1
|
Qu X, Xu D, Yang T, Tian Y, King CT, Wang X, Sheng M, Lin Y, Bian X, Li C, Jiang L, Xia Q, Farmer DG, Ke B. Macrophage Dvl2 deficiency promotes NOD1-Driven pyroptosis and exacerbates inflammatory liver injury. Redox Biol 2025; 79:103455. [PMID: 39644526 PMCID: PMC11667066 DOI: 10.1016/j.redox.2024.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Dishevelled 2 (Dvl2) is a key mediator of the Wingless/Wnt signaling pathway that regulates cell proliferation, migration, and immune function. However, little is known about the role of macrophage Dvl2 in modulating NOD1-mediated pyroptosis and hepatocyte death in oxidative stress-induced inflammatory liver injury. In a mouse model of oxidative stress-induced liver inflammation, mice with myeloid-specific Dvl2 knockout (Dvl2M-KO) displayed exacerbated ischemia/reperfusion (IR) stress-induced hepatocellular damage with increased serum ALT levels, oxidative stress, and proinflammatory mediators. Unlike in Dvl2FL/FL controls, Dvl2M-KO enhanced NOD1, caspase-1, GSDMD, and NF-κB activation in liver macrophages after IR. Interestingly, IR stress enhanced YAP colocalized with HSF1 in Dvl2FL/FL macrophages, while macrophage Dvl2 deficiency reduced YAP and HSF1 colocalization in the nucleus under inflammatory conditions. Importantly, Dvl2 deletion diminished nuclear YAP interacted with HSF1 and augmented NOD1/caspase-1 and GSDMD activation in response to inflammatory stimulation. However, Dvl2 activation increased YAP interaction with HSF1 and activated HSF1 target gene eEF2, inhibiting NOD1/caspase-1, GSDMD, and NF-κB activity. Moreover, macrophage eEF2 deletion increased the NOD1-caspase-1 interaction, GSDMD activation, HMGB1 release, and hepatocyte LDH release after macrophage/hepatocyte co-culture. Adoptive transfer of eEF2-expressing macrophages in Dvl2M-KO mice alleviated IR-triggered liver inflammation and hepatocellular damage. Therefore, macrophage Dvl2 deficiency promotes NOD1-mediated pyroptosis and exacerbates IR-induced hepatocellular death by disrupting the YAP-HSF1 axis. eEF2 is crucial for modulating NOD1-driven pyroptosis, inflammatory response, and hepatocyte death. Our findings underscore a novel role of macrophage Dvl2 in modulating liver inflammatory injury and imply the therapeutic potential in organ IRI and transplant recipients.
Collapse
Affiliation(s)
- Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Yang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Christopher T King
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Xiao Wang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Xiyun Bian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Changyong Li
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas G Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Chen T, Ren Q, Ma F. New insights into constitutive neutrophil death. Cell Death Discov 2025; 11:6. [PMID: 39800780 PMCID: PMC11725587 DOI: 10.1038/s41420-025-02287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Neutrophils undergo rapid aging and death known as constitutive or spontaneous death. Constitutive neutrophil death (CND) contributes to neutrophil homeostasis and inflammation resolution. CND has long been considered to be apoptotic until our findings reveal that it was a heterogeneous combination of diverse death. Furthermore, dead neutrophils retain functional roles via multiple manners. This review provides an overview of current research on the mechanism and modulation of CND. More noteworthy, we also summarize the after-death events of neutrophils. The fate of neutrophils can be changed under pathological conditions, so the involvement of CND in diseases and CND-related therapeutic strategies are also addressed.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
3
|
Ghaith WZ, Wadie W, El-Yamany MF. Crosstalk between SIRT1/Nrf2 signaling and NLRP3 inflammasome/pyroptosis as a mechanistic approach for the neuroprotective effect of linagliptin in Parkinson's disease. Int Immunopharmacol 2025; 145:113716. [PMID: 39642562 DOI: 10.1016/j.intimp.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
In recent years, special attention has been paid to highlighting the antiparkinsonian effect of linagliptin. However, the mechanism of its action has not yet been well investigated. The present study aimed to verify the neuroprotective effect of linagliptin in the rotenone model of Parkinson's disease (PD) and further explore its potential molecular mechanisms. Rats were intoxicated with rotenone (2 mg/kg/day; sc) and treated with linagliptin (10 mg/kg/day; po) for 14 consecutive days. The present finding showed that linagliptin ameliorated the histopathological changes of rotenone on substantia nigra and striata. Linagliptin decreased α-synuclein immunoreactivity along with an increase in tyrosine hydroxylase immunoreactivity and striatal dopamine content. This was reflected in the marked improvement of the behavior and motor deficits in rotenone-intoxicated rats. On the molecular level, linagliptin upregulated sirtuin 1 (SIRT1)/ nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, reduced ionized calcium-binding adaptor molecule 1 (Iba1) protein expression, restored glutathione (GSH) content, and elevated heme oxygenase-1 (HO-1) level in rats with rotenone intoxication. Moreover, linagliptin inhibited NOD-like receptor protein 3 (NLRP3)/caspase-1/interleukin-1β (IL-1β) cascade with subsequent reduction in gasdermin D (GSDMD) expression. Therefore, the present study reveals the ability of linagliptin, through the activation of SIRT1/Nrf2 signaling, to suppress NLRP3 inflammasome-mediated pyroptosis and protect against rotenone-induced parkinsonism.
Collapse
Affiliation(s)
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt.
| |
Collapse
|
4
|
Lei L, Chen M, Qin C, Cai L, Liang B. Arsenic exposure accelerates type 1 diabetes mellitus progression via pyroptosis pathway in mice. Chem Biol Interact 2024; 406:111348. [PMID: 39675543 DOI: 10.1016/j.cbi.2024.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The relationship between arsenic exposure and the development of diabetes mellitus has garnered significant interest in recent years. However, current experimental studies have not definitively established the role of arsenic in the onset of diabetes mellitus. To investigate this relationship specifically concerning type 1 diabetes mellitus, Streptozocin (STZ) was utilized as an inducer to initiate the fundamental pathological changes associated with the disease. A high dose of STZ (50 mg/kg) served as the positive control, while a low dose of STZ (20 mg/kg) was administered in combination with arsenic at varying doses. The objective was to determine whether arsenic enhances the effects of STZ, thereby leading to an expedited onset and progression of type 1 diabetes mellitus. The preliminary investigation into the impact of arsenic exposure on experimental type 1 diabetic mice focused on the NLRP3/Caspase-1/GSDMD mediated pyroptosis pathway. The results showed that fasting blood glucose (FBG) was increased, glucose tolerance was impaired, insulin sensitivity was decreased, fasting serum insulin and the homeostatic model assessment-β (HOMA-β) were significantly reduced, hair arsenic content was increased, reactive oxygen species(ROS), interleukin (IL)-1β and IL-18 contents were increased, and the pathological morphology of pancreas was more serious in the combined group. Moreover, the expression levels of proteins associated with the NLRP3/Caspase-1/GSDMD-mediated pyroptosis pathway were elevated in the combined group. This study illustrates that exposure to arsenic, combined with low-dose STZ, not only leads to pancreatic injury in mice, impacting insulin secretion and causing elevated blood glucose levels, thereby hastening the progression of type 1 diabetes, but also induces pyroptosis in pancreatic tissues by influencing the NLRP3/Caspase-1/GSDMD signaling pathway, further facilitating the development of type 1 diabetes.
Collapse
Affiliation(s)
- Lichao Lei
- School of Basic Medicine, Guizhou Medical University, Guian New District, 561113, Guizhou, China
| | - Mengling Chen
- School of Basic Medicine, Guizhou Medical University, Guian New District, 561113, Guizhou, China
| | - Chuan Qin
- School of Basic Medicine, Guizhou Medical University, Guian New District, 561113, Guizhou, China
| | - Linli Cai
- School of Basic Medicine, Guizhou Medical University, Guian New District, 561113, Guizhou, China
| | - Bing Liang
- School of Basic Medicine, Guizhou Medical University, Guian New District, 561113, Guizhou, China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
5
|
Shang P, Gan M, Wei Z, Hu S, Song L, Feng J, Chen L, Niu L, Wang Y, Zhang S, Shen L, Zhu L, Zhao Y. Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis. Front Microbiol 2024; 15:1503130. [PMID: 39735183 PMCID: PMC11671501 DOI: 10.3389/fmicb.2024.1503130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections. There are four main pathways through which pathogenic microorganisms induce pyroptosis: the canonical inflammasome pathway, the non-canonical inflammasome pathway, the apoptosis-associated caspase-mediated pathway, and the granzyme-mediated pathway. This article provides a brief overview of the effects and mechanisms of pathogen infections on pyroptosis.
Collapse
Affiliation(s)
- Pan Shang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Ziang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Shijie Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Wu Z, He L, Yan L, Tan B, Ma L, He G, Dai Z, Sun R, Li C. Hydrogels Treat Atopic Dermatitis by Transporting Marine-Derived miR-100-5p-Abundant Extracellular Vesicles. ACS Biomater Sci Eng 2024; 10:7667-7682. [PMID: 39585960 DOI: 10.1021/acsbiomaterials.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Atopic dermatitis (AD) is a prevalent skin disorder worldwide. However, many AD medications are unsuitable for long-term use due to low therapeutic efficacy and side effects. Extracellular vesicles (EVs) extracted from Pinctada martensii mucus have demonstrated therapeutic efficacy in AD. It is hypothesized that EVs may exert their activity on mammalian cells through their specific contents. In this study, we analyzed the results of miRNA sequencing of the EVs and investigated the potency of highly expressed miR-100-5p in treating AD. To enhance the therapeutic efficiency of the EVs in AD, we developed oxidized sodium alginate (OSA)-carboxymethyl chitosan (CMCS) self-cross-linked hydrogels as a vehicle to deliver the EVs to BALB/c mice with dermatitis. The miR-100-5p in EVs exhibited a favorable anti-inflammatory function, while the hydrogels provided enhanced skin residency. Additionally, its efficacy in inflammation inhibition and collagen synthesis was demonstrated in in vivo experiments. Mechanistically, miR-100-5p in EVs exerted anti-inflammatory effects by inhibiting the expression of FOXO3, consequently suppressing the activation of the downstream NLRP3 signaling pathway. This study underscores the significance of utilizing OSA-CMCS hydrogels as a vehicle for delivering miR-100-5p in P. martensii mucus-derived EVs for the treatment of AD.
Collapse
Affiliation(s)
- Zijie Wu
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Baoyi Tan
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guoli He
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Ruikun Sun
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Chengyong Li
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
7
|
Niskala A, Heijman J, Dobrev D, Jespersen T, Saljic A. Targeting the NLRP3 inflammasome signalling for the management of atrial fibrillation. Br J Pharmacol 2024; 181:4939-4957. [PMID: 38877789 DOI: 10.1111/bph.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 06/16/2024] Open
Abstract
Inflammatory signalling via the nod-like receptor (NLR) family pyrin domain-containing protein-3 (NLRP3) inflammasome has recently been implicated in the pathophysiology of atrial fibrillation (AF). However, the precise role of the NLRP3 inflammasome in various cardiac cell types is poorly understood. Targeting components or products of the inflammasome and preventing their proinflammatory consequences may constitute novel therapeutic treatment strategies for AF. In this review, we summarise the current understanding of the role of the inflammasome in AF pathogenesis. We first review the NLRP3 inflammasome pathway and inflammatory signalling in cardiomyocytes, (myo)fibroblasts and immune cells, such as neutrophils, macrophages and monocytes. Because numerous compounds targeting NLRP3 signalling are currently in preclinical development, or undergoing clinical evaluation for other indications than AF, we subsequently review known therapeutics, such as colchicine and canakinumab, targeting the NLRP3 inflammasome and evaluate their potential for treating AF.
Collapse
Affiliation(s)
- Alisha Niskala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lv J, Wu M, Xia Z. Heme oxygenase-1 binds gasdermin D to inhibit airway epithelium pyroptosis in allergic asthma. Apoptosis 2024; 29:1853-1855. [PMID: 39190204 DOI: 10.1007/s10495-024-02016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
This study explores how heme oxygenase-1 affects allergic airway inflammation, specifically focusing on airway epithelium pyroptosis. Findings suggest heme oxygenase-1 binds gasdermin D C-terminal to limit release of N-terminal, which affects NLRP3-caspase 1-gasdermin D trimer formation. This enhances comprehension of anti-inflammatory activity of heme oxygenase-1 in allergic disorders.
Collapse
Affiliation(s)
- Jiajia Lv
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Min Wu
- Wenzhou Institute, University of the Chinese Academy of Sciences, Jinlian Road, Longwan District, Wenzhou, 325000, Zhejiang, China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
9
|
Yang F, Zhang S, Zhang X, Xu C, Hou X, Shang J, Sun B, Shu X, Liu Y, Li Y, Wang H. Liposomal chlorin e6-mediated photodynamic therapy induces cell pyroptosis and promotes anti-tumor immune effects in breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113047. [PMID: 39504926 DOI: 10.1016/j.jphotobiol.2024.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Pyroptosis is a form of inflammatory cell death that has been demonstrated to trigger anti-tumor immune responses. Photodynamic therapy (PDT) is an innovative non-invasive treatment for tumors that effectively destroys tumor cells and boosts anti-tumor immune response. The ability of PDT to trigger pyroptosis and its mechanism of action are yet uncertain. In this study, we firstly verified that PDT effectively eliminates tumor cells. TEM and Western blot analysis demonstrated that tumor cells underwent pyroptosis following PDT therapy. Lipo-Ce6 mostly accumulates in the mitochondria of 4 T1 cells, and abundant ROS generated during PDT severely damage cell mitochondria, leading to the release of mitochondrial DNA, triggering the inflammasome caspase-1 signaling cascade, and ultimately causing cell pyroptosis, in addition NAC (a scavenger of ROS) and EB (a scavenger of mitochondrial DNA) can effectively prevent cell pyroptosis by PDT, which indicated the key role of ROS in PDT induced pyroptosis. Moreover, we also found PDT tiggered immunogenic cell death (ICD). Fourthermore, PDT can efficiently suppress tumor growth, trigger ICD and induce cell pyroptosis in mice. The introducing of immune checkpoint inhibitor BMS202 significantly boosts the tumor inhibition rate and promotes the infiltration of immune cells into the tumor. The body weight and HE. staining of normal organs primarily indicated the safety of this combined strategy. Our study demonstrated that PDT induced cell pyroptosis through mitochondrial oxidative damage and PDT induced pyroptosis effectively boost anti-cancer immunity, the combination of PDT and immune checkpoint inhibitor may be a promising clinical tumor treatment approaches.
Collapse
Affiliation(s)
- Fang Yang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Medical College of Guangxi University, Nanning 530004, China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Xiao Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Chenchen Xu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Xiaoying Hou
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Jinting Shang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China.
| | - Yixiang Li
- Medical College of Guangxi University, Nanning 530004, China.
| | - Haiping Wang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China.
| |
Collapse
|
10
|
Zheng ZL, Ma JW, Luo Y, Liang GJ, Lei SJ, Yan KJ, Meng HB, Liu XJ. Mechanism of dexmedetomidine protection against cisplatin induced acute kidney injury in rats. Ren Fail 2024; 46:2337287. [PMID: 38627212 PMCID: PMC11022910 DOI: 10.1080/0886022x.2024.2337287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 μg/kg, and CP + Dex 25 μg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.
Collapse
Affiliation(s)
- Zeng-lu Zheng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Jun-wei Ma
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Yi Luo
- Department of Respiratory, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Gui-jin Liang
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Shi-jie Lei
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Ke-jin Yan
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Hai-bing Meng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Xiu-juan Liu
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| |
Collapse
|
11
|
Zhang Z, Wu C, Bao Z, Ren Z, Zou M, Lei S, Liu K, Deng X, Yin S, Shi Z, Zhang L, Lan Z, Chen L. Benzoylmesaconine mitigates NLRP3 inflammasome-related diseases by reducing intracellular K + efflux and disrupting NLRP3 inflammasome assembly. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156154. [PMID: 39447229 DOI: 10.1016/j.phymed.2024.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Benzoylmesaconine (BMA), a major alkaloid derived from the traditional Chinese medicine Aconitum carmichaeli Debx, exhibits potent anti-inflammatory properties. However, the precise mechanism underlying its action remains unclear. PURPOSE This study aimed to investigate the inhibitory mechanism of BMA on the NLRP3 inflammasome and assess its therapeutic efficacy in NLRP3-related metabolic diseases. METHODS A classic NLRP3 inflammasome-activated bone marrow-derived macrophage (BMDM) model was established to evaluate BMA's effects on NLRP3 upstream and downstream protein expression, as well as pyroptosis. Two distinct animal disease models, MSU-induced gouty arthritis and DSS-induced colitis, were utilized to validate BMA's anti-inflammatory activity in vivo. RESULTS In vitro findings revealed that BMA can suppress NLRP3 inflammasome activation by inhibiting interleukin-1β (IL-1β) secretion and GSDMD-N protein expression. This mechanism involved blocking intracellular K+ efflux and interfering with the formation of NLRP3 inflammasomes. In vivo studies demonstrated that BMA significantly alleviated inflammatory symptoms in MSU-induced acute gout and DSS-induced colitis models. CONCLUSION These findings suggest that BMA effectively inhibits the activation of the NLRP3 signaling pathway through dual mechanisms: reducing intracellular K+ efflux and disrupting NLRP3 inflammasome assembly. This multifaceted action highlights the therapeutic potential of BMA for NLRP3-related diseases.
Collapse
Affiliation(s)
- Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuhui Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Kaiqun Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaohua Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan China
| | - Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 2 Zheshan West Road, Wuhu 241002, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
12
|
Hou G, Chen Y, Lei H, Lu Y, Liu L, Han Z, Sun S, Li J, Cheng L. Bimetallic peroxide nanoparticles induce PANoptosis by disrupting ion homeostasis for enhanced immunotherapy. SCIENCE ADVANCES 2024; 10:eadp7160. [PMID: 39514658 PMCID: PMC11546811 DOI: 10.1126/sciadv.adp7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
PANoptosis has recently emerged as a potential approach to improve the immune microenvironment. However, current methods for inducing PANoptosis are limited. Herein, through biological screening, the rational use of the nutrient metal ions Cu2+ and Zn2+ had great potential to induce PANoptosis. Inspired by these findings, we successfully developed hydrazided hyaluronic acid-modified zinc copper oxide (HZCO) nanoparticles as a PANoptosis inducer to potentiate immunotherapy. Bioactive HZCO actively delivered Cu2+ and Zn2+ while disrupting the cellular intrinsic ion metabolism pathway, resulting in double-stranded DNA release and organelle damage in cancer cells. Simultaneously, this process triggered the formation of PANoptosome and the activation of PANoptosis. HZCO-induced PANoptosis inhibited tumor growth and activated potent antitumor immune response, thereby enhancing the effectiveness of anti-programmed cell death 1 therapy. Overall, our work provides an insight into the development of PANoptosis inducers and the design of synergistic immunotherapy strategies.
Collapse
Affiliation(s)
- Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Zhou DH, Jia XX, Wu YZ, Zhang WW, Wang Y, Liang DL, Gao LP, Xiao K, Chen C, Dong XP, Shi Q. Aberrant Enhanced NLRP3 Inflammasomes and Cell Pyroptosis in the Brains of Prion-Infected Rodent Models Are Largely Associated with the Proliferative Astrocytes. Mol Neurobiol 2024; 61:9582-9594. [PMID: 38664301 DOI: 10.1007/s12035-024-04169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 10/23/2024]
Abstract
Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1β and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.
Collapse
Affiliation(s)
- Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Dong-Lin Liang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Zhu JH, Ouyang SX, Zhang GY, Cao Q, Xin R, Yin H, Wu JW, Zhang Y, Zhang Z, Liu Y, Fu JT, Chen YT, Tong J, Zhang JB, Liu J, Shen FM, Li DJ, Wang P. GSDME promotes MASLD by regulating pyroptosis, Drp1 citrullination-dependent mitochondrial dynamic, and energy balance in intestine and liver. Cell Death Differ 2024; 31:1467-1486. [PMID: 39009654 PMCID: PMC11519926 DOI: 10.1038/s41418-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1β (IL-1β)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.
Collapse
Affiliation(s)
- Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hang Yin
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Wen Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiang-Tao Fu
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Ting Chen
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jian Liu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China.
| |
Collapse
|
15
|
Fan Y, Ou Y, Xiao T, Wei Z, Zhu L, Zhu C, Ma Y, Qu S, Zhou W. Coordination-Driven Nanomedicine Mitigates One-Lung Ventilation-Induced Lung Injury via Radicals Scavenging and Cell Pyroptosis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401056. [PMID: 39115137 DOI: 10.1002/smll.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/21/2024] [Indexed: 11/21/2024]
Abstract
One-lung ventilation (OLV) during thoracic surgery often leads to post-operative complications, yet effective pharmacological interventions are lacking. This study reports a baicalin-based metal-coordination nanomedicine with disulfiram (DSF) co-loading to address one-lung ventilation-induced lung injury and reperfusion injury (OLV-LIRI). Baicalin, known for its robust antioxidant properties, suffers from poor water solubility and stability. Leveraging nanotechnology, baicalin's coordination is systematically explored with seven common metal ions, designing iron/copper-mediated binary coordination nanoparticles to overcome these limitations. The self-assembled nanoparticles, primarily formed through metal coordination and π-π stacking forces, encapsulated DSF, ensuring high colloidal stability in diverse physiological matrices. Upon a single-dose administration via endotracheal intubation, the nanoparticles efficiently accumulate in lung tissues and swiftly penetrate the pulmonary mucosa. Intracellularly, baicalin exhibits free radical scavenging activity to suppress inflammation. Concurrently, the release of Cu2+ and DSF enables the in situ generation of CuET, a potent inhibitor of cell pyroptosis. Harnessing these multifaceted mechanisms, the nanoparticles alleviate lung injury symptoms without notable toxic side effects, suggesting a promising preventive strategy for OLV-LIRI.
Collapse
Affiliation(s)
- Yujie Fan
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Yangqin Ou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Ting Xiao
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Ziye Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - LiLing Zhu
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Chenghao Zhu
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD. No. 101 WenYi Road, Changsha, Hunan, 410008, China
| | - Shuangquan Qu
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Biological Nanotechnology, NHC. No. 87 XiangYa Road, Changsha, Hunan, 410008, China
| |
Collapse
|
16
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2024:10.1007/s12013-024-01597-y. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Yu C, Xu H, Jiang S, Sun L. IL-18 signaling is regulated by caspase 6/8 and IL-18BP in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 278:135015. [PMID: 39181350 DOI: 10.1016/j.ijbiomac.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Interleukin (IL)-18 is synthesized as a precursor that requires intracellular processing to become functionally active. In human, IL-18 is processed by caspase 1 (CASP1). In teleost, the maturation and signal transduction mechanisms of IL-18 are unknown. We identified two IL-18 variants, IL-18a and IL-18b, in turbot. IL-18a, but not IL-18b, was processed by CASP6/8 cleavage. Mature IL-18a bound specifically to IL-18 receptor (IL-18R) α-expressing cells and induced IL-18Rα-IL-18Rβ association. Bacterial infection promoted IL-18a maturation in a manner that required CASP6 activation and correlated with gasdermin E activation. The mature IL-18a induced proinflammatory cytokine expression and enhanced bacterial clearance. IL-18a-mediated immune response was suppressed by IL-18 binding protein (IL-18BP), which functioned as a decoy receptor for IL-18a. IL-18BP also functioned as a pathogen pattern recognition receptor and directly inhibited pathogen infection. Our findings revealed unique mechanism of IL-18 maturation and conserved mechanism of IL-18 signaling and regulation in turbot, and provided new insights into the regulation and function of IL-18 related immune signaling.
Collapse
Affiliation(s)
- Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Ge J, Li X, Xia Y, Chen Z, Xie C, Zhao Y, Chen K, Shen Y, Tong J. Recent advances in NLRP3 inflammasome in corneal diseases: Preclinical insights and therapeutic implications. Ocul Surf 2024; 34:392-405. [PMID: 39357820 DOI: 10.1016/j.jtos.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
NLRP3 inflammasome is a cytosolic multiprotein complex formed in response to exogenous environmental stress and cellular damage. The three major components of the NLRP3 inflammasome are the innate immunoreceptor protein NLRP3, the adapter protein apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain, and the inflammatory protease enzyme caspase-1. The integrated NLRP3 inflammasome triggers the activation of caspase-1, leading to GSDMD-dependent pyroptosis and facilitating the maturation and release of inflammatory cytokines, namely interleukin (IL)-18 and IL-1β. However, the inflammatory responses mediated by the NLRP3 inflammasome exhibit dual functions in innate immune defense and cellular homeostasis. Aberrant activation of the NLRP3 inflammasome matters in the etiology and pathophysiology of various corneal diseases. Corneal alkali burn can induce pyroptosis, neutrophil infiltration, and corneal angiogenesis via the activation of NLRP3 inflammasome. When various pathogens invade the cornea, NLRP3 inflammasome recognizes pathogen-associated molecular patterns or damage-associated molecular patterns to engage in pro-inflammatory and anti-inflammatory mechanisms. Moreover, chronic inflammation and proinflammatory cascades mediated by the NLRP3 inflammasome contribute to the pathogenesis of diabetic keratopathy. Furthermore, overproduction of reactive oxygen species, mitochondrial dysfunction, and toll-like receptor-mediated activation of nuclear factor kappa B drive the stimulation of NLRP3 inflammasome and participate in the progression of dry eye disease. However, there still exist controversies regarding the regulatory pathways of the NLRP3 inflammasome. In this review, we provide a comprehensive overview of recent advancements in the function of NLRP3 inflammasome in corneal diseases and its regulatory pathways primarily through studies using animal models. Furthermore, we explore prospects for pharmacologically targeting pathways associated with NLRP3.
Collapse
Affiliation(s)
- Jiayun Ge
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Yu T, Luo L, Xue J, Tang W, Wu X, Yang F. Gut microbiota-NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102458. [PMID: 39233138 DOI: 10.1016/j.clinre.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic dysfunction, ranging from hepatic steatosis with or without mild inflammation to nonalcoholic steatohepatitis, which can rapidly progress to liver fibrosis and even liver cancer. In 2023, after several rounds of Delphi surveys, a new consensus recommended renaming NAFLD as metabolic dysfunction-associated steatotic liver disease (MASLD). Ninety-nine percent of NAFLD patients meet the new MASLD criteria related to metabolic cardiovascular risk factors under the "multiple parallel hits" of lipotoxicity, insulin resistance (IR), a proinflammatory diet, and an intestinal microbiota disorder, and previous research on NAFLD remains valid. The NLRP3 inflammasome, a well-known member of the pattern recognition receptor (PRR) family, can be activated by danger signals transmitted by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), as well as cytokines involved in immune and inflammatory responses. The activation of the NLRP3 inflammasome pathway by MASLD triggers the production of the inflammatory cytokines IL-1β and IL-18. In MASLD, while changes in the composition and metabolites of the intestinal microbiota occur, the disrupted intestinal microbiota can also generate the inflammatory cytokines IL-1β and IL-18 by damaging the intestinal barrier, negatively regulating the liver on the gut-liver axis, and further aggravating MASLD. Therefore, modulating the gut-microbiota-liver axis through the NLRP3 inflammasome may emerge as a novel therapeutic approach for MASLD patients. In this article, we review the evidence regarding the functions of the NLRP3 inflammasome and the intestinal microbiota in MASLD, as well as their interactions in this disease.
Collapse
Affiliation(s)
- Tingting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, PR China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Xiaojie Wu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China.
| |
Collapse
|
20
|
Ren C, Wang Q, Fan S, Mi T, Zhang Z, He D. Toll-Like Receptor 9 Aggravates Pulmonary Fibrosis by Promoting NLRP3-Mediated Pyroptosis of Alveolar Epithelial Cells. Inflammation 2024; 47:1744-1761. [PMID: 38498270 DOI: 10.1007/s10753-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
The apoptosis-prone property of alveolar epithelial cells plays a crucial role in pulmonary fibrosis(PF), but the role of pyroptosis in it is still unclear. Toll-like receptor 9(TLR9) has been reported to play a vital role in the pathogenesis of many diseases. However, the effect of TLR9 on alveolar epithelial cells in PF has not been fully elucidated. Gene expression microarray related to Idiopathic pulmonary fibrosis(IPF) was obtained from the Gene Expression Omnibus(GEO) database. In the mouse model of bleomycin-induced PF, adeno-associated virus(AAV6) was used to interfere with TLR9 to construct TLR9 knockdown mice to study the role of TLR9 in PF, and the specific mechanism was studied by intratracheal instillation of NLR family pyrin domain containing 3(NLRP3) activator. In vitro experiments were performed using A549 cells. Bleomycin-induced pyroptosis in the lung tissue of PF mice increased, and TLR9 protein levels also increased, especially in alveolar epithelial cells. The levels of fibrosis and pyroptosis in lung tissue of TLR9 knockdown mice were improved. We found that TLR9 can bind to the NLRP3, thereby increasing the activation of the NLRP3/caspase-1 inflammasome pathway. When we use the NLRP3 activator, the levels of fibrosis and pyroptosis in lung tissue of TLR9 knockout mice can be counteracted. Pyroptosis of alveolar epithelial cells plays a vital role in PF, and TLR9 can promote NLRP3-mediated pyroptosis of alveolar epithelial cells to aggravate the progression of PF and may become a feasible target for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University , National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Quan Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University , National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Leung J, Chang M, Moore RE, Dagvadorj J, Sutterwala FS, Cassel SL. Gasdermin D and Gasdermin E Are Dispensable for Silica-Mediated IL-1β Secretion from Mouse Macrophages. Immunohorizons 2024; 8:679-687. [PMID: 39264735 PMCID: PMC11447662 DOI: 10.4049/immunohorizons.2400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024] Open
Abstract
Silica crystals activate the NLRP3 inflammasome in macrophages, resulting in the caspase-1-dependent secretion of the proinflammatory cytokine IL-1β. Caspase-1-mediated cleavage of gasdermin D (GSDMD) triggers the formation of GSDMD pores, which drive pyroptotic cell death and facilitate the rapid release of IL-1β. However, the role of GSDMD in silica-induced lung injury is unclear. In this study, we show that although silica-induced lung injury is dependent on the inflammasome adaptor ASC and IL-1R1 signaling, GSDMD is dispensable for acute lung injury. Although the early rapid secretion of IL-1β in response to ATP and nigericin was GSDMD dependent, GSDMD was not required for IL-1β release at later time points. Similarly, secretion of IL-1β from macrophages in response to silica and alum proceeded in a GSDMD-independent manner. We further found that gasdermin E did not contribute to macrophage IL-1β secretion in the absence of GSDMD in vitro and was also not necessary for silica-induced acute lung injury in vivo. These findings demonstrate that GSDMD and gasdermin E are dispensable for IL-1β secretion in response to silica in vitro and in silica-induced acute lung injury in vivo.
Collapse
Affiliation(s)
- Jennifer Leung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael Chang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Richard E. Moore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Fayyaz S. Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Suzanne L. Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
22
|
Shen H, Lu H, Mao L, Song L. Inhibition of cGAS attenuates neonatal hypoxic-ischemic encephalopathy via regulating microglia polarization and pyroptosis. Transl Pediatr 2024; 13:1378-1394. [PMID: 39263289 PMCID: PMC11384446 DOI: 10.21037/tp-24-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition causing brain injury in newborns with unclear pathogenesis. Cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway and NOD-like receptor protein 3 (NLRP3) mediated pyroptosis are thought to be involved in the pathological process of HIE, but whether these two mechanisms act independently is still unknown. Therefore, we aim to clarify whether there is any interaction between these two pathways and thus synergistically affects the progression of HIE. Methods The HIE model of neonatal rats was established using the Rice-Vannucci method. The potential therapeutic effect of RU.521 targeting cGAS on HIE was explored through rescue experiment. Twenty-four hours after modeling was selected as observation point, sham + vehicle group, HIE + vehicle group and HIE + RU.521 group were established. A complete medium of BV2 cells was adjusted to a glucose-free medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 4 hours and reoxygenation for 12 to 24 hours. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining was used to observe tissue injury. Immunofluorescence was applied to monitor the expression of cGAS. Real-time quantitative polymerase chain reaction and western blot were utilized to detect the expression of messenger RNA and protein. Results cGAS expression was increased in brain tissues of neonatal rats with HIE, and mainly localized in microglia. RU.521 administration reduced infarct size and pathological damage in rat HIE. Moreover, blocking cGAS with RU.521 significantly reduced inflammatory conditions in the brain by down-regulating STING expression, decreasing NLRP3 inflammasome activation and reducing microglial pyroptosis both in vivo and in vitro. Besides, RU.521 promoted the switching of BV2 cells towards the M2 phenotype. Conclusions This study revealed a link between the cGAS/STING pathway and the NLRP3/GSDMD/pyroptosis pathway in neonatal HIE. Furthermore, the small molecule compound RU.521 can negatively regulate cGAS/STING/NLRP3/pyroptosis axis and promote M2 polarization in microglia, which provides a potential therapeutic strategy for the treatment of neuroinflammation in HIE.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Pediatrics, Nantong First People's Hospital (Affiliated Hospital 2 of Nantong University), Nantong, China
| | - Hongyi Lu
- Department of Pediatrics, Nantong First People's Hospital (Affiliated Hospital 2 of Nantong University), Nantong, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Lei Song
- Department of Pediatrics, Nantong First People's Hospital (Affiliated Hospital 2 of Nantong University), Nantong, China
| |
Collapse
|
23
|
Sun W, Wang H, Qi Y, Li M, Zhang R, Gao Z, Cui J, Yu D. Metal-Phenolic Vehicles Potentiate Cycle-Cascade Activation of Pyroptosis and cGAS-STING Pathway for Tumor Immunotherapy. ACS NANO 2024; 18:23727-23740. [PMID: 39155444 DOI: 10.1021/acsnano.4c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The treatment of triple-negative breast cancer (TNBC) faces challenges due to its limited immune response and weak tumor immunogenicity. A collaborative strategy involves combining the activation of pyroptosis and the stimulator of interferon genes (STING) pathway to enhance tumor immunogenicity and fortify the antitumor immune response, which may improve therapeutic outcomes in TNBC. In this study, we report the fabrication of a zinc-phenolic nanocapsule (RMP@Cap), which is loaded with mitoxantrone (MTO) and anti-PD-L1 antibodies (aPD-L1) and coated with erythrocyte membrane, for TNBC immunotherapy. The delivery of RMP@Cap can induce tumor cell pyroptosis and, therefore, trigger the release of mitochondrial DNA, which further combines with zinc agonists to intensify STING activation, resulting in a cascade amplification of the therapeutic effect on tumors. Additionally, the incorporation of aPD-L1 into the zinc-phenolic nanocapsule relieves the inhibitory effect of tumor cells on recruited cytotoxic T cells, thereby improving the tumor-killing capacity. Furthermore, the incorporation of a camouflaged erythrocyte membrane coating enables nanocapsules to achieve prolonged in vivo circulation, resulting in improved tumor accumulation for effective antitumor therapy. This study demonstrates a synergistic therapeutic modality involving pyroptosis, coupled with the simultaneous activation and cyclic amplification of the STING pathway in immunotherapy.
Collapse
Affiliation(s)
- Weikai Sun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Hong Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yafei Qi
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ruyue Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- Research Institute of Shandong University: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform, Jinan, Shandong 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- Research Institute of Shandong University: Magnetic Field-Free Medicine & Functional Imaging, Jinan, Shandong 250012, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform, Jinan, Shandong 250012, China
| |
Collapse
|
24
|
Xu J, Pickard JM, Núñez G. FDA-approved disulfiram inhibits the NLRP3 inflammasome by regulating NLRP3 palmitoylation. Cell Rep 2024; 43:114609. [PMID: 39116210 PMCID: PMC11398858 DOI: 10.1016/j.celrep.2024.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
The NLRP3 inflammasome is dysregulated in autoinflammatory disorders caused by inherited mutations and contributes to the pathogenesis of several chronic inflammatory diseases. In this study, we discovered that disulfiram, a safe US Food and Drug Administration (FDA)-approved drug, specifically inhibits the NLRP3 inflammasome but not the NLRC4 or AIM2 inflammasomes. Disulfiram suppresses caspase-1 activation, ASC speck formation, and pyroptosis induced by several stimuli that activate NLRP3. Mechanistically, NLRP3 is palmitoylated at cysteine 126, a modification required for its localization to the trans-Golgi network and inflammasome activation, which was inhibited by disulfiram. Administration of disulfiram to animals inhibited the NLRP3, but not NLRC4, inflammasome in vivo. Our study uncovers a mechanism by which disulfiram targets NLRP3 and provides a rationale for using a safe FDA-approved drug for the treatment of NLRP3-associated inflammatory diseases.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
26
|
Smith AJ, Hergenrother PJ. Raptinal: a powerful tool for rapid induction of apoptotic cell death. Cell Death Discov 2024; 10:371. [PMID: 39164225 PMCID: PMC11335860 DOI: 10.1038/s41420-024-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
Chemical inducers of apoptosis have been utilized for decades as tools to uncover steps of the apoptotic cascade and to treat various diseases, most notably cancer. While there are several useful compounds available, limitations in potency, universality, or speed of cell death of these pro-apoptotic agents have meant that no single compound is suitable for all (or most) purposes. Raptinal is a recently described small molecule that induces intrinsic pathway apoptosis rapidly and reliably, and consequently, has been utilized in cell culture and whole organisms for a wide range of biological studies. Its distinct mechanism of action complements the current arsenal of cytotoxic compounds, making it useful as a probe for the apoptosis pathway and other cellular processes. The rapid induction of cell death by Raptinal and its widespread commercial availability make it the pro-apoptotic agent of choice for many applications.
Collapse
Affiliation(s)
- Amanda J Smith
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
27
|
Taylor RR, Keane RW, Guardiola B, López-Lage S, Moratinos L, Dietrich WD, Perez-Barcena J, de Rivero Vaccari JP. Inflammasome Proteins Are Reliable Biomarkers of the Inflammatory Response in Aneurysmal Subarachnoid Hemorrhage. Cells 2024; 13:1370. [PMID: 39195261 DOI: 10.3390/cells13161370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is caused by abnormal blood vessel dilation and subsequent rupture, resulting in blood pooling in the subarachnoid space. This neurological insult results in the activation of the inflammasome, a multiprotein complex that processes pro-inflammatory interleukin (IL)-1 cytokines leading to morbidity and mortality. Moreover, increases in inflammasome proteins are associated with clinical deterioration in many neurological diseases. Limited studies have investigated inflammasome protein expression following aSAH. Reliable markers of the inflammatory response associated with aSAH may allow for earlier detection of patients at risk for complications and aid in the identification of novel pharmacologic targets. Here, we investigated whether inflammasome signaling proteins may serve as potential biomarkers of the inflammatory response in aSAH. Serum and cerebrospinal fluid (CSF) from fifteen aSAH subjects and healthy age-matched controls and hydrocephalus (CSF) no-aneurysm controls were evaluated for levels of inflammasome signaling proteins and downstream pro-inflammatory cytokines. Protein measurements were carried out using Simple Plex and Single-Molecule Array (Simoa) technology. The area under the curve (AUC) was calculated using receiver operating characteristics (ROCs) to obtain information on biomarker reliability, specificity, sensitivity, cut-off points, and likelihood ratio. In addition, a Spearman r correlation matrix was performed to determine the correlation between inflammasome protein levels and clinical outcome measures. aSAH subjects demonstrated elevated caspase-1, apoptosis-associated speck-like protein with a caspase recruiting domain (ASC), IL-18 and IL-1β levels in serum, and CSF when compared to controls. Each of these proteins was found to be a promising biomarker of inflammation in aSAH in the CSF. In addition, ASC, caspase-1, and IL-1β were found to be promising biomarkers of inflammation in aSAH in serum. Furthermore, we found that elevated levels of inflammasome proteins in serum are useful to predict worse functional outcomes following aSAH. Thus, the determination of inflammasome protein levels in CSF and serum in aSAH may be utilized as reliable biomarkers of inflammation in aSAH and used clinically to monitor patient outcomes.
Collapse
Affiliation(s)
- Ruby R Taylor
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Cellular Physiology and Molecular Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Begoña Guardiola
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Sofía López-Lage
- Neurosurgical Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Lesmes Moratinos
- Neurosurgical Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jon Perez-Barcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Cellular Physiology and Molecular Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
28
|
Bai S, Martin-Sanchez F, Brough D, Lopez-Castejon G. Pyroptosis leads to loss of centrosomal integrity in macrophages. Cell Death Discov 2024; 10:354. [PMID: 39117604 PMCID: PMC11310477 DOI: 10.1038/s41420-024-02093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
NLRP3 forms a multiprotein inflammasome complex to initiate the inflammatory response when macrophages sense infection or tissue damage, which leads to caspase-1 activation, maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and Gasdermin-D (GSDMD) mediated pyroptosis. NLRP3 inflammasome activity must be controlled as unregulated and chronic inflammation underlies inflammatory and autoimmune diseases. Several findings uncovered that NLRP3 inflammasome activity is under the regulation of centrosome localized proteins such as NEK7 and HDAC6, however, whether the centrosome composition or structure is altered during the inflammasome activation is not known. Our data show that levels of the centrosomal scaffold protein pericentrin (PCNT) are reduced upon NLRP3 inflammasome activation via different activators in human and murine macrophages. PCNT loss occurs in the presence of membrane stabilizer punicalagin, suggesting this is not a consequence of membrane rupture. We found that PCNT loss is dependent on NLRP3 and active caspases as MCC950 and pan caspase inhibitor ZVAD prevent its degradation. Moreover, caspase-1 and GSDMD are both required for this NLRP3-mediated PCNT loss because absence of caspase-1 or GSDMD triggers an alternative regulation of PCNT via its cleavage by caspase-3 in response to nigericin stimulation. PCNT degradation occurs in response to nigericin, but also other NLRP3 activators including lysomotropic agent L-Leucyl-L-Leucine methyl ester (LLOMe) and hypotonicity but not AIM2 activation. Our work reveals that the NLRP3 inflammasome activation alters centrosome composition highlighting the need to further understand the role of this organelle during inflammatory responses.
Collapse
Affiliation(s)
- Siyi Bai
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - David Brough
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
29
|
Singh N, Nagar E, Roy D, Arora N. NLRP3/GSDMD mediated pyroptosis induces lung inflammation susceptibility in diesel exhaust exposed mouse strains. Gene 2024; 918:148459. [PMID: 38608794 DOI: 10.1016/j.gene.2024.148459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1β expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1β secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1β gene influencing expression between mouse strains. CONCLUSIONS C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1β gene.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Nagar
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepti Roy
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
31
|
Shen Y, Gong X, Qian L, Ruan Y, Lin S, Yu Z, Si Z, Wei W, Liu Y. Inhibition of GSDMD-dependent pyroptosis decreased methamphetamine self-administration in rats. Brain Behav Immun 2024; 120:167-180. [PMID: 38834156 DOI: 10.1016/j.bbi.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
It is widely believed that the activation of the central dopamine (DA) system is crucial to the rewarding effects of methamphetamine (METH) and to the behavioral outcomes of METH use disorder. It was reported that METH exposure induced gasdermin D (GSDMD)-dependent pyroptosis in rats. The membrane pore formation caused by METH-induced pyroptosis may also contribute to the overflow of DA into the extracellular space and subsequently increase the DA levels in the brain. The present study firstly investigated whether the membrane pore information induced by GSDMD-dependent pyroptosis was associated with the increased DA levels in the ventral tegmental area (VAT) and nucleus accumbens (NAc) of rats self-administering METH and SY-SH5Y cells treated by METH. Subsequently, the effect of pore formation blockade or genetic inhibition of GSDMD on the reinforcing and motivational effect of METH was determined in rats, using the animal model of METH self-administration (SA). METH exposure significantly increased the activity of NLRP1/Cas-1/GSDMD pathway and the presence of pyroptosis, accompanied by the significantly increased DA levels in VTA and NAc. Moreover, intraperitoneal injections of disulfiram (DSF) or microinjection of rAAV-shGSDMD into VTA/NAc significantly reduced the reinforcing and motivational effect of METH, accompanied by the decreased level of DA in VTA and NAc. The results provided novel evidence that METH-induced pyroptosis could increase DA release in VTA and NAc via the NLRP1/Cas-1/GSDMD pathway. Additionally, membrane pores or GSDMD blockade could significantly reduce the reinforcing and motivational effect of METH. In conclusion, blocking GSDMD and membrane pore formation could be a promising potential target for the development of agents to treat METH use disorder.
Collapse
Affiliation(s)
- Yao Shen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315021, China
| | - Xinshuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315021, China
| | - Liyin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315021, China
| | - Yuer Ruan
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Shujun Lin
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhaoying Yu
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zizhen Si
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wenting Wei
- School of Materials Science and Chenical Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Liu
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
32
|
Li X, Chen C, Chen Y, Jiang K, Zhao X, Zhang F, Li Y. Oridonin ameliorates ocular surface inflammatory responses by inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway in dry eye. Exp Eye Res 2024; 245:109955. [PMID: 38843984 DOI: 10.1016/j.exer.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Chronic inflammation is one of the central drivers in the development of dry eye disease (DED), in which pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) pathway plays a key role. This pathway has become a major target for the treatment of a variety of inflammatory disorders. Oridonin (Ori) is a naturally occurring substance with anti-inflammatory properties obtained from Rabdosia rubescens. Whether Ori can exert an anti-inflammatory effect on DED, and its anti-inflammatory mechanism of action, are still unknown. This experiment is intended to investigate the impact of Ori on the hyperosmolarity-induced NLRP3/caspase-1/GSDMD pyroptosis pathway in immortalized human corneal epithelial (HCE-T) cells, as well as its efficacy and mechanism of action on ocular surface injury in DED mice. Our study showed that Ori could inhibit hyperosmotic-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway in HCE-T cells, and similarly, Ori inhibited the expression of this pathway in DED mice. Moreover, Ori was protective against hyperosmolarity-induced HCE-T cell damage. In addition, we found that the morphology and number of HCE-T cells were altered under culture conditions of various osmolarities. With increasing osmolarity, the proliferation, migration, and healing ability of HCE-T cells decreased significantly, and the expression of N-GSDMD was elevated. In a mouse model of DED, Ori application inhibited the expression of the NLRP3/caspase-1/GSDMD pyroptosis pathway, improved DED signs and injury, decreased corneal sodium fluorescein staining scores, and increased tear volume. Thus, our study suggests that Ori has potential applications for the treatment of DED, provides potential novel therapeutic approaches to treat DED, and provides a theoretical foundation for treating DED using Ori.
Collapse
Affiliation(s)
- Xiaojing Li
- Medical College, Graduate School of Medicine, Qingdao University, Qingdao, 266071, China; Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Ying Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Kaiwen Jiang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Fenglan Zhang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| |
Collapse
|
33
|
Chaaban A, Yassine H, Hammoud R, Kanaan R, Karam L, Ibrahim JN. A narrative review on the role of cytokines in the pathogenesis and treatment of familial Mediterranean fever: an emphasis on pediatric cases. Front Pediatr 2024; 12:1421353. [PMID: 39132307 PMCID: PMC11310175 DOI: 10.3389/fped.2024.1421353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is a hereditary autoinflammatory disease characterized by an early onset of recurrent fever and serositis episodes. FMF is caused by mutations in the MEFV gene which encodes the pyrin protein, an IL-1β mediated inflammation regulator. Recent findings have identified a plethora of molecules and pathways involved in the regulation of inflammation and innate immunity, hence increasing our understanding of the etiology and inflammatory nature of FMF. Cytokines, in particular, have been found to play a key role in the pathogenesis and treatment of the disease. Indeed, various studies associated cytokines' genetic variations and expression with susceptibility to and severity of the disease, which was further supported by the positive response of patients, both children and adults, to targeted cytokine blocking therapies. These studies highlighted the potential use of cytokines as biomarkers and target in resistant/intolerant patients and contributed to improving the early detection of FMF in children, thus enhancing their quality of life and providing alternative treatment for severe cases. The aim of this review is to provide the latest updates on the pivotal role of cytokines in FMF and to discuss the efficacy and safety of anti-cytokine biologics by primarily focusing on pediatric FMF cases.
Collapse
|
34
|
Ji Y, Mao Y, Lin H, Wang Y, Zhao P, Guo Y, Gu L, Fu C, Chen X, Lv Z, Wang N, Li Q, Bei C. Acceleration of bone repairation by BMSCs overexpressing NGF combined with NSA and allograft bone scaffolds. Stem Cell Res Ther 2024; 15:194. [PMID: 38956719 PMCID: PMC11218317 DOI: 10.1186/s13287-024-03807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.
Collapse
Affiliation(s)
- Ying Ji
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Yongkang Mao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Honghu Lin
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Ye Wang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Peishuai Zhao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Lantao Gu
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Can Fu
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Zheng Lv
- Department of Radiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Ning Wang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Qiang Li
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China.
| | - Chaoyong Bei
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|
35
|
Liu W, Mao S, Wang Y, Wang M, Li M, Sun M, Yao Y, Song C, Duan Y. Discovery of N-Substituted Acetamide Derivatives as Promising P2Y 14R Antagonists Using Molecular Hybridization Based on Crystallographic Overlay. J Med Chem 2024; 67:10233-10247. [PMID: 38874515 DOI: 10.1021/acs.jmedchem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
P2Y14 receptor (P2Y14R) is activated by uridine 5'-diphosphate-glucose, which is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2Y14R antagonists and the crystallographic overlap study between the reported P2Y14R antagonist compounds 6 and 9, a series of N-substituted-acetamide derivatives were designed, synthesized, and identified as novel and potent P2Y14R antagonists. The most potent antagonist, compound I-17 (N-(1H-benzo[d]imidazol-6-yl)-2-(4-bromophenoxy)acetamide, IC50 = 0.6 nM) without zwitterionic character, showed strong binding ability to P2Y14R, high selectivity, moderate oral bioactivity, and improved pharmacokinetic profiles. In vitro and in vivo evaluation demonstrated that compound I-17 had satisfactory inhibitory activity on the inflammatory response of monosodium urate (MSU)-induced acute gouty arthritis. I-17 decreased inflammatory factor release and cell pyroptosis through the NOD-like receptor family pyrin domain-containing 3 (NLRP3)/gasdermin D (GSDMD) signaling pathway. Thus, compound I-17, with potent P2Y14R antagonistic activity, in vitro and in vivo efficacy, and favorable bioavailability (F = 75%), could be a promising lead compound for acute gouty arthritis.
Collapse
Affiliation(s)
- Wenjin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Shuqiang Mao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuyang Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Mengyu Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Moran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
36
|
Guo J, Zhang Q, Li Z, Qin M, Shi J, Wang Y, Ai W, Ju J, Samura M, Tsao PS, Xu B. Gasdermin D Inhibitor Necrosulfonamide Alleviates Angiotensin II-Induced Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Mice. Biomolecules 2024; 14:726. [PMID: 38927129 PMCID: PMC11201507 DOI: 10.3390/biom14060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic aortic disease that lacks effective pharmacological therapies. This study was performed to determine the influence of treatment with the gasdermin D inhibitor necrosulfonamide on experimental AAAs. AAAs were induced in male apolipoprotein E-deficient mice by subcutaneous angiotensin II infusion (1000 ng/kg body weight/min), with daily administration of necrosulfonamide (5 mg/kg body weight) or vehicle starting 3 days prior to angiotensin II infusion for 30 days. Necrosulfonamide treatment remarkably suppressed AAA enlargement, as indicated by reduced suprarenal maximal external diameter and surface area, and lowered the incidence and reduced the severity of experimental AAAs. Histologically, necrosulfonamide treatment attenuated medial elastin breaks, smooth muscle cell depletion, and aortic wall collagen deposition. Macrophages, CD4+ T cells, CD8+ T cells, and neovessels were reduced in the aneurysmal aortas of necrosulfonamide- as compared to vehicle-treated angiotensin II-infused mice. Atherosclerosis and intimal macrophages were also substantially reduced in suprarenal aortas from angiotensin II-infused mice following necrosulfonamide treatment. Additionally, the levels of serum interleukin-1β and interleukin-18 were significantly lower in necrosulfonamide- than in vehicle-treated mice without affecting body weight gain, lipid levels, or blood pressure. Our findings indicate that necrosulfonamide reduced experimental AAAs by preserving aortic structural integrity as well as reducing mural leukocyte accumulation, neovessel formation, and systemic levels of interleukin-1β and interleukin-18. Thus, pharmacologically inhibiting gasdermin D activity may lead to the establishment of nonsurgical therapies for clinical AAA disease.
Collapse
Affiliation(s)
- Jia Guo
- Department of Cardiovascular Medicine, First Hospital Shanxi Medical University, Taiyuan 030001, Shanxi, China; (Q.Z.); (M.Q.); (J.S.)
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (W.A.); (J.J.); (M.S.); (B.X.)
| | - Qing Zhang
- Department of Cardiovascular Medicine, First Hospital Shanxi Medical University, Taiyuan 030001, Shanxi, China; (Q.Z.); (M.Q.); (J.S.)
| | - Zhidong Li
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Min Qin
- Department of Cardiovascular Medicine, First Hospital Shanxi Medical University, Taiyuan 030001, Shanxi, China; (Q.Z.); (M.Q.); (J.S.)
| | - Jinyun Shi
- Department of Cardiovascular Medicine, First Hospital Shanxi Medical University, Taiyuan 030001, Shanxi, China; (Q.Z.); (M.Q.); (J.S.)
| | - Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China;
| | - Wenjia Ai
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (W.A.); (J.J.); (M.S.); (B.X.)
| | - Junjie Ju
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (W.A.); (J.J.); (M.S.); (B.X.)
| | - Makoto Samura
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (W.A.); (J.J.); (M.S.); (B.X.)
| | - Philip S Tsao
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA;
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (W.A.); (J.J.); (M.S.); (B.X.)
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
37
|
Peng Z, Xiao H, Tan Y, Zhang X. Spotlight on macrophage pyroptosis: A bibliometric and visual analysis from 2001 to 2023. Heliyon 2024; 10:e31819. [PMID: 38845992 PMCID: PMC11154638 DOI: 10.1016/j.heliyon.2024.e31819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Macrophage pyroptosis plays a significant role in the pathogenesis of various diseases, especially acute lung injury, atherosclerosis, and sepsis. Despite its importance, analysis of the existing literature has been limited. Therefore, we conducted a bibliometric analysis to provide a comprehensive overview of research on macrophage pyroptosis and identify the current research foci and trends in this field. We collected articles related to macrophage pyroptosis published between 2001 and 2022 from the Web of Science Core Collection and PubMed. Citespace, VOSviewer, bibliometrix R package, and Microsoft Excel 2019 were used to analyze co-occurrence relationships and the contribution of countries/regions, institutions, journals, authors, references, and keywords. In total, 1321 papers were included. China and the United States of America published the most articles in this field. TD Kanneganti had the most publications; BT Cookson was the most cited. Although China contributed the most publications, it had a relatively low ratio of multiple-country collaborations (0.132). Among journals, Frontiers in Immunology and Cell Death Disease published the most papers; Nature and the Journal of Immunology were frequently co-cited. Frequently occurring keywords included "inflammation," "NLRP3 inflammasome," "apoptosis," "caspase-1," and "cell death." Moreover, with the advancement of gene editing technology and the integration of clinical applications, novel molecules ("caspases," "GSDMD," "ASC"), programmed cell death topics ("pyroptosis," "ferroptosis," "necrosis"), and clinical applications ("alveolar macrophage," "atherosclerosis," "prognosis") emerged as frontiers. The macrophage pyroptosis field is rapidly evolving and holds promise as a potential target for treating macrophage pyroptosis-related diseases.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hua Xiao
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, China
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Licini C, Morroni G, Lucarini G, Vitto VAM, Orlando F, Missiroli S, D'Achille G, Perrone M, Spadoni T, Graciotti L, Bigossi G, Provinciali M, Offidani A, Mattioli-Belmonte M, Cirioni O, Pinton P, Simonetti O, Marchi S. ER-mitochondria association negatively affects wound healing by regulating NLRP3 activation. Cell Death Dis 2024; 15:407. [PMID: 38862500 PMCID: PMC11167056 DOI: 10.1038/s41419-024-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 β (IL-1β) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1β production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tatiana Spadoni
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
39
|
Chen L, Liu Y, Yue S, Wang H, Chen J, Ma W, Xu W, Xu M, Chen Z, Chen X, Zhang L, Liang C. P2X7R Modulates NEK7-NLRP3 Interaction to Exacerbate Experimental Autoimmune Prostatitis via GSDMD-mediated Prostate Epithelial Cell Pyroptosis. Int J Biol Sci 2024; 20:3393-3411. [PMID: 38993566 PMCID: PMC11234205 DOI: 10.7150/ijbs.94704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Yi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Shaoyu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Hui Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Wenming Ma
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Wenlong Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Muyang Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Ziqi Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Xianguo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, No. 218, Jixi Road, Hefei 230022, Anhui, China
| |
Collapse
|
40
|
Liao W, Li Y, Liu J, Mou Y, Zhao M, Liu J, Zhang T, Sun Q, Tang J, Wang Z. Homotherapy for heteropathy: therapeutic effect of Butein in NLRP3-driven diseases. Cell Commun Signal 2024; 22:315. [PMID: 38849890 PMCID: PMC11158000 DOI: 10.1186/s12964-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.
Collapse
Affiliation(s)
- Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Mei Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tianxin Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine, Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
41
|
ZHANG G, LIN Y, CHEN X, QIN J, HE Y, LIU T, ZHANG L, ZHANG L. Cinnamomi cortex extract mitigated monosodium urate-induced acute gouty arthritis in rats through nuclear factor-κB-NOD-like receptor thermal protein domain associated protein 3 signaling pathway. J Vet Med Sci 2024; 86:623-630. [PMID: 38030283 PMCID: PMC11187596 DOI: 10.1292/jvms.23-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Cinnamomi cortex was applied to mitigate joint injury since ancient China. However, the effect of Cinnamomi cortex on gouty arthritis (GA) was rarely reported. This study aimed to explore the effect of Cinnamomi cortex on monosodium urate (MSU)-induced acute GA (AGA) in rats, and clarify the underlying mechanism. The results showed that Cinnamomi cortex extract (CE) containing rich polyphenols and flavonoids alleviated joint swelling and inflammation by reducing programmed cell death in MSU-induced AGA rats. Network pharmacology analysis showed that CE's predictive inflammatory pathways included nuclear factor-κB (NF-κB) and necroptosis pathways. CE reduced expression of pyroptosis-related regulators including Gasdermin D and Caspase 1 via regulating NF-κB/NOD-like receptor thermal protein domain associated protein 3 signaling pathway in AGA rats. In conclusion, this study provided a theoretical basis for Cinnamomi cortex applied as a new veterinary medicine to protect against GA.
Collapse
Affiliation(s)
- Gengpeng ZHANG
- The Fourth Clinical Medical College of Guangzhou University
of Chinese Medicine, Shenzhen, China
- Department of Traditional Chinese Medicine, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuejia LIN
- Department of Traditional Chinese Medicine, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xianhua CHEN
- Department of Traditional Chinese Medicine, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian QIN
- Department of Traditional Chinese Medicine, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuhai HE
- The Fourth Clinical Medical College of Guangzhou University
of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen,
China
| | - Taoli LIU
- Department of Traditional Chinese Medicine, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Li ZHANG
- Department of Traditional Chinese Medicine, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lu ZHANG
- University of Chinese Academy of Sciences-Shenzhen Hospital,
Shenzhen, China
| |
Collapse
|
42
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Zhang QB, Huo L, Li M, Zhang R, Zhou T, Wang F, Zhou Y. Role of hypoxia-mediated pyroptosis in the development of extending knee joint contracture in rats. Eur J Med Res 2024; 29:298. [PMID: 38802976 PMCID: PMC11129407 DOI: 10.1186/s40001-024-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-β1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-β1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.
Collapse
Affiliation(s)
- Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Lei Huo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Mian Li
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Rui Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China.
| |
Collapse
|
44
|
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. Nanomaterials-induced programmed cell death: Focus on mitochondria. Toxicology 2024; 504:153803. [PMID: 38616010 DOI: 10.1016/j.tox.2024.153803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.
Collapse
Affiliation(s)
- Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinru Zhou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Can Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shulin Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
45
|
Wang J, Zhang H, Yuan H, Chen S, Yu Y, Zhang X, Gao Z, Du H, Li W, Wang Y, Xia P, Wang J, Song M. Prophylactic Supplementation with Lactobacillus Reuteri or Its Metabolite GABA Protects Against Acute Ischemic Cardiac Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307233. [PMID: 38487926 PMCID: PMC11095141 DOI: 10.1002/advs.202307233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 05/16/2024]
Abstract
The gut microbiome has emerged as a potential target for the treatment of cardiovascular disease. Ischemia/reperfusion (I/R) after myocardial infarction is a serious complication and whether certain gut bacteria can serve as a treatment option remains unclear. Lactobacillus reuteri (L. reuteri) is a well-studied probiotic that can colonize mammals including humans with known cholesterol-lowering properties and anti-inflammatory effects. Here, the prophylactic cardioprotective effects of L. reuteri or its metabolite γ-aminobutyric acid (GABA) against acute ischemic cardiac injury caused by I/R surgery are demonstrated. The prophylactic gavage of L. reuteri or GABA confers cardioprotection mainly by suppressing cardiac inflammation upon I/R. Mechanistically, GABA gavage results in a decreased number of proinflammatory macrophages in I/R hearts and GABA gavage no longer confers any cardioprotection in I/R hearts upon the clearance of macrophages. In vitro studies with LPS-stimulated bone marrow-derived macrophages (BMDM) further reveal that GABA inhibits the polarization of macrophages toward the proinflammatory M1 phenotype by inhibiting lysosomal leakage and NLRP3 inflammasome activation. Together, this study demonstrates that the prophylactic oral administration of L. reuteri or its metabolite GABA attenuates macrophage-mediated cardiac inflammation and therefore alleviates cardiac dysfunction after I/R, thus providing a new prophylactic strategy to mitigate acute ischemic cardiac injury.
Collapse
Affiliation(s)
- Jiawan Wang
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Chao‐Yang HospitalDepartment of AnesthesiologyBeijing100020China
| | - Hao Zhang
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hailong Yuan
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifeng475004China
| | - Siqi Chen
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying Yu
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyChinese Academy of SciencesBeijing100101China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyChinese Academy of SciencesBeijing100101China
| | - Zeyu Gao
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
| | - Heng Du
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Weitao Li
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifeng475004China
| | - Pengyan Xia
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Jun Wang
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyChinese Academy of SciencesBeijing100101China
| | - Moshi Song
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
46
|
Pucinelli CM, da Silva RAB, Nelson-Filho P, Lima RB, Lucisano MP, Marchesan JT, da Silva LAB. The effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis induced in mice. Clin Oral Investig 2024; 28:285. [PMID: 38684528 DOI: 10.1007/s00784-024-05691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To evaluate the effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis (AP) induced in mice. METHODS The experimental AP was induced by pulpal exposure. To evaluate NLRP3-specific inhibitor medication (MCC950), WT mice received intraperitoneal injections, while the control received PBS (n = 10). In addition, to evaluate NLRP3 knockout, 35 wild-type (WT) and 35 NLRP3-/- mice were divided into a control group (without pulpal exposure, n = 5) and three experimental groups: after 2, 14 and 42 days after pulpal exposure (n = 10). Microscopic and molecular analyzes were carried out using a significance level of 5%. RESULTS Exposure to MCC950 did not affect the periapical lesion size after 14 days (P = 0.584). However, exposed mice had a lower expression of IL-1β, IL-18 and caspase-1 (P = 0.010, 0.016 and 0.002, respectively). Moreover, NLRP3-/- mice showed a smaller periapical lesion after 14 and 42 days (P = 0.023 and 0.031, respectively), as well as a lower expression of IL-1β after 42 days (P < 0.001), of IL-18 and caspase-1 after 14 (P < 0.001 and 0.035, respectively) and 42 days (P = 0.002 and 0.002, respectively). NLRP3-/- mice also showed a lower mRNA for Il-1β, Il-18 and Casp1 after 2 (P = 0.002, 0.036 and 0.001, respectively) and 14 days (P = 0.002, 0.002 and 0.001, respectively). CONCLUSIONS NLRP3 inflammasome inhibition or knockout can attenuate the inflammatory events that result in the periapical lesion (AP) formation after pulpal exposure in mice. CLINICAL RELEVANCE The NLRP3 inflammasome may be a therapeutic target for AP, and new approaches may verify the impact of its inhibition (through intracanal medications or filling materials) on the bone repair process and treatment success.
Collapse
Affiliation(s)
- Carolina Maschietto Pucinelli
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Barbosa Lima
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil.
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Marília Pacífico Lucisano
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julie Teresa Marchesan
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
47
|
Gao F, Xiong D, Sun Z, Shao J, Wei D, Nie S. ARC@DPBNPs suppress LPS-induced acute lung injury via inhibiting macrophage pyroptosis and M1 polarization by ERK pathway in mice. Int Immunopharmacol 2024; 131:111794. [PMID: 38457983 DOI: 10.1016/j.intimp.2024.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
AIM OF THE STUDY Exploring the protective effect of ARC@DPBNP on lipopolysaccharides (LPS)-induced ALI and its underlying mechanism. MATERIALS AND METHODS ALI model was established by intransally administrating LPS (4 mg/kg) into C57BL/6 mice. The suppression effects of ALI was first compared between ARC (intragastric administrated, with doses ranging from 10 to 80 mg/kg) and ARC@BPBNPs (intratracheally administrated, with doses ranging from 1 to 4 mg/kg). Changes in lung histology post intratracheal intervention of 3 mg/kg ARC@DPBNPs were detected. The expression of pyrotosis pathway-related proteins in lungs as well as in RAW264.7 cells was detected by western blotting. The ASC expression in lung macrophages was examined using immune-fluorescent staining. The polarization of RAW264.7 cells and lung macrophages were detected by flow cytometry. The network pharmacology was constructed by Cytoscape, and the molecular docking was perfomed by AutoDock Vina. RESULTS Docking predicted the high affinity of ARC to MAPK1 (ERK2). HE staining showed that ARC@DPBNPs attenuated LPS-induced ALI at a remarkably lower dose than ARC. The improved histopathological changes, lung W/D weight ratio, and decreased of inflammatory factor levels in lung collectively demonstrated the alleviation effects of ARC@DPBNPs. Compared with the LPS group, ARC@DPBNPs down-regulated the ERK pathway, resulted in a suppression of the macrophage pyroptosis and M1 polarization. This suppression effects could be removed by the ERK activator Ro 67-7476. CONCLUSION ARC@DPBNPs attenuated ALI by suppressing LPS-induced macrophage pyroptosis and polarization, probably through down-regulation of the ERK pathway.
Collapse
Affiliation(s)
- Fei Gao
- Department of Emergency, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Dian Xiong
- Lung Transplantation Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital Nanchang University, Nanchang, Jiangxi, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jingbo Shao
- Lung Transplantation Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Dong Wei
- Lung Transplantation Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
48
|
Wang C, Kaur K, Xu C, Abu-Amer Y, Mbalaviele G. Chemotherapy activates inflammasomes to cause inflammation-associated bone loss. eLife 2024; 13:RP92885. [PMID: 38602733 PMCID: PMC11008812 DOI: 10.7554/elife.92885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1β and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Khushpreet Kaur
- Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Canxin Xu
- Aclaris Therapeutics, IncSt. LouisUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospitals for ChildrenSt. LouisUnited States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
49
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
50
|
Ouyang S, Zhu J, Cao Q, Liu J, Zhang Z, Zhang Y, Wu J, Sun S, Fu J, Chen Y, Tong J, Liu Y, Zhang J, Shen F, Li D, Wang P. Gasdermin-E-Dependent Non-Canonical Pyroptosis Promotes Drug-Induced Liver Failure by Promoting CPS1 deISGylation and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305715. [PMID: 38417117 PMCID: PMC11040357 DOI: 10.1002/advs.202305715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Indexed: 03/01/2024]
Abstract
Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.
Collapse
Affiliation(s)
- Shen‐Xi Ouyang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jia‐Hui Zhu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jian Liu
- Department of Hepatic SurgeryThe Eastern Hepatobiliary Surgery HospitalNaval Medical University/Second Military Medical UniversityShanghai200438China
| | - Zhen Zhang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Zhang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jing‐Wen Wu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Si‐Jia Sun
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jiang‐Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Yi‐Ting Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jie Tong
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yi Liu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jia‐Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Fu‐Ming Shen
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Dong‐Jie Li
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| |
Collapse
|