1
|
Dai Z, Cai R, Zeng H, Zhu H, Dou Y, Sun S. Exosome may be the next generation of promising cell-free vaccines. Hum Vaccin Immunother 2024; 20:2345940. [PMID: 38714324 PMCID: PMC11086043 DOI: 10.1080/21645515.2024.2345940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.
Collapse
Affiliation(s)
- Zelan Dai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Ruiru Cai
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hong Zeng
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hailian Zhu
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Youwei Dou
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
2
|
Bernardo-Bermejo S, Fernández-Martínez AB, Lucio-Cazaña FJ, Castro-Puyana M, Marina ML. Quantification of relevant metabolites in apoptotic bodies from HK-2 cells by targeted metabolomics based on liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2024; 1329:343190. [PMID: 39396280 DOI: 10.1016/j.aca.2024.343190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Apoptotic bodies play an important role in the cellular communication as a consequence of the great variety of biomolecules they harbor. There is evidence that 1st generation apoptotic bodies from HK-2 cells induced by cisplatin or UV light trigger apoptosis in naïve HK-2 cells whereas 2nd generation apoptotic bodies activate cell proliferation showing an opposite effect. Thus, the development of new analytical strategies to quantify the changes in the involved metabolites is imperative to shed light on the biological mechanisms which trigger apoptosis and cell proliferation. RESULTS A LC-(Q-Orbitrap)MS method has been developed to quantify the metabolites unequivocally identified in the apoptotic body fluid from HK-2 cells in our previous works based on untargeted metabolomics. Thus, two different columns and gradients were tested and the HILIC column was selected taking into account the retention times and chromatographic separation. Also, different normal collision energies were tested for each metabolite and the parallel reaction monitoring was chosen to carry out the quantitative analysis. Once the method was optimized, it was evaluated in terms of linearity, limits of detection and quantification, matrix effects, accuracy, and precision, for each metabolite. Limits of detection ranged from 0.02 to 1.4 ng mL-1. A total of 9 relevant metabolites proposed as potential biomarkers to reveal metabolic differences among apoptotic bodies from HK-2 cells were quantified and some insights about the biological relevance were discussed. SIGNIFICANCE The first targeted metabolomics methodology enabling the quantification of relevant metabolites in apoptotic bodies from HK-2 cells was developed using LC-(Q-Orbitrap)MS. Pyridoxine, kynurenine, and creatine concentrations were determined in apoptotic bodies from HK-2 cells treated with cisplatin and UV light. Phenylacetylglycine, hippuric acid, butyrylcarnitine, acetylcarnitine, carnitine, and phenylalanine were determined in 1st and 2nd generation apoptotic bodies from HK-2 cells treated with cisplatin. Concentrations determined were useful to establish their biological role in the metabolism.
Collapse
Affiliation(s)
- Samuel Bernardo-Bermejo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Ana B Fernández-Martínez
- Universidad Autónoma de Madrid, Departamento de Biología, Facultad de Ciencias, Campus de Cantoblanco, Calle Darwin, 2, 28049, Madrid, Spain
| | - Francisco Javier Lucio-Cazaña
- Universidad de Alcalá, Departamento de Biología de Sistemas, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Castro-Puyana
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
3
|
Qiu S, Zhu F, Tong L. Application of targeted drug delivery by cell membrane-based biomimetic nanoparticles for inflammatory diseases and cancers. Eur J Med Res 2024; 29:523. [PMID: 39472940 PMCID: PMC11523786 DOI: 10.1186/s40001-024-02124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Drug-carrying nanoparticles can be recognized and captured by macrophages and cleared away by the immune system, resulting in reduced drug efficacy and representing the main drawbacks. Biomimetic nanoparticles, which are coated with cell membranes from natural resources, have been applied to address this problem. This type of nanoparticle maintains some specific biological activities, allowing them to carry drugs reaching designated tissues effectively and have a longer time in circulation. This review article aims to summarize recent progress on biomimetic nanoparticles based on cell membranes. In this paper, we have introduced the classification of biomimetic nanoparticles, their preparation and characterization, and their applications in inflammatory diseases and malignant tumors. We have also analyzed the shortcomings and prospects of this technology, hoping to provide some clues for basic researchers and clinicians engaged in this field.
Collapse
Affiliation(s)
- Shijie Qiu
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Feifan Zhu
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Liquan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China.
| |
Collapse
|
4
|
Chen J, Wang Z, Liu S, Zhao R, Chen Q, Li X, Zhang S, Wang J. Lymphocyte-Derived Engineered Apoptotic Bodies with Inflammation Regulation and Cartilage Affinity for Osteoarthritis Therapy. ACS NANO 2024; 18:30084-30098. [PMID: 39403980 DOI: 10.1021/acsnano.4c11622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Apoptotic bodies as plentiful extracellular vesicles generated from apoptotic cells play a central role in signal transduction and homeostasis regulation and simultaneously switch death to regeneration to a certain extent. Herein, we designed engineered apoptotic bodies derived from T cells to have the capacity of inflammation regulation and cartilage affinity. The engineered apoptotic bodies as a natural anti-inflammation factor were encapsulated into lubricating hydrogel microspheres to achieve an injectable microsphere complex for the treatment of osteoarthritis (OA). In the above therapeutic system, the engineered apoptotic bodies acted as a biochemical cue to regulate the inflammatory microenvironment and promote chondrocyte cartilage homeostasis, whereas the lubricating hydrogel microspheres served as a biophysical stimulation to effectively reduce the friction of the cartilage surface, restore the cartilage stress, and control the slow delivery of the encapsulated engineered apoptotic bodies by friction degradation. Consequently, the current work creates an injectable and multifunctional therapeutic microsphere to advance cartilage remodeling and OA therapy.
Collapse
Affiliation(s)
- Jia Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiyue Zhao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Selvadoss A, Baby HM, Zhang H, Bajpayee AG. Harnessing exosomes for advanced osteoarthritis therapy. NANOSCALE 2024; 16:19174-19191. [PMID: 39323205 DOI: 10.1039/d4nr02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Exosomes are nanosized, lipid membrane vesicles secreted by cells, facilitating intercellular communication by transferring cargo from parent to recipient cells. This capability enables biological crosstalk across multiple tissues and cells. Extensive research has been conducted on their role in the pathogenesis of degenerative musculoskeletal diseases such as osteoarthritis (OA), a chronic and painful joint disease that particularly affects cartilage. Currently, no effective treatment exists for OA. Given that exosomes naturally modulate synovial joint inflammation and facilitate cartilage matrix synthesis, they are promising candidates as next generation nanocarriers for OA therapy. Recent advancements have focused on engineering exosomes through endogenous and exogenous approaches to enhance their joint retention, cartilage and chondrocyte targeting properties, and therapeutic content enrichment, further increasing their potential for OA drug delivery. Notably, charge-reversed exosomes that utilize electrostatic binding interactions with cartilage anionic aggrecan glycosaminoglycans have demonstrated the ability to penetrate the full thickness of early-stage arthritic cartilage tissue following intra-articular administration, maximizing their therapeutic potential. These exosomes offer a non-viral, naturally derived, cell-free carrier for OA drug and gene delivery applications. Efforts to standardize exosome harvest, engineering, and property characterization methods, along with scaling up production, will facilitate more efficient and rapid clinical translation. This article reviews the current state-of-the-art, explores opportunities for exosomes as OA therapeutics, and identifies potential challenges in their clinical translation.
Collapse
Affiliation(s)
- Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Jouybari MT, Mojtahedi F, Babaahmadi M, Faeed M, Eslaminejad MB, Taghiyar L. Advancements in extracellular vesicle targeted therapies for rheumatoid arthritis: insights into cellular origins, current perspectives, and emerging challenges. Stem Cell Res Ther 2024; 15:276. [PMID: 39227964 PMCID: PMC11373471 DOI: 10.1186/s13287-024-03887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Rheumatoid arthritis (RA) remains a challenging chronic autoimmune disorder characterized by persistent joint inflammation and damage. While modern regenerative strategies, encompassing cell/stem cell-based therapies, gene therapy, and tissue engineering, have advanced tissue repair efforts, a definitive cure for RA remains elusive. Consequently, there is growing interest in developing targeted therapies that directly address the underlying mechanisms driving RA pathogenesis, such as extracellular vesicles (EVs). These small membrane-bound particles can modulate immune responses within the inflammatory microenvironment of damaged cartilage. To launch the clinical potential of EVs, they can be isolated from various cell types through several techniques. EVs can carry various bioactive molecules and anti-inflammatory or pro-regenerative drugs, deliver them directly to the affected joints, and affect the behavior of injured cells, making them a compelling choice for targeted therapy and drug delivery in RA patients. However, there are still several challenges and limitations associated with EV-based therapy, including the absence of standardized protocols for EV isolation, characterization, and delivery. This review provides a comprehensive overview of the cellular sources of EVs in RA and delves into their therapeutic potential and the hurdles they must overcome.
Collapse
Affiliation(s)
- Maryam Talebi Jouybari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Mojtahedi
- Department of Immunology, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahnaz Babaahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
| | - Maryam Faeed
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Zhang C, Pathrikar TV, Baby HM, Li J, Zhang H, Selvadoss A, Ovchinnikova A, Ionescu A, Chubinskaya S, Miller RE, Bajpayee AG. Charge-Reversed Exosomes for Targeted Gene Delivery to Cartilage for Osteoarthritis Treatment. SMALL METHODS 2024; 8:e2301443. [PMID: 38607953 PMCID: PMC11470115 DOI: 10.1002/smtd.202301443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan-glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side-effects persist. To address these issues, this study develops surface-modified cartilage-targeting exosomes as non-viral carriers for gene therapy. Charge-reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine-rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge-reversal switch. Cationic exosomes penetrated through the full-thickness of early-stage arthritic human cartilage owing to weak-reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra-articularly injected into destabilized medial meniscus mice knees with early-stage OA, mRNA loaded charge-reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra-tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage-targeted non-viral delivery of any relevant mRNA targets for OA treatment.
Collapse
Affiliation(s)
- Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Tanvi V. Pathrikar
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Helna M. Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Jun Li
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Andreia Ionescu
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical College, Chicago, IL 60612, USA
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Tuomivaara ST, Teo CF, Jan YN, Wiita AP, Jan LY. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. Commun Biol 2024; 7:1060. [PMID: 39210032 PMCID: PMC11362511 DOI: 10.1038/s42003-024-06729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases. We applied SLAPSHOT and quantitative proteomics to examine the TMEM16F-dependent plasma membrane remodeling in WT and TMEM16F KO cells. Time-course data ranging from 1 to 30 min of calcium stimulation revealed co-regulation of known protein families, including the integrin and ICAM families, and identified proteins known to reside in intracellular organelles as occupants of the freshly deposited extracellularly exposed membrane. Our data provide the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome.
Collapse
Affiliation(s)
- Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences and Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA, USA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Scharf P, Sandri S, Rizzetto F, Xavier LF, Grosso D, Correia-Silva RD, Farsky PS, Gil CD, Farsky SHP. GPCRs overexpression and impaired fMLP-induced functions in neutrophils from chronic kidney disease patients. Front Immunol 2024; 15:1387566. [PMID: 39253088 PMCID: PMC11381270 DOI: 10.3389/fimmu.2024.1387566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction G-protein coupled receptors (GPCRs) expressed on neutrophils regulate their mobilization from the bone marrow into the blood, their half-live in the circulation, and their pro- and anti-inflammatory activities during inflammation. Chronic kidney disease (CKD) is associated with systemic inflammatory responses, and neutrophilia is a hallmark of CKD onset and progression. Nonetheless, the role of neutrophils in CKD is currently unclear. Methods Blood and renal tissue were collected from non-dialysis CKD (grade 3 - 5) patients to evaluate GPCR neutrophil expressions and functions in CKD development. Results CKD patients presented a higher blood neutrophil-to-lymphocyte ratio (NLR), which was inversely correlated with the glomerular filtration rate (eGFR). A higher frequency of neutrophils expressing the senescent GPCR receptor (CXCR4) and activation markers (CD18+CD11b+CD62L+) was detected in CKD patients. Moreover, CKD neutrophils expressed higher amounts of GPCR formyl peptide receptors (FPR) 1 and 2, known as neutrophil pro- and anti-inflammatory receptors, respectively. Cytoskeletal organization, migration, and production of reactive oxygen species (ROS) by CKD neutrophils were impaired in response to the FPR1 agonist (fMLP), despite the higher expression of FPR1. In addition, CKD neutrophils presented enhanced intracellular, but reduced membrane expression of the protein Annexin A1 (AnxA1), and an impaired ability to secrete it into the extracellular compartment. Secreted and phosphorylated AnxA1 is a recognized ligand of FPR2, pivotal in anti-inflammatory and efferocytosis effects. CKD renal tissue presented a low number of neutrophils, which were AnxA1+. Conclusion Together, these data highlight that CKD neutrophils overexpress GPCRs, which may contribute to an unbalanced aging process in the circulation, migration into inflamed tissues, and efferocytosis.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Rizzetto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Lagoa Federal Hospital, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro S Farsky
- Dante Pazzanese Institute of Cardiology of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Oshins R, Greenberg Z, Tai YL, Zhao D, Wang X, Mehrad B, He M, Patel I, Khartabil L, Zhou H, Brantly M, Khodayari N. Extracellular Vesicle-Associated Neutrophil Elastase Activates Hepatic Stellate Cells and Promotes Liver Fibrogenesis via ERK1/2 Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608832. [PMID: 39229038 PMCID: PMC11370372 DOI: 10.1101/2024.08.20.608832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Liver fibrosis associated with increased mortality is caused by activation of hepatic stellate cells and excessive production and accumulation of extracellular matrix in response to fibrotic insults. It has been shown that in addition to liver inflammation, systemic inflammation also contributes to liver fibrogenesis. A deeper understanding of mechanisms that control liver fibrotic response to intra- and extra-hepatic inflammation is essential to develop novel clinical strategies against this disease. Extracellular vesicles (EV) have been recognized as immune mediators that facilitate activation of hepatic stellate cells. In inflammatory diseases, activated neutrophils release neutrophil elastase (NE) bound to EV, which has been identified as a significant contributor to inflammation by promoting immune cell activation. Here, we aimed to explore the role of inflammation derived plasma EV-associated NE in liver fibrogenesis and its potential mechanisms. We show EV-associated NE induces activation, proliferation and migration of hepatic stellate cells by promoting activation of the ERK1/2 signaling pathway. This effect did not occur through EV without surface NE, and Sivelestat, a NE inhibitor, inhibited activation of the ERK1/2 signaling pathway mediated by EV-associated NE. Moreover, we found plasma EV-associated NE increases deposition of collagen1 and α-smooth muscle actin in the liver of a mouse model of liver fibrosis (Mdr2-/-). Notably, this effect does not occur in control mice without preexisting liver disease. These data suggest that EV-associated NE is a pro-fibrogenic factor for hepatic stellate cell activation via the ERK1/2 signaling pathway in pre-existing liver injuries. Inhibition of the plasma EV-associated NE in inflammatory conditions may be a therapeutic target for liver fibrosis in patients with inflammatory diseases.
Collapse
Affiliation(s)
- Regina Oshins
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy; University of Florida, Gainesville, Florida, USA
| | - Yun-Ling Tai
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Derrick Zhao
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Xuan Wang
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy; University of Florida, Gainesville, Florida, USA
| | - Ishan Patel
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Laith Khartabil
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Mark Brantly
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Nazli Khodayari
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Liu YR, Wang JQ, Fang L, Xia Q. Diagnostic and Therapeutic Roles of Extracellular Vesicles and Their Enwrapped ncRNAs in Rheumatoid Arthritis. J Inflamm Res 2024; 17:5475-5494. [PMID: 39165320 PMCID: PMC11334919 DOI: 10.2147/jir.s469032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease whose precise pathogenesis remains mysterious. The involvement of epigenetic regulation in the pathogenesis of RA is one of the most anticipated findings, among which non-coding RNAs (ncRNAs) hold great application promise as diagnostic and therapeutic biomarkers for RA. Extracellular vesicles (EVs) are a heterogeneous group of nano-sized, membrane-enclosed vesicles that mediate intercellular communication and substance exchange, especially the transfer of ncRNAs from donor cells, thereby regulating the functional activities and biological processes of recipient cells. In light of the significant correlation between EVs, ncRNAs, and RA, we first documented expression levels of EVs and their-encapsulated ncRNAs in RA individuals, and methodically discussed their-implicated signaling pathways and phenotypic changes. The last but not least, we paied special attention to the therapeutic benefits of gene therapy reagents specifically imitating or silencing candidate ncRNAs with exosomes as carriers on RA animal models, and briefly highlighted their clinical application advantage and foreground. In conclusion, the present review may be conducive to a deeper comprehension of the diagnostic and therapeutic roles of EVs-enwrapped ncRNAs in RA, with special emphasis on exosomal ncRNAs, which may offer hints for the monitoring and treatment of RA.
Collapse
Affiliation(s)
- Ya-ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, People’s Republic of China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, 230000, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, People’s Republic of China
| | - Ling Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, People’s Republic of China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, People’s Republic of China
| |
Collapse
|
12
|
Zhou JP, Peng SS, Xu J, Cheng XW, Wang XH, Tao JL, Dai HW, Cao X. Exploring the therapeutic potential of urine-derived stem cell exosomes in temporomandibular joint osteoarthritis. FASEB J 2024; 38:e23852. [PMID: 39101942 DOI: 10.1096/fj.202400448rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.
Collapse
Affiliation(s)
- Jian-Ping Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Si-Si Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xing-Wang Cheng
- Department of Orthopedic Surgery, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Hui Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jun-Li Tao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
13
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024:e13725. [PMID: 39087342 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Jiangsu, China
| | - Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziyue Wu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Thomas BL, Montero-Melendez T, Oggero S, Kaneva MK, Chambers D, Pinto AL, Nerviani A, Lucchesi D, Austin-Williams S, Hussain MT, Pitzalis C, Allen B, Malcangio M, Dell'Accio F, Norling LV, Perretti M. Molecular Determinants of Neutrophil Extracellular Vesicles That Drive Cartilage Regeneration in Inflammatory Arthritis. Arthritis Rheumatol 2024. [PMID: 39041647 DOI: 10.1002/art.42958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE This study was undertaken to establish the potential therapeutic profile of neutrophil-derived extracellular vesicles (EVs) in experimental inflammatory arthritis and associate pharmacological activity with specific EV components, focusing on microRNAs. METHODS Neutrophil EVs were administered intra-articularly through a prophylactic or therapeutic protocol to male C57BL/6 mice undergoing serum-transfer-induced inflammatory arthritis. Transcriptomic analysis of knees was performed on joints following EV administration, naive and arthritic mice (untreated; n = 4/group) and EV-treated diseased mice (intra-articular administration) with contralateral (vehicle-treated; n = 8/group). Comparison of healthy donor and patients with rheumatoid arthritis (RA) neutrophil EVs was performed. RESULTS EVs afforded cartilage protection with an increase in collagen-II and reduced collagen-X expression within the joint. To gain mechanistic insights, RNA sequencing of the arthritic joints was conducted. A total of 5,231 genes were differentially expressed (P < 0.05), with 257 unique to EV treatment. EVs affected key regenerative pathways involved in joint development, including Wnt and Notch signaling. This wealth of genomic alteration prompted to identify microRNAs in EVs, 10 of which are associated with RA. As a proof of concept, we focused on miR-455-3p, which was detected in both healthy donor and RA EVs. EV addition to chondrocyte cultures elevated miR-455-3p and exerted anticatabolic effects upon interleukin-1β stimulation; these effects were blocked by actinomycin or miR-455-3p antagomir. CONCLUSION Neutrophils from patients with RA yielded EVs with composition, efficacy, and miR-455-3p content similar to those of healthy volunteers, suggesting that neutrophil EVs could be developed as an autologous treatment to protect and repair joint tissue of patients affected by inflammatory arthritides.
Collapse
Affiliation(s)
| | | | - Silvia Oggero
- Queen Mary University of London and Kings College London, Guys' Campus, London, United Kingdom
| | | | - David Chambers
- Kings College London, Guys' Campus, London, United Kingdom
| | - Andreia L Pinto
- Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Alessandra Nerviani
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research Centre, London, United Kingdom
| | | | | | | | - Costantino Pitzalis
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research Centre, London, United Kingdom
| | - Benjamin Allen
- Kings College London, Guys' Campus, London, United Kingdom
| | | | - Francesco Dell'Accio
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research Centre, London, United Kingdom
| | | | | |
Collapse
|
15
|
Zubia MV, Yong AJH, Holtz KM, Huang EJ, Jan YN, Jan LY. TMEM16F exacerbates tau pathology and mediates phosphatidylserine exposure in phospho-tau-burdened neurons. Proc Natl Acad Sci U S A 2024; 121:e2311831121. [PMID: 38941274 PMCID: PMC11228522 DOI: 10.1073/pnas.2311831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.
Collapse
Affiliation(s)
- Mario V Zubia
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- HHMI, University of California, San Francisco, CA 94143
| | - Adeline J H Yong
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- HHMI, University of California, San Francisco, CA 94143
| | | | - Eric J Huang
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- HHMI, University of California, San Francisco, CA 94143
| | - Lily Y Jan
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- HHMI, University of California, San Francisco, CA 94143
| |
Collapse
|
16
|
Jiang D, Jiao L, Li Q, Xie R, Jia H, Wang S, Chen Y, Liu S, Huang D, Zheng J, Song W, Li Y, Chen J, Li J, Ying B, Yu L. Neutrophil-derived migrasomes are an essential part of the coagulation system. Nat Cell Biol 2024; 26:1110-1123. [PMID: 38997457 PMCID: PMC11251984 DOI: 10.1038/s41556-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 07/14/2024]
Abstract
Migrasomes are organelles that are generated by migrating cells. Here we report the key role of neutrophil-derived migrasomes in haemostasis. We found that a large number of neutrophil-derived migrasomes exist in the blood of mice and humans. Compared with neutrophil cell bodies and platelets, these migrasomes adsorb and enrich coagulation factors on the surface. Moreover, they are highly enriched with adhesion molecules, which enable them to preferentially accumulate at sites of injury, where they trigger platelet activation and clot formation. Depletion of neutrophils, or genetic reduction of the number of these migrasomes, significantly decreases platelet plug formation and impairs coagulation. These defects can be rescued by intravenous injection of purified neutrophil-derived migrasomes. Our study reveals neutrophil-derived migrasomes as a previously unrecognized essential component of the haemostasis system, which may shed light on the cause of various coagulation disorders and open therapeutic possibilities.
Collapse
Affiliation(s)
- Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haohao Jia
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - ShiHui Wang
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yining Chen
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siyuan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dandan Huang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wenhao Song
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - JianFeng Chen
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
18
|
Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev 2024; 209:115316. [PMID: 38663550 PMCID: PMC11246615 DOI: 10.1016/j.addr.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Neutrophils play an essential role as 'first responders' in the immune response, necessitating many immune-modulating capabilities. Chronic, unresolved inflammation is heavily implicated in the progression and tissue-degrading effects of autoimmune disease. Neutrophils modulate disease pathogenesis by interacting with the inflammatory and autoreactive cells through effector functions, including signaling, degranulation, and neutrophil extracellular traps (NETs) release. Since the current gold standard systemic glucocorticoid administration has many drawbacks and side effects, targeting neutrophils in autoimmunity provides a new approach to developing therapeutics. Nanoparticles enable targeting of specific cell types and controlled release of a loaded drug cargo. Thus, leveraging nanoparticle properties and interactions with neutrophils provides an exciting new direction toward novel therapies for autoimmune diseases. Additionally, recent work has utilized neutrophil properties to design novel targeted particles for delivery into previously inaccessible areas. Here, we outline nanoparticle-based strategies to modulate neutrophil activity in autoimmunity, including various nanoparticle formulations and neutrophil-derived targeting.
Collapse
Affiliation(s)
- Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Felder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shivanie Kodikalla
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Wang J, Liu C, Cutler J, Ivanovski S, Lee RS, Han P. Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. J Periodontal Res 2024. [PMID: 38758729 DOI: 10.1111/jre.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by dysbiotic biofilms and destructive host immune responses. Extracellular vesicles (EVs) are circulating nanoparticles released by microbes and host cells involved in cell-to-cell communication, found in body biofluids, such as saliva and gingival crevicular fluid (GCF). EVs are mainly involved in cell-to-cell communication, and may hold promise for diagnostic and therapeutic purposes. Periodontal research has examined the potential involvement of bacterial- and host-cell-derived EVs in disease pathogenesis, diagnosis, and therapy, but data remains scarce on immune cell- or microbial-derived EVs. In this narrative review, we first provide an overview of the role of microbial and host-derived EVs on disease pathogenesis. Recent studies reveal that Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans-derived outer membrane vesicles (OMVs) can activate inflammatory cytokine release in host cells, while M1 macrophage EVs may contribute to bone loss. Additionally, we summarised current in vitro and pre-clinical research on the utilisation of immune cell and microbial-derived EVs as potential therapeutic tools in the context of periodontal treatment. Studies indicate that EVs from M2 macrophages and dendritic cells promote bone regeneration in animal models. While bacterial EVs remain underexplored for periodontal therapy, preliminary research suggests that P. gingivalis OMVs hold promise as vaccine candidates. Finally, we acknowledge the current limitations present in the field of translating immune cell derived EVs and microbial derived EVs in periodontology. It is concluded that microbial and host immune cell-derived EVs have a role in periodontitis pathogenesis and hence may be useful for studying disease pathophysiology, and as diagnostic and treatment monitoring biomarkers.
Collapse
Affiliation(s)
- Jenny Wang
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun Liu
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason Cutler
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan Sb Lee
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Pingping Han
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
21
|
Li S, Li W, Wu X, Zhang B, Liu L, Yin L. Immune cell-derived extracellular vesicles for precision therapy of inflammatory-related diseases. J Control Release 2024; 368:533-547. [PMID: 38462043 DOI: 10.1016/j.jconrel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Inflammation-related diseases impose a significant global health burden, necessitating urgent exploration of novel treatment modalities for improved clinical outcomes. We begin by discussing the limitations of conventional approaches and underscore the pivotal involvement of immune cells in the inflammatory process. Amidst the rapid growth of immunology, the therapeutic potential of immune cell-derived extracellular vesicles (EVs) has garnered substantial attention due to their capacity to modulate inflammatory response. We provide an in-depth examination of immune cell-derived EVs, delineating their promising roles across diverse disease conditions in both preclinical and clinical settings. Additionally, to direct the development of the next-generation drug delivery systems, we comprehensively investigate the engineered EVs on their advanced isolation methods, cargo loading techniques, and innovative engineering strategies. This review ends with a focus on the prevailing challenges and considerations regarding the clinical translation of EVs in future, emphasizing the need of standardized characterization and scalable production processes. Ultimately, immune cell-derived EVs represent a cutting-edge therapeutic approach and delivery platform, holding immense promise in precision medicine.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Wenqing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xianggui Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Beiyuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Di Florio DN, Beetler DJ, McCabe EJ, Sin J, Ikezu T, Fairweather D. Mitochondrial extracellular vesicles, autoimmunity and myocarditis. Front Immunol 2024; 15:1374796. [PMID: 38550582 PMCID: PMC10972887 DOI: 10.3389/fimmu.2024.1374796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
23
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Wang M, Wu Y, Li G, Lin Q, Zhang W, Liu H, Su J. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio 2024; 24:100948. [PMID: 38269053 PMCID: PMC10806349 DOI: 10.1016/j.mtbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Articular cartilage injury is a frequent worldwide disease, while effective treatment is urgently needed. Due to lack of blood vessels and nerves, the ability of cartilage to self-repair is limited. Despite the availability of various clinical treatments, unfavorable prognoses and complications remain prevalent. However, the advent of tissue engineering and regenerative medicine has generated considerable interests in using biomaterials for articular cartilage repair. Nevertheless, there remains a notable scarcity of comprehensive reviews that provide an in-depth exploration of the various strategies and applications. Herein, we present an overview of the primary biomaterials and bioactive substances from the tissue engineering perspective to repair articular cartilage. The strategies include regeneration, substitution, and immunization. We comprehensively delineate the influence of mechanically supportive scaffolds on cellular behavior, shedding light on emerging scaffold technologies, including stimuli-responsive smart scaffolds, 3D-printed scaffolds, and cartilage bionic scaffolds. Biologically active substances, including bioactive factors, stem cells, extracellular vesicles (EVs), and cartilage organoids, are elucidated for their roles in regulating the activity of chondrocytes. Furthermore, the composite bioactive scaffolds produced industrially to put into clinical use, are also explicitly presented. This review offers innovative solutions for treating articular cartilage ailments and emphasizes the potential of biomaterials for articular cartilage repair in clinical translation.
Collapse
Affiliation(s)
- Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Qiushui Lin
- Department of Spine Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
25
|
Qiu M, Xie Y, Tan G, Wang X, Huang P, Hong L. Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves cartilage damage. Heliyon 2024; 10:e24042. [PMID: 38293485 PMCID: PMC10826677 DOI: 10.1016/j.heliyon.2024.e24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA) is an age-related musculoskeletal disease that results in pain and functional disability. Stem cell therapy has been considered as a promising treatment for OA. In this study, the therapeutic action and potential mechanism of synovial mesenchymal stem cells (SMSCs)-derived exosomes (Exos) in OA cartilage damage were investigated. Cartilage cells were stimulated with IL-1β to establish an in vitro model of OA cartilage damage. Cartilage cell functions were detected by CCK-8, scratch assay, and flow cytometry, respectively. Inflammatory cytokine levels were assessed by ELISA. Target molecule levels were measured by qRT‒PCR and Western blotting. Exos-induced differential expression of miRNAs in cartilage cells were analyzed by microarray analysis. The interaction between miR-485-3p and neuropilin-1 (NRP1) was validated by dual luciferase reporter and RIP assays. We found that treatment with Exos promoted proliferation, migration, and ECM secretion, but restrained apoptosis and inflammation of IL-1β-exposed cartilage cells via up-regulation of miR-485-3p. Additionally, miR-485-3p directly targeted NRP1 to repress NRP1 expression, which subsequently caused inactivation of the PI3K/Akt pathway. The protective effect of Exos on cartilage damage was counteracted by NRP1 overexpression-mediated activation of the PI3K/Akt pathway. In conclusion, Exos delivered miR-485-3p to attenuate IL-1β-induced cartilage degradation by targeting NRP1 and succedent inactivation of the PI3K/Akt pathway. Our findings shed light on the novel protective mechanism of Exos in OA, which suggest that the restoration of miR-485-3p by Exos might be a novel approach for OA treatment.
Collapse
Affiliation(s)
- Mingjun Qiu
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Yanhua Xie
- Department of orthopedic, The Second Affiliated Hospital of University of South China, China
| | - Guanghua Tan
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Xiaoxu Wang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Peiguan Huang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Liang Hong
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| |
Collapse
|
26
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
27
|
Sumagin R. Phenotypic and Functional Diversity of Neutrophils in Gut Inflammation and Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2-12. [PMID: 37918801 PMCID: PMC10768535 DOI: 10.1016/j.ajpath.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils [polymorphonuclear leukocytes (PMNs)] execute important effector functions protecting the host against invading pathogens. However, their activity in tissue can exacerbate inflammation and inflammation-associated tissue injury and tumorigenesis. Until recently, PMNs were considered to be short-lived, terminally differentiated phagocytes. However, this view is rapidly changing with the emerging evidence of increased PMN lifespan in tissues, PMN plasticity, and phenotypic heterogeneity. Specialized PMN subsets have been identified in inflammation and in developing tumors, consistent with both beneficial and detrimental functions of PMNs in these conditions. Because PMN and tumor-associated neutrophil activity and the resulting beneficial/detrimental impacts primarily occur after homing to inflamed tissue/tumors, studying the underlying mechanisms of PMN/tumor-associated neutrophil trafficking is of high interest and clinical relevance. This review summarizes some of the key findings from over a decade of work from my laboratory and others on the regulation of PMN recruitment and identification of phenotypically and functionally diverse PMN subtypes as they pertain to gut inflammation and colon cancer.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
28
|
Wei C, Sun Y, Zeng F, Chen X, Ma L, Liu X, Qi X, Shi W, Gao H. Exosomal miR-181d-5p Derived from Rapamycin-Conditioned MDSC Alleviated Allograft Rejection by Targeting KLF6. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304922. [PMID: 37870185 PMCID: PMC10700181 DOI: 10.1002/advs.202304922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Immune rejection and side effects of long-term administration of immunosuppressants are the two major obstacles to allograft acceptance and tolerance. The immunosuppressive extracellular vesicles (EVs)-based approach has been proven to be effective in treating autoimmune/inflammatory disorders. Herein, the anti-rejection advantage of exosomes (Rapa-Exo) from rapamycin-conditioned myeloid-derived suppressor cells (MDSCs) over exosomes (Exo-Nor) from the untreated MDSCs is shown. The exosomal small RNA sequencing and loss-of-function assays reveal that the anti-rejection effect of Rapa-Exo functionally relies on miR-181d-5p. Through target prediction and double-luciferase reporter assay, Kruppel-like factor (KLF) 6 is identified as a direct target of miR-181d-5p. Finally, KLF6 knockdown markedly resolves inflammation and prolongs the survival of corneal allografts. Taken together, these findings support that Rapa-Exo executes an anti-rejection effect, highlighting the immunosuppressive EVs-based treatment as a promising approach in organ transplantation.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Yaru Sun
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Fanxing Zeng
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiunian Chen
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Li Ma
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaolin Qi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Weiyun Shi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Hua Gao
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| |
Collapse
|
29
|
Varela L, van de Lest CHA, Boere J, Libregts SFWM, Lozano-Andrés E, van Weeren PR, Wauben MHM. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159367. [PMID: 37473834 DOI: 10.1016/j.bbalip.2023.159367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H A van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janneke Boere
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sten F W M Libregts
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division of Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
30
|
de Souza Ferreira LP, da Silva RA, Gil CD, Geisow MJ. Annexin A1, A2, A5, and A6 involvement in human pathologies. Proteins 2023; 91:1191-1204. [PMID: 37218507 DOI: 10.1002/prot.26512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The human genome codes for 12 annexins with highly homologous membrane-binding cores and unique amino termini, which endow each protein with its specific biological properties. Not unique to vertebrate biology, multiple annexin orthologs are present in almost all eukaryotes. Their ability to combine either dynamically or constitutively with membrane lipid bilayers is hypothetically the key property that has led to their retention and multiple adaptation in eukaryotic molecular cell biology. Annexin genes are differentially expressed in many cell types but their disparate functions are still being discovered after more than 40 years of international research. A picture is emerging from gene knock down and knock out studies of individual annexins that these are important supporters rather than critical players in organism development and normal cell and tissue function. However, they appear to be highly significant "early responders" toward challenges arising from cell and tissue abiotic or biotic stress. In humans, recent focus has been on involvement of the annexin family for its involvement in diverse pathologies, especially cancer. From what has become an exceedingly broad field of investigation, we have selected four annexins in particular: AnxA1, 2, 5, and 6. Present both within and external to cells, these annexins are currently under intensive investigation in translational research as biomarkers of cellular dysfunction and as potential therapeutic targets for inflammatory conditions, neoplasia, and tissue repair. Annexin expression and release in response to biotic stress appears to be a balancing act. Under- or over-expression in different circumstances appears to damage rather than restore a healthy homeostasis. This review reflects briefly on what is already known of the structures and molecular cell biology of these selected annexins and considers their actual and potential roles in human health and disease.
Collapse
Affiliation(s)
- Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Michael J Geisow
- National Institute for Medical Research, Mill Hill, London UK & Delta Biotechnology Ltd, Nottingham, UK
| |
Collapse
|
31
|
Huang L, Liang L, Ji Z, Chen S, Liu M, Huang Q, Huang Z, Sun S, Ding J, Chen J, Huang X, Zheng S, Deng W, Huang Y, Li T. Proteomics profiling of CD4 + T-cell-derived exosomes from patients with rheumatoid arthritis. Int Immunopharmacol 2023; 122:110560. [PMID: 37423153 DOI: 10.1016/j.intimp.2023.110560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Our study profiled the CD4 + T-cell-derived exosomes from patients with rheumatoid arthritis (RA) using proteomics. METHODS Proteomic analysis of CD4 + T-cell-derived exosomes was performed by tandem mass tags (TMT) combined with LC-MS/MS. We validated the most significantly upregulated and downregulated proteins using ELISA and WB. RESULTS The proteomic results showed that there were 3 upregulated differentially expressed proteins and 31 downregulated differentially expressed proteins in the RA group. The results indicated that dihydropyrimidinase-related protein 3 (DPYSL3) was significantly upregulated in CD4 + T-cell-derived exosomes, whereas proteasome activator complex subunit 1 (PSME1) was significantly downregulated in the RA group. Bioinformatics analysis showed that proteins were enriched in "positive regulation of gene expression", "antigen processing and presentation", "acute-phase response" and "PI3K-AKT signaling" pathways. ELISA verified that compared to the control group, the RA group showed significant upregulation of DPYSL3, and downregulation of PSME1 in CD4 + T-cell-derived exosomes. CONCLUSIONS The proteomic analysis results of CD4 + T-cell-derived exosomes from patients with RA suggest that these differentially expressed proteins may be involved in RA pathogenesis. DPYSL3 and PSME1 may become useful biomarkers for RA.
Collapse
Affiliation(s)
- Lixin Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ling Liang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuyi Ji
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuyang Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhixiang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanmiao Sun
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiali Ding
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiajun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shaoling Zheng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Weiming Deng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tianwang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, China; The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
32
|
Lee ES, Ko H, Kim CH, Kim HC, Choi SK, Jeong SW, Lee SG, Lee SJ, Na HK, Park JH, Shin JM. Disease-microenvironment modulation by bare- or engineered-exosome for rheumatoid arthritis treatment. Biomater Res 2023; 27:81. [PMID: 37635253 PMCID: PMC10464174 DOI: 10.1186/s40824-023-00418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles secreted by eukaryotic cells and have been extensively studied for their surface markers and internal cargo with unique functions. A deeper understanding of exosomes has allowed their application in various research areas, particularly in diagnostics and therapy. MAIN BODY Exosomes have great potential as biomarkers and delivery vehicles for encapsulating therapeutic cargo. However, the limitations of bare exosomes, such as rapid phagocytic clearance and non-specific biodistribution after injection, pose significant challenges to their application as drug delivery systems. This review focuses on exosome-based drug delivery for treating rheumatoid arthritis, emphasizing pre/post-engineering approaches to overcome these challenges. CONCLUSION This review will serve as an essential resource for future studies to develop novel exosome-based therapeutic approaches for rheumatoid arthritis. Overall, the review highlights the potential of exosomes as a promising therapeutic approach for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Eun Sook Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Min Shin
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
33
|
Feng S, Puchades C, Ko J, Wu H, Chen Y, Figueroa EE, Gu S, Han TW, Ho B, Cheng T, Li J, Shoichet B, Jan YN, Cheng Y, Jan LY. Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase. Nat Commun 2023; 14:4874. [PMID: 37573365 PMCID: PMC10423226 DOI: 10.1038/s41467-023-40410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 07/23/2023] [Indexed: 08/14/2023] Open
Abstract
The dual functions of TMEM16F as Ca2+-activated ion channel and lipid scramblase raise intriguing questions regarding their molecular basis. Intrigued by the ability of the FDA-approved drug niclosamide to inhibit TMEM16F-dependent syncytia formation induced by SARS-CoV-2, we examined cryo-EM structures of TMEM16F with or without bound niclosamide or 1PBC, a known blocker of TMEM16A Ca2+-activated Cl- channel. Here, we report evidence for a lipid scrambling pathway along a groove harboring a lipid trail outside the ion permeation pore. This groove contains the binding pocket for niclosamide and 1PBC. Mutations of two residues in this groove specifically affect lipid scrambling. Whereas mutations of some residues in the binding pocket of niclosamide and 1PBC reduce their inhibition of TMEM16F-mediated Ca2+ influx and PS exposure, other mutations preferentially affect the ability of niclosamide and/or 1PBC to inhibit TMEM16F-mediated PS exposure, providing further support for separate pathways for ion permeation and lipid scrambling.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Cristina Puchades
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Juyeon Ko
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Hao Wu
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Yifei Chen
- Howard Hughes Medical Institute; UCSF, San Francisco, CA, USA
| | - Eric E Figueroa
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Shuo Gu
- BioDuro-Sundia Inc., Irvine, CA, USA
| | - Tina W Han
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Brandon Ho
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Tong Cheng
- Howard Hughes Medical Institute; UCSF, San Francisco, CA, USA
| | - Junrui Li
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Brian Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF) School of Pharmacy, San Francisco, CA, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Howard Hughes Medical Institute; UCSF, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
- Howard Hughes Medical Institute; UCSF, San Francisco, CA, USA.
| | - Lily Yeh Jan
- Department of Physiology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
- Howard Hughes Medical Institute; UCSF, San Francisco, CA, USA.
| |
Collapse
|
34
|
Zhang S, Duan Z, Liu F, Wu Q, Sun X, Ma H. The impact of exosomes derived from distinct sources on rheumatoid arthritis. Front Immunol 2023; 14:1240747. [PMID: 37575235 PMCID: PMC10414108 DOI: 10.3389/fimmu.2023.1240747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that can induce joint deformities and functional impairment, significantly impacting the overall well-being of individuals. Exosomes, which are cellularly secreted vesicles, possess favorable biological traits such as biocompatibility, stability, and minimal toxicity. Additionally, they contain nucleic acids, lipids, proteins, amino acids, and metabolites, serving as mediators in cellular communication and information exchange. Recent studies have demonstrated the association between exosomes and the pathogenesis of RA. Exosomes derived from mesenchymal stem cells, dendritic cells, and neutrophils exert influence on the biological functions of immune cells and joint cells, however, the precise mechanism remains largely unclarified. This comprehensive review systematically analyzes and summarizes the biological characteristics and functionalities of exosomes derived from diverse cellular sources, thus establishing a scientific foundation for the utilization of exosomes as diagnostic targets and therapeutic modalities in the context of RA.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhen Duan
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Fang Liu
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Qingjie Wu
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Xiwei Sun
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Hailong Ma
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
35
|
Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023; 25:500-526. [PMID: 37056271 PMCID: PMC10087114 DOI: 10.1016/j.bioactmat.2022.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-scale vesicles derived by cell secretion with unique advantages such as promoting cell proliferation, anti-inflammation, promoting blood vessels and regulating cell differentiation, which benefit their wide applications in regenerative medicine. However, the in vivo therapeutic effect of EVs still greatly restricted by several obstacles, including the off-targetability, rapid blood clearance, and undesired release. To address these issues, biomedical engineering techniques are vastly explored. This review summarizes different strategies to enhance EV functions from the perspective of drug loading, modification, and combination of biomaterials, and emphatically introduces the latest developments of functionalized EV-loaded biomaterials in different diseases, including cardio-vascular system diseases, osteochondral disorders, wound healing, nerve injuries. Challenges and future directions of EVs are also discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| |
Collapse
|
36
|
Liu W, Peng J, Wu Y, Ye Z, Zong Z, Wu R, Li H. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int Immunopharmacol 2023; 121:110466. [PMID: 37311355 DOI: 10.1016/j.intimp.2023.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Gout is an autoimmune disease characterized by acute or chronic inflammation and damage to bone joints induced due to the precipitation of monosodium urate (MSU) crystals. In recent years, with the continuous development of animal models and ongoing clinical investigations, more immune cells and inflammatory factors have been found to play roles in gouty inflammation. The inflammatory network involved in gout has been discovered, providing a new perspective from which to develop targeted therapy for gouty inflammation. Studies have shown that neutrophil macrophages and T lymphocytes play important roles in the pathogenesis and resolution of gout, and some inflammatory cytokines, such as those in the interleukin-1 (IL-1) family, have been shown to play anti-inflammatory or proinflammatory roles in gouty inflammation, but the mechanisms underlying their roles are unclear. In this review, we explore the roles of inflammatory cytokines, inflammasomes and immune cells in the course of gout development and the research status of therapeutic drugs used for inflammation to provide insights into future targeted therapy for gouty inflammation and the direction of gout pathogenesis research.
Collapse
Affiliation(s)
- Wenji Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Jie Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Yixin Wu
- Queen Mary College of Nanchang University, 330006 Nanchang, China
| | - Zuxiang Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, 330006 Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| |
Collapse
|
37
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
38
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
39
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
40
|
Tuomivaara ST, Teo CF, Jan YN, Jan LY, Wiita AP. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534250. [PMID: 36993417 PMCID: PMC10055316 DOI: 10.1101/2023.03.26.534250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To facilitate our understanding of the often rapid and nuanced dynamics of extracellularly exposed proteomes during signaling events, it is important to devise robust workflows affording fast time resolution without biases and confounding factors. Here, we present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT), to label extracellularly exposed proteins in a rapid, sensitive, and specific manner, while preserving cellular integrity. This experimentally simple and flexible method utilizes recombinant soluble APEX2 peroxidase that is applied to cells, thus circumventing biological perturbations, tedious engineering of tools and cells, and labeling biases. APEX2 neither requires metal cations for activity nor contains disulfide bonds, conferring versatility for a wide spectrum of experimental setups. We applied SLAPSHOT followed by quantitative mass spectrometry-based proteomics analysis to examine the immediate and extensive cell surface expansion and ensuing restorative membrane shedding upon the activation of Scott syndrome-linked TMEM16F, a ubiquitously expressed calcium-dependent phospholipid scramblase and ion channel. Time-course data ranging from one to thirty minutes of calcium stimulation using wild-type and TMEM16F deficient cells revealed intricate co-regulation of known protein families, including those in the integrin and ICAM families. Crucially, we identified proteins that are known to reside in intracellular organelles, including ER, as occupants of the freshly deposited membrane, and mitovesicles as an abundant component and contributor to the extracellularly exposed proteome. Our study not only provides the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome, but also presents a blueprint for the application of SLAPSHOT as a general approach for monitoring extracellularly exposed protein dynamics.
Collapse
Affiliation(s)
- Sami T. Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Lily Y. Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
41
|
Heydari R, Koohi F, Rasouli M, Rezaei K, Abbasgholinejad E, Bekeschus S, Doroudian M. Exosomes as Rheumatoid Arthritis Diagnostic Biomarkers and Therapeutic Agents. Vaccines (Basel) 2023; 11:vaccines11030687. [PMID: 36992270 DOI: 10.3390/vaccines11030687] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that causes systemic inflammation, autoimmunity, and joint abnormalities that result in permanent disability. Exosomes are nanosized extracellular particles found in mammals (40–100 nm). They are a transporter of lipids, proteins, and genetic material involved in mammalian cell–cell signaling, biological processes, and cell signaling. Exosomes have been identified as playing a role in rheumatoid arthritis-related joint inflammation (RA). Uniquely functioning extracellular vesicles (EVs) are responsible for the transport of autoantigens and mediators between distant cells. In addition, paracrine factors, such as exosomes, modulate the immunomodulatory function of mesenchymal stem cells (MSCs). In addition to transporting genetic information, exosomes convey miRNAs between cells and have been studied as drug delivery vehicles. In animal models, it has been observed that MSCs secrete EVs with immunomodulatory properties, and promising results have been observed in this area. By understanding the diversity of exosomal contents and their corresponding targets, it may be possible to diagnose autoimmune diseases. Exosomes can be employed as diagnostic biomarkers for immunological disorders. We here discuss the most recent findings regarding the diagnostic, prognostic, and therapeutic potential of these nanoparticles in rheumatoid arthritis and provide an overview of the evidence pertaining to the biology of exosomes in RA.
Collapse
Affiliation(s)
- Romina Heydari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran
| | - Fatemeh Koohi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran
| | - Milad Rasouli
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str 2, 17489 Greifswald, Germany
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran
| |
Collapse
|
42
|
Bert S, Nadkarni S, Perretti M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol Rev 2023; 314:36-49. [PMID: 36326214 PMCID: PMC10952212 DOI: 10.1111/imr.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While fundamental in their innate role in combating infection and responding to injury, neutrophils are emerging as key modulators of adaptive immune responses. Such functions are attained via both soluble and nonsoluble effectors that enable at least two major downstream outcomes: first, to mediate and control acute inflammatory responses and second, to regulate adaptive immunity and ultimately promoting the development and maintenance of immune tolerance either by releasing immuno-modulatory factors, including cytokines, or by directly interacting with cells of the adaptive immune system. Herein, we review these novel properties of neutrophils and redefine the pathophysiological functions of these fascinating multi-tasking cells, exploring the different mechanisms through which neutrophils are able to either enhance and orchestrate T cell pro-inflammatory responses or inhibit T cell activity to maintain immune tolerance.
Collapse
Affiliation(s)
- Serena Bert
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Suchita Nadkarni
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Mauro Perretti
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
43
|
Akasaka D, Iguchi S, Kaneko R, Yoshiga Y, Kajiwara D, Nakachi Y, Noma N, Tanaka K, Shimizu A, Hosoi F. Novel Bruton's tyrosine kinase inhibitor TAS5315 suppresses the progression of inflammation and joint destruction in rodent collagen-induced arthritis. PLoS One 2023; 18:e0282117. [PMID: 36821545 PMCID: PMC9949657 DOI: 10.1371/journal.pone.0282117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Rheumatoid arthritis is an inflammatory autoimmune disease, characterized by autoantibody production, synovial inflammation, and joint destruction. Its pathogenesis is due to environmental factors and genetic backgrounds. Bruton's tyrosine kinase is a cytoplasmic non-receptor tyrosine kinase, expressed in most hematopoietic cell lineages, except T cells and plasma cells, and regulates various immune-related signaling pathways, thereby playing a crucial role in pathogenesis. Thus, inhibiting Bruton's tyrosine kinase may prove beneficial in treating autoimmune diseases. In the present study, we characterized Bruton's tyrosine kinase inhibitor, TAS5315, in vitro and evaluated its therapeutic effects in experimental arthritis models. TAS5315 markedly inhibited Bruton's tyrosine kinase enzyme activity and suppressed the B-cell receptor signaling pathway in Ramos cells. Moreover, it suppressed the expression of CD69, CD86, and MHC class II in mouse B lymphocytes and the production of TNF-α and MIP-1α in mouse macrophages and decreased bone resorption activity in mouse osteoclasts. Furthermore, it ameliorated the pathological changes in two rodent models of collagen-induced arthritis in vivo. TAS5315 improved bone mineral density and bone intensity. Thus, these results suggest that TAS5315 could be a promising therapeutic option for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Daichi Akasaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Satoru Iguchi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Ryusuke Kaneko
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yohei Yoshiga
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Daisuke Kajiwara
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yoshinori Nakachi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naruto Noma
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kenji Tanaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Atsushi Shimizu
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Fumihito Hosoi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
44
|
Chen Y, Li K, Jiao M, Huang Y, Zhang Z, Xue L, Ju C, Zhang C. Reprogrammed siTNF α/neutrophil cytopharmaceuticals targeting inflamed joints for rheumatoid arthritis therapy. Acta Pharm Sin B 2023; 13:787-803. [PMID: 36873164 PMCID: PMC9978920 DOI: 10.1016/j.apsb.2022.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/01/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe synovial inflammation and cartilage damage. Despite great progress in RA therapy, there still lacks the drugs to completely cure RA patients. Herein, we propose a reprogrammed neutrophil cytopharmaceuticals loading with TNFα-targeting-siRNA (siTNFα) as an alternative anti-inflammatory approach for RA treatment. The loaded siTNFα act as not only the gene therapeutics to inhibit TNFα production by macrophages in inflamed synovium, but also the editors to reprogram neutrophils to anti-inflammatory phenotypes. Leveraging the active tendency of neutrophils to inflammation, the reprogrammed siTNFα/neutrophil cytopharmaceuticals (siTNFα/TP/NEs) can rapidly migrate to the inflamed synovium, transfer the loaded siTNFα to macrophages followed by the significant reduction of TNFα expression, and circumvent the pro-inflammatory activity of neutrophils, thus leading to the alleviated synovial inflammation and improved cartilage protection. Our work provides a promising cytopharmaceutical for RA treatment, and puts forward a living neutrophil-based gene delivery platform.
Collapse
Affiliation(s)
| | | | | | - Yingshuang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Zihao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
45
|
Emami A, Namdari H, Parvizpour F, Arabpour Z. Challenges in osteoarthritis treatment. Tissue Cell 2023; 80:101992. [PMID: 36462384 DOI: 10.1016/j.tice.2022.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a degenerative joint cartilage disease that is the most common cause of disability in the world among the elderly. It leads to social, psychological, and economic costs with financial consequences. The principles of OA treatment are to reduce pain and stiffness as well as maintain function. In recent years, due to a better understanding of the underlying pathophysiology of OA, a number of potential therapeutic advances have been made, which include tissue engineering, immune system manipulation, surgical technique, pharmacological, and non-pharmacological treatments. Despite this, there is still no certain cure for OA, and different OA treatments are usually considered in relation to the stage of the disease. The purpose of the present review is to summarize and discuss the latest results of new treatments for OA and potential targets for future research.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Medicine department, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Zohreh Arabpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Role of Annexin A1 Secreted by Neutrophils in Melanoma Metastasis. Cells 2023; 12:cells12030425. [PMID: 36766767 PMCID: PMC9913423 DOI: 10.3390/cells12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Annexin A1 (AnxA1) is highly secreted by neutrophils and binds to formyl peptide receptors (FPRs) to trigger anti-inflammatory effects and efferocytosis. AnxA1 is also expressed in the tumor microenvironment, being mainly attributed to cancer cells. As recruited neutrophils are player cells at the tumor sites, the role of neutrophil-derived AnxA1 in lung melanoma metastasis was investigated here. Melanoma cells and neutrophils expressing AnxA1 were detected in biopsies from primary melanoma patients, which also presented higher levels of serum AnxA1 and augmented neutrophil-lymphocyte ratio (NLR) in the blood. Lung melanoma metastatic mice (C57BL/6; i.v. injected B16F10 cells) showed neutrophilia, elevated AnxA1 serum levels, and higher labeling for AnxA1 in neutrophils than in tumor cells at the lungs with metastasis. Peritoneal neutrophils collected from naïve mice were co-cultured with B16F10 cells or employed to obtain neutrophil-conditioned medium (NCM; 18 h incubation). B16F10 cells co-cultured with neutrophils or with NCM presented higher invasion, which was abolished if B16F10 cells were previously incubated with FPR antagonists or co-cultured with AnxA1 knockout (AnxA1-/-) neutrophils. The depletion of peripheral neutrophils during lung melanoma metastasis development (anti-Gr1; i.p. every 48 h for 21 days) reduced the number of metastases and AnxA1 serum levels in mice. Our findings show that AnxA1 secreted by neutrophils favors melanoma metastasis evolution via FPR pathways, addressing AnxA1 as a potential biomarker for the detection or progression of melanoma.
Collapse
|
47
|
Ren J, Zhang F, Zhu S, Zhang W, Hou J, He R, Wang K, Wang Z, Liang T. Exosomal long non-coding RNA TRAFD1-4:1 derived from fibroblast-like synoviocytes suppresses chondrocyte proliferation and migration by degrading cartilage extracellular matrix in rheumatoid arthritis. Exp Cell Res 2023; 422:113441. [PMID: 36481205 DOI: 10.1016/j.yexcr.2022.113441] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune and systemic inflammatory disease affecting 1% of the population worldwide. Immune suppression of the activity and progress of RA is vital to reduce the disability and mortality rate as well as improve the quality of life of RA patients. However, the immune molecular mechanism of RA has not been clarified yet. Our results indicated that exosomes derived from TNFα-stimulated RA fibroblast-like synoviocytes (RA-FLSs) suppressed chondrocyte proliferation and migration through modulating cartilage extracellular matrix (CECM) determining by MTS assay, cell cycle analysis, Transwell assay and Western blot (WB). Besides, RNA sequencing and verification by qRT-PCR revealed that exosomal long non-coding RNA (lncRNA) tumor necrosis factor-associated factor 1 (TRAF1)-4:1 derived from RA-FLSs treated with TNFα was a candidate lncRNA, which also inhibited chondrocyte proliferation and migration through degrading CECM. Moreover, RNA sequencing and bioinformatics analysis identified that C-X-C motif chemokine ligand 1 (CXCL1) was a target mRNA of miR-27a-3p while miR-27a-3p was a target miRNA of lnc-TRAF1-4:1 in chondrocytes. Mechanistically, lnc-TRAF1-4:1 upregulated CXCL1 expression through sponging miR-27a-3p as a competing endogenous RNA (ceRNA) in chondrocytes identifying by Dual-luciferase reporter gene assay. Summarily, exosomal lncRNA TRAFD1-4:1 derived from RA-FLSs suppressed chondrocyte proliferation and migration through degrading CECM by upregulating CXCL1 as a sponge of miR-27a-3p. This study uncovered a novel RA-related lncRNA and investigated the roles of RA-FLS-derived exosomes and exosomal lnc-TRAF1-4:1 in articular cartilage impairment, which might provide novel therapeutic targets for RA.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Zhang
- Department of Joint and Trauma Surgery, Zhongshan City People's Hospital, Zhongshan, China
| | - Shaoshen Zhu
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhui Zhang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
48
|
Yang N, Li M, Wu L, Song Y, Yu S, Wan Y, Cheng W, Yang B, Mou X, Yu H, Zheng J, Li X, Yu X. Peptide-anchored neutrophil membrane-coated biomimetic nanodrug for targeted treatment of rheumatoid arthritis. J Nanobiotechnology 2023; 21:13. [PMID: 36639772 PMCID: PMC9837964 DOI: 10.1186/s12951-023-01773-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Macrophage polarization determines the production of cytokines that fuel the initiation and evolution of rheumatoid arthritis (RA). Thus, modulation of macrophage polarization might represent a potential therapeutic strategy for RA. However, coordinated modulation of macrophages in the synovium and synovial fluid has not been achieved thus far. Herein, we develop a biomimetic ApoA-I mimetic peptide-modified neutrophil membrane-wrapped F127 polymer (R4F-NM@F127) for targeted drug delivery during RA treatment. Due to the high expression of adhesion molecules and chemokine receptors on neutrophils, the neutrophil membrane coating can endow the nanocarrier with synovitis-targeting ability, with subsequent recruitment to the synovial fluid under the chemotactic effects of IL-8. Moreover, R4F peptide modification further endows the nanocarrier with the ability to target the SR-B1 receptor, which is highly expressed on macrophages in the synovium and synovial fluid. Long-term in vivo imaging shows that R4F-NM@F127 preferentially accumulates in inflamed joints and is engulfed by macrophages. After loading of the anti-inflammatory drug celastrol (Cel), R4F-NM@F127-Cel shows a significant reduction in hepatotoxicity, and effectively inhibits synovial inflammation and alleviates joint damage by reprogramming macrophage polarization. Thus, our results highlight the potential of the coordinated targeted modulation of macrophages as a promising therapeutic option for the treatment of RA.
Collapse
Affiliation(s)
- Ni Yang
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Miaomiao Li
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Ling Wu
- grid.254148.e0000 0001 0033 6389The People’s Hospital of China Three Gorges University, Yichang, 443099 China
| | - Yinhong Song
- grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Shi Yu
- grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Yingying Wan
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Wenjing Cheng
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Baoye Yang
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Xiaoqin Mou
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Hong Yu
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Jing Zheng
- grid.254148.e0000 0001 0033 6389The People’s Hospital of China Three Gorges University, Yichang, 443099 China
| | - Xinzhi Li
- grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| | - Xiang Yu
- grid.254148.e0000 0001 0033 6389Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389Institute of Infection and Inflammation, China Three Gorges University, Yichang, 443002 China ,grid.254148.e0000 0001 0033 6389College of Basic Medical Science, China Three Gorges University, Yichang, 443002 China
| |
Collapse
|
49
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
50
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X, Zhang Q. Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne) 2023; 14:1158744. [PMID: 36950682 PMCID: PMC10025484 DOI: 10.3389/fendo.2023.1158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA attacks the large synovial joint, including the peripheral joints and temporomandibular joint (TMJ). As a representative of peripheral joint OA, knee OA shares similar symptoms with TMJ OA. However, these two joints also display differences based on their distinct development, anatomy, and physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles, including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins, lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-cell communication, which play an essential role in the progression and treatment of OA. They are likely to partake in mechanical response, extracellular matrix degradation, and inflammatory regulation during OA. More evidence has shown that synovial fluid and synovium-derived EVs may serve as OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a therapeutic effect on OA. However, the different function of EVs in these two joints is largely unknown based on their distinct biological characteristic. Here, we reviewed the effects of EVs in OA progression and compared the difference between the knee joint and TMJ, and summarized their potential therapeutic role in the treatment of OA.
Collapse
Affiliation(s)
- Benyi Yang
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xin Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Chaoran Fu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Wenyi Cai
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Bowen Meng
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yan Qu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiaoxing Kou
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| |
Collapse
|