1
|
Wu X, Cheong LY, Yuan L, Jin L, Zhang Z, Xiao Y, Zhou Z, Xu A, Hoo RLC, Shu L. Islet-Resident Memory T Cells Orchestrate the Immunopathogenesis of Type 1 Diabetes through the FABP4-CXCL10 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308461. [PMID: 38884133 PMCID: PMC11321687 DOI: 10.1002/advs.202308461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes (T1D) is a chronic disease characterized by self-destruction of insulin-producing pancreatic β cells by cytotoxic T cell activity. However, the pathogenic mechanism of T cell infiltration remains obscure. Recently, tissue-resident memory T (TRM) cells have been shown to contribute to cytotoxic T cell recruitment. TRM cells are found present in human pancreas and are suggested to modulate immune homeostasis. Here, the role of TRM cells in the development of T1D is investigated. The presence of TRM cells in pancreatic islets is observed in non-obese diabetic (NOD) mice before T1D onset. Mechanistically, elevated fatty acid-binding protein 4 (FABP4) potentiates the survival and alarming function of TRM cells by promoting fatty acid utilization and C-X-C motif chemokine 10 (CXCL10) secretion, respectively. In NOD mice, genetic deletion of FABP4 or depletion of TRM cells using CD69 neutralizing antibodies resulted in a similar reduction of pancreatic cytotoxic T cell recruitment, a delay in diabetic incidence, and a suppression of CXCL10 production. Thus, targeting FABP4 may represent a promising therapeutic strategy for T1D.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of MedicineThe University of Hong KongHong Kong999077P. R. China
| | - Lufengzi Yuan
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of MedicineThe University of Hong KongHong Kong999077P. R. China
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Yang Xiao
- Second Xiangya HospitalKey Laboratory of Diabetes ImmunologyNational Clinical Research Center for Metabolic DiseasesCentral South UniversityChangshaHunan410083P. R. China
| | - Zhiguang Zhou
- Second Xiangya HospitalKey Laboratory of Diabetes ImmunologyNational Clinical Research Center for Metabolic DiseasesCentral South UniversityChangshaHunan410083P. R. China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
- Department of MedicineThe University of Hong KongHong Kong999077P. R. China
| | - Ruby LC Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for Cancer, Department of Hematological OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
2
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
3
|
Hao J, Jin R, Yi Y, Jiang X, Yu J, Xu Z, Schnicker NJ, Chimenti MS, Sugg SL, Li B. Development of a humanized anti-FABP4 monoclonal antibody for potential treatment of breast cancer. Breast Cancer Res 2024; 26:119. [PMID: 39054536 PMCID: PMC11270797 DOI: 10.1186/s13058-024-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women diagnosed in the U.S. and worldwide. Obesity increases breast cancer risk without clear underlying molecular mechanisms. Our studies demonstrate that circulating adipose fatty acid binding protein (A-FABP, or FABP4) links obesity-induced dysregulated lipid metabolism and breast cancer risk, thus potentially offering a new target for breast cancer treatment. METHODS We immunized FABP4 knockout mice with recombinant human FABP4 and screened hybridoma clones with specific binding to FABP4. The potential effects of antibodies on breast cancer cells in vitro were evaluated using migration, invasion, and limiting dilution assays. Tumor progression in vivo was evaluated in various types of tumorigenesis models including C57BL/6 mice, Balb/c mice, and SCID mice. The phenotype and function of immune cells in tumor microenvironment were characterized with multi-color flow cytometry. Tumor stemness was detected by ALDH assays. To characterize antigen-antibody binding capacity, we determined the dissociation constant of selected anti-FABP4 antibodies via surface plasmon resonance. Further analyses in tumor tissue were performed using 10X Genomics Visium spatial single cell technology. RESULTS Herein, we report the generation of humanized monoclonal antibodies blocking FABP4 activity for breast cancer treatment in mouse models. One clone, named 12G2, which significantly reduced circulating levels of FABP4 and inhibited mammary tumor growth, was selected for further characterization. After confirming the therapeutic efficacy of the chimeric 12G2 monoclonal antibody consisting of mouse variable regions and human IgG1 constant regions, 16 humanized 12G2 monoclonal antibody variants were generated by grafting its complementary determining regions to selected human germline sequences. Humanized V9 monoclonal antibody showed consistent results in inhibiting mammary tumor growth and metastasis by affecting tumor cell mitochondrial metabolism. CONCLUSIONS Our current evidence suggests that targeting FABP4 with humanized monoclonal antibodies may represent a novel strategy for the treatment of breast cancer and possibly other obesity- associated diseases.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanmei Yi
- School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, China
| | - Xingshan Jiang
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, USA
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Burak MF, Tuncman G, Ayci AN, Chetal K, Seropian GYL, Inouye K, Lai ZW, Dagtekin N, Sadreyev RI, Israel E, Hotamışlıgil GS. An Adipo-Pulmonary Axis Mediated by FABP4 Hormone Defines a Therapeutic Target Against Obesity-Induced Airway Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603433. [PMID: 39071372 PMCID: PMC11275790 DOI: 10.1101/2024.07.15.603433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity-related airway disease is a clinical condition without a clear description and effective treatment. Here, we define this pathology and its unique properties, which differ from classic asthma phenotypes, and identify a novel adipo-pulmonary axis mediated by FABP4 hormone as a critical mediator of obesity-induced airway disease. Through detailed analysis of murine models and human samples, we elucidate the dysregulated lipid metabolism and immunometabolic responses within obese lungs, particularly highlighting the stress response activation and downregulation of surfactant-related genes, notably SftpC. We demonstrate that FABP4 deficiency mitigates these alterations, demonstrating a key role in obesity-induced airway disease pathogenesis. Importantly, we identify adipose tissue as the source of FABP4 hormone in the bronchoalveolar space and describe strong regulation in the context of human obesity, particularly among women. Finally, our exploration of antibody-mediated targeting of circulating FABP4 unveils a novel therapeutic avenue, addressing a pressing unmet need in managing obesity-related airway disease. These findings not only define the presence of a critical adipo-pulmonary endocrine link but also present FABP4 as a therapeutic target for managing this unique airway disease that we refer to as fatty lung disease associated with obesity. One Sentence Summary Investigating FABP4's pivotal role in obesity-driven airway disease, this study unveils an adipo-pulmonary axis with potential therapeutic implications.
Collapse
|
5
|
Ullah Khan S, Daniela Hernández-González K, Ali A, Shakeel Raza Rizvi S. Diabetes and the fabkin complex: A dual-edged sword. Biochem Pharmacol 2024; 223:116196. [PMID: 38588831 DOI: 10.1016/j.bcp.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Fabkin complex, composed of FABP4, ADK, and NDPKs, emerges as a novel regulator of insulin-producing beta cells, offering promising prospects for diabetes treatment. Our approach, which combines literature review and database analysis, sets the stage for future research. These findings hold significant implications for both diabetes treatment and research, as they present potential therapeutic targets for personalized treatment, leading to enhanced patient outcomes and a deeper comprehension of the disease. The multifaceted role of the Fabkin complex in glucose metabolism, insulin resistance, anti-inflammation, beta cell proliferation, and vascular function underscores its therapeutic potential, reshaping diabetes management and propelling advancements in the field.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan
| | - Karla Daniela Hernández-González
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000 Xalapa, Veracruz, México
| | - Amir Ali
- Nanoscience and Nanotechnology Program, Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan.
| |
Collapse
|
6
|
Başarır Sivri FN, Çiftçi S. A New Insight into Fatty Acid Binding Protein 4 Mechanisms and Therapeutic Implications in Obesity-Associated Diseases: A Mini Review. Mol Nutr Food Res 2024; 68:e2300840. [PMID: 38593305 DOI: 10.1002/mnfr.202300840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Indexed: 04/11/2024]
Abstract
Fatty acid binding proteins (FABPs), such as FABP4 (aP2, A-FABP), are essential for cellular lipid regulation, membrane-protein interactions, and the modulation of metabolic and inflammatory pathways. FABP4, primarily expressed in adipocytes, monocytes, and macrophages, is integrated into signaling networks that influence immune responses and insulin activity. It has been linked to obesity, inflammation, lipid metabolism, insulin resistance, diabetes, cardiovascular disease, and cancer. Inhibition of FABP4 is emerging as a promising strategy for treating obesity-related conditions, particularly insulin resistance and diabetes. Elevated FABP4 levels in individuals with a BMI above 30 underscore its association with obesity. Furthermore, FABP4 levels are higher not only in the tissues but also in the blood, promoting the onset and development of various cancers. Understanding its broader role reveals involvement in the mechanisms underlying metabolic syndrome, contributing to various metabolic and inflammatory responses. While blocking FABP4 offers an alternative therapeutic approach, a comprehensive understanding of potential side effects is crucial before clinical use. This review aims to provide concise insights into FABP4, elucidating its mechanisms and potential therapeutic applications in obesity and associated disorders, contributing to innovative interventions against metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Feyza Nur Başarır Sivri
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir Democracy University, Güzelyalı, Konak, İzmir, 35290, Turkey
| | - Seda Çiftçi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir Democracy University, Güzelyalı, Konak, İzmir, 35290, Turkey
| |
Collapse
|
7
|
Liao B, Yang S, Geng L, Zong J, Zhang Z, Jiang M, Jiang X, Li S, Xu A, Chang J, Hoo RLC. Development of a therapeutic monoclonal antibody against circulating adipocyte fatty acid binding protein to treat ischaemic stroke. Br J Pharmacol 2024; 181:1238-1255. [PMID: 37949671 DOI: 10.1111/bph.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Adipocyte fatty acid-binding protein (A-FABP) exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier (BBB) through inducing expression of MMP-9. Circulating A-FABP levels positively correlate with infarct size in stroke patients. We hypothesized that targeting circulating A-FABP by a neutralizing antibody would alleviate ischaemic stroke outcome. EXPERIMENTAL APPROACH Monoclonal antibodies (mAbs) against A-FABP were generated using mouse hybridoma techniques. Binding affinities of a generated mAb named 6H2 towards various FABPs were determined using Biacore. Molecular docking studies were performed to characterize the 6H2-A-FABP complex structure and epitope. The therapeutic potential and safety of 6H2 were evaluated in mice with transient middle cerebral artery occlusion (MCAO) and healthy mice, respectively. KEY RESULTS Replenishment of recombinant A-FABP exaggerated the stroke outcome in A-FABP-deficient mice. 6H2 exhibited nanomolar to picomolar affinities to human and mouse A-FABP, respectively, with minimal cross-reactivities with heart and epidermal FABPs. 6H2 effectively neutralized JNK/c-Jun activation elicited by A-FABP and reduced MMP-9 production in macrophages. Molecular docking suggested that 6H2 interacts with the "lid" of the fatty acid binding pocket of A-FABP, thus likely hindering the binding of its substrates. In mice with transient MCAO, 6H2 significantly attenuated BBB disruption, cerebral oedema, infarction, neurological deficits, and decreased mortality associated with reduced cytokine and MMP-9 production. Chronic 6H2 treatment showed no obvious adverse effects in healthy mice. CONCLUSION AND IMPLICATIONS These results establish circulating A-FABP as a viable therapeutic target for ischaemic stroke, and provide a highly promising antibody drug candidate with high affinity and specificity.
Collapse
Affiliation(s)
- Boya Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Leiluo Geng
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiuyu Zong
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zixuan Zhang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mengxue Jiang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Jiang
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Simeng Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Khan A, Zahid MA, Mohammad A, Agouni A. Structure-guided engineering and molecular simulations to design a potent monoclonal antibody to target aP2 antigen for adaptive immune response instigation against type 2 diabetes. Front Immunol 2024; 15:1357342. [PMID: 38524133 PMCID: PMC10960362 DOI: 10.3389/fimmu.2024.1357342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Diabetes mellitus (DM) is recognized as one of the oldest chronic diseases and has become a significant public health issue, necessitating innovative therapeutic strategies to enhance patient outcomes. Traditional treatments have provided limited success, highlighting the need for novel approaches in managing this complex disease. Methods In our study, we employed graph signature-based methodologies in conjunction with molecular simulation and free energy calculations. The objective was to engineer the CA33 monoclonal antibody for effective targeting of the aP2 antigen, aiming to elicit a potent immune response. This approach involved screening a mutational landscape comprising 57 mutants to identify modifications that yield significant enhancements in binding efficacy and stability. Results Analysis of the mutational landscape revealed that only five substitutions resulted in noteworthy improvements. Among these, mutations T94M, A96E, A96Q, and T94W were identified through molecular docking experiments to exhibit higher docking scores compared to the wild-type. Further validation was provided by calculating the dissociation constant (KD), which showed a similar trend in favor of these mutations. Molecular simulation analyses highlighted T94M as the most stable complex, with reduced internal fluctuations upon binding. Principal components analysis (PCA) indicated that both the wild-type and T94M mutant displayed similar patterns of constrained and restricted motion across principal components. The free energy landscape analysis underscored a single metastable state for all complexes, indicating limited structural variability and potential for high therapeutic efficacy against aP2. Total binding free energy (TBE) calculations further supported the superior performance of the T94M mutation, with TBE values demonstrating the enhanced binding affinity of selected mutants over the wild-type. Discussion Our findings suggest that the T94M substitution, along with other identified mutations, significantly enhances the therapeutic potential of the CA33 antibody against DM by improving its binding affinity and stability. These results not only contribute to a deeper understanding of antibody-antigen interactions in the context of DM but also provide a valuable framework for the rational design of antibodies aimed at targeting this disease more effectively.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Cetin E, Pedersen B, Porter LM, Adler GK, Burak MF. Protocol for a randomized placebo-controlled clinical trial using pure palmitoleic acid to ameliorate insulin resistance and lipogenesis in overweight and obese subjects with prediabetes. Front Endocrinol (Lausanne) 2024; 14:1306528. [PMID: 38313838 PMCID: PMC10835623 DOI: 10.3389/fendo.2023.1306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Palmitoleic acid (POA), a nonessential, monounsaturated omega-7 fatty acid (C16:1n7), is a lipid hormone secreted from adipose tissue and has beneficial effects on distant organs, such as the liver and muscle. Interestingly, POA decreases lipogenesis in toxic storage sites such as the liver and muscle, and paradoxically increases lipogenesis in safe storage sites, such as adipose tissue. Furthermore, higher POA levels in humans are correlated with better insulin sensitivity, an improved lipid profile, and a lower incidence of type-2 diabetes and cardiovascular pathologies, such as myocardial infarction. In preclinical animal models, POA improves glucose intolerance, dyslipidemia, and steatosis of the muscle and liver, while improving insulin sensitivity and secretion. This double-blind placebo-controlled clinical trial tests the hypothesis that POA increases insulin sensitivity and decreases hepatic lipogenesis in overweight and obese adult subjects with pre-diabetes. Important to note, that this is the first study ever to use pure (>90%) POA with < 0.3% palmitic acid (PA), which masks the beneficial effects of POA. The possible positive findings may offer a therapeutic and/or preventative pathway against diabetes and related immunometabolic diseases.
Collapse
Affiliation(s)
- Ecesu Cetin
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian Pedersen
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Lindsey M. Porter
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Sabri Ulker Center, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
10
|
Yang S, Xu D, Zhang D, Huang X, Li S, Wang Y, Lu J, Wang D, Guo ZN, Yang Y, Ye D, Wang Y, Xu A, Hoo RLC, Chang J. Levofloxacin alleviates blood-brain barrier disruption following cerebral ischemia and reperfusion via directly inhibiting A-FABP. Eur J Pharmacol 2024; 963:176275. [PMID: 38113968 DOI: 10.1016/j.ejphar.2023.176275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Reperfusion therapy is currently the most effective treatment for acute ischemic stroke, but often results in secondary brain injury. Adipocyte fatty acid-binding protein (A-FABP, FABP4, or aP2) was shown to critically mediate cerebral ischemia/reperfusion (I/R) injury by exacerbating blood-brain barrier (BBB) disruption. However, no A-FABP inhibitors have been approved for clinical use due to safety issues. Here, we identified the therapeutic effect of levofloxacin, a widely used antibiotic displaying A-FABP inhibitory activity in vitro, on cerebral I/R injury and determined its target specificity and action mechanism in vivo. Using molecular docking and site-directed mutagenesis, we showed that levofloxacin inhibited A-FABP activity through interacting with the amino acid residue Asp76, Gln95, Arg126 of A-FABP. Accordingly, levofloxacin significantly inhibited A-FABP-induced JNK phosphorylation and expressions of proinflammatory factors and matrix metalloproteinase 9 (MMP-9) in mouse primary macrophages. In wild-type mice with transient middle cerebral artery occlusion, levofloxacin substantially mitigated BBB disruption and neuroinflammation, leading to reduced cerebral infarction, alleviated neurological outcomes, and improved survival. Mechanistically, levofloxacin decreased MMP-9 expression and activity, and thus reduced degradation of extracellular matrix and endothelial tight junction proteins. Importantly, the BBB- and neuro-protective effects of levofloxacin were abolished in A-FABP or MMP-9 knockout mice, suggesting that the therapeutic effects of levofloxacin highly depended on specific targeting of the A-FABP-MMP-9 axis. Overall, our study demonstrates that levofloxacin alleviates A-FABP-induced BBB disruption and neural tissue injury following cerebral I/R, and unveils its therapeutic potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dingkang Xu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Dianhui Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Simeng Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Khan J, Yadav S, Bhardwaj D, Kumar A, Okanlawon MU. Flavonoids as Potential Natural Compounds for the Prevention and Treatment of Eczema. Antiinflamm Antiallergy Agents Med Chem 2024; 23:71-84. [PMID: 38721791 DOI: 10.2174/0118715230299752240310171954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 08/21/2024]
Abstract
Eczema is a systemic autoimmune disease characterized by inflammation and skin manifestation with a range of comorbidities that include physical and psychological disorders. Despite recent advancements in understanding the mechanisms involved in atopic dermatitis, current marketed products have shown varying results with more side effects. The present objective of the research studies is to develop new agents for eczema that cut down the cost of the novel drugs available and also improve the efficacy with the least adverse effects. Natural compounds and medicinal plants have been traditionally used since ancient civilizations. Nowadays, research in the herbal field is at its peak. One such natural compound, flavonoid, was found to be beneficial for the treatment of eczema. This review describes the use of certain flavonoid products to prepare preparations suitable for the treatment of prophylaxis or eczema. This is especially true for prophylaxis or atopic eczema treatment. These compounds exhibit anti-inflammatory, anti-inflammatory, anti-inflammatory, and anti-inflammatory properties and are, therefore, used in treatments to prevent allergies, inflammation, and irritation to the skin. We also dock the flavonoid derivatives used with the protein associated with the inhibition of eczema for better lead optimization. These preparations appear to be used for cosmetic, dermatological, or herbal remedies as a local application.
Collapse
Affiliation(s)
- Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Divya Bhardwaj
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Moshood Ummuani Okanlawon
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Ron I, Mdah R, Zemet R, Ulman RY, Rathaus M, Brandt B, Mazaki-Tovi S, Hemi R, Barhod E, Tirosh A. Adipose tissue-derived FABP4 mediates glucagon-stimulated hepatic glucose production in gestational diabetes. Diabetes Obes Metab 2023; 25:3192-3201. [PMID: 37449442 DOI: 10.1111/dom.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
AIMS One of the most common complications of pregnancy is gestational diabetes mellitus (GDM), which may result in significant health threats of the mother, fetus and the newborn. Fatty acid-binding protein 4 (FABP4) is an adipokine that regulates glucose homeostasis by promoting glucose production and liver insulin resistance in mouse models. FABP4 levels are increased in GDM and correlates with maternal indices of insulin resistance, with a rapid decline post-partum. We therefore aimed to determine the tissue origin of elevated circulating FABP4 levels in GDM and to assess its potential contribution in promoting glucagon-induced hepatic glucose production. MATERIALS AND METHODS FABP4 protein and gene expression was determined in biopsies from placenta, subcutaneous (sWAT) and visceral (vWAT) white adipose tissues from GDM and normoglycaemic pregnant women. FABP4 differential contribution in glucagon-stimulated hepatic glucose production was tested in conditioned media before and after its immune clearance. RESULTS We showed that FABP4 is expressed in placenta, sWAT and vWAT of pregnant women at term, with a significant increase in its secretion from vWAT of women with GDM compared with normoglycaemic pregnant women. Neutralizing FABP4 from both normoglycaemic pregnant women and GDM vWAT secretome, resulted in a decrease in glucagon-stimulated hepatic glucose production. CONCLUSIONS This study provides new insights into the role of adipose tissue-derived FABP4 in GDM, highlighting this adipokine, as a potential co-activator of glucagon-stimulated hepatic glucose production during pregnancy.
Collapse
Affiliation(s)
- Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ragad Mdah
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roni Zemet
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rakefet Yoeli Ulman
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Benny Brandt
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Gynecologic Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shali Mazaki-Tovi
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rina Hemi
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ehud Barhod
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Inouye KE, Prentice KJ, Lee A, Wang ZB, Dominguez-Gonzalez C, Chen MX, Riveros JK, Burak MF, Lee GY, Hotamışlıgil GS. Endothelial-derived FABP4 constitutes the majority of basal circulating hormone and regulates lipolysis-driven insulin secretion. JCI Insight 2023; 8:e164642. [PMID: 37279064 PMCID: PMC10443803 DOI: 10.1172/jci.insight.164642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
Fatty acid binding protein 4 (FABP4) is a lipid chaperone secreted from adipocytes upon stimulation of lipolysis. Circulating FABP4 levels strongly correlate with obesity and metabolic pathologies in experimental models and humans. While adipocytes have been presumed to be the major source of hormonal FABP4, this question has not been addressed definitively in vivo. We generated mice with Fabp4 deletion in cells known to express the gene - adipocytes (Adipo-KO), endothelial cells (Endo-KO), myeloid cells (Myeloid-KO), and the whole body (Total-KO) - to examine the contribution of these cell types to basal and stimulated plasma FABP4 levels. Unexpectedly, baseline plasma FABP4 was not significantly reduced in Adipo-KO mice, whereas Endo-KO mice showed ~87% reduction versus WT controls. In contrast, Adipo-KO mice exhibited ~62% decreased induction of FABP4 responses to lipolysis, while Endo-KO mice showed only mildly decreased induction, indicating that adipocytes are the main source of increases in FABP4 during lipolysis. We did not detect any myeloid contribution to circulating FABP4. Surprisingly, despite the nearly intact induction of FABP4, Endo-KO mice showed blunted lipolysis-induced insulin secretion, identical to Total-KO mice. We conclude that the endothelium is the major source of baseline hormonal FABP4 and is required for the insulin response to lipolysis.
Collapse
Affiliation(s)
- Karen E. Inouye
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Kacey J. Prentice
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Alexandra Lee
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Zeqiu B. Wang
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Carla Dominguez-Gonzalez
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Mu Xian Chen
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Jillian K. Riveros
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - M. Furkan Burak
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Grace Y. Lee
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
| | - Gökhan S. Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Yan K, Feng J, Huang J, Wu H. iDRPro-SC: identifying DNA-binding proteins and RNA-binding proteins based on subfunction classifiers. Brief Bioinform 2023:bbad251. [PMID: 37405873 DOI: 10.1093/bib/bbad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Nucleic acid-binding proteins are proteins that interact with DNA and RNA to regulate gene expression and transcriptional control. The pathogenesis of many human diseases is related to abnormal gene expression. Therefore, recognizing nucleic acid-binding proteins accurately and efficiently has important implications for disease research. To address this question, some scientists have proposed the method of using sequence information to identify nucleic acid-binding proteins. However, different types of nucleic acid-binding proteins have different subfunctions, and these methods ignore their internal differences, so the performance of the predictor can be further improved. In this study, we proposed a new method, called iDRPro-SC, to predict the type of nucleic acid-binding proteins based on the sequence information. iDRPro-SC considers the internal differences of nucleic acid-binding proteins and combines their subfunctions to build a complete dataset. Additionally, we used an ensemble learning to characterize and predict nucleic acid-binding proteins. The results of the test dataset showed that iDRPro-SC achieved the best prediction performance and was superior to the other existing nucleic acid-binding protein prediction methods. We have established a web server that can be accessed online: http://bliulab.net/iDRPro-SC.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiawei Feng
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Huang
- Huajian Yutong Technology (Beijing) Co., Ltd
- State Key Laboratory of Media Convergence Production Technology and Systems, Beijing China,100803
- Xinhua New Media Culture Communication Co., Ltd
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Prentice KJ, Lee A, Cedillo P, Inouye KE, Ertunc ME, Riveros JK, Lee GY, Hotamisligil GS. Sympathetic tone dictates the impact of lipolysis on FABP4 secretion. J Lipid Res 2023; 64:100386. [PMID: 37172691 PMCID: PMC10248869 DOI: 10.1016/j.jlr.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Levels of circulating fatty acid binding protein 4 (FABP4) protein are strongly associated with obesity and metabolic disease in both mice and humans, and secretion is stimulated by β-adrenergic stimulation both in vivo and in vitro. Previously, lipolysis-induced FABP4 secretion was found to be significantly reduced upon pharmacological inhibition of adipose triglyceride lipase (ATGL) and was absent from adipose tissue explants from mice specifically lacking ATGL in their adipocytes (ATGLAdpKO). Here, we find that upon activation of β-adrenergic receptors in vivo, ATGLAdpKO mice unexpectedly exhibited significantly higher levels of circulating FABP4 as compared with ATGLfl/fl controls, despite no corresponding induction of lipolysis. We generated an additional model with adipocyte-specific deletion of both FABP4 and ATGL (ATGL/FABP4AdpKO) to evaluate the cellular source of this circulating FABP4. In these animals, there was no evidence of lipolysis-induced FABP4 secretion, indicating that the source of elevated FABP4 levels in ATGLAdpKO mice was indeed from the adipocytes. ATGLAdpKO mice exhibited significantly elevated corticosterone levels, which positively correlated with plasma FABP4 levels. Pharmacological inhibition of sympathetic signaling during lipolysis using hexamethonium or housing mice at thermoneutrality to chronically reduce sympathetic tone significantly reduced FABP4 secretion in ATGLAdpKO mice compared with controls. Therefore, activity of a key enzymatic step of lipolysis mediated by ATGL, per se, is not required for in vivo stimulation of FABP4 secretion from adipocytes, which can be induced through sympathetic signaling.
Collapse
Affiliation(s)
- Kacey J Prentice
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Lee
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paulina Cedillo
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen E Inouye
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Meric Erikci Ertunc
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jillian K Riveros
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gökhan S Hotamisligil
- Department of Molecular Metabolism; Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
16
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
17
|
Bouzoni E, Perakakis N, Connelly MA, Angelidi AM, Pilitsi E, Farr O, Stefanakis K, Mantzoros CS. PCSK9 and ANGPTL3 levels correlate with hyperlipidemia in HIV-lipoatrophy, are regulated by fasting and are not affected by leptin administered in physiologic or pharmacologic doses. Metabolism 2022; 134:155265. [PMID: 35820631 DOI: 10.1016/j.metabol.2022.155265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Medications leveraging the leptin, PCSK9, ANGPTL3 and FABP4 pathways are being developed for the treatment of insulin resistance and/or lipid disorders. To evaluate whether these pathways are independent from each other, we assessed the levels of PCSK9, ANGPTL3 and FABP4, in normal subjects and subjects exhibiting HIV and highly active antiretroviral therapy (HAART) induced metabolic syndrome with lipoatrophy and hypoleptinemia. Studies were performed at baseline and during food deprivation for three days with either a placebo or leptin administration at physiological replacement doses to correct fasting induced acute hypoleptinemia and in pharmacological doses. METHODS PCSK9, ANGPTL3, FABP4 levels and their correlations to lipoproteins-metabolites were assessed in randomized placebo controlled cross-over studies: a) in 15 normal-weight individuals undergoing three-day admissions in the fed state, in complete fasting with placebo and in complete fasting with leptin treatment in physiologic replacement doses (study 1), b) in 15 individuals day baseline in a fed and three fasting admissions for three days with leptin administered in physiologic, supraphysiologic and pharmacologic doses (study 2), c) in 7 hypoleptinemic men with HIV and HAART-induced lipoatrophy treated with leptin or placebo for two months in the context of a cross over randomized trial (study 3). RESULTS Circulating ANGPTL3, PCSK9 and FABP4 were markedly elevated in HIV-lipoatrophy and not affected by leptin treatment. PCSK9 levels correlated with lipids and markers of lipid utilization and lipolysis. ANGPTL3 levels correlated with HDL particles and their lipid composition. FABP4 levels were negatively associated with HDL diameter (HDL-D) and composition. PCSK9 and ANGPTL3 levels decreased during food deprivation by ~65 % and 30 % respectively. Leptin administration at physiologic, supraphysiologic and pharmacologic doses did not affect PCSK9, ANGPTL3 and FABP4 levels. CONCLUSIONS PCSK9, ANGPTL3 and FABP4 levels are associated with markers of lipid metabolism and are higher in HIV-lipoatrophy. PCSK9 and ANGPTL3 but not FABP4 decrease in response to food deprivation. PCSK9 and ANGPTL3 regulation is leptin-independent, suggesting independent pathways for lipid regulation. Thus, combining treatments of leptin with PCSK9 and/or ANGPTL3 inhibitors for metabolic diseases should have additive effects and merit further investigation. CLINICAL TRIAL INFORMATION ClinicalTrials.gov no. NCT00140231, NCT00140205, NCT00140244.
Collapse
Affiliation(s)
- Eirini Bouzoni
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States.
| | - Nikolaos Perakakis
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, NC 27560, United States
| | - Angeliki M Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Eleni Pilitsi
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Olivia Farr
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States; Section of Endocrinology, VA Boston Healthcare System, Jamaica Plain, MA 02130, United States
| |
Collapse
|
18
|
Liu S, Wu D, Fan Z, Yang J, Li Y, Meng Y, Gao C, Zhan H. FABP4 in obesity-associated carcinogenesis: Novel insights into mechanisms and therapeutic implications. Front Mol Biosci 2022; 9:973955. [PMID: 36060264 PMCID: PMC9438896 DOI: 10.3389/fmolb.2022.973955] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
The increasing prevalence of obesity worldwide is associated with an increased risk of various diseases, including multiple metabolic diseases, cardiovascular diseases, and malignant tumors. Fatty acid binding proteins (FABPs) are members of the adipokine family of multifunctional proteins that are related to fatty acid metabolism and are divided into 12 types according to their tissue origin. FABP4 is mainly secreted by adipocytes and macrophages. Under obesity, the synthesis of FABP4 increases, and the FABP4 content is higher not only in tissues but also in the blood, which promotes the occurrence and development of various cancers. Here, we comprehensively investigated obesity epidemiology and the biological mechanisms associated with the functions of FABP4 that may explain this effect. In this review, we explore the molecular mechanisms by which FABP4 promotes carcinoma development and the interaction between fat and cancer cells in obese circumstances here. This review leads us to understand how FABP4 signaling is involved in obesity-associated tumors, which could increase the potential for advancing novel therapeutic strategies and molecular targets for the systematic treatment of malignant tumors.
Collapse
|
19
|
Huang J, Chen G, Zhang Q, Wang Y, Meng Q, Xu F, Zhang X, Zou W, Mi F, Yin J. Correlation between adipocyte fatty acid binding protein and glucose dysregulation is closely associated with obesity and metabolic syndrome: A cohort of Han Chinese population from Yunnan plateau. Lipids 2022; 57:257-264. [PMID: 35778866 DOI: 10.1002/lipd.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
The present study investigated the correlation of plasma A-FABP with glucose dysregulation under different body mass index (BMI) and metabolic states in a Han Chinese population from Yunnan plateau. We cross-sectionally analyzed data from the China Multi Ethnic Cohort, Yunnan province. Participants were divided into two groups. Group A contained 297 obese individuals with metabolic syndrome (MetS). Group B contained 326 age-, sex-, and region-matched normal BMI subjects without MetS. Glucose dysregulation was defined as elevated fasting plasma glucose (FPG) (FPG ≥ 5.6 mmol/L or current use of oral hypoglycemic agents or insulin). Circulating A-FABP were assayed by ELISA method. Binary and multiple regression analyses were preformed to evaluate the correlation between A-FABP and glucose dysregulation. Plasma A-FABP level was significantly higher in group A compared with group B (p < 0.001). Plasma A-FABP level correlated positively with elevated FPG in group A (r = 0.120, p = 0.039), but negatively with elevated FPG in group B (r = -0.115, p = 0.039). Multiple logistic regression analysis revealed that A-FABP was an independent predictor for elevated FPG in group A (β, 0.028; 95% CI, 1.001-1.056; p < 0.05), but not in group B (β, -0.008; 95% CI, 0.882-1.117; p > 0.05). In this study, A-FABP was an independent risk factor for glucose dysregulation in obese individuals with MetS living in the Yunnan plateau, but not for those without obesity and MetS.
Collapse
Affiliation(s)
- Juan Huang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Guo Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Fang Xu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, China
| | - Fei Mi
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China.,Baoshan College of Traditional Chinese Medicine, Baoshan, China
| |
Collapse
|
20
|
Yang S, Li S, Chang J. Discovery of Cobimetinib as a novel A-FABP inhibitor using machine learning and molecular docking-based virtual screening. RSC Adv 2022; 12:13500-13510. [PMID: 35520131 PMCID: PMC9066360 DOI: 10.1039/d2ra01057g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Adipocyte fatty acid-binding protein (A-FABP, also called FABP4, aP2) is an adipokine identified as a critical regulator of metabolic function due to its dual functions of fatty acid transport and pro-inflammation. Because of the high therapeutic potential of A-FABP inhibition for the treatment of metabolic diseases and related vascular complications, numerous inhibitors have been developed against A-FABP. However, none of these inhibitors have been approved for use in patients due to severe side effects. Here, we used a virtual screening (VS) strategy to identify potential inhibitors of A-FABP in the latest FDA-approved drug library (∼2600 compounds), aiming to explore the existing drugs with proven safety profiles. We firstly combined ligand-based machine learning and structure-based molecular docking to develop a screening pipeline for identifying A-FABP inhibitors. The screening of FDA-approved drugs identified four compounds (Cobimetinib, Larotrectinib, Pantoprazole, and Vildagliptin) with the highest scores, whose inhibitory effects on A-FABP were further assessed in cellular assays. Among the selected compounds, Cobimetinib significantly inhibited the activation of the JNK/c-Jun signaling pathway by A-FABP in mouse macrophages without causing obvious cytotoxicity. In summary, we present an integrated VS pipeline for A-FABP inhibitor screening, and identified Cobimetinib as a novel A-FABP inhibitor that may be repurposed for the treatment of metabolic diseases and associated vascular complications.
Collapse
Affiliation(s)
- Shilun Yang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Xueyuan Blvd 1068 Shenzhen 518055 Guangdong China
| | - Simeng Li
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Xueyuan Blvd 1068 Shenzhen 518055 Guangdong China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junlei Chang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Xueyuan Blvd 1068 Shenzhen 518055 Guangdong China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
21
|
Interplay between Fatty Acid Binding Protein 4, Fetuin-A, Retinol Binding Protein 4 and Thyroid Function in Metabolic Dysregulation. Metabolites 2022; 12:metabo12040300. [PMID: 35448487 PMCID: PMC9026429 DOI: 10.3390/metabo12040300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022] Open
Abstract
Signalling between the tissues integrating synthesis, transformation and utilization of energy substrates and their regulatory hormonal axes play a substantial role in the development of metabolic disorders. Interactions between cytokines, particularly liver derived hepatokines and adipokines, secreted from adipose tissue, constitute one of major areas of current research devoted to metabolic dysregulation. The thyroid exerts crucial influence on the maintenance of basal metabolic rate, thermogenesis, carbohydrate and lipid metabolism, while its dysfunction promotes the development of metabolic disorders. In this review, we discuss the interplay between three adipokines: fatty acid binding protein type 4, fetuin-A, retinol binding protein type 4 and thyroid hormones, that shed a new light onto mechanisms underlying atherosclerosis, cardiovascular complications, obesity, insulin resistance and diabetes accompanying thyroid dysfunction. Furthermore, we summarize clinical findings on those cytokines in the course of thyroid disorders.
Collapse
|
22
|
Gu M, Lin Y, Gai X, Wei X, Lu C, Wang Y, Ding X, Peng Y, Ma Y. High Serum FABP4 Levels are Negatively Associated with the Reversion from Prediabetes to Normal Glucose Tolerance: A 2-Year Retrospective Cohort Community Study. Diabetes Metab Syndr Obes 2022; 15:2217-2225. [PMID: 35923252 PMCID: PMC9342696 DOI: 10.2147/dmso.s374912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore the relationship between the level of fatty acid-binding protein 4 (FABP4) and reversion from prediabetes to normal glucose tolerance (NGT). METHODS A two-year retrospective cohort study was conducted on 398 participants with complete information. These 398 participants were divided into an NGT group and an abnormal glucose metabolism (AGM) group after 2 years of follow-up. The baseline level of FABP4 was determined, and the role of FABP4 in predicting reversion from prediabetes to NGT was investigated using an unconditional logistic regression model. RESULTS Over the two-year follow-up period, 37.4% (149/398) of the participants reverted from prediabetes to NGT. The participants with AGM had a higher baseline level of FABP4 than those with NGT. The baseline level of FABP4 was significantly negatively correlated with reversion from prediabetes to NGT. After adjusting for age, sex, body mass index and waist-to-hip ratio, the level of fasting blood glucose (FBG) [odds ratio (OR) 0.336, 95% confidence interval (CI) (0.196-0.576)], 2-h post-challenge blood glucose (2hBG) [OR 0.697, 95% CI (0.581-0.837)], and FABP4 [OR 0.960, 95% CI (0.928-0.993)] at baseline were significant independent predictors of reversion from prediabetes to NGT. The area under the curve (AUC) value of the receiver operating characteristic curve for FABP4 was 0.605 (95% CI: 0.546-0.665), and the AUC for FABP4 combined with FBG and 2hBG was 0.716 (95% CI: 0.663-0.769). CONCLUSION A higher baseline level of FABP4 was positively correlated with an adverse profile of diabetes risk factors and negatively correlated with reversion from prediabetes to NGT. FABP4, FBG and 2hBG were predictors of reversion from prediabetes to NGT.
Collapse
Affiliation(s)
- Mingyu Gu
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, People’s Republic of China
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Xianying Gai
- Department of Endocrinology, Shanghai Sijing Hospital, Shanghai, 201601, People’s Republic of China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Chunhua Lu
- Community Health Service Center of Sijing, Shanghai, 201601, People’s Republic of China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, People’s Republic of China
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Correspondence: Yongde Peng, Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai, 200080, People’s Republic of China, Email
| | - Yuhang Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Yuhang Ma, Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, People’s Republic of China, Email
| |
Collapse
|
23
|
Prentice KJ, Saksi J, Robertson LT, Lee GY, Inouye KE, Eguchi K, Lee A, Cakici O, Otterbeck E, Cedillo P, Achenbach P, Ziegler AG, Calay ES, Engin F, Hotamisligil GS. A hormone complex of FABP4 and nucleoside kinases regulates islet function. Nature 2021; 600:720-726. [PMID: 34880500 DOI: 10.1038/s41586-021-04137-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The liberation of energy stores from adipocytes is critical to support survival in times of energy deficit; however, uncontrolled or chronic lipolysis associated with insulin resistance and/or insulin insufficiency disrupts metabolic homeostasis1,2. Coupled to lipolysis is the release of a recently identified hormone, fatty-acid-binding protein 4 (FABP4)3. Although circulating FABP4 levels have been strongly associated with cardiometabolic diseases in both preclinical models and humans4-7, no mechanism of action has yet been described8-10. Here we show that hormonal FABP4 forms a functional hormone complex with adenosine kinase (ADK) and nucleoside diphosphate kinase (NDPK) to regulate extracellular ATP and ADP levels. We identify a substantial effect of this hormone on beta cells and given the central role of beta-cell function in both the control of lipolysis and development of diabetes, postulate that hormonal FABP4 is a key regulator of an adipose-beta-cell endocrine axis. Antibody-mediated targeting of this hormone complex improves metabolic outcomes, enhances beta-cell function and preserves beta-cell integrity to prevent both type 1 and type 2 diabetes. Thus, the FABP4-ADK-NDPK complex, Fabkin, represents a previously unknown hormone and mechanism of action that integrates energy status with the function of metabolic organs, and represents a promising target against metabolic disease.
Collapse
Affiliation(s)
- Kacey J Prentice
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Jani Saksi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Lauren T Robertson
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Karen E Inouye
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Kosei Eguchi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Alexandra Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Ozgur Cakici
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Emily Otterbeck
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Paulina Cedillo
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Feyza Engin
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.,Departments of Biomolecular Chemistry and Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
24
|
Tanaka M, Takahashi S, Higashiura Y, Sakai A, Koyama M, Saitoh S, Shimamoto K, Ohnishi H, Furuhashi M. Circulating level of fatty acid-binding protein 4 is an independent predictor of metabolic dysfunction-associated fatty liver disease in middle-aged and elderly individuals. J Diabetes Investig 2021; 13:878-888. [PMID: 34889064 PMCID: PMC9077725 DOI: 10.1111/jdi.13735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Aims/Introduction Metabolic dysfunction‐associated fatty liver disease (MAFLD), defined as hepatosteatosis with type 2 diabetes mellitus, overweight/obesity or metabolic dysregulation, has been proposed as a new feature of chronic liver disease. Fatty acid‐binding protein 4 (FABP4) is expressed in adipose tissue, and secreted FABP4 is associated with the development of insulin resistance and atherosclerosis. However, the relationship between MAFLD and FABP4 has not been fully addressed. Materials and Methods Associations of MAFLD with metabolic markers, including FABP4, fibroblast growth factor 21 and adiponectin, were investigated in 627 individuals (men/women 292/335) in the Tanno‐Sobetsu Study, a population‐based cohort. Results The mean age was 65 years (range 19–98 years, median [interquartile range] 68 [56–76] years). Hepatosteatosis was determined by the fatty liver index (FLI), and FLI ≥35 for men and FLI ≥16 for women were used for detection of fatty liver, as previously reported using 14,471 Japanese individuals. FLI was positively correlated with systolic blood pressure and levels of FABP4 (r = 0.331, P < 0.001), fibroblast growth factor 21, homeostasis model assessment of insulin resistance as an insulin resistance index and uric acid, and was negatively correlated with levels of high‐density lipoprotein cholesterol and adiponectin. FABP4 concentration was independently associated with FLI after adjustment of age, sex, systolic blood pressure and levels of uric acid, high‐density lipoprotein cholesterol, homeostasis model assessment of insulin resistance, adiponectin and fibroblast growth factor 21 in multivariable regression analysis. Logistic regression analysis showed that FABP4 was an independent predictor of MAFLD after adjustment of age, sex, presence of diabetes mellitus, hypertension and dyslipidemia, and levels of uric acid, homeostasis model assessment of insulin resistance, adiponectin and fibroblast growth factor 21. Conclusions FABP4 concentration is independently associated with FLI and is an independent predictor of MAFLD in middle‐aged and elderly individuals.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Takahashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | | | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
25
|
Ron I, Lerner RK, Rathaus M, Livne R, Ron S, Barhod E, Hemi R, Tirosh A, Strauss T, Ofir K, Goldstein I, Pessach IM, Tirosh A. The adipokine FABP4 is a key regulator of neonatal glucose homeostasis. JCI Insight 2021; 6:138288. [PMID: 34676825 PMCID: PMC8564897 DOI: 10.1172/jci.insight.138288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
During pregnancy, fetal glucose production is suppressed, with rapid activation immediately postpartum. Fatty acid–binding protein 4 (FABP4) was recently demonstrated as a regulator of hepatic glucose production and systemic metabolism in animal models. Here, we studied the role of FABP4 in regulating neonatal glucose hemostasis. Serum samples were collected from pregnant women with normoglycemia or gestational diabetes at term, from the umbilical circulation, and from the newborns within 6 hours of life. The level of FABP4 was higher in the fetal versus maternal circulation, with a further rise in neonates after birth of approximately 3-fold. Neonatal FABP4 inversely correlated with blood glucose, with an approximately 10-fold increase of FABP4 in hypoglycemic neonates. When studied in mice, blood glucose of 12-hour-old WT, Fabp4–/+, and Fabp4–/– littermate mice was 59 ± 13 mg/dL, 50 ± 11 mg/dL, and 43 ± 11 mg/dL, respectively. Similar to our observations in humans, FABP4 levels in WT mouse neonates were approximately 8-fold higher compared with those in adult mice. RNA sequencing of the neonatal liver suggested altered expression of multiple glucagon-regulated pathways in Fabp4–/– mice. Indeed, Fabp4–/– liver glycogen was inappropriately intact, despite a marked hypoglycemia, with rapid restoration of normoglycemia upon injection of recombinant FABP4. Our data suggest an important biological role for the adipokine FABP4 in the orchestrated regulation of postnatal glucose metabolism.
Collapse
Affiliation(s)
- Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Reut Kassif Lerner
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Amit Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Endocrine Cancer Genomics Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Tzipora Strauss
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neonatology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Keren Ofir
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Itai M Pessach
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Chung JY, Hong J, Kim HJ, Song Y, Yong SB, Lee J, Kim YH. White adipocyte-targeted dual gene silencing of FABP4/5 for anti-obesity, anti-inflammation and reversal of insulin resistance: Efficacy and comparison of administration routes. Biomaterials 2021; 279:121209. [PMID: 34700224 DOI: 10.1016/j.biomaterials.2021.121209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a serious health problem with tremendous economic and social consequences, which is associated with metabolic diseases and cancer. Currently available anti-obesity drugs acting in the gastrointestinal tract, or the central nervous system have shown limited efficacy in the reduction of obesity, accompanied by severe side effects. Therefore, a novel therapeutic delivery targeting adipocytes and normalizing excess fat transport and accumulation is necessary to maximize efficacy and reduce side effects for long-term treatment. Fatty acid binding protein 4 (FABP4) is an adipokine that coordinates lipid transport in mature adipocyte and its inhibition in obesity model showed weight loss and normalized insulin response. Reduction of FABP4 level in adipocytes was compensated by fatty acid binding protein 5 (FABP5), which resulted in reduction of recovery of obesity and co-morbidities related to obesity by FABP4 knock-down alone. In this study, we developed a non-viral gene delivery system, sh (FABP4/5)/ATS9R, that silences FABP4 and FABP5 simultaneously with oligopeptide (ATS9R) that can selectively target mature adipocyte. For future clinical application to increase patient compliance, sh (FABP4/5)/ATS9R was administered subcutaneously and intraperitoneally to obese animal model and both routes demonstrated startling dual gene efficacy in visceral adipose tissues. Furthermore, dual gene silencing efficiently alleviated obesity, improved insulin sensitivity and restored hepatic metabolism in high fat diet-induced type 2 diabetes mouse model. Targeted-dual gene silencing of sh (FABP4/5)/ATS9R in adipose tissues demonstrated synergistic effects to overcome obesity and obesity-induced metabolic diseases and beneficial effects against liraglutide, providing a great potential for future translational research.
Collapse
Affiliation(s)
- Jee Young Chung
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; Department of Pharmaceutical Sciences, University of California, Irvine, 92697, CA, USA
| | - Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763, Seoul, South Korea
| | - Hyung-Jin Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; Molecular Devices Korea LLC., 06173, Seoul, South Korea
| | - Yoonsung Song
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; Ildong Pharmaceutical Co. Ltd., 06752, Seoul, South Korea
| | - Seok-Beom Yong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; Laboratory of Precision Nanomedicine, Tel Aviv University, Tel Aviv, Israel
| | - Jieun Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; SK Bioscience Co. Ltd., 13494, Seongnam, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763, Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763, Seoul, South Korea.
| |
Collapse
|
27
|
Dahlström EH, Saksi J, Forsblom C, Uglebjerg N, Mars N, Thorn LM, Harjutsalo V, Rossing P, Ahluwalia TS, Lindsberg PJ, Sandholm N, Groop PH. The Low-Expression Variant of FABP4 Is Associated With Cardiovascular Disease in Type 1 Diabetes. Diabetes 2021; 70:2391-2401. [PMID: 34244239 DOI: 10.2337/db21-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Emma H Dahlström
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani Saksi
- Neurology, Neurocenter, Helsinki University Hospital, and Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Nina Mars
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lena M Thorn
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Perttu J Lindsberg
- Neurology, Neurocenter, Helsinki University Hospital, and Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
28
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
29
|
A-FABP in Metabolic Diseases and the Therapeutic Implications: An Update. Int J Mol Sci 2021; 22:ijms22179386. [PMID: 34502295 PMCID: PMC8456319 DOI: 10.3390/ijms22179386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Adipocyte fatty acid-binding protein (A-FABP), which is also known as ap2 or FABP4, is a fatty acid chaperone that has been further defined as a fat-derived hormone. It regulates lipid homeostasis and is a key mediator of inflammation. Circulating levels of A-FABP are closely associated with metabolic syndrome and cardiometabolic diseases with imminent diagnostic and prognostic significance. Numerous animal studies have elucidated the potential underlying mechanisms involving A-FABP in these diseases. Recent studies demonstrated its physiological role in the regulation of adaptive thermogenesis and its pathological roles in ischemic stroke and liver fibrosis. Due to its implication in various diseases, A-FABP has become a promising target for the development of small molecule inhibitors and neutralizing antibodies for disease treatment. This review summarizes the clinical and animal findings of A-FABP in the pathogenesis of cardio-metabolic diseases in recent years. The underlying mechanism and its therapeutic implications are also highlighted.
Collapse
|
30
|
Chen MT, Huang JS, Gao DD, Li YX, Wang HY. Combined treatment with FABP4 inhibitor ameliorates rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Basic Clin Pharmacol Toxicol 2021; 129:173-182. [PMID: 34128319 DOI: 10.1111/bcpt.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Rosiglitazone has been reported to exert dual effects on liver steatosis, and it could exacerbate liver steatosis in obese animal models, which was suggested to be closely related to the elevated hepatic expression of FABP4. This study aimed to investigate whether combined treatment with FABP4 inhibitor I-9 could alleviate rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Male C57BL/KsJ-db/db mice were orally treated with rosiglitazone, rosiglitazone combined with I-9 daily for 8 weeks. The liver steatosis was evaluated by triglyceride content and H&E staining. The expression of hepatic lipogenic genes or proteins in liver tissue or in FFA-treated hepatocytes and PMA-stimulated macrophages were determined by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting. Results showed that combined treatment with I-9 decreased rosiglitazone-induced increase in serum FABP4 level and expression of lipogenic genes in liver, especially FABP4, and ameliorated liver steatosis in db/db mice. Rosiglitazone-induced intracellular TG accumulation and increased expression of FABP4 in the cultured hepatocytes and macrophages were also suppressed by combined treatment. We concluded that combined treatment with FABP4 inhibitor I-9 could ameliorate rosiglitazone-exacerbated elevated serum FABP4 level and ectopic liver fat accumulation in obese diabetic db/db mice without affecting its anti-diabetic efficacy.
Collapse
Affiliation(s)
- Meng-Ting Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Shang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Ding Gao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ying-Xia Li
- School of Pharmacy, Fudan University, Shanghai, China
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Lee CH, Lui DTW, Lam KSL. Adipocyte Fatty Acid-Binding Protein, Cardiovascular Diseases and Mortality. Front Immunol 2021; 12:589206. [PMID: 33815359 PMCID: PMC8017191 DOI: 10.3389/fimmu.2021.589206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
It has been increasingly recognized that inflammation plays an important role in the pathogenesis of cardiovascular disease (CVD). In obesity, adipose tissue inflammation, especially in the visceral fat depots, contributes to systemic inflammation and promotes the development of atherosclerosis. Adipocyte fatty acid-binding protein (AFABP), a lipid chaperone abundantly secreted from the adipocytes and macrophages, is one of the key players mediating this adipose-vascular cross-talk, in part via its interaction with c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1) to form a positive feedback loop, and perpetuate inflammatory responses. In mice, selective JNK inactivation in the adipose tissue significantly reduced the expression of AFABP in their adipose tissue, as well as circulating AFABP levels. Importantly, fat transplant experiments showed that adipose-specific JNK inactivation in the visceral fat was sufficient to protect mice with apoE deficiency from atherosclerosis, with the beneficial effects attenuated by the continuous infusion of recombinant AFABP, supporting the role of AFABP as the link between visceral fat inflammation and atherosclerosis. In humans, raised circulating AFABP levels are associated with incident metabolic syndrome, type 2 diabetes and CVD, as well as non-alcoholic steatohepatitis, diabetic nephropathy and adverse renal outcomes, all being conditions closely related to inflammation and enhanced CV mortality. Collectively, these clinical data have provided support to AFABP as an important adipokine linking obesity, inflammation and CVD. This review will discuss recent findings on the role of AFABP in CVD and mortality, the possible underlying mechanisms, and pharmacological inhibition of AFABP as a potential strategy to combat CVD.
Collapse
Affiliation(s)
- Chi-Ho Lee
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| | - David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Karen S L Lam
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
Elevated circulating FABP4 concentration predicts cardiovascular death in a general population: a 12-year prospective study. Sci Rep 2021; 11:4008. [PMID: 33597568 PMCID: PMC7889640 DOI: 10.1038/s41598-021-83494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid-binding protein 4 (FABP4) is secreted from adipose tissue and acts as an adipokine, and an elevated circulating FABP4 level is associated with metabolic disorders and atherosclerosis. However, little is known about the causal link between circulating FABP4 level and mortality in a general population. We investigated the relationship between FABP4 concentration and mortality including cardiovascular death during a 12-year period in subjects of the Tanno-Sobetsu Study, a population-based cohort (n = 721, male/female: 302/419). FABP4 concentration at baseline was significantly higher in female subjects than in male subjects. All-cause death occurred in 123 (male/female: 74/49) subjects, and 34 (male/female: 20/14) and 42 (male/female: 26/16) subjects died of cardiovascular events and cancer, respectively. When divided into 3 groups according to tertiles of FABP4 level at baseline by sex (T1–T3), Kaplan–Meier survival curves showed that there were significant differences in rates of all-cause death and cardiovascular death, but not cancer death, among the groups. Multivariable Cox proportional hazard model analysis with a restricted cubic spline showed that hazard ratio (HR) for cardiovascular death, but not that for all-cause death, significantly increased with a higher FABP4 level at baseline after adjustment of age and sex. The risk of cardiovascular death after adjustment of age, sex, body mass index and levels of brain natriuretic peptide and high-sensitivity C-reactive protein in the 3rd tertile (T3) group (HR: 4.96, 95% confidence interval: 1.20–22.3) was significantly higher than that in the 1st tertile (T1) group as the reference. In conclusion, elevated circulating FABP4 concentration predicts cardiovascular death in a general population.
Collapse
|
33
|
D’Anneo A, Bavisotto CC, Gammazza AM, Paladino L, Carlisi D, Cappello F, de Macario EC, Macario AJL, Lauricella M. Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and practice. Cell Stress Chaperones 2020; 25:805-820. [PMID: 32856199 PMCID: PMC7591661 DOI: 10.1007/s12192-020-01153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors.
Collapse
Affiliation(s)
- Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
34
|
Luz JG, Beigneux AP, Asamoto DK, He C, Song W, Allan CM, Morales J, Tu Y, Kwok A, Cottle T, Meiyappan M, Fong LG, Kim JE, Ploug M, Young SG, Birrane G. The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase. J Lipid Res 2020; 61:1347-1359. [PMID: 32690595 PMCID: PMC7529051 DOI: 10.1194/jlr.ra120000993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For three decades, the LPL-specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.
Collapse
Affiliation(s)
- John G Luz
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jazmin Morales
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam Kwok
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Cottle
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Muthuraman Meiyappan
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company, Lexington, MA, USA
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
35
|
Hu TT, Yu J, Liu K, Du Y, Qu FH, Guo F, Yu LN, Nishibori M, Chen Z, Zhang SH. A crucial role of HMGB1 in orofacial and widespread pain sensitization following partial infraorbital nerve transection. Brain Behav Immun 2020; 88:114-124. [PMID: 32389703 DOI: 10.1016/j.bbi.2020.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ting-Ting Hu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li-Na Yu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Furuhashi M, Sakuma I, Morimoto T, Higashiura Y, Sakai A, Matsumoto M, Sakuma M, Shimabukuro M, Nomiyama T, Arasaki O, Node K, Ueda S. Treatment with anagliptin, a DPP-4 inhibitor, decreases FABP4 concentration in patients with type 2 diabetes mellitus at a high risk for cardiovascular disease who are receiving statin therapy. Cardiovasc Diabetol 2020; 19:89. [PMID: 32539832 PMCID: PMC7296623 DOI: 10.1186/s12933-020-01061-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Fatty acid-binding protein 4 (FABP4) acts as a novel adipokine, and elevated FABP4 concentration is associated with obesity, insulin resistance and atherosclerosis. Dipeptidyl peptidase-4 (DPP-4) inhibitors, a class of antidiabetic drugs, have distinct structures among the drugs, possibly leading to a drug class effect and each drug effect. Sitagliptin, a DPP-4 inhibitor, has been reported to decrease FABP4 concentration in drug-naïve and sulfonylurea-treated patients with type 2 diabetes mellitus. Anagliptin, another DPP-4 inhibitor, was shown to decrease low-density lipoprotein cholesterol (LDL-C) level to a greater extent than that by sitagliptin in the Randomized Evaluation of Anagliptin vs. Sitagliptin On low-density lipoproteiN cholesterol in diabetes (REASON) trial. Aim and methods As a sub-analysis study using data obtained from the REASON trial, we investigated the effects of treatment with anagliptin (n = 148, male/female: 89/59) and treatment with sitagliptin (n = 159, male/female: 93/66) for 52 weeks on FABP4 concentration in patients with type 2 diabetes mellitus at a high risk for cardiovascular events who were receiving statin therapy. Results The DPP-4 inhibitor had been administered in 82% of the patients in the anagliptin group and 81% of the patients in sitagliptin group prior to randomization. Serum FABP4 level was significantly decreased by 7.9% by treatment with anagliptin (P = 0.049) and was not significantly decreased by treatment with sitagliptin (P = 0.660). Change in FABP4 level was independently associated with basal FABP4 level and changes in waist circumference and creatinine after adjustment of age, sex and the treatment group. Conclusion Anagliptin decreases serum FABP4 concentration independent of change in hemoglobin A1c or LDL-C in patients with type 2 diabetes mellitus and dyslipidemia who are on statin therapy. Trial registration ClinicalTrials.gov number NCT02330406. Registered January 5, 2015, https://clinicaltrials.gov/ct2/show/NCT02330406
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South 1, West 16, Sapporo, 060-8543, Japan.
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Sapporo, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South 1, West 16, Sapporo, 060-8543, Japan
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South 1, West 16, Sapporo, 060-8543, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South 1, West 16, Sapporo, 060-8543, Japan
| | - Mio Sakuma
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michio Shimabukuro
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Takashi Nomiyama
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| | - Osamu Arasaki
- Department of Cardiology, Tomishiro Central Hospital, Tomigusuku, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Shinichiro Ueda
- Department of Pharmacology and Therapeutics, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
37
|
Numao S, Nagasawa Y, Goromaru N, Tamaki S. Comparison of plasma fatty acid binding protein 4 concentration in venous and capillary blood. PLoS One 2019; 14:e0226374. [PMID: 31826012 PMCID: PMC6905543 DOI: 10.1371/journal.pone.0226374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022] Open
Abstract
Circulating fatty acid binding protein 4 (FABP4) is associated with various diseases and simple and less invasive techniques for assessment of FABP4 concentration are required in clinical research setting. The purpose of the present study was to assess the correlation of plasma FABP4 concentration between venous and capillary blood in healthy young adults. Twenty-eight healthy young adults aged from 20 to 26 years (mean age, 22.2 ± 1.4 years, 14 males and 14 females) were included. Paired resting blood samples were taken from the cubital vein (venous) and fingertip (capillary) blood. Plasma FABP4 concentration in both blood was analyzed by enzyme-linked Immunosorbent assay. Plasma FABP4 concentration did not differ significantly between venous and capillary blood (−0.11± 0.75 ng/mL, p = 0.447, 95%CI: -0.402–0.182). Pearson’s correlation coefficient for plasma FABP4 concentration between venous and capillary blood samples suggests strong correlation (r = 0.961, p < 0.001). The Bland & Altman plot showed a non-significant bias (−0.11 ± 0.75 ng/mL, p = 0.684) and the 95% limits of agreement ranged from −1.59 to 1.37 ng/mL. FABP4 concentration in both venous and capillary blood was significantly higher in females than in males (venous blood: p = 0.041; capillary blood: p = 0.049). These results suggest that capillary blood sampling can detect gender difference and is useful for the assessment of FABP4 concentration.
Collapse
Affiliation(s)
- Shigeharu Numao
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
- * E-mail:
| | - Yoshinori Nagasawa
- Department of Health and Sports Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | |
Collapse
|
38
|
Abstract
Maintenance of systemic homeostasis and the response to nutritional and environmental challenges require the coordination of multiple organs and tissues. To respond to various metabolic demands, higher organisms have developed a system of inter-organ communication through which one tissue can affect metabolic pathways in a distant tissue. Dysregulation of these lines of communication contributes to human pathologies, including obesity, diabetes, liver disease and atherosclerosis. In recent years, technical advances such as data-driven bioinformatics, proteomics and lipidomics have enabled efforts to understand the complexity of systemic metabolic cross-talk and its underlying mechanisms. Here, we provide an overview of inter-organ signals and their roles in metabolic control, and highlight recent discoveries in the field. We review peptide, small-molecule and lipid mediators secreted by metabolic tissues, as well as the role of the central nervous system in orchestrating peripheral metabolic functions. Finally, we discuss the contributions of inter-organ signalling networks to the features of metabolic syndrome.
Collapse
Affiliation(s)
- Christina Priest
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
40
|
Chung JY, Ain QU, Song Y, Yong SB, Kim YH. Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res 2019; 29:1442-1452. [PMID: 31467027 PMCID: PMC6724665 DOI: 10.1101/gr.246900.118] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
Obesity is an increasing pathophysiological problem in developed societies. Despite all major progress in understanding molecular mechanisms of obesity, currently available anti-obesity drugs have shown limited efficacy with severe side effects. CRISPR interference (CRISPRi) mechanism based on catalytically dead Cas9 (dCas9) and single guide RNA (sgRNA) was combined with a targeted nonviral gene delivery system to treat obesity and obesity-induced type 2 diabetes. A fusion peptide targeting a vascular and cellular marker of adipose tissue, prohibitin, was developed by conjugation of adipocyte targeting sequence (CKGGRAKDC) to 9-mer arginine (ATS-9R). (dCas9/sgFabp4) + ATS-9R oligoplexes showed effective condensation and selective delivery into mature adipocytes. Targeted delivery of the CRISPRi system against Fabp4 to white adipocytes by ATS-9R induced effective silencing of Fabp4, resulting in reduction of body weight and inflammation and restoration of hepatic steatosis in obese mice. This RNA-guided DNA recognition platform provides a simple and safe approach to regress and treat obesity and obesity-induced metabolic syndromes.
Collapse
Affiliation(s)
- Jee Young Chung
- Department of Bioengineering, Institute for Bioengineering and Biopharamceutical Research Hanyang University, 04763 Seoul, South Korea
| | - Qurrat Ul Ain
- Department of Bioengineering, Institute for Bioengineering and Biopharamceutical Research Hanyang University, 04763 Seoul, South Korea
| | - Yoonsung Song
- Department of Bioengineering, Institute for Bioengineering and Biopharamceutical Research Hanyang University, 04763 Seoul, South Korea
- BK21 Plus Future Biopharmaceutical Human Resource Team, Hanyang University, 04763 Seoul, South Korea
| | - Seok-Beom Yong
- Department of Bioengineering, Institute for Bioengineering and Biopharamceutical Research Hanyang University, 04763 Seoul, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharamceutical Research Hanyang University, 04763 Seoul, South Korea
- BK21 Plus Future Biopharmaceutical Human Resource Team, Hanyang University, 04763 Seoul, South Korea
| |
Collapse
|
41
|
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 2019; 15:507-524. [PMID: 31296970 DOI: 10.1038/s41574-019-0230-6] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
In addition to their role in glucose and lipid metabolism, adipocytes respond differentially to physiological cues or metabolic stress by releasing endocrine factors that regulate diverse processes, such as energy expenditure, appetite control, glucose homeostasis, insulin sensitivity, inflammation and tissue repair. Both energy-storing white adipocytes and thermogenic brown and beige adipocytes secrete hormones, which can be peptides (adipokines), lipids (lipokines) and exosomal microRNAs. Some of these factors have defined targets; for example, adiponectin and leptin signal through their respective receptors that are expressed in multiple organs. For other adipocyte hormones, receptors are more promiscuous or remain to be identified. Furthermore, many of these hormones are also produced by other organs and tissues, which makes defining the endocrine contribution of adipose tissues a challenge. In this Review, we discuss the functional role of adipose tissue-derived endocrine hormones for metabolic adaptations to the environment and we highlight how these factors contribute to the development of cardiometabolic diseases. We also cover how this knowledge can be translated into human therapies. In addition, we discuss recent findings that emphasize the endocrine role of white versus thermogenic adipocytes in conditions of health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Josephrajan A, Hertzel AV, Bohm EK, McBurney MW, Imai SI, Mashek DG, Kim DH, Bernlohr DA. Unconventional Secretion of Adipocyte Fatty Acid Binding Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1-Dependent Manner. Diabetes 2019; 68:1767-1777. [PMID: 31171562 PMCID: PMC6702637 DOI: 10.2337/db18-1367] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is a leaderless lipid carrier protein primarily expressed by adipocytes and macrophages that not only functions intracellularly but is also secreted. The secretion is mediated via unconventional mechanism(s), and in a variety of species, metabolic dysfunction is correlated with elevated circulating FABP4 levels. In diabetic animals, neutralizing antibodies targeting serum FABP4 increase insulin sensitivity and attenuate hepatic glucose output, suggesting the functional importance of circulating FABP4. Using animal and cell-based models, we show that FABP4 is secreted from white, but not brown, adipose tissue in response to lipolytic stimulation in a sirtuin-1 (SIRT1)-dependent manner via a mechanism that requires some, but not all, autophagic components. Silencing of early autophagic genes such as Ulk1/2, Fip200, or Beclin-1 or chemical inhibition of ULK1/2 or VPS34 attenuated secretion, while Atg5 knockdown potentiated FABP4 release. Genetic knockout of Sirt1 diminished secretion, and serum FABP4 levels were undetectable in Sirt1 knockout mice. In addition, blocking SIRT1 by EX527 attenuated secretion while activating SIRT1 by resveratrol-potentiated secretion. These studies suggest that FABP4 secretion from adipocytes is regulated by SIRT1 and requires early autophagic components.
Collapse
Affiliation(s)
- Ajeetha Josephrajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ellie K Bohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael W McBurney
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Ottawa, Ontario, Canada
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
43
|
Kim S, Shah SB, Graney PL, Singh A. Multiscale engineering of immune cells and lymphoid organs. NATURE REVIEWS. MATERIALS 2019; 4:355-378. [PMID: 31903226 PMCID: PMC6941786 DOI: 10.1038/s41578-019-0100-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immunoengineering applies quantitative and materials-based approaches for the investigation of the immune system and for the development of therapeutic solutions for various diseases, such as infection, cancer, inflammatory diseases and age-related malfunctions. The design of immunomodulatory and cell therapies requires the precise understanding of immune cell formation and activation in primary, secondary and ectopic tertiary immune organs. However, the study of the immune system has long been limited to in vivo approaches, which often do not allow multidimensional control of intracellular and extracellular processes, and to 2D in vitro models, which lack physiological relevance. 3D models built with synthetic and natural materials enable the structural and functional recreation of immune tissues. These models are being explored for the investigation of immune function and dysfunction at the cell, tissue and organ levels. In this Review, we discuss 2D and 3D approaches for the engineering of primary, secondary and tertiary immune structures at multiple scales. We highlight important insights gained using these models and examine multiscale engineering strategies for the design and development of immunotherapies. Finally, dynamic 4D materials are investigated for their potential to provide stimuli-dependent and context-dependent scaffolds for the generation of immune organ models.
Collapse
Affiliation(s)
- Sungwoong Kim
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Shivem B. Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Pamela L. Graney
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
44
|
Prentice KJ, Saksi J, Hotamisligil GS. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res 2019; 60:734-740. [PMID: 30705117 PMCID: PMC6446704 DOI: 10.1194/jlr.s091793] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 12/15/2022] Open
Abstract
Although counterregulatory hormones and mediators of the fight-or-flight responses are well defined at many levels, how energy stores per se are integrated into this system remains an enigmatic question. Recent years have seen the adipose tissue become a central focus for mediating intracellular signaling and communication through the release of a variety of bioactive lipids and substrates, as well as various adipokines. A critical integration node among these mediators and responses is controlled by FA binding protein 4 (FABP4), also known as adipocyte protein 2 (aP2), which is highly expressed in adipose tissue and functions as a lipid chaperone protein. Recently, it was demonstrated that FABP4 is a secreted hormone that has roles in maintaining glucose homeostasis, representing a key juncture facilitating communication between energy-storage systems and distant organs to respond to life-threatening situations. However, chronic engagement of FABP4 under conditions of immunometabolic stress, such as obesity, exacerbates a number of immunometabolic diseases, including diabetes, asthma, cancer, and atherosclerosis. In both preclinical mouse models and humans, levels of circulating FABP4 have been correlated with metabolic disease incidence, and reducing FABP4 levels or activity is associated with improved metabolic health. In this review, we will discuss the intriguing emerging biology of this protein, including potential therapeutic options for targeting circulating FABP4.
Collapse
Affiliation(s)
- Kacey J Prentice
- Sabri Ülker Center for Metabolic Research Harvard T. H. Chan School of Public Health, Boston, MA; Department of Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jani Saksi
- Sabri Ülker Center for Metabolic Research Harvard T. H. Chan School of Public Health, Boston, MA; Department of Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research Harvard T. H. Chan School of Public Health, Boston, MA; Department of Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA; Broad Institute of Harvard and MIT Cambridge, MA.
| |
Collapse
|
45
|
Liang X, Gupta K, Quintero JR, Cernadas M, Kobzik L, Christou H, Pier GB, Owen CA, Çataltepe S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB J 2019; 33:3562-3574. [PMID: 30462529 PMCID: PMC6988858 DOI: 10.1096/fj.201802002r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 01/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4), an intracellular lipid chaperone and adipokine, is expressed by lung macrophages, but the function of macrophage-FABP4 remains elusive. We investigated the role of FABP4 in host defense in a murine model of Pseudomonas aeruginosa pneumonia. Compared with wild-type (WT) mice, FABP4-deficient (FABP4-/-) mice exhibited decreased bacterial clearance and increased mortality when challenged intranasally with P. aeruginosa. These findings in FABP4-/- mice were associated with a delayed neutrophil recruitment into the lungs and were followed by greater acute lung injury and inflammation. Among leukocytes, only macrophages expressed FABP4 in WT mice with P. aeruginosa pneumonia. Chimeric FABP4-/- mice with WT bone marrow were protected from increased mortality seen in chimeric WT mice with FABP4-/- bone marrow during P. aeruginosa pneumonia, thus confirming the role of macrophages as the main source of protective FABP4 against that infection. There was less production of C-X-C motif chemokine ligand 1 (CXCL1) in FABP4-/- alveolar macrophages and lower airway CXCL1 levels in FABP4-/- mice. Delivering recombinant CXCL1 to the airways protected FABP4-/- mice from increased susceptibility to P. aeruginosa pneumonia. Thus, macrophage-FABP4 has a novel role in pulmonary host defense against P. aeruginosa infection by facilitating crosstalk between macrophages and neutrophils via regulation of macrophage CXCL1 production.-Liang, X., Gupta, K., Rojas Quintero, J., Cernadas, M., Kobzik, L., Christou, H., Pier, G. B., Owen, C. A., Çataltepe, S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuela Cernadas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Sule Çataltepe
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperones, contribute to systemic metabolic regulation via several lipid signaling pathways. Fatty acid-binding protein 4 (FABP4), known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays important roles in the development of insulin resistance and atherosclerosis in relation to metabolically driven low-grade and chronic inflammation, referred to as ‘metaflammation’. FABP4 is secreted from adipocytes in a non-classical pathway associated with lipolysis and acts as an adipokine for the development of insulin resistance and atherosclerosis. Circulating FABP4 levels are associated with several aspects of metabolic syndrome and cardiovascular disease. Ectopic expression and function of FABP4 in cells and tissues are also related to the pathogenesis of several diseases. Pharmacological modification of FABP4 function by specific inhibitors, neutralizing antibodies or antagonists of unidentified receptors would be novel therapeutic strategies for several diseases, including obesity, diabetes mellitus, atherosclerosis and cardiovascular disease. Significant roles of FABP4 as a lipid chaperone in physiological and pathophysiological conditions and the possibility of FABP4 being a therapeutic target for metabolic and cardiovascular diseases are discussed in this review.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
47
|
Xiao Y, Xiao X, Xu A, Chen X, Tang W, Zhou Z. Circulating adipocyte fatty acid-binding protein levels predict the development of subclinical atherosclerosis in type 2 diabetes. J Diabetes Complications 2018; 32:1100-1104. [PMID: 30314766 DOI: 10.1016/j.jdiacomp.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the prospective association of circulating adipocyte fatty acid-binding protein (A-FABP) levels with the development of subclinical atherosclerosis in patients with type 2 diabetes in an 8-year prospective study. METHODS A total of 170 patients with newly diagnosed type 2 diabetes were recruited in the study and 133 patients completed the follow-up of 8 years. Baseline plasma A-FABP levels were measured with enzyme-linked immunosorbent assays. The role of A-FABP in predicting the development of subclinical atherosclerosis over 8 years was analyzed using multiple logistic regression. RESULTS Of the 133 patients without subclinical atherosclerosis at baseline, a total of 100 had progressed to subclinical atherosclerosis over 8 years. Baseline A-FABP level was significantly higher in patients who had progressed to subclinical atherosclerosis at year 8 compared with ones who had not developed subclinical atherosclerosis after adjustment for sex (15.3 [12.1-23.2] versus 13.3 [10.0-18.9] ng/ml, P = 0.021). High baseline A-FABP level was an independent predictor for the development of subclinical atherosclerosis in patients with type 2 diabetes (odds ratio: 16.24, P = 0.022). CONCLUSIONS Circulating A-FABP levels predict the development of subclinical atherosclerosis in type 2 diabetes patients.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| | - Xiaoyu Xiao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| | - Xiaoyan Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120, China.
| | - Weili Tang
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China.
| |
Collapse
|
48
|
Hao J, Zhang Y, Yan X, Yan F, Sun Y, Zeng J, Waigel S, Yin Y, Fraig MM, Egilmez NK, Suttles J, Kong M, Liu S, Cleary MP, Sauter E, Li B. Circulating Adipose Fatty Acid Binding Protein Is a New Link Underlying Obesity-Associated Breast/Mammary Tumor Development. Cell Metab 2018; 28:689-705.e5. [PMID: 30100196 PMCID: PMC6221972 DOI: 10.1016/j.cmet.2018.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/24/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
It is clear that obesity increases the risk of many types of cancer, including breast cancer. However, the underlying molecular mechanisms by which obesity is linked to cancer risk remain to be defined. Herein, we report that circulating adipose fatty acid binding protein (A-FABP) promotes obesity-associated breast cancer development. Using clinical samples, we demonstrated that circulating A-FABP levels were significantly increased in obese patients with breast cancer in comparison with those without breast cancer. Circulating A-FABP released by adipose tissue directly targeted mammary tumor cells, enhancing tumor stemness and aggressiveness through activation of the IL-6/STAT3/ALDH1 pathway. Importantly, genetic deletion of A-FABP successfully reduced tumor ALHD1 activation and obesity-associated mammary tumor growth and development in different mouse models. Collectively, these data suggest circulating A-FABP as a new link between obesity and breast cancer risk, thereby revealing A-FABP as a potential new therapeutic target for treatment of obesity-associated cancers.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Yuwen Zhang
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Fei Yan
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yanwen Sun
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sabine Waigel
- Genomics Facility and Life Tech Supply Center, University of Louisville, Louisville, KY, USA
| | - Yanhui Yin
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Mostafa M Fraig
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Edward Sauter
- Hartford Healthcare Cancer Institute, Hartford, CT, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
49
|
Serum FABP4 concentrations decrease after Roux-en-Y gastric bypass but not after intensive medical management. Surgery 2018; 165:571-578. [PMID: 30287050 DOI: 10.1016/j.surg.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Serum concentrations of fatty acid binding protein 4, an adipose tissue fatty acid chaperone, have been correlated with insulin resistance and cardiovascular risk factors. The objective of this study were to assess relationships among Roux-en-Y gastric bypass, intensive lifestyle modification and medical management protocol, fatty acid binding protein 4, and metabolic parameters in obese patients with severe type 2 diabetes mellitus; and to evaluate the relative contribution of abdominal subcutaneous adipose and visceral adipose to the secretion of fatty acid binding protein 4. METHODS Participants were randomly assigned to intensive lifestyle modification and medical management protocol (n = 29) or to intensive lifestyle modification and medical management protocol augmented with Roux-en-Y gastric bypass (n = 34). Relationships among fatty acid binding protein 4 and demographic characteristics, metabolic parameters, and 12-month changes in these values were examined. Visceral and subcutaneous adipose tissue explants from obese nondiabetic patients (n = 5) were obtained and treated with forskolin to evaluate relative secretion of fatty acid binding protein 4 in the different adipose tissue depots. RESULTS The intensive lifestyle modification and medical management protocol and Roux-en-Y gastric bypass cohorts had similar fasting serum fatty acid binding protein 4 concentrations at baseline. At 1 year, mean serum fatty acid binding protein 4 decreased by 42% in Roux-en-Y gastric bypass participants (P = .002) but did not change significantly in the intensive lifestyle modification and medical management protocol cohort. Percentage of weight change was not a significant predictor of 12-month fatty acid binding protein 4 within treatment arm or in multivariate models adjusted for treatment arm. In adipose tissue explants, fatty acid binding protein 4 was secreted similarly between visceral and subcutaneous adipose tissue. CONCLUSION After Roux-en-Y gastric bypass, fatty acid binding protein 4 is reduced 12 months after surgery but not after intensive lifestyle modification and medical management protocol in patients with type 2 diabetes mellitus. Fatty acid binding protein 4 was secreted similarly between subcutaneous and visceral adipose tissue explants.
Collapse
|
50
|
Gagliano-Jucá T, Burak MF, Pencina KM, Li Z, Edwards RR, Travison TG, Basaria S. Metabolic Changes in Androgen-Deprived Nondiabetic Men With Prostate Cancer Are Not Mediated by Cytokines or aP2. J Clin Endocrinol Metab 2018; 103:3900-3908. [PMID: 30032274 PMCID: PMC6179166 DOI: 10.1210/jc.2018-01068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
Context Androgen deprivation therapy (ADT) remains the cornerstone of management of prostate cancer (PCa). Previous studies have shown that men undergoing ADT develop insulin resistance and diabetes, but the mechanisms behind ADT-induced metabolic abnormalities remain unclear. Objective To evaluate the role of inflammatory cytokines and adipocyte protein-2 (aP2) in ADT-induced metabolic dysfunction. Participants and Interventions This 6-month prospective cohort study enrolled nondiabetic men with PCa about to undergo ADT (ADT group) and a control group of nondiabetic men who had previously undergone prostatectomy for localized PCa and were in remission (non-ADT group); all participants had normal testosterone at study entry. Fasting blood samples were collected at baseline and at 6, 12, and 24 weeks after initiation of ADT and at the same intervals in the non-ADT group. Glucose, insulin, lipids, inflammatory cytokines, and C-reactive protein were measured. We also measured serum aP2, an adipocyte-secreted protein that promotes hepatic glucose production. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. Results Seventy-three participants formed the analytical sample (33 ADT, 40 non-ADT). HOMA-IR increased in the ADT group (estimated change = 0.25; P = 0.05), but was unchanged in the non-ADT group (0.11; P = 0.342). Serum concentrations of inflammatory cytokines or aP2 did not change significantly. There was a treatment-associated increase in total (16 mg/dL; P < 0.001), high-density lipoprotein (8 mg/dL; P < 0.001), and low-density lipoprotein (7 mg/dL; P = 0.02) cholesterol. Conclusion ADT-induced metabolic abnormalities were not associated with changes in circulating inflammatory cytokines or aP2 levels.
Collapse
Affiliation(s)
- Thiago Gagliano-Jucá
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - M Furkan Burak
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karol M Pencina
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhuoying Li
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert R Edwards
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Shehzad Basaria
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|