Sun S, Polkinghorne KR, Dendle C, Turner SJ, van Zelm MC, Drummer HE, Khoury G, Mulley WR. Serological responses and clinical outcomes following a three-dose primary COVID-19 vaccine schedule in kidney transplant recipients and people on dialysis. Clin Transl Immunology 2024; 13:e1523. [PMID: 39055736 PMCID: PMC11272417 DOI: 10.1002/cti2.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Despite vaccination strategies, people with chronic kidney disease, particularly kidney transplant recipients (KTRs), remained at high risk of poor COVID-19 outcomes. We assessed serological responses to the three-dose COVID-19 vaccine schedule in KTRs and people on dialysis, as well as seroresponse predictors and the relationship between responses and breakthrough infection. Methods Plasma from 30 KTRs and 17 people receiving dialysis was tested for anti-Spike receptor binding domain (RBD) IgG and neutralising antibodies (NAb) to the ancestral and Omicron BA.2 variant after Doses 2 and 3 of vaccination. Results After three doses, KTRs achieved lower anti-Spike RBD IgG levels (P < 0.001) and NAb titres than people receiving dialysis (P = 0.002). Seropositive cross-reactive Omicron neutralisation levels were achieved in 11/27 (40.7%) KTRs and 11/14 (78.6%) dialysis recipients. ChAdOx1/viral-vector vaccine type, higher mycophenolate dose (> 1 g per day) and lower absolute B-cell counts predicted poor serological responses in KTRs. ChAdOx-1 vaccine type and higher monocyte counts were negative predictors in dialysis recipients. Among ancestral NAb seroresponders, higher NAb levels positively correlated with higher Omicron neutralisation (R = 0.9, P < 0.001). More KTRs contracted SARS-CoV-2 infection (14/30; 47%) than dialysis recipients (5/17; 29%) and had more severe disease. Those with breakthrough infections had significantly lower median interdose incremental change in anti-Spike RBD IgG and ancestral NAb titres. Conclusion Serological responses to COVID-19 vaccines in KTRs lag behind their dialysis counterparts. KTRs remained at high risk of breakthrough infection after their primary vaccination schedule underlining their need for booster doses, strict infection prevention measures and close surveillance.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of NephrologyMonash HealthClaytonVICAustralia
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
| | - Irene Boo
- Burnet InstituteMelbourneVICAustralia
| | - Jessie O'Hara
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - Shir Sun
- Burnet InstituteMelbourneVICAustralia
- Department of Immunology, School of Translational MedicineMonash University and Alfred HealthMelbourneVICAustralia
| | - Kevan R Polkinghorne
- Department of NephrologyMonash HealthClaytonVICAustralia
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
- Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneVICAustralia
| | - Claire Dendle
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
- Monash Infectious DiseasesMonash HealthClaytonVICAustralia
| | - Stephen J Turner
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - Menno C van Zelm
- Department of Immunology, School of Translational MedicineMonash University and Alfred HealthMelbourneVICAustralia
- Department of Immunology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Heidi E Drummer
- Burnet InstituteMelbourneVICAustralia
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Gabriela Khoury
- Burnet InstituteMelbourneVICAustralia
- Department of Microbiology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVICAustralia
| | - William R Mulley
- Department of NephrologyMonash HealthClaytonVICAustralia
- Department of Medicine, Centre for Inflammatory DiseasesMonash UniversityMelbourneVICAustralia
| |
Collapse
|
6
|
Hartley GE, Fryer HA, Gill PA, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, Edwards ESJ, van Zelm MC. Homologous but not heterologous COVID-19 vaccine booster elicits IgG4+ B-cells and enhanced Omicron subvariant binding. NPJ Vaccines 2024; 9:129. [PMID: 39013889 PMCID: PMC11252355 DOI: 10.1038/s41541-024-00919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.
Collapse
Affiliation(s)
- Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul A Gill
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Tripodi D, Dominici R, Sacco D, Pozzobon C, Spiti S, Falbo R, Brambilla P, Mascagni P, Leoni V. Antibody Response against SARS-CoV-2 after mRNA Vaccine in a Cohort of Hospital Healthy Workers Followed for 17 Months. Vaccines (Basel) 2024; 12:506. [PMID: 38793757 PMCID: PMC11125999 DOI: 10.3390/vaccines12050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The assessment of antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of critical importance to verify the protective efficacy of available vaccines. Hospital healthcare workers play an essential role in the care and treatment of patients and were particularly at risk of contracting the SARS-CoV-2 infection during the pandemic. The vaccination protocol introduced in our hospital protected the workers and contributed to the containment of the infection' s spread and transmission, although a reduction in vaccine efficacy against symptomatic and breakthrough infections in vaccinated individuals was observed over time. Here, we present the results of a longitudinal and prospective analysis of the anti-SARS-CoV-2 antibodies at multiple time points over a 17-month period to determine how circulating antibody levels change over time following natural infection and vaccination for SARS-CoV-2 before (T0-T4) and after the spread of the omicron variant (T5-T6), analyzing the antibody response of 232 healthy workers at the Pio XI hospital in Desio. A General Estimating Equation model indicated a significant association of the antibody response with time intervals and hospital area, independent of age and sex. Specifically, a similar pattern of antibody response was observed between the surgery and administrative departments, and a different pattern with higher peaks of average antibody response was observed in the emergency and medical departments. Furthermore, using a logistic model, we found no differences in contracting SARS-CoV-2 after the third dose based on the hospital department. Finally, analysis of antibody distribution following the spread of the omicron variant, subdividing the cohort of positive individuals into centiles, highlighted a cut-off of 550 BAU/mL and showed that subjects with antibodies below this are more susceptible to infection than those with a concentration above the established cut-off value.
Collapse
Affiliation(s)
- Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Davide Sacco
- Department of Brain and Behavioural Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy;
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20100 Milan, Italy
| | - Claudia Pozzobon
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Simona Spiti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Rosanna Falbo
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
| | - Paolo Brambilla
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paolo Mascagni
- Clinical Unit of Occupational Health, Desio Hospital, ASST Brianza, 20832 Desio, Italy
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
9
|
Hsin L, Varese N, Aui PM, Wines BD, von Borstel A, Mascarell L, Hogarth PM, Hew M, O'Hehir RE, van Zelm MC. Accurate determination of house dust mite sensitization in asthma and allergic rhinitis through cytometric detection of Der p 1 and Der p 2 binding on basophils (CytoBas). J Allergy Clin Immunol 2024; 153:1282-1291.e10. [PMID: 38360181 DOI: 10.1016/j.jaci.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND House dust mite (HDM) is the most common allergen trigger globally for allergic rhinitis and atopic asthma. OBJECTIVES To expedite accurate confirmation of allergen sensitization, we designed fluorescent allergen tetramers to directly stain specific IgE on basophils to detect specific allergen sensitization using the flow cytometric CytoBas assay. METHODS Recombinant proteins of major HDM allergens (component), Der f 1, Der p 1, and Der p 2 were biotinylated and conjugated with fluorochrome streptavidins as tetramers. Blood samples from 64 patients who are HDM-allergic and 26 controls that are non-HDM-sensitized were incubated with allergen tetramers for evaluation of basophil binding (CytoBas) and activation (BAT) with flow cytometry. RESULTS The tetramers effectively bound and activated basophils from patients who are allergic but not from controls who are nonsensitized. CytoBas with Der p 1 as a single allergen had comparable sensitivity and specificity (92% and 100%) to BAT (91% and 100%) in detecting allergen sensitization, as did CytoBas with Der p 2 (95% and 96%) to BAT (95% and 87%). A positive staining for Der p 1 and/or Der p 2 in CytoBas was 100% sensitive and 96% specific for HDM allergy. CONCLUSIONS CytoBas has diagnostic accuracy for group 1 and group 2 HDM allergens that is comparable to BAT, but with additional advantages of multiple allergen components in a single tube and no requirement for in vitro basophil activation. These findings endorse a single, multiplex CytoBas assay for accurate and component-resolved diagnosis of aeroallergen sensitization in patients with allergic asthma and/or rhinitis.
Collapse
Affiliation(s)
- Lin Hsin
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Nirupama Varese
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Pei Mun Aui
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Bruce D Wines
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Anouk von Borstel
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Laurent Mascarell
- Innovation and Science Department, Stallergenes Greer, Antony, France
| | - P Mark Hogarth
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Robyn E O'Hehir
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Immunology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Sanders JW, Ewing D, Sundaram AK, Gamble CS, Blevins M, Liang Z, Sanders LA, Ornelles DA, Sun P, Lenart K, Feuerstein H, Loré K, Petrovsky N, Williams M, Porter KR. Immunogenicity and Protective Efficacy of Psoralen-Inactivated SARS-CoV-2 Vaccine in Nonhuman Primates. Vaccines (Basel) 2024; 12:451. [PMID: 38793702 PMCID: PMC11125875 DOI: 10.3390/vaccines12050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted public health and the economy worldwide. Most of the currently licensed COVID-19 vaccines act by inhibiting the receptor-binding function of the SARS-CoV-2 spike protein. The constant emergence of SARS-CoV-2 variants resulting from mutations in the receptor-binding domain (RBD) leads to vaccine immune evasion and underscores the importance of broadly acting COVID-19 vaccines. Inactivated whole virus vaccines can elicit broader immune responses to multiple epitopes of several antigens and help overcome such immune evasions. We prepared a psoralen-inactivated SARS-CoV-2 vaccine (SARS-CoV-2 PsIV) and evaluated its immunogenicity and efficacy in nonhuman primates (NHPs) when administered with the Advax-CpG adjuvant. We also evaluated the SARS-CoV-2 PsIV as a booster shot in animals vaccinated with a DNA vaccine that can express the full-length spike protein. The Advax-CpG-adjuvanted SARS-CoV-2 PsIV elicited a dose-dependent neutralizing antibody response in the NHPs, as measured using a serum microneutralization assay against the SARS-CoV-2 Washington strain and the Delta variant. The animals vaccinated with the DNA vaccine followed by a boosting dose of the SARS-CoV-2 PsIV exhibited the highest neutralizing antibody responses and were able to quickly clear infection after an intranasal challenge with the SARS-CoV-2 Delta variant. Overall, the data show that the Advax-CpG-adjuvanted SARS-CoV-2 PsIV, either by itself or as a booster shot following nucleic acid (NA) vaccines, has the potential to protect against emerging variants.
Collapse
Affiliation(s)
- John W. Sanders
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Daniel Ewing
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Appavu K. Sundaram
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Christopher Scott Gamble
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Maria Blevins
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Zhaodong Liang
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation, Rockledge Drive, Bethesda, MD 20817, USA
| | - Leigh Ann Sanders
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - David A. Ornelles
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Peifang Sun
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hendrik Feuerstein
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Maya Williams
- United States Navy Bureau of Medicine and Surgery, Frederick, MD 21702, USA
| | - Kevin R. Porter
- Directorate for Defense Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD 20910, USA;
| |
Collapse
|
11
|
Wang Y, Guo L, Cui D, Zhang H, Zhang Q, Ren L, Wang G, Zhang X, Huang T, Chen L, Huang L, Wang X, Zhong J, Wang Y, Li H, Wang J, Cao B. Immune Responses in Discharged COVID-19 Patients With and Without Long COVID Symptoms. Open Forum Infect Dis 2024; 11:ofae137. [PMID: 38577029 PMCID: PMC10993057 DOI: 10.1093/ofid/ofae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 04/06/2024] Open
Abstract
The immune mechanisms of long coronavirus disease 2019 (COVID) are not yet fully understood. We aimed to investigate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory immune responses in discharged COVID-19 patients with and without long COVID symptoms. In this cross-sectional study, we included 1041 hospitalized COVID-19 patients with the original virus strain in Wuhan (China) 12 months after initial infection. We simultaneously conducted a questionnaire survey and collected peripheral blood samples from the participants. Based on the presence or absence of long COVID symptoms during the follow-up period, we divided the patients into 2 groups: a long COVID group comprising 480 individuals and a convalescent group comprising 561 individuals. Both groups underwent virus-specific immunological analyses, including enzyme-linked immunosorbent assay, interferon-γ-enzyme-linked immune absorbent spot, and intracellular cytokine staining. At 12 months after infection, 98.5% (1026/1041) of the patients were found to be seropositive and 93.3% (70/75) had detectable SARS-CoV-2-specific memory T cells. The long COVID group had significantly higher levels of receptor binding domain (RBD)-immunoglobulin G (IgG) levels, presented as OD450 values, than the convalescent controls (0.40 ± 0.22 vs 0.37 ± 0.20; P = .022). The magnitude of SARS-CoV-2-specific T-cell responses did not differ significantly between groups, nor did the secretion function of the memory T cells. We did not observe a significant correlation between SARS-CoV-2-IgG and magnitude of memory T cells. This study revealed that long COVID patients had significantly higher levels of RBD-IgG antibodies when compared with convalescent controls. Nevertheless, we did not observe coordinated SARS-CoV-2-specific cellular immunity. As there may be multiple potential causes of long COVID, it is imperative to avoid adopting a "one-size-fits-all" approach to future treatment modalities.
Collapse
Affiliation(s)
- Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Cui
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, The 2nd Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Qiao Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Geng Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, WestChina Hospital, Sichuan University, Chengdu, China
| | - Xueyang Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Tingxuan Huang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, WestChina Hospital, Sichuan University, Chengdu, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
12
|
Wang Y, Guo L, Fan G, Han Y, Zhang Q, Ren L, Zhang H, Wang G, Zhang X, Huang T, Wang W, Chen L, Huang L, Gu X, Wang X, Zhong J, Wang Y, Li H, Yu J, Liu Z, Huang C, Cao B, Wang J. Impact of corticosteroids on initiation and half-year durability of humoral response in COVID-19 survivors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:48-55. [PMID: 39170961 PMCID: PMC11332893 DOI: 10.1016/j.pccm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 08/23/2024]
Abstract
Background The impact of corticosteroids on humoral responses in coronavirus disease 2019 (COVID-19) survivors during the acute phase and subsequent 6-month period remains unknown. This study aimed to determine how the use of corticosteroids influences the initiation and duration of humoral responses in COVID-19 survivors 6 months after infection onset. Methods We used kinetic antibody data from the lopinavir-ritonavir trial conducted at Jin Yin-Tan Hospital in January 2020, which involved adults hospitalized with severe COVID-19 (LOTUS, ChiCTR2000029308). Antibody samples were collected from 192 patients during hospitalization, and kinetic antibodies were monitored at all available time points after recruitment. Additionally, plasma samples were collected from 101 COVID-19 survivors for comprehensive humoral immune measurement at the half-year follow-up visit. The main focus was comparing the humoral responses between patients treated with systemic corticosteroid therapy and the non-corticosteroid group. Results From illness onset to day 30, the median antibody titre areas under the receiver operating characteristic curve (AUCs) of nucleoprotein (N), spike protein (S), and receptor-binding domain (RBD) immunoglobulin G (IgG) were significantly lower in the corticosteroids group. The AUCs of N-, S-, and RBD-IgM as well as neutralizing antibodies (NAbs) were numerically lower in the corticosteroids group compared with the non-corticosteroid group. However, peak titres of N, S, RBD-IgM and -IgG and NAbs were not influenced by corticosteroids. During 6-month follow-up, we observed a delayed decline for most binding antibodies, except N-IgM (β -0.05, 95% CI [-0.10, 0.00]) in the corticosteroids group, though not reaching statistical significance. No significant difference was observed for NAbs. However, for the half-year seropositive rate, corticosteroids significantly accelerated the decay of IgA and IgM but made no difference to N-, S-, and RBD-IgG or NAbs. Additionally, corticosteroids group showed a trend towards delayed viral clearance compared with the non-corticosteroid group, but the results were not statistically significant (adjusted hazard ratio 0.71, 95% CI 0.50-1.00; P = 0.0508). Conclusion Our findings suggested that corticosteroid therapy was associated with impaired initiation of the antibody response but this did not compromise the peak titres of binding and neutralizing antibodies. Throughout the decay phase, from the acute phase to the half-year follow-up visit, short-term and low-dose corticosteroids did not significantly affect humoral responses, except for accelerating the waning of short-lived antibodies.
Collapse
Affiliation(s)
- Yeming Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Guohui Fan
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Respiratory Health and Multimorbidity; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yang Han
- Jin Yin-tan Hospital, Wuhan, Hubei 430023, China
| | - Qiao Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Geng Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyang Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Tingxuan Huang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiyang Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | | | - Xiaoying Gu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jingchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hui Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiapei Yu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhibo Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | | | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
13
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
14
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
15
|
Immink LE, Guthmiller JJ. Isolation of Rare Antigen-Specific Memory B Cells via Antigen Tetramers. Methods Mol Biol 2024; 2826:95-115. [PMID: 39017888 DOI: 10.1007/978-1-0716-3950-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Immunological memory, which sets the foundation for the adaptive immune response, plays a key role in disease protection and prevention. Obtaining a deeper understanding of the mechanisms underlying this phenomenon can aide in research aimed to improve vaccines and therapies. Memory B cells (MBCs) are a fundamental component of immunological memory but can exist in rare populations that prove challenging to study. By combining fluorescent antigen tetramers with multiple enrichment processes, a highly streamlined method for identifying and sorting antigen-specific MBCs from human blood and lymphoid tissues can be achieved. With the output of this process being viable cells, there is a multitude of downstream operations that can be used in conjunction with the antigen-specific cell sorting outlined in this chapter. Single-cell RNA-sequencing paired with B cell repertoire sequencing, which can be linked to distinct antigens in a high-throughput fashion, is a downstream application widely used in disease and vaccination research. Incorporation of this protocol can lead to a variety of applications and a diversity of outcomes aiding in a deeper understanding of how immunological memory not only forms but is recalled and impacted by infection and vaccination.
Collapse
Affiliation(s)
- Lauren E Immink
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Najimi N, Kadi C, Elmtili N, Seghrouchni F, Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum Antibodies 2024; 32:85-106. [PMID: 38758995 DOI: 10.3233/hab-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Chaimae Kadi
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Noureddine Elmtili
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
17
|
Hora S, Pahwa P, Siddiqui H, Saxena A, Kashyap M, Sevak JK, Singh R, Javed M, Yadav P, Kale P, Ramakrishna G, Bajpai M, Rathore A, Maras JS, Tyagi S, Sarin SK, Trehanpati N. Metabolic alterations unravel the maternofetal immune responses with disease severity in pregnant women infected with SARS-CoV-2. J Med Virol 2023; 95:e29257. [PMID: 38054548 DOI: 10.1002/jmv.29257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Pregnancy being an immune compromised state, coronavirus disease of 2019 (COVID-19) disease poses high risk of premature delivery and threat to fetus. Plasma metabolome regulates immune cellular responses, therefore we aimed to analyze the change in plasma secretome, metabolome, and immune cells with disease severity in COVID-19 positive pregnant females and their cord blood. COVID-19 reverse transcriptase-polymerase chain reaction positive pregnant females (n = 112) with asymptomatic (Asy) (n = 82), mild (n = 21), or moderate (n = 9) disease, healthy pregnant (n = 18), COVID-19 positive nonpregnant females (n = 7) were included. Eighty-two cord blood from COVID-19 positive and seven healthy cord blood were also analyzed. Mother's peripheral blood and cord blood were analyzed for untargeted metabolome profiling and cytokines by using high-resolution mass spectrometry and cytokine bead array. Immune scan was performed only in mothers' blood by flow cytometry. In Asy severe acute respiratory syndrome coronavirus 2 infection, the amino acid metabolic pathways such as glycine, serine, l-lactate, and threonine metabolism were upregulated with downregulation of riboflavin and tyrosine metabolism. However, with mild-to-moderate disease, the pyruvate and nicotinamide adenine dinucleotide (NAD+ ) metabolism were mostly altered. Cord blood mimicked the mother's metabolomic profiles by showing altered valine, leucine, isoleucine, glycine, serine, threonine in Asy and NAD+ , riboflavin metabolism in mild and moderate. Additionally, with disease severity tumor necrosis factor-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-6 cytokine storm, IL-9 was raised in both mothers and neonates. Pyruvate, NAD metabolism and increase in IL-9 and IFN-γ had an impact on nonclassical monocytes, exhausted T and B cells. Our results demonstrated that immune-metabolic interplay in mother and fetus is influenced with increase in IL-9 and IFN-γ regulated pyruvate, lactate tricarboxylic acid, and riboflavin metabolism with context to disease severity.
Collapse
Affiliation(s)
- Sandhya Hora
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Prabhjyoti Pahwa
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anoushka Saxena
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Minal Kashyap
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Jayesh K Sevak
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Maryam Javed
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pushpa Yadav
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Asmita Rathore
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Jaswinder S Maras
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shakun Tyagi
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
18
|
Yu H, Guan F, Miller H, Lei J, Liu C. The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerg Microbes Infect 2023; 12:e2164219. [PMID: 36583642 PMCID: PMC9980416 DOI: 10.1080/22221751.2022.2164219] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.
Collapse
Affiliation(s)
- Haiyun Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Chaohong Liu
| |
Collapse
|
19
|
Chen C, Wang X, Zhang Z. Humoral and cellular immunity against diverse SARS-CoV-2 variants. J Genet Genomics 2023; 50:934-947. [PMID: 37865193 DOI: 10.1016/j.jgg.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, the virus has rapidly spread worldwide. This has led to an unprecedented global pandemic, marked by millions of COVID-19 cases and a significant number of fatalities. Over a relatively short period, several different vaccine platforms are developed and deployed for use globally to curb the pandemic. However, the genome of SARS-CoV-2 continuously undergoes mutation and/or recombination, resulting in the emergence of several variants of concern (VOC). These VOCs can elevate viral transmission and evade the neutralizing antibodies induced by vaccines, leading to reinfections. Understanding the impact of the SARS-CoV-2 genomic mutation on viral pathogenesis and immune escape is crucial for assessing the threat of new variants to public health. This review focuses on the emergence and pathogenesis of VOC, with particular emphasis on their evasion of neutralizing antibodies. Furthermore, the memory B cell, CD4+, and CD8+ T cell memory induced by different COVID-19 vaccines or infections are discussed, along with how these cells recognize VOC. This review summarizes the current knowledge on adaptive immunology regarding SARS-CoV-2 infection and vaccines. Such knowledge may also be applied to vaccine design for other pathogens.
Collapse
Affiliation(s)
- Changxu Chen
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China
| | - Xin Wang
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China
| | - Zeli Zhang
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China.
| |
Collapse
|
20
|
Islas-Vazquez L, Alvarado-Alvarado YC, Cruz-Aguilar M, Velazquez-Soto H, Villalobos-Gonzalez E, Ornelas-Hall G, Perez-Tapia SM, Jimenez-Martinez MC. Evaluation of the Abdala Vaccine: Antibody and Cellular Response to the RBD Domain of SARS-CoV-2. Vaccines (Basel) 2023; 11:1787. [PMID: 38140191 PMCID: PMC10748004 DOI: 10.3390/vaccines11121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Abdala is a recently released RBD protein subunit vaccine against SARS-CoV-2. A few countries, including Mexico, have adopted Abdala as a booster dose in their COVID-19 vaccination schemes. Despite that, most of the Mexican population has received full-scheme vaccination with platforms other than Abdala; little is known regarding Abdala's immunological features, such as its antibody production and T- and B-cell-specific response induction. This work aimed to study antibody production and the adaptive cellular response in the Mexican population that received the Abdala vaccine as a booster. We recruited 25 volunteers and evaluated their RBD-specific antibody production, T- and B-cell-activating profiles, and cytokine production. Our results showed that the Abdala vaccine increases the concentration of RBD IgG-specific antibodies. Regarding the cellular response, after challenging peripheral blood cultures with RBD, the plasmablast (CD19+CD27+CD38High) and transitional B-cell (CD19+CD21+CD38High) percentages increased significantly, while T cells showed an increased activated phenotype (CD3+CD4+CD25+CD69+ and CD3+CD4+CD25+HLA-DR+). Also, IL-2 and IFN-γ increased significantly in the supernatant of the RBD-stimulated cells. Our results suggest that Abdala vaccination, used as a booster, evokes antibody production and the activation of previously generated memory against the SARS-CoV-2 RBD domain.
Collapse
Affiliation(s)
- Lorenzo Islas-Vazquez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Yan Carlos Alvarado-Alvarado
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Eduardo Villalobos-Gonzalez
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Gloria Ornelas-Hall
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
21
|
Lao T, Farnos O, Bueno A, Alvarez A, Rodríguez E, Palacios J, de la Luz KR, Kamen A, Carpio Y, Estrada MP. Transient Expression in HEK-293 Cells in Suspension Culture as a Rapid and Powerful Tool: SARS-CoV-2 N and Chimeric SARS-CoV-2N-CD154 Proteins as a Case Study. Biomedicines 2023; 11:3050. [PMID: 38002050 PMCID: PMC10669214 DOI: 10.3390/biomedicines11113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Omar Farnos
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Alexi Bueno
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Anays Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Elsa Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Julio Palacios
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Kathya Rashida de la Luz
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| |
Collapse
|
22
|
Ashokkumar C, Rohan V, Kroemer AH, Rao S, Mazariegos G, Higgs BW, Nadig S, Almeda J, Dhani H, Khan K, Yazigi N, Ekong U, Kaufman S, Betancourt-Garcia MM, Mukund K, Sethi P, Mehrotra S, Soltys K, Singh MS, Bond G, Khanna A, Ningappa M, Spishock B, Sindhi E, Atale N, Saunders M, Baliga P, Fishbein T, Subramaniam S, Sindhi R. Impaired Cellular and Antibody immunity after COVID-19 in Chronically Immunosuppressed Transplant Recipients. JOURNAL OF SURGERY AND RESEARCH 2023; 6:348-363. [PMID: 38606317 PMCID: PMC11007760 DOI: 10.26502/jsr.10020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Assessment of cellular immunity to the SARS-CoV-2 coronavirus is of great interest in chronically immunosuppressed transplant recipients (Tr), who are predisposed to infections and vaccination failures. We evaluated CD154-expressing T-cells induced by spike (S) antigenic peptides in 204 subjects-103 COVID-19 patients and 101 healthy unexposed subjects. S-reactive CD154+T-cell frequencies were a) higher in 42 healthy unexposed Tr who were sampled pre-pandemic, compared with healthy NT (p=0.02), b) lower in Tr COVID-19 patients compared with healthy Tr (p<0.0001) and were accompanied by lower S-reactive B-cell frequencies (p<0.05), c) lower in Tr with severe COVID-19 (p<0.0001), or COVID-19 requiring hospitalization (p<0.05), compared with healthy Tr. Among Tr with COVID-19, cytomegalovirus co-infection occurred in 34%; further, incidence of anti-receptor-binding-domain IgG (p=0.011) was lower compared with NT COVID-19 patients. Healthy unexposed Tr exhibit pre-existing T-cell immunity to SARS-CoV-2. COVID-19 impairs anti-S T-cell and antibody and predisposes to CMV co-infection in transplant recipients.
Collapse
Affiliation(s)
- Chethan Ashokkumar
- Plexision Inc., Pittsburgh, PA, USA
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | - Vinayak Rohan
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Sohail Rao
- DHR Health and DHR Health Institute for Research and Development, Edinburg, Tx, University of Houston, Houston, TX, USA
| | - George Mazariegos
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | - Brandon W Higgs
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | - Satish Nadig
- Medical University of South Carolina, Charleston, SC, USA
| | - Jose Almeda
- DHR Health and DHR Health Institute for Research and Development, Edinburg, Tx, University of Houston, Houston, TX, USA
| | - Harmeet Dhani
- Medstar Georgetown Transplant Institute, Washington, DC, USA
| | - Khalid Khan
- Medstar Georgetown Transplant Institute, Washington, DC, USA
| | - Nada Yazigi
- Medstar Georgetown Transplant Institute, Washington, DC, USA
| | - Udeme Ekong
- Medstar Georgetown Transplant Institute, Washington, DC, USA
| | - Stuart Kaufman
- Medstar Georgetown Transplant Institute, Washington, DC, USA
| | - Monica M Betancourt-Garcia
- DHR Health and DHR Health Institute for Research and Development, Edinburg, Tx, University of Houston, Houston, TX, USA
| | | | | | | | - Kyle Soltys
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | - Manasi S Singh
- Medical University of South Carolina, Charleston, SC, USA
| | - Geoffrey Bond
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | - Ajai Khanna
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | - Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| | | | | | | | | | | | - Thomas Fishbein
- Medstar Georgetown Transplant Institute, Washington, DC, USA
| | | | - Rakesh Sindhi
- Plexision Inc., Pittsburgh, PA, USA
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, PA, USA
| |
Collapse
|
23
|
Peterhoff D, Wiegrebe S, Einhauser S, Patt AJ, Beileke S, Günther F, Steininger P, Niller HH, Burkhardt R, Küchenhoff H, Gefeller O, Überla K, Heid IM, Wagner R. Population-based study of the durability of humoral immunity after SARS-CoV-2 infection. Front Immunol 2023; 14:1242536. [PMID: 37868969 PMCID: PMC10585261 DOI: 10.3389/fimmu.2023.1242536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
SARS-CoV-2 antibody quantity and quality are key markers of humoral immunity. However, there is substantial uncertainty about their durability. We investigated levels and temporal change of SARS-CoV-2 antibody quantity and quality. We analyzed sera (8 binding, 4 avidity assays for spike-(S-)protein and nucleocapsid-(N-)protein; neutralization) from 211 seropositive unvaccinated participants, from the population-based longitudinal TiKoCo study, at three time points within one year after infection with the ancestral SARS-CoV-2 virus. We found a significant decline of neutralization titers and binding antibody levels in most assays (linear mixed regression model, p<0.01). S-specific serum avidity increased markedly over time, in contrast to N-specific. Binding antibody levels were higher in older versus younger participants - a difference that disappeared for the asymptomatic-infected. We found stronger antibody decline in men versus women and lower binding and avidity levels in current versus never-smokers. Our comprehensive longitudinal analyses across 13 antibody assays suggest decreased neutralization-based protection and prolonged affinity maturation within one year after infection.
Collapse
Affiliation(s)
- David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Simon Wiegrebe
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Arisha J. Patt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Günther
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans H. Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Helmut Küchenhoff
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Fryer HA, Hartley GE, Edwards ESJ, Varese N, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, van Zelm MC. COVID-19 Adenoviral Vector Vaccination Elicits a Robust Memory B Cell Response with the Capacity to Recognize Omicron BA.2 and BA.5 Variants. J Clin Immunol 2023; 43:1506-1518. [PMID: 37322095 PMCID: PMC10499924 DOI: 10.1007/s10875-023-01527-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.
Collapse
Affiliation(s)
- Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
26
|
Angaitkar P, Aljrees T, Kumar Pandey S, Kumar A, Janghel RR, Sahu TP, Singh KU, Singh T. Inferring linear-B cell epitopes using 2-step metaheuristic variant-feature selection using genetic algorithm. Sci Rep 2023; 13:14593. [PMID: 37670007 PMCID: PMC10480427 DOI: 10.1038/s41598-023-41179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Linear-B cell epitopes (LBCE) play a vital role in vaccine design; thus, efficiently detecting them from protein sequences is of primary importance. These epitopes consist of amino acids arranged in continuous or discontinuous patterns. Vaccines employ attenuated viruses and purified antigens. LBCE stimulate humoral immunity in the body, where B and T cells target circulating infections. To predict LBCE, the underlying protein sequences undergo a process of feature extraction, feature selection, and classification. Various system models have been proposed for this purpose, but their classification accuracy is only moderate. In order to enhance the accuracy of LBCE classification, this paper presents a novel 2-step metaheuristic variant-feature selection method that combines a linear support vector classifier (LSVC) with a Modified Genetic Algorithm (MGA). The feature selection model employs mono-peptide, dipeptide, and tripeptide features, focusing on the most diverse ones. These selected features are fed into a machine learning (ML)-based parallel ensemble classifier. The ensemble classifier combines correctly classified instances from various classifiers, including k-Nearest Neighbor (kNN), random forest (RF), logistic regression (LR), and support vector machine (SVM). The ensemble classifier came up with an impressively high accuracy of 99.3% as a result of its work. This accuracy is superior to the most recent models that are considered to be state-of-the-art for linear B-cell classification. As a direct consequence of this, the entire system model can now be utilised effectively in real-time clinical settings.
Collapse
Affiliation(s)
- Pratik Angaitkar
- Department of Information Technology, National Institute of Technology, Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India
| | - Turki Aljrees
- College of Computer Science and Engineering, University of Hafr Al Batin, 39524, Hafar Al Batin, Saudi Arabia
| | - Saroj Kumar Pandey
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Ankit Kumar
- Department of Computer Engineering & Applications, GLA University, Mathura, India.
| | - Rekh Ram Janghel
- Department of Information Technology, National Institute of Technology, Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India
| | - Tirath Prasad Sahu
- Department of Information Technology, National Institute of Technology, Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India
| | | | - Teekam Singh
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| |
Collapse
|
27
|
Bergersen KV, Pham K, Li J, Ulrich MT, Merrill P, He Y, Alaama S, Qiu X, Harahap-Carrillo IS, Ichii K, Frost S, Kaul M, Godzik A, Heinrich EC, Nair MG. Health disparities in COVID-19: immune and vascular changes are linked to disease severity and persist in a high-risk population in Riverside County, California. BMC Public Health 2023; 23:1584. [PMID: 37598150 PMCID: PMC10439554 DOI: 10.1186/s12889-023-16462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Health disparities in underserved communities, such as inadequate healthcare access, impact COVID-19 disease outcomes. These disparities are evident in Hispanic populations nationwide, with disproportionately high infection and mortality rates. Furthermore, infected individuals can develop long COVID with sustained impacts on quality of life. The goal of this study was to identify immune and endothelial factors that are associated with COVID-19 outcomes in Riverside County, a high-risk and predominantly Hispanic community, and investigate the long-term impacts of COVID-19 infection. METHODS 112 participants in Riverside County, California, were recruited according to the following criteria: healthy control (n = 23), outpatients with moderate infection (outpatient, n = 33), ICU patients with severe infection (hospitalized, n = 33), and individuals recovered from moderate infection (n = 23). Differences in outcomes between Hispanic and non-Hispanic individuals and presence/absence of co-morbidities were evaluated. Circulating immune and vascular biomarkers were measured by ELISA, multiplex analyte assays, and flow cytometry. Follow-up assessments for long COVID, lung health, and immune and vascular changes were conducted after recovery (n = 23) including paired analyses of the same participants. RESULTS Compared to uninfected controls, the severe infection group had a higher proportion of Hispanic individuals (n = 23, p = 0.012) than moderate infection (n = 8, p = 0.550). Disease severity was associated with changes in innate monocytes and neutrophils, lymphopenia, disrupted cytokine production (increased IL-8 and IP-10/CXCL10 but reduced IFNλ2/3 and IFNγ), and increased endothelial injury (myoglobin, VCAM-1). In the severe infection group, a machine learning model identified LCN2/NGAL, IL-6, and monocyte activation as parameters associated with fatality while anti-coagulant therapy was associated with survival. Recovery from moderate COVID infection resulted in long-term immune changes including increased monocytes/lymphocytes and decreased neutrophils and endothelial markers. This group had a lower proportion of co-morbidities (n = 8, p = 1.0) but still reported symptoms associated with long COVID despite recovered pulmonary function. CONCLUSION This study indicates increased severity of COVID-19 infection in Hispanic individuals of Riverside County, California. Infection resulted in immunological and vascular changes and long COVID symptoms that were sustained for up to 11 months, however, lung volume and airflow resistance was recovered. Given the immune and behavioral impacts of long COVID, the potential for increased susceptibility to infections and decreased quality of life in high-risk populations warrants further investigation.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Kathy Pham
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Michael T Ulrich
- Riverside University Health System Medical Center, Riverside, CA, U.S
| | - Patrick Merrill
- Kaiser Permanente Riverside Medical Center, Riverside, CA, U.S
| | - Yuxin He
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Sumaya Alaama
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Xinru Qiu
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Indira S Harahap-Carrillo
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Keita Ichii
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Shyleen Frost
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S
| | - Erica C Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S..
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, U.S..
| |
Collapse
|
28
|
Krause RGE, Moyo-Gwete T, Richardson SI, Makhado Z, Manamela NP, Hermanus T, Mkhize NN, Keeton R, Benede N, Mennen M, Skelem S, Karim F, Khan K, Riou C, Ntusi NAB, Goga A, Gray G, Hanekom W, Garrett N, Bekker LG, Groll A, Sigal A, Moore PL, Burgers WA, Leslie A. Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells. NPJ Vaccines 2023; 8:119. [PMID: 37573434 PMCID: PMC10423246 DOI: 10.1038/s41541-023-00724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.
Collapse
Affiliation(s)
- Robert G E Krause
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A B Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Ameena Goga
- South African Medical Research Council, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, 4001, South Africa
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Nigel Garrett
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Desmond Tutu HIV Centre, Cape Town, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Alex Sigal
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, 4001, South Africa.
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
29
|
Kwon KW, Kim JW, Moon S, Yoon JH, Youn SH, Hyun SH, Kim HG, Kweon DH, Cho JY. Korean Red Ginseng Relieves Inflammation and Modulates Immune Response Induced by Pseudo-Type SARS-CoV-2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1361-1384. [PMID: 37489113 DOI: 10.1142/s0192415x23500623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Few studies have reported the therapeutic effects of Korean red ginseng (KRG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the positive effects of KRG on other viruses have been reported and the effects of KRG on pulmonary inflammatory diseases have also been studied. Therefore, this study investigated the therapeutic effects of KRG-water extract (KRG-WE) in a pseudo-type SARS-CoV-2 (PSV)-induced lung injury model. Constructing the pseudovirus, human angiotensin-converting enzyme 2 (hACE2) transgenic mice were infected via intranasal injection that had been orally administered with KRG-WE for six weeks. After 7-days post infection (dpi), the antiviral effects of KRG-WE were confirmed, followed by real-time polymerase chain reaction (PCR), western blot analysis, flow cytometric analysis, and an enzyme-linked immunoassay (ELISA). KRG-WE significantly inhibited an increase in immunoglobulin caused by PSV. Furthermore, KRG-WE effectively suppressed alveolar macrophages (AMs) inside the lungs and helped normalize the population of other immune cells. In addition, virus-induced gene expression and inflammatory signals such as nuclear factor-kappa B and other upstream molecules were downregulated. Moreover, KRG-WE also normalized gene expression and protein activity in the spleen. In conclusion, KRG-WE reduced AMs, normalized the immune response, and decreased the expression of inflammatory genes and activation of signaling pathway phosphorylation, thereby exhibiting anti-inflammatory effects and attenuating lung damage.
Collapse
Affiliation(s)
- Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Soo-Hyun Youn
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Lopes de Assis F, Hoehn KB, Zhang X, Kardava L, Smith CD, El Merhebi O, Buckner CM, Trihemasava K, Wang W, Seamon CA, Chen V, Schaughency P, Cheung F, Martins AJ, Chiang CI, Li Y, Tsang JS, Chun TW, Kleinstein SH, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep 2023; 42:112780. [PMID: 37440409 PMCID: PMC10529190 DOI: 10.1016/j.celrep.2023.112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.
Collapse
Affiliation(s)
- Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor D Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Microbiology and Immunology and Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Krevh R, Wang J, Zuniga B, Toor J, Subedi K, Zhou L, Mi QS. TAK1 is essential for MAIT cell development and the differentiation of MAIT1 and MAIT17. Cell Mol Immunol 2023; 20:854-856. [PMID: 36973488 PMCID: PMC10310715 DOI: 10.1038/s41423-023-00999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Rachel Krevh
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Bobby Zuniga
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Jugmohit Toor
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Kalpana Subedi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA.
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA.
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
32
|
Nelson MC, Manos CK, Flanagan E, Prahalad S. COVID-19 after rituximab therapy in cSLE patients. Ther Adv Vaccines Immunother 2023; 11:25151355231181242. [PMID: 37362155 PMCID: PMC10285438 DOI: 10.1177/25151355231181242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease associated with significant morbidity and mortality. Rituximab is a B-cell depleting therapy utilized in the treatment of SLE. In adults, rituximab has been associated with increased risk of adverse outcomes in patients who develop coronavirus disease 2019 (COVID-19). We aimed to assess the impact of prior rituximab treatment on clinical outcomes from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in children with SLE. To describe the impact of rituximab on outcomes from SARS-CoV-2 infection, we conducted a retrospective study of pediatric SLE patients in our center diagnosed with COVID-19 who had previously received rituximab between February 2019 and October 2022. Patients' clinical characteristics, disease activity, and outcomes were assessed. Of the eight subjects assessed, five required hospitalizations for COVID-19, four required ICU admission, and two were seen in the emergency department for their symptoms. One patient ultimately expired from her illness. The median time between rituximab administration and COVID-19 diagnosis was 3 months. We assessed the clinical outcomes, including the need of ICU admission and fatal outcome, of COVID-19 in our cSLE patient population after rituximab administration. Approximately 60% of our patients required hospitalization for their illness, and seven out of eight patients required healthcare utilization to include hospitalization and/or emergency department visits.
Collapse
Affiliation(s)
| | - Cynthia K. Manos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USAChildren’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Elaine Flanagan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USAChildren’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USAChildren’s Healthcare of Atlanta, Atlanta, GA, USADepartment of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Bensaid K, Lamara Mahammed L, Habchi K, Saidani M, Allam I, Djidjik R. Evaluation of the Humoral and Cellular Immune Response Post COVID-19 Infection in Kidney Transplant Recipients. J Clin Med 2023; 12:3900. [PMID: 37373595 DOI: 10.3390/jcm12123900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation is a major risk factor for severe forms of coronavirus disease 2019 (COVID-19). The dynamics and the persistence of the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this immunocompromised population remain largely unknown. This study aimed to evaluate the persistence of humoral and cellular immune response in kidney transplant recipients (KTRs) and to establish whether immunosuppressive therapy influenced long-term immunity in this population. We report here the analysis of anti-SARS-CoV-2 antibodies and T cell-mediated immune responses in 36 KTRs compared to a control group who recovered from mild COVID-19. After a mean time of 5.22 ± 0.96 months post symptom onset for kidney transplant recipients, 97.22% of patients and 100% of the control group displayed anti-S1 immunoglobulin G SARS-CoV-2 antibodies (p > 0.05). No significant difference was reported in the median of neutralizing antibodies between the groups (97.50 [55.25-99] in KTRs vs. 84 [60-98] in control group, p = 0.35). A significant difference in SARS-CoV-2-specific T cell reactivity was found in the KTRs compared to the healthy controls. The levels of IFNγ release after stimulation by Ag1, Ag2 and Ag3 were higher in the control group compared to the kidney transplant group (p = 0.007, p = 0.025 and p = 0.008, respectively). No statistically significant correlation between humoral and cellular immunity was found in the KTRs. Our findings indicated that humoral immunity persisted similarly for up to 4 to 6 months post symptom onset in both the KTRs and the control group; however, T cell response was significantly higher in the healthy population compared to the immunocompromised patients.
Collapse
Affiliation(s)
- Kahina Bensaid
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Lydia Lamara Mahammed
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Khadidja Habchi
- Nephrology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Messaoud Saidani
- Nephrology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Ines Allam
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Reda Djidjik
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| |
Collapse
|
34
|
Fabiani M, Margiotti K, Monaco F, Viola A, Cima A, Mesoraca A, Giorlandino C. Dynamics of SARS-CoV-2-Specific B Cell Memory Responses in Infected and Vaccinated Individuals. Viral Immunol 2023; 36:343-350. [PMID: 37140898 DOI: 10.1089/vim.2022.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly resulted in a pandemic constituting a global health emergency. As an indicator of long-term immune protection from reinfection with the SARS-CoV-2 virus, the presence of memory B cells (MBCs) should be evaluated. Since the beginning of COVID-19 pandemic, several variants of concerns have been detected, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1/B.1.1.28.1), Delta (B.1.617.2), and Omicron (BA.1) variants with several different mutations, causing serious concern regarding the increased frequency of reinfection, and limiting the effectiveness of the vaccine response. At this regard, we investigated SARS-CoV-2-specific cellular immune responses in four different cohorts: COVID-19, COVID-19 infected and vaccinated, vaccinated, and negative subjects. We found that MBC response to SARS-CoV-2 at more than 11 months postinfection was higher in the peripheral blood of all COVID-19 infected and vaccinated subjects respect to all the other groups. Moreover, to better characterize the differences of SARS-CoV-2 variants immune responses, we genotyped SARS-CoV-2-positive samples from the patients' cohort. We found a higher level of immunoglobulin M+ (IgM+) and IgG+ spike MBCs in SARS-CoV-2-positive patients (5-8 months after symptoms onset) infected with the SARS-CoV-2-Delta variant compared with the SARS-CoV-2-Omicron variant implying a higher immune memory response. Our findings showed that MBCs persist more than 11 months after primary infection indicating a different involvement of the immune system according to the different SARS-CoV-2 variant that infected the host.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudio Giorlandino
- Human Genetics Lab, Altamedica, Rome, Italy
- Department of Prenatal Diagnosis, Fetal-Maternal Medical Centre, Altamedica, Rome, Italy
| |
Collapse
|
35
|
Maki FM, Al-Thwani AN, Jiad KS, Musafer KNJ. Immunoglobulin G follow-up and immune response longevity analysis in SARS-CoV-2 convalescent patients and vaccinated individuals: A longitudinal analysis. Hum Antibodies 2023:HAB230004. [PMID: 37334588 DOI: 10.3233/hab-230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Although the detection of immunoglobulin G (IgG) molecules has long been considered to be crucial for successful humoral immune defence against infections and harmful metabolites, it has become increasingly important in relation to SARS-CoV-2 research. OBJECTIVE To compare longitudinal changes in IgG titres in post-infection and post-vaccination Iraqi participants, and to estimate the protective benefits of the two principal vaccines used in Iraq. METHODS This quantitative study used samples from SARS-CoV-2 recovered patients (n= 75), those vaccinated with two doses of Pfizer or Sinopharm vaccine (n= 75), and healthy unvaccinated individuals (n= 50) who formed a control group. Participant ages (range 20-80 years) and sex (52.7% men, 47.3% females). An enzyme-linked immunosorbent assay was used to measure IgG. RESULTS IgG antibody levels peaked in the first month and tapered off in the following three months in both convalescent and vaccinated groups. The latter showed a significant decrease in IgG titres than in the convalescent group. Samples from the group given the mRNA vaccination that targeted spike (S) proteins might have a cross-reactivity between nucleocapsid (N) and spike (S) proteins. CONCLUSIONS Participants who had recovered from or who were vaccinated against SARS-CoV-2 exhibited a protective, persistent and durable humoral immune response for at least a month. This was more potent in the SARS-CoV-2 convalescent group compared to the vaccinated cohort. The IgG titres decayed faster after vaccination with Sinopharm than following the Pfizer-BioNTech vaccine.
Collapse
Affiliation(s)
- Fadia Mothafar Maki
- Genetic Engineering and Biotechnology Institute, University of Baghdad, Baghdad, Iraq
| | - Anima Namma Al-Thwani
- Genetic Engineering and Biotechnology Institute, University of Baghdad, Baghdad, Iraq
| | | | | |
Collapse
|
36
|
Mansourabadi AH, Aghamajidi A, Dorfaki M, Keshavarz F, Shafeghat Z, Moazzeni A, Arab FL, Rajabian A, Roozbehani M, Falak R, Faraji F, Jafari R. B lymphocytes in COVID-19: a tale of harmony and discordance. Arch Virol 2023; 168:148. [PMID: 37119286 PMCID: PMC10147999 DOI: 10.1007/s00705-023-05773-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
B lymphocytes play a vital role in the human defense against viral infections by producing specific antibodies. They are also critical for the prevention of infectious diseases by vaccination, and their activation influences the efficacy of the vaccination. Since the beginning of coronavirus disease 2019 (COVID-19), which became the main concern of the world health system, many efforts have been made to treat and prevent the disease. However, for the development of successful therapeutics and vaccines, it is necessary to understand the interplay between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, and the immune system. The innate immune system provides primary and nonspecific defense against the virus, but within several days after infection, a virus-specific immune response is provided first by antibody-producing B cells, which are converted after the resolution of disease to memory B cells, which provide long-term immunity. Although a failure in B cell activation or B cell dysfunction can cause a severe form of the disease and also lead to vaccination inefficiency, some individuals with B cell immunodeficiency have shown less production of the cytokine IL-6, resulting in a better disease outcome. In this review, we present the latest findings on the interaction between SARS-CoV-2 and B lymphocytes during COVID-19 infection.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dorfaki
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Keshavarz
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Shafeghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, School of Medicine, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Institue of Immunology and Infectious diseases, Hazrat-e Rasool General Hospital, Floor 3, Building no. 3, Niyayesh St, Sattar Khan St, 1445613131, Tehran, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd, P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
37
|
Zhou Z, Barrett J, He X. Immune Imprinting and Implications for COVID-19. Vaccines (Basel) 2023; 11:vaccines11040875. [PMID: 37112787 PMCID: PMC10142218 DOI: 10.3390/vaccines11040875] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Immunological memory is the key source of protective immunity against pathogens. At the current stage of the COVID-19 pandemic, heterologous combinations of exposure to viral antigens during infection and/or vaccination shape a distinctive immunological memory. Immune imprinting, the downside of memory, might limit the generation of de novo immune response against variant infection or the response to the next-generation vaccines. Here, we review mechanistic basis of immune imprinting by focusing on B cell immunobiology and discuss the extent to which immune imprinting is harmful, as well as its effect on SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Zhiqian Zhou
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Xuan He
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Bisceglia H, Barrier J, Ruiz J, Pagnon A. A FluoroSpot B assay for the detection of IgA and IgG SARS-CoV-2 spike-specific memory B cells: Optimization and qualification for use in COVID-19 vaccine trials. J Immunol Methods 2023; 515:113457. [PMID: 36914088 PMCID: PMC10008040 DOI: 10.1016/j.jim.2023.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND The generation of antigen-specific memory B cells is crucial to the long-term effectiveness of vaccines. When the protective antibodies circulating in the blood wane, memory B cells (MBC) can be rapidly reactivated and differentiated into antibody-secreting cells during a new infection. Such MBC responses are considered to be key in providing long-term protection after infection or vaccination. Here, we describe the optimization and qualification of a FluoroSpot assay to measure MBCs directed against the SARS-CoV-2 spike protein in the peripheral blood, for use in COVID-19 vaccine trials. METHODS We developed a FluoroSpot assay enabling simultaneous enumeration of B cells secreting IgA or IgG spike-specific antibodies after polyclonal stimulation of peripheral blood mononuclear cells (PBMCs) with interleukin-2 and the toll-like receptor agonist R848 for 5 days. The antigen coating was optimized using a capture antibody directed against the spike subunit-2 glycoprotein of SARS-CoV-2 to immobilize recombinant trimeric spike protein onto the membrane. RESULTS Compared to a direct spike protein coating, the addition of a capture antibody increased the number and the quality of detected spots for both spike-specific IgA and IgG secreting cells in PBMCs from COVID-19 convalescents. The qualification showed good sensitivity of the dual-color IgA-IgG FluoroSpot assay, with lower limits of quantitation of 18 background-subtracted (BS) antibody-secreting cells (ASCs)/well for spike-specific IgA and IgG responses. Linearity was demonstrated at values ranging from 18 to 73 and from 18 to 607 BS ASCs/well for spike-specific IgA and IgG, respectively, as was precision, with intermediate precision (percentage geometric coefficients of variation) of 12% and 26% for the proportion of spike-specific IgA and IgG MBCs (ratio specific/total IgA or Ig). The assay was specific, since no spike-specific MBCs were detected in PBMCs from pre-pandemic samples; the results were below the limit of detection of 17 BS ASCs/well. CONCLUSIONS These results show that the dual-color IgA-IgG FluoroSpot provides a sensitive, specific, linear, and precise tool to detect spike-specific MBC responses. This MBC FluoroSpot assay is a method of choice for monitoring spike-specific IgA and IgG MBC responses induced by COVID-19 candidate vaccines in clinical trials.
Collapse
Affiliation(s)
- Hélène Bisceglia
- Research Global Immunology Department, Sanofi, Marcy l'Étoile, France
| | - Julie Barrier
- Research Global Immunology Department, Sanofi, Marcy l'Étoile, France
| | - Joseline Ruiz
- Translational and Early Development Biostatistics, Sanofi, Marcy l'Étoile, France
| | - Anke Pagnon
- Research Global Immunology Department, Sanofi, Marcy l'Étoile, France.
| |
Collapse
|
39
|
Tangye SG. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol 2023; 151:818-831. [PMID: 36522221 PMCID: PMC9746792 DOI: 10.1016/j.jaci.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales Sydney, Randwick, Randwick, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA).
| |
Collapse
|
40
|
Tavukcuoglu E, Yanik H, Parveen M, Uluturk S, Durusu-Tanriover M, Inkaya AC, Akova M, Unal S, Esendagli G. Human memory T cell dynamics after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccination. Sci Rep 2023; 13:4610. [PMID: 36944716 PMCID: PMC10028771 DOI: 10.1038/s41598-023-31347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
This study evaluates the functional capacity of CD4+ and CD8+ terminally-differentiated effector (TEMRA), central memory (TCM), and effector memory (TEM) cells obtained from the volunteers vaccinated with an aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac). The volunteers were followed for T cell immune responses following the termination of a randomized phase III clinical trial. Seven days and four months after the second dose of the vaccine, the memory T cell subsets were collected and stimulated by autologous monocyte-derived dendritic cells (mDCs) loaded with SARS-CoV-2 spike glycoprotein S1. Compared to the placebo group, memory T cells from the vaccinated individuals significantly proliferated in response to S1-loaded mDCs. CD4+ and CD8+ memory T cell proliferation was detected in 86% and 78% of the vaccinated individuals, respectively. More than 73% (after a short-term) and 62% (after an intermediate-term) of the vaccinated individuals harbored TCM and/or TEM cells that responded to S1-loaded mDCs by secreting IFN-γ. The expression of CD25, CD38, 4-1BB, PD-1, and CD107a indicated a modulation in the memory T cell subsets. Especially on day 120, PD-1 was upregulated on CD4+ TEMRA and TCM, and on CD8+ TEM and TCM cells; accordingly, proliferation and IFN-γ secretion capacities tended to decline after 4 months. In conclusion, the combination of inactivated whole-virion particles with aluminum adjuvants possesses capacities to induce functional T cell responses.
Collapse
Affiliation(s)
- Ece Tavukcuoglu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Mubaida Parveen
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Sila Uluturk
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Mine Durusu-Tanriover
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Serhat Unal
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
41
|
Hartley GE, Edwards ESJ, Varese N, Boo I, Aui PM, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, van Zelm MC. The second COVID-19 mRNA vaccine dose enhances the capacity of Spike-specific memory B cells to bind Omicron BA.2. Allergy 2023; 78:855-858. [PMID: 36541822 PMCID: PMC9877979 DOI: 10.1111/all.15624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nirupama Varese
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Pei M Aui
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Gazeau S, Deng X, Ooi HK, Mostefai F, Hussin J, Heffernan J, Jenner AL, Craig M. The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2023; 9:100021. [PMID: 36643886 PMCID: PMC9826539 DOI: 10.1016/j.immuno.2023.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.
Collapse
Affiliation(s)
- Sonia Gazeau
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Xiaoyan Deng
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Canada
| | - Fatima Mostefai
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Hussin
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Jane Heffernan
- Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Australia
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| |
Collapse
|
43
|
Maghsood F, Ghorbani A, Yadegari H, Golsaz-Shirazi F, Amiri MM, Shokri F. SARS-CoV-2 nucleocapsid: Biological functions and implication for disease diagnosis and vaccine design. Rev Med Virol 2023; 33:e2431. [PMID: 36790816 DOI: 10.1002/rmv.2431] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Lo Tartaro D, Paolini A, Mattioli M, Swatler J, Neroni A, Borella R, Santacroce E, Di Nella A, Gozzi L, Busani S, Cuccorese M, Trenti T, Meschiari M, Guaraldi G, Girardis M, Mussini C, Piwocka K, Gibellini L, Cossarizza A, De Biasi S. Detailed characterization of SARS-CoV-2-specific T and B cells after infection or heterologous vaccination. Front Immunol 2023; 14:1123724. [PMID: 36845156 PMCID: PMC9947839 DOI: 10.3389/fimmu.2023.1123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
The formation of a robust long-term antigen (Ag)-specific memory, both humoral and cell-mediated, is created following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination. Here, by using polychromatic flow cytometry and complex data analyses, we deeply investigated the magnitude, phenotype, and functionality of SARS-CoV-2-specific immune memory in two groups of healthy subjects after heterologous vaccination compared to a group of subjects who recovered from SARS-CoV-2 infection. We find that coronavirus disease 2019 (COVID-19) recovered patients show different long-term immunological profiles compared to those of donors who had been vaccinated with three doses. Vaccinated individuals display a skewed T helper (Th)1 Ag-specific T cell polarization and a higher percentage of Ag-specific and activated memory B cells expressing immunoglobulin (Ig)G compared to those of patients who recovered from severe COVID-19. Different polyfunctional properties characterize the two groups: recovered individuals show higher percentages of CD4+ T cells producing one or two cytokines simultaneously, while the vaccinated are distinguished by highly polyfunctional populations able to release four molecules, namely, CD107a, interferon (IFN)-γ, tumor necrosis factor (TNF), and interleukin (IL)-2. These data suggest that functional and phenotypic properties of SARS-CoV-2 adaptive immunity differ in recovered COVID-19 individuals and vaccinated ones.
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Julian Swatler
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alessia Di Nella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Licia Gozzi
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| |
Collapse
|
45
|
Gupta M, Balachandran H, Louie RHY, Li H, Agapiou D, Keoshkerian E, Christ D, Rawlinson W, Mina MM, Post JJ, Hudson B, Gilroy N, Konecny P, Bartlett AW, Sasson SC, Ahlenstiel G, Dwyer D, Lloyd AR, Martinello M, Luciani F, Bull RA. High activation levels maintained in receptor-binding domain-specific memory B cells in people with severe coronavirus disease 2019. Immunol Cell Biol 2023; 101:142-155. [PMID: 36353774 PMCID: PMC9878167 DOI: 10.1111/imcb.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
The long-term health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are still being understood. The molecular and phenotypic properties of SARS-CoV-2 antigen-specific T cells suggest a dysfunctional profile that persists in convalescence in those who were severely ill. By contrast, the antigen-specific memory B-cell (MBC) population has not yet been analyzed to the same degree, but phenotypic analysis suggests differences following recovery from mild or severe coronavirus disease 2019 (COVID-19). Here, we performed single-cell molecular analysis of the SARS-CoV-2 receptor-binding domain (RBD)-specific MBC population in three patients after severe COVID-19 and four patients after mild/moderate COVID-19. We analyzed the transcriptomic and B-cell receptor repertoire profiles at ~2 months and ~4 months after symptom onset. Transcriptomic analysis revealed a higher level of tumor necrosis factor-alpha (TNF-α) signaling via nuclear factor-kappa B in the severe group, involving CD80, FOS, CD83 and TNFAIP3 genes that was maintained over time. We demonstrated the presence of two distinct activated MBCs subsets based on expression of CD80hi TNFAIP3hi and CD11chi CD95hi at the transcriptome level. Both groups revealed an increase in somatic hypermutation over time, indicating progressive evolution of humoral memory. This study revealed distinct molecular signatures of long-term RBD-specific MBCs in convalescence, indicating that the longevity of these cells may differ depending on acute COVID-19 severity.
Collapse
Affiliation(s)
- Money Gupta
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Harikrishnan Balachandran
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Raymond H Y Louie
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Hui Li
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - David Agapiou
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | | - Daniel Christ
- Antibody Therapeutics LabGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - William Rawlinson
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- Serology and Virology Division, Department of MicrobiologyNSW Health Pathology, Prince of Wales HospitalSydneyNSWAustralia
| | | | - Jeffrey J Post
- Prince of Wales Clinical SchoolUniversity of New South Wales, AustraliaSydneyNSWAustralia
| | - Bernard Hudson
- Infectious diseasesRoyal North Shore HospitalSydneyNSWAustralia
| | - Nicky Gilroy
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
| | - Pamela Konecny
- St George and Sutherland Clinical SchoolUniversity of New South Wales, SydneySydneyNSWAustralia
| | - Adam W Bartlett
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
- Sydney Children's Hospital RandwickSydneyNSWAustralia
| | - Sarah C Sasson
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | | - Dominic Dwyer
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Marianne Martinello
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
- Blacktown Mount Druitt HospitalBlacktownNSWAustralia
| | - Fabio Luciani
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Rowena A Bull
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | |
Collapse
|
46
|
The Influence of Booster Shot and SARS-CoV-2 Infection on the Anti-Spike Antibody Concentration One Year after the First COVID-19 Vaccine Dose Administration. Vaccines (Basel) 2023; 11:vaccines11020278. [PMID: 36851157 PMCID: PMC9962896 DOI: 10.3390/vaccines11020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
This study pictures the humoral response of 100 vaccinees to Pfizer/BioNTech COVID-19 vaccine over a year, with particular focus on the influence of a booster shot administered around 10 months after the primary immunization. The response to the vaccination was assessed with Diasorin's SARS-CoV-2 TrimericSpike IgG. Abbott's SARS-CoV-2 Nucleocapsid IgG immunoassay was used to identify SARS-CoV-2 contact, even asymptomatic. In contrast to the gradual decline of the anti-spike IgG between 30 and 240 days after the first dose, an increase was noted between days 240 and 360 in the whole cohort. However, a statistically significant rise was seen only in boosted individuals, and this effect of the booster decreased over time. An increase was also observed in non-boosted but recently infected participants and a decrease was reported in non-boosted, non-infected subjects. These changes were not statistically significant. On day 360, a percentage of new SARS-CoV-2 infections was statistically lower in the boosted vs. non-boosted subgroups. The booster immunization is the most efficient way of stimulating production of anti-spike, potentially neutralizing antibodies. The response is additionally enhanced by the natural contact with the virus. Individuals with a low level of anti-spike antibodies may benefit the most from the booster dose administration.
Collapse
|
47
|
De Biasi S, Paolini A, Lo Tartaro D, Gibellini L, Cossarizza A. Analysis of Antigen-Specific T and B Cells for Monitoring Immune Protection Against SARS-CoV-2. Curr Protoc 2023; 3:e636. [PMID: 36598346 DOI: 10.1002/cpz1.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunological memory is the basis of protection against most pathogens. Long-living memory T and B cells able to respond to specific stimuli, as well as persistent antibodies in plasma and in other body fluids, are crucial for determining the efficacy of vaccination and for protecting from a second infection by a previously encountered pathogen. Antigen-specific cells are represented at a very low frequency in the blood, and indeed, they can be considered "rare events" present in the memory T-cell pool. Therefore, such events should be analyzed with careful attention. In the last 20 years, different methods, mostly based upon flow cytometry, have been developed to identify such rare antigen-specific cells, and the COVID-19 pandemic has given a dramatic impetus to characterize the immune response against the virus. In this regard, we know that the identification, enumeration, and characterization of SARS-CoV-2-specific T and B cells following infection and/or vaccination require i) the use of specific peptides and adequate co-stimuli, ii) the use of appropriate inhibitors to avoid nonspecific activation, iii) the setting of appropriate timing for stimulation, and iv) the choice of adequate markers and reagents to identify antigen-specific cells. Optimization of these procedures allows not only determination of the magnitude of SARS-CoV-2-specific responses but also a comparison of the effects of different combinations of vaccines or determination of the response provided by so-called "hybrid immunity," resulting from a combination of natural immunity and vaccine-generated immunity. Here, we present two methods that are largely used to monitor the response magnitude and phenotype of SARS-CoV-2-specific T and B cells by polychromatic flow cytometry, along with some tips that can be useful for the quantification of these rare events. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of antigen-specific T cells Basic Protocol 2: Identification of antigen-specific B cells.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy.,Istituto Nazionale per le Ricerche Cardiovascolari - INRC, via Irnerio, Bologna, Italy
| |
Collapse
|
48
|
Jiang W, Johnson D, Ruth A, Heather H, Xu W, Cong X, Wu X, Fan H, Andersson LM, Robertson J, Gisslén M. COVID-19 is associated with bystander polyclonal autoreactive B cell activation as reflected by a broad autoantibody production, but none is linked to disease severity. J Med Virol 2023; 95:e28134. [PMID: 36086941 PMCID: PMC9538121 DOI: 10.1002/jmv.28134] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with autoimmune features and autoantibody production in a small subset of the population. Pre-existing neutralizing antitype I interferons (IFNs) autoantibodies are related to the severity of COVID-19. Plasma levels of IgG and IgM against 12 viral antigens and 103 self-antigens were evaluated using an antibody protein array in patients with severe/critical or mild/moderate COVID-19 disease and uninfected controls. Patients exhibited increased IgGs against Severe acute respiratory syndrome coronavirus-2 proteins compared to controls, but no difference was observed in the two patient groups. 78% autoreactive IgGs and 93% autoreactive IgMs were increased in patients versus controls. There was no difference in the plasma levels of anti-type I IFN autoantibodies or neutralizing anti-type I IFN activity of plasma samples from the two patient groups. Increased anti-type I IFN IgGs were correlated with higher lymphocyte accounts, suggesting a role of nonpathogenic autoantibodies. Notably, among the 115 antibodies tested, only plasma levels of IgGs against human coronavirus (HCOV)-229E and HCOV-NL63 spike proteins were associated with mild disease outcome. COVID-19 was associated with a bystander polyclonal autoreactive B cell activation, but none of the autoantibody levels were linked to disease severity. Long-term humoral immunity against HCOV-22E and HCOV-NL63 spike protein was associated with mild disease outcome. Understanding the mechanism of life-threatening COVID-19 is critical to reducing mortality and morbidity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA,Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Douglas Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Adekunle Ruth
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Hughes Heather
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Wanli Xu
- University of Connecticut School of Nursing, Storrs, Connecticut, USA, 06269
| | - Xiaomei Cong
- University of Connecticut School of Nursing, Storrs, Connecticut, USA, 06269
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41645, Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Josefina Robertson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41645, Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41645, Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
49
|
Anti-SARS-Cov-2 S-RBD IgG Formed after BNT162b2 Vaccination Can Bind C1q and Activate Complement. J Immunol Res 2022; 2022:7263740. [PMID: 36573216 PMCID: PMC9789906 DOI: 10.1155/2022/7263740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The ability of vaccine-induced antibodies to bind C1q could affect pathogen neutralization. In this study, we investigated C1q binding and subsequent complement activation by anti-spike (S) protein receptor-binding domain (RBD) specific antibodies produced following vaccination with either the mRNA vaccine BNT162b2 or the inactivated vaccine BBIBP-CorV. Methods Serum samples were collected in the period of July 2021-March 2022. Participants' demographic data, type of vaccine, date of vaccination, as well as adverse effects of the vaccine were recorded. The serum samples were incubated with S protein RBD-coated plates. Levels of human IgG, IgA, IgM, C1q, and mannose-binding lectin (MBL) that were bound to the plate, as well as formed C3d, and C5b-9 were compared between different groups of participants. Results A total of 151 samples were collected from vaccinated (n = 116) and nonvaccinated (n = 35) participants. Participants who received either one or two doses of BNT162b2 formed higher levels of anti-RBD IgG and IgA than participants who received BBIBP-CorV. The anti-RBD IgG formed following either vaccine bound C1q, but significantly more C1q binding was observed in participants who received BNT162b2. Subsequently, C5b-9 formation was significantly higher in participants who received BNT162b2, while no significant difference in C5b-9 formation was found between the nonvaccinated and BBIBP-CorV groups. The formation of C5b-9 was strongly correlated to C1q binding and not to MBL binding, additionally, the ratio of formed C5b-9/bound C1q was significantly higher in the BNT162b2 group. Conclusion Anti-RBD IgG formed following vaccination can bind C1q with subsequent complement activation, and the degree of terminal complement pathway activation differed between vaccines, which could play a role in the protection offered by COVID-19 vaccines. Further investigation into the correlation between vaccine protection and vaccine-induced antibodies' ability to activate complement is required.
Collapse
|
50
|
Fryer HA, Hartley GE, Edwards ES, O'Hehir RE, van Zelm MC. Humoral immunity and B-cell memory in response to SARS-CoV-2 infection and vaccination. Biochem Soc Trans 2022; 50:1643-1658. [PMID: 36421662 PMCID: PMC9788580 DOI: 10.1042/bst20220415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2024]
Abstract
Natural infection with SARS-CoV-2 induces a robust circulating memory B cell (Bmem) population, which remains stable in number at least 8 months post-infection despite the contraction of antibody levels after 1 month. Multiple vaccines have been developed to combat the virus. These include two new formulations, mRNA and adenoviral vector vaccines, which have varying efficacy rates, potentially related to their distinct capacities to induce humoral immune responses. The mRNA vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) elicit significantly higher serum IgG and neutralizing antibody levels than the adenoviral vector ChAdOx1 (AstraZeneca) and Ad26.COV2.S (Janssen) vaccines. However, all vaccines induce Spike- and RBD-specific Bmem, which are vital in providing long-lasting protection in the form of rapid recall responses to subsequent infections. Past and current SARS-CoV-2 variants of concern (VoC) have shown the capacity to escape antibody neutralization to varying degrees. A booster dose with an mRNA vaccine following primary vaccination restores antibody levels and improves the capacity of these antibodies and Bmem to bind viral variants, including the current VoC Omicron. Future experimental research will be essential to evaluate the durability of protection against VoC provided by each vaccine and to identify immune markers of protection to enable prognostication of people who are at risk of severe complications from COVID-19.
Collapse
Affiliation(s)
- Holly A. Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S.J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn E. O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|