1
|
Devianto LA, Amarasiri M, Wang L, Iizuka T, Sano D. Identification of protein biomarkers in wastewater linked to the incidence of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175649. [PMID: 39168326 DOI: 10.1016/j.scitotenv.2024.175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Wastewater-based epidemiological (WBE) surveillance is a viable disease surveillance technique capable of monitoring the spread of infectious disease agents in sewershed communities. In addition to detecting viral genomes in wastewater, WBE surveillance can identify other endogenous biomarkers that are significantly elevated and excreted in the saliva, urine, and/or stool of infected individuals. Human protein biomarkers allow the realization of real-time WBE surveillance using highly sensitive biosensors. In this study, we analyzed endogenous protein biomarkers present in wastewater influent through liquid chromatography-tandem mass spectrophotometry and scaffold data-independent acquisition to identify candidate target protein biomarkers for WBE surveillance of SARS-CoV-2. We found that out of the 1382 proteins observed in the wastewater samples, 44 were human proteins associated with infectious diseases. These included immune response substances such as immunoglobulins, cytokine-chemokines, and complements, as well as proteins belonging to antimicrobial and antiviral groups. A significant correlation was observed between the intensity of human infectious disease-related protein biomarkers in wastewater and COVID-19 case numbers. Real-time WBE surveillance using biosensors targeting immune response proteins, such as antibodies or immunoglobulins, in wastewater holds promise for expediting the implementation of relevant policies for the effective prevention of infectious diseases in the near future.
Collapse
Affiliation(s)
- Luhur Akbar Devianto
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Environmental Engineering, Faculty of Agriculture Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Luyao Wang
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takehito Iizuka
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Wastewater Information Research Center, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
2
|
Kister I, Curtin R, Piquet AL, Borko T, Pei J, Banbury BL, Bacon TE, Kim A, Tuen M, Velmurugu Y, Nyovanie S, Selva S, Samanovic MI, Mulligan MJ, Patskovsky Y, Priest J, Cabatingan M, Winger RC, Krogsgaard M, Silverman GJ. Longitudinal study of immunity to SARS-CoV2 in ocrelizumab-treated MS patients up to 2 years after COVID-19 vaccination. Ann Clin Transl Neurol 2024; 11:1750-1764. [PMID: 38713096 PMCID: PMC11251481 DOI: 10.1002/acn3.52081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVES (1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- COVID-19/prevention & control
- Male
- Female
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Adult
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Longitudinal Studies
- SARS-CoV-2/immunology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/drug therapy
- Antibodies, Viral/blood
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunity, Cellular/drug effects
- Vaccination
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- BNT162 Vaccine/administration & dosage
- BNT162 Vaccine/immunology
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Amanda L. Piquet
- Rocky Mountain MS CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Tyler Borko
- Rocky Mountain MS CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Jinglan Pei
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Tamar E. Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Angie Kim
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Michael Tuen
- NYU Langone Vaccine Center and Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Sean Selva
- Rocky Mountain MS CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Marie I. Samanovic
- NYU Langone Vaccine Center and Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Mark J. Mulligan
- NYU Langone Vaccine Center and Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | | | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Gregg J. Silverman
- Division of Rheumatology, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
3
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
- Sophie L Gray-Gaillard
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sabrina M Solis
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Han M Chen
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber R Cornelius
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ellie N Ivanova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Warner BM, Yates JGE, Vendramelli R, Truong T, Meilleur C, Chan L, Leacy A, Pham PH, Pei Y, Susta L, Wootton SK, Kobasa D. Intranasal vaccination with an NDV-vectored SARS-CoV-2 vaccine protects against Delta and Omicron challenges. NPJ Vaccines 2024; 9:90. [PMID: 38782986 PMCID: PMC11116387 DOI: 10.1038/s41541-024-00870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 05/25/2024] Open
Abstract
The rapid development and deployment of vaccines following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to have saved millions of lives. Despite their immense success, there remains a need for next-generation vaccination approaches for SARS-CoV-2 and future emerging coronaviruses and other respiratory viruses. Here we utilized a Newcastle Disease virus (NDV) vectored vaccine expressing the ancestral SARS-CoV-2 spike protein in a pre-fusion stabilized chimeric conformation (NDV-PFS). When delivered intranasally, NDV-PFS protected both Syrian hamsters and K18 mice against Delta and Omicron SARS-CoV-2 variants of concern. Additionally, intranasal vaccination induced robust, durable protection that was extended to 6 months post-vaccination. Overall, our data provide evidence that NDV-vectored vaccines represent a viable next-generation mucosal vaccination approach.
Collapse
Affiliation(s)
- Bryce M Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Thang Truong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Courtney Meilleur
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Phuc H Pham
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
5
|
Cavalera S, Di Nardo F, Serra T, Testa V, Baggiani C, Rosati S, Colitti B, Brienza L, Colasanto I, Nogarol C, Cosseddu D, Guiotto C, Anfossi L. A semi-quantitative visual lateral flow immunoassay for SARS-CoV-2 antibody detection for the follow-up of immune response to vaccination or recovery. J Mater Chem B 2024; 12:2139-2149. [PMID: 38315042 DOI: 10.1039/d3tb02895j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The lateral flow immunoassay (LFIA) technique is largely employed for the point-of-care detection of antibodies especially for revealing the immune response in serum. Visual LFIAs usually provide the qualitative yes/no detection of antibodies, while quantification requires some equipment, making the assay more expensive and complicated. To achieve visual semi-quantification, the alignment of several lines (made of the same antigen) along a LFIA strip has been proposed. The numbering of the reacting lines has been used to correlate with the quantity of some biomarkers in serum. Here, we designed the first semiquantitative LFIA for detecting antibodies and applied it to classify the immune response to SARS-CoV-2 raised by vaccination or natural infection. We used a recombinant spike receptor-binding domain (RBD) as the specific capture reagent to draw two test lines. The detection reagent was selected among three possible ligands that are able to bind to anti-spike human antibodies: the same RBD, staphylococcal protein A, and anti-human immunoglobulin G antibodies. The most convenient detector, adsorbed on gold nanoparticles, was chosen based on the highest correlation with an antibody titre of 171 human sera, measured by a reference serological method, and was the RBD (Spearman's rho = 0.84). Incorporated into the semiquantitative LFIA, it confirmed the ability to discriminate high- and low-titre samples and to classify them into two classes (Dunn's test, P < 0.05). The proposed approach enabled the semiquantification of the immune response to SARS-CoV-2 by the unaided eye observation, thus overcoming the requirement of costly and complicated equipment, and represents a general strategy for the development of semiquantitative serological LFIAs.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Thea Serra
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Valentina Testa
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Ludovica Brienza
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Irene Colasanto
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Chiara Nogarol
- In3diagnostic srl, Largo Braccini 2, Grugliasco (TO), Italy
| | - Domenico Cosseddu
- A.O. Ordine Mauriziano, Ospedale Umberto I di Torino, Via Magellano 1, Turin, Italy
| | - Cristina Guiotto
- A.O. Ordine Mauriziano, Ospedale Umberto I di Torino, Via Magellano 1, Turin, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| |
Collapse
|
6
|
Smith KA, Zúñiga TM, Baker FL, Batatinha H, Pedlar CR, Burgess SC, Gustafson MP, Katsanis E, Simpson RJ. COVID-19 vaccination produces exercise-responsive SARS-CoV-2 specific T-cells regardless of infection history. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:99-107. [PMID: 37399887 PMCID: PMC10818112 DOI: 10.1016/j.jshs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/24/2023] [Accepted: 05/08/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND The mobilization and redistribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific T-cells and neutralizing antibodies (nAbs) during exercise is purported to increase immune surveillance and protect against severe coronavirus disease 2019 (COVID-19). We sought to determine if COVID-19 vaccination would elicit exercise-responsive SARS-CoV-2 T-cells and transiently alter nAb titers. METHODS Eighteen healthy participants completed a 20-min bout of graded cycling exercise before and/or after receiving a COVID-19 vaccine. All major leukocyte subtypes were enumerated before, during, and after exercise by flow cytometry, and immune responses to SARS-CoV-2 were determined using whole blood peptide stimulation assays, T-cell receptor (TCR)-β sequencing, and SARS-CoV-2 nAb serology. RESULTS COVID-19 vaccination had no effect on the mobilization or egress of major leukocyte subsets in response to intensity-controlled graded exercise. However, non-infected participants had a significantly reduced mobilization of CD4+ and CD8+ naive T-cells, as well as CD4+ central memory T-cells, after vaccination (synthetic immunity group); this was not seen after vaccination in those with prior SARS-CoV-2 infection (hybrid immunity group). Acute exercise after vaccination robustly mobilized SARS-CoV-2 specific T-cells to blood in an intensity-dependent manner. Both groups mobilized T-cells that reacted to spike protein; however, only the hybrid immunity group mobilized T-cells that reacted to membrane and nucleocapsid antigens. nAbs increased significantly during exercise only in the hybrid immunity group. CONCLUSION These data indicate that acute exercise mobilizes SARS-CoV-2 specific T-cells that recognize spike protein and increases the redistribution of nAbs in individuals with hybrid immunity.
Collapse
Affiliation(s)
- Kyle A Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| | - Tiffany M Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| | - Forrest L Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA; Department of Pediatrics, The University of Arizona, Tucson, AZ 85724, USA
| | - Helena Batatinha
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| | - Charles R Pedlar
- Faculty of Sport, Allied Health and Performance Science, St. Mary's University, Twickenham TW1 4SX, UK; Institute of Sport Exercise and Health, University College London, London WC1E 7HU, UK
| | - Shane C Burgess
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85719, USA
| | - Michael P Gustafson
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, AZ 85724, USA; The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85719, USA; Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA; Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA; Department of Pathology, The University of Arizona, Tucson, AZ 85724, USA
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA; Department of Pediatrics, The University of Arizona, Tucson, AZ 85724, USA; Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA; Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
7
|
Ali NM, Herati RS, Mehta SA, Leonard J, Miles J, Lonze BE, DiMaggio C, Tatapudi VS, Stewart ZA, Alnazari N, Neumann HJ, Thomas J, Cartiera K, Weldon E, Michael J, Hickson C, Whiteson H, Khalil K, Stern JM, Allen JR, Tuen M, Gray-Gaillard SL, Solis SM, Samanovic MI, Mulligan MJ, Montgomery RA. Immune response, phenotyping and molecular graft surveillance in kidney transplant recipients following severe acute respiratory syndrome coronavirus 2 vaccination. Transpl Infect Dis 2023; 25:e14122. [PMID: 37707287 DOI: 10.1111/tid.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Understanding immunogenicity and alloimmune risk following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in kidney transplant recipients is imperative to understanding the correlates of protection and to inform clinical guidelines. METHODS We studied 50 kidney transplant recipients following SARS-CoV-2 vaccination and quantified their anti-spike protein antibody, donor-derived cell-free DNA (dd-cfDNA), gene expression profiling (GEP), and alloantibody formation. RESULTS Participants were stratified using nucleocapsid testing as either SARS-CoV-2-naïve or experienced prior to vaccination. One of 34 (3%) SARS-CoV-2 naïve participants developed anti-spike protein antibodies. In contrast, the odds ratio for the association of a prior history of SARS-CoV-2 infection with vaccine response was 18.3 (95% confidence interval 3.2, 105.0, p < 0.01). Pre- and post-vaccination levels did not change for median dd-cfDNA (0.23% vs. 0.21% respectively, p = 0.13), GEP scores (9.85 vs. 10.4 respectively, p = 0.45), calculated panel reactive antibody, de-novo donor specific antibody status, or estimated glomerular filtration rate. CONCLUSIONS SARS-CoV-2 vaccines do not appear to trigger alloimmunity in kidney transplant recipients. The degree of vaccine immunogenicity was associated most strongly with a prior history of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicole M Ali
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ramin S Herati
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Sapna A Mehta
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Jake Miles
- Medical Affairs, CareDx, Inc, Brisbane, California, USA
| | - Bonnie E Lonze
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Charles DiMaggio
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Vasishta S Tatapudi
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Zoe A Stewart
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Henry J Neumann
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Jeffrey Thomas
- NYU Langone Transplant Institute, New York, New York, USA
| | | | - Elaina Weldon
- NYU Langone Transplant Institute, New York, New York, USA
| | | | | | | | - Karen Khalil
- NYU Langone Transplant Institute, New York, New York, USA
| | - Jeffrey M Stern
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Joseph R Allen
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael Tuen
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Sabrina M Solis
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Marie I Samanovic
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Mark J Mulligan
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Robert A Montgomery
- NYU Langone Transplant Institute, New York, New York, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
de Vries M, Ciabattoni GO, Rodriguez-Rodriguez BA, Crosse KM, Papandrea D, Samanovic MI, Dimartino D, Marier C, Mulligan MJ, Heguy A, Desvignes L, Duerr R, Dittmann M. Generation of quality-controlled SARS-CoV-2 variant stocks. Nat Protoc 2023; 18:3821-3855. [PMID: 37833423 DOI: 10.1038/s41596-023-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023]
Abstract
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
Collapse
Affiliation(s)
- Maren de Vries
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Keaton M Crosse
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Dominick Papandrea
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ludovic Desvignes
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Duerr R, Dimartino D, Marier C, Zappile P, Wang G, François F, Ortigoza MB, Iturrate E, Samanovic MI, Mulligan MJ, Heguy A. Selective adaptation of SARS-CoV-2 Omicron under booster vaccine pressure: a multicentre observational study. EBioMedicine 2023; 97:104843. [PMID: 37866115 PMCID: PMC10623172 DOI: 10.1016/j.ebiom.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, USA; Department of Medicine, NYU Grossman School of Medicine, USA; Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA.
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health, USA
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health, USA
| | - Paul Zappile
- Genome Technology Center, Office of Science and Research, NYU Langone Health, USA
| | - Guiqing Wang
- Department of Pathology, NYU Grossman School of Medicine, USA
| | - Fritz François
- Department of Medicine, NYU Grossman School of Medicine, USA
| | - Mila B Ortigoza
- Department of Microbiology, NYU Grossman School of Medicine, USA; Department of Medicine, NYU Grossman School of Medicine, USA
| | | | - Marie I Samanovic
- Department of Medicine, NYU Grossman School of Medicine, USA; Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- Department of Microbiology, NYU Grossman School of Medicine, USA; Department of Medicine, NYU Grossman School of Medicine, USA; Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health, USA; Department of Pathology, NYU Grossman School of Medicine, USA.
| |
Collapse
|
10
|
Föhse K, Geckin B, Zoodsma M, Kilic G, Liu Z, Röring RJ, Overheul GJ, van de Maat J, Bulut O, Hoogerwerf JJ, Ten Oever J, Simonetti E, Schaal H, Adams O, Müller L, Ostermann PN, van de Veerdonk FL, Joosten LAB, Haagmans BL, van Crevel R, van Rij RP, GeurtsvanKessel C, de Jonge MI, Li Y, Domínguez-Andrés J, Netea MG. The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses. Clin Immunol 2023; 255:109762. [PMID: 37673225 DOI: 10.1016/j.clim.2023.109762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Büsra Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn Zoodsma
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zhaoli Liu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Josephine van de Maat
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacobien J Hoogerwerf
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Roux HM, Marouf A, Dutrieux J, Charmeteau-De Muylder B, Figueiredo-Morgado S, Avettand-Fenoel V, Cuvelier P, Naudin C, Bouaziz F, Geri G, Couëdel-Courteille A, Squara P, Marullo S, Cheynier R. Genetically determined thymic function affects strength and duration of immune response in COVID patients with pneumonia. SCIENCE ADVANCES 2023; 9:eadh7969. [PMID: 37738336 PMCID: PMC10516486 DOI: 10.1126/sciadv.adh7969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Thymic activation improves the outcome of COVID-19 patients with severe pneumonia. The rs2204985 genetic polymorphism within the TCRA-TCRD locus, which affects thymic output in healthy individuals, was found here to modify SARS-CoV-2-specific immunity and disease severity in COVID-19 patients with severe pneumonia. Forty patients with severe COVID-19 pneumonia were investigated. The GG genotype at the rs2204985 locus was associated, independently of age and sex, with stronger and long-lasting anti-SARS-CoV-2 helper and cytotoxic T cell responses 6 months after recovery. The GG genotype was also associated with less severe lung involvement, higher thymic production, and higher counts of blood naïve T lymphocytes, including recent thymic emigrants, and a larger population of activated stem cell memory CD4+ T cells. Overall, GG patients developed a more robust and sustained immunity to SARS-CoV-2. Polymorphism at rs2204985 locus should be considered as an additional predictive marker of anti-SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Hélène M. Roux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Amira Marouf
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Département Recherche Innovation, 92200, Neuilly-Sur-Seine, France
| | - Jacques Dutrieux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | | | | | - Véronique Avettand-Fenoel
- Université Paris Cité, Faculté de médecine, Institut Cochin-CNRS 8104/INSERM U1016 AP-HP, Service de Virologie, Hôpital Cochin, Paris, France
| | - Pelagia Cuvelier
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Département Recherche Innovation, 92200, Neuilly-Sur-Seine, France
| | - Cécile Naudin
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Département Recherche Innovation, 92200, Neuilly-Sur-Seine, France
| | - Fatma Bouaziz
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Département Recherche Innovation, 92200, Neuilly-Sur-Seine, France
| | - Guillaume Geri
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Département Recherche Innovation, 92200, Neuilly-Sur-Seine, France
| | | | - Pierre Squara
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Département Recherche Innovation, 92200, Neuilly-Sur-Seine, France
| | - Stefano Marullo
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Rémi Cheynier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| |
Collapse
|
12
|
Krause RGE, Moyo-Gwete T, Richardson SI, Makhado Z, Manamela NP, Hermanus T, Mkhize NN, Keeton R, Benede N, Mennen M, Skelem S, Karim F, Khan K, Riou C, Ntusi NAB, Goga A, Gray G, Hanekom W, Garrett N, Bekker LG, Groll A, Sigal A, Moore PL, Burgers WA, Leslie A. Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells. NPJ Vaccines 2023; 8:119. [PMID: 37573434 PMCID: PMC10423246 DOI: 10.1038/s41541-023-00724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.
Collapse
Affiliation(s)
- Robert G E Krause
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A B Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Ameena Goga
- South African Medical Research Council, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, 4001, South Africa
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Nigel Garrett
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Desmond Tutu HIV Centre, Cape Town, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Alex Sigal
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, 4001, South Africa.
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Azarias Da Silva M, Nioche P, Soudaramourty C, Bull-Maurer A, Tiouajni M, Kong D, Zghidi-Abouzid O, Picard M, Mendes-Frias A, Santa-Cruz A, Carvalho A, Capela C, Pedrosa J, Castro AG, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Tran TA, Tokunaga K, Silvestre R, Corbeau P, Mammano F, Estaquier J. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. SCIENCE ADVANCES 2023; 9:eadg2122. [PMID: 37540749 PMCID: PMC10403221 DOI: 10.1126/sciadv.adg2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.
Collapse
Affiliation(s)
| | - Pierre Nioche
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | | | | | - Mounira Tiouajni
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Dechuan Kong
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Santa-Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Loubet
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Albert Sotto
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Laurent Muller
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Claire Roger
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Sandra Duvnjak
- Service de Gérontologie et Prévention du Vieillissement, CHU de Nîmes, Nîmes, France
| | - Tu-Anh Tran
- Service de Pédiatrie, CHU de Nîmes, Nîmes, France
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pierre Corbeau
- Institut de Génétique Humaine, UMR9002 CNRS-Université de Montpellier, Montpellier, France
- Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | - Fabrizio Mammano
- INSERM-U1124, Université Paris Cité, Paris, France
- Université de Tours, INSERM, UMR1259 MAVIVH, Tours, France
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France
- CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
| |
Collapse
|
14
|
Lopes de Assis F, Hoehn KB, Zhang X, Kardava L, Smith CD, El Merhebi O, Buckner CM, Trihemasava K, Wang W, Seamon CA, Chen V, Schaughency P, Cheung F, Martins AJ, Chiang CI, Li Y, Tsang JS, Chun TW, Kleinstein SH, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep 2023; 42:112780. [PMID: 37440409 PMCID: PMC10529190 DOI: 10.1016/j.celrep.2023.112780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.
Collapse
Affiliation(s)
- Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor D Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Microbiology and Immunology and Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Boyd MAA, Carey Hoppe A, Kelleher AD, Munier CML. T follicular helper cell responses to SARS-CoV-2 vaccination among healthy and immunocompromised adults. Immunol Cell Biol 2023; 101:504-513. [PMID: 36825370 PMCID: PMC10952589 DOI: 10.1111/imcb.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.
Collapse
Affiliation(s)
| | - Alexandra Carey Hoppe
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
- St Vincent's HospitalSydneyNSW2010Australia
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| |
Collapse
|
16
|
Gil-Bescós R, Ostiz A, Zalba S, Tamayo I, Bandrés E, Rojas-de-Miguel E, Redondo M, Zabalza A, Ramírez N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci Alliance 2023; 6:e202201759. [PMID: 36941056 PMCID: PMC10027900 DOI: 10.26508/lsa.202201759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The development of new therapies for COVID-19 high-risk patients remains necessary to prevent additional deaths. Here, we studied the phenotypical and functional characteristics of IFN-γ producing-SARS-CoV-2-specific T cells (SC2-STs), obtained from 12 COVID-19 convalescent donors, to determine their potency as an off-the-shelf T cell therapy product. We found that these cells present mainly an effector memory phenotype, characterized by the basal expression of cytotoxicity and activation markers, including granzyme B, perforin, CD38, and PD-1. We demonstrated that SC2-STs could be expanded and isolated in vitro, and they exhibited peptide-specific cytolytic and proliferative responses after antigenic re-challenge. Collectively, these data demonstrate that SC2-STs can be a suitable candidate for the manufacture of a T cell therapy product aimed to treat severe COVID-19.
Collapse
Affiliation(s)
- Rubén Gil-Bescós
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Ainhoa Ostiz
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Saioa Zalba
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Unit of Methodology, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, IdiSNA, Pamplona, Spain
- Red de Investigación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Pamplona, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Pamplona, Spain
| | - Eva Bandrés
- Immunology Service, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Elvira Rojas-de-Miguel
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Margarita Redondo
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
17
|
Gray-Gaillard SL, Solis S, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. Inflammation durably imprints memory CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.11.15.516351. [PMID: 36415470 PMCID: PMC9681040 DOI: 10.1101/2022.11.15.516351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.
Collapse
Affiliation(s)
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| |
Collapse
|
18
|
Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int J Mol Sci 2023; 24:ijms24065944. [PMID: 36983017 PMCID: PMC10051235 DOI: 10.3390/ijms24065944] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer-BioNTech and Moderna developed updated bivalent vaccines-Comirnaty and Spikevax-to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.
Collapse
Affiliation(s)
- Miriam Echaide
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Luisa Chocarro de Erauso
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| |
Collapse
|
19
|
Fernandes MDCR, Vasconcelos GS, de Melo ACL, Matsui TC, Caetano LF, de Carvalho Araújo FM, Fonseca MHG. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol Immunol 2023; 156:148-155. [PMID: 36921489 PMCID: PMC9998295 DOI: 10.1016/j.molimm.2023.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Vaccines induce specific long-term immunological memory against pathogens, preventing the worsening of diseases. The COVID-19 health emergency has caused more than 6 million deaths and started a race for vaccine development. Antibody response to COVID-19 vaccines has been investigated primarily in healthcare workers. The heterogeneity of immune responses and the behavior of this response in particular groups were still very little explored. In this review, we discuss whether antibody responses after vaccination are influenced by age, gender, previous SARS-CoV-2 infection, or pre-existing diseases.
Collapse
|
20
|
Baek YJ, Kim WJ, Ko JH, Lee YJ, Ahn JY, Kim JH, Jang HC, Jeong HW, Kim YC, Park YS, Kim SH, Peck KR, Shin EC, Choi JY. A heterologous AZD1222 priming and BNT162b2 boosting regimen more efficiently elicits neutralizing antibodies, but not memory T cells, than the homologous BNT162b2 regimen. Vaccine 2023; 41:1694-1702. [PMID: 36754764 PMCID: PMC9901539 DOI: 10.1016/j.vaccine.2023.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/28/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Comparative analyses of SARS-CoV-2-specific immune responses elicited by diverse prime-boost regimens are required to establish efficient regimens for the control of COVID-19. METHOD In this prospective observational cohort study, spike-specific immunoglobulin G (IgG) and neutralizing antibodies (nAbs) alongside spike-specific T-cell responses in age-matched groups of homologous BNT162b2/BNT162b2 or AZD1222/AZD1222 vaccination, heterologous AZD1222/BNT162b2 vaccination, and prior wild-type SARS-CoV-2 infection/vaccination were evaluated. RESULTS Peak immune responses were achieved after the second vaccine dose in the naïve vaccinated groups and after the first dose in the prior infection/vaccination group. Peak titers of anti-spike IgG and nAb were significantly higher in the AZD1222/BNT162b2 vaccination and prior infection/vaccination groups than in the BNT162b2/BNT162b2 or AZD1222/AZD1222 groups. However, the frequency of interferon-γ-producing CD4+ T cells was highest in the BNT162b2/BNT162b2 vaccination group. Similar results were observed in the analysis of polyfunctional T cells. When nAb and CD4+T-cell responses against the Delta variant were analyzed, the prior infection/vaccination group exhibited higher responses than the groups of other homologous or heterologous vaccination regimens. CONCLUSION nAbs are efficiently elicited by heterologous AZD1222/BNT162b2 vaccination, as well as prior infection/vaccination, whereas spike-specific CD4+T-cell responses are efficiently elicited by homologous BNT162b2 vaccination. Variant-recognizing immunity is more efficiently generated by prior infection/vaccination than the other homologous or heterologous vaccination regimens.
Collapse
Affiliation(s)
- Yae Jee Baek
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Woo-Joong Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Youn-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ho Cheol Jang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Yong Chan Kim
- Division of Infectious Disease, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Yoon Soo Park
- Division of Infectious Disease, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Nemeth KL, Yauney E, Rock JM, Bievenue R, Parker MM, Styer LM. Use of Self-Collected Dried Blood Spots and a Multiplex Microsphere Immunoassay to Measure IgG Antibody Response to COVID-19 Vaccines. Microbiol Spectr 2023; 11:e0133622. [PMID: 36622204 PMCID: PMC9927373 DOI: 10.1128/spectrum.01336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Serosurveys can determine the extent and spread of a pathogen in populations. However, collection of venous blood requires trained medical staff. Dried blood spots (DBS) are a suitable alternative because they can be self-collected and stored/shipped at room temperature. As COVID-19 vaccine deployment began in early 2021, we rapidly enrolled laboratory employees in a study to evaluate IgG antibody levels following vaccination. Participants received a DBS collection kit, self-collection instructions, and a brief questionnaire. Three DBS were collected by each of 168 participants pre- and/or postvaccination and tested with a multiplex microsphere immunoassay (MIA) that separately measures IgG antibodies to SARS-CoV-2 spike-S1 and nucleocapsid antigens. Most DBS (99.6%, 507/509) were suitable for testing. Participants with prior SARS-CoV-2 infection (n = 7) generated high S antibody levels after the first vaccine dose. Naïve individuals (n = 161) attained high S antibody levels after the second dose. Similar antibody levels were seen among those vaccinated with Moderna (n = 29) and Pfizer-BioNTech (n = 137). For those receiving either mRNA vaccine, local side effects were more common after the first vaccine dose, whereas systemic side effects were more common after the second dose. Individuals with the highest antibody levels in the week prior to the second vaccine dose experienced more side effects from the second dose. Our study demonstrated that combining self-collected DBS and a multiplex MIA is a convenient and effective way to assess antibody levels to vaccination and could easily be used for population serosurveys of SARS-CoV-2 or other emerging pathogens. IMPORTANCE Serosurveys are an essential tool for assessing immunity in a population (1, 2). However, common barriers to effective serosurveys, particularly during a pandemic, include high-costs, resources required to collect venous blood samples, lack of trained laboratory technicians, and time required to perform the assay. By utilizing self-collected dried blood spots (DBS) and our previously developed high-throughput microsphere immunoassay, we were able to significantly reduce many of these common challenges. Participants were asked to self-collect three DBS before and/or after they received their COVID-19 vaccines to measure antibody levels following vaccination. Participants successfully collected 507 DBS that were tested for IgG antibodies to the spike and nucleocapsid proteins of SARS-CoV-2. When used with self-collected DBS, our relatively low-cost assay significantly reduced common barriers to collecting serological data from a population and was able to effectively assess antibody response to vaccination.
Collapse
Affiliation(s)
- Katherine L. Nemeth
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Erica Yauney
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jean M. Rock
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Rachel Bievenue
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Monica M. Parker
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Linda M. Styer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
22
|
Liu S, Tsun JGS, Fung GPG, Lui GCY, Chan KYY, Chan PKS, Chan RWY. Comparison of the mucosal and systemic antibody responses in Covid-19 recovered patients with one dose of mRNA vaccine and unexposed subjects with three doses of mRNA vaccines. Front Immunol 2023; 14:1127401. [PMID: 36793736 PMCID: PMC9922846 DOI: 10.3389/fimmu.2023.1127401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background Immunity acquired from natural SARS-CoV-2 infection and vaccine wanes overtime. This longitudinal prospective study compared the effect of a booster vaccine (BNT162b2) in inducing the mucosal (nasal) and serological antibody between Covid-19 recovered patients and healthy unexposed subjects with two dose of mRNA vaccine (vaccine-only group). Method Eleven recovered patients and eleven gender-and-age matched unexposed subjects who had mRNA vaccines were recruited. The SARS-CoV-2 spike 1 (S1) protein specific IgA, IgG and the ACE2 binding inhibition to the ancestral SARS-CoV-2 and omicron (BA.1) variant receptor binding domain were measured in their nasal epithelial lining fluid and plasma. Result In the recovered group, the booster expanded the nasal IgA dominancy inherited from natural infection to IgA and IgG. They also had a higher S1-specific nasal and plasma IgA and IgG levels with a better inhibition against the omicron BA.1 variant and ancestral SARS-CoV-2 when compared with vaccine-only subjects. The nasal S1-specific IgA induced by natural infection lasted longer than those induced by vaccines while the plasma antibodies of both groups maintained at a high level for at least 21 weeks after booster. Conclusion The booster benefited all subjects to obtain neutralizing antibody (NAb) against omicron BA.1 variant in plasma while only the Covid-19 recovered subjects had an extra enrichment in nasal NAb against omicron BA.1 variant.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joseph G. S. Tsun
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Genevieve P. G. Fung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace C. Y. Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kathy Y. Y. Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Renee W. Y. Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,The Chinese University of Hong Kong (CUHK)- University Medical Center Utrecht (UMCU) Joint Research Laboratory of Respiratory Virus & Immunobiology, Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,*Correspondence: Renee W. Y. Chan,
| |
Collapse
|
23
|
Siangphoe U, Baden LR, El Sahly HM, Essink B, Ali K, Berman G, Tomassini JE, Deng W, Pajon R, McPhee R, Dixit A, Das R, Miller JM, Zhou H. Associations of Immunogenicity and Reactogenicity After Severe Acute Respiratory Syndrome Coronavirus 2 mRNA-1273 Vaccine in the COVE and TeenCOVE Trials. Clin Infect Dis 2023; 76:271-280. [PMID: 36130187 PMCID: PMC10202429 DOI: 10.1093/cid/ciac780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The reactogenicity and immunogenicity of coronavirus disease 2019 (COVID-19) vaccines are well studied. Little is known regarding the relationship between immunogenicity and reactogenicity of COVID-19 vaccines. METHODS This study assessed the association between immunogenicity and reactogenicity after 2 mRNA-1273 (100 µg) injections in 1671 total adolescent and adult participants (≥12 years) from the primary immunogenicity sets of the blinded periods of the Coronavirus Efficacy (COVE) and TeenCOVE trials. Associations between immunogenicity through day 57 and solicited adverse reactions (ARs) after the first and second injections of mRNA-1273 were evaluated among participants with and without solicited ARs using linear mixed-effects models. RESULTS mRNA-1273 reactogenicity in this combined analysis set was similar to that reported for these trials. The vaccine elicited high neutralizing antibody (nAb) geometric mean titers (GMTs) in evaluable participants. GMTs at day 57 were significantly higher in participants who experienced solicited systemic ARs after the second injection (1227.2 [1164.4-1293.5]) than those who did not (980.1 [886.8-1083.2], P = .001) and were associated with fever, chills, headache, fatigue, myalgia, and arthralgia. Significant associations with local ARs were not found. CONCLUSIONS These data show an association of systemic ARs with increased nAb titers following a second mRNA-1273 injection. While these data indicate systemic ARs are associated with increased antibody titers, high nAb titers were observed in participants after both injections, consistent with the immunogenicity and efficacy in these trials. These results add to the body of evidence regarding the relationship of immunogenicity and reactogenicity and can contribute toward the design of future mRNA vaccines.
Collapse
Affiliation(s)
- Uma Siangphoe
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hana M El Sahly
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Kashif Ali
- Kool Kids Pediatrics, DM Clinical Research, Houston, Texas, USA
| | - Gary Berman
- The Clinical Research Institute, Minneapolis, Minnesota, USA
| | | | - Weiping Deng
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Rolando Pajon
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Roderick McPhee
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Avika Dixit
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Rituparna Das
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | | | - Honghong Zhou
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | | |
Collapse
|
24
|
Samanovic MI, Oom AL, Cornelius AR, Gray-Gaillard SL, Karmacharya T, Tuen M, Wilson JP, Tasissa MF, Goins S, Herati RS, Mulligan MJ. Vaccine-Acquired SARS-CoV-2 Immunity versus Infection-Acquired Immunity: A Comparison of Three COVID-19 Vaccines. Vaccines (Basel) 2022; 10:vaccines10122152. [PMID: 36560562 PMCID: PMC9782527 DOI: 10.3390/vaccines10122152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Around the world, rollout of COVID-19 vaccines has been used as a strategy to end COVID-19-related restrictions and the pandemic. Several COVID-19 vaccine platforms have successfully protected against severe SARS-CoV-2 infection and subsequent deaths. Here, we compared humoral and cellular immunity in response to either infection or vaccination. We examined SARS-CoV-2 spike-specific immune responses from Pfizer/BioNTech BNT162b2, Moderna mRNA-1273, Janssen Ad26.COV2.S, and SARS-CoV-2 infection approximately 4 months post-exposure or vaccination. We found that these three vaccines all generate relatively similar immune responses and elicit a stronger response than natural infection. However, antibody responses to recent viral variants are diminished across all groups. The similarity of immune responses from the three vaccines studied here is an important finding in maximizing global protection as vaccination campaigns continue.
Collapse
|
25
|
Trained Immunity as a Prospective Tool against Emerging Respiratory Pathogens. Vaccines (Basel) 2022; 10:vaccines10111932. [DOI: 10.3390/vaccines10111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Although parental vaccines offer long-term protection against homologous strains, they rely exclusively on adaptive immune memory to produce neutralizing antibodies that are ineffective against emerging viral variants. Growing evidence highlights the multifaceted functions of trained immunity to elicit a rapid and enhanced innate response against unrelated stimuli or pathogens to subsequent triggers. This review discusses the protective role of trained immunity against respiratory pathogens and the experimental models essential for evaluating novel inducers of trained immunity. The review further elaborates on the potential of trained immunity to leverage protection against pathogens via the molecular patterns of antigens by pathogen recognition receptors (PPRs) on innate immune cells. The review also focuses on integrating trained innate memory with adaptive memory to shape next-generation vaccines by coupling each one’s unique characteristics.
Collapse
|
26
|
El Sahly HM, Baden LR, Essink B, Montefiori D, McDermont A, Rupp R, Lewis M, Swaminathan S, Griffin C, Fragoso V, Miller VE, Girard B, Paila YD, Deng W, Tomassini JE, Paris R, Schödel F, Das R, August A, Leav B, Miller JM, Zhou H, Pajon R. Humoral Immunogenicity of the mRNA-1273 Vaccine in the Phase 3 Coronavirus Efficacy (COVE) Trial. J Infect Dis 2022; 226:1731-1742. [PMID: 35535503 PMCID: PMC9213865 DOI: 10.1093/infdis/jiac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.
Collapse
Affiliation(s)
- Hana M El Sahly
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - David Montefiori
- Immune Assay Team, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Adrian McDermont
- Vaccine Research Center, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Richard Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael Lewis
- Department of Pathology, Veterans Affairs Greater Los Angeles Healthcare, Los Angeles, California, USA
| | - Shobha Swaminathan
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | - Carl Griffin
- Lynn Health Science Institute, Oklahoma City, Oklahoma, USA
| | - Veronica Fragoso
- Texas Center for Drug Development, DM Clinical Research, Houston, Texas, USA
| | - Vicki E Miller
- Texas Center for Drug Development, DM Clinical Research, Tomball, Texas, USA
| | - Bethany Girard
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Yamuna D Paila
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Weiping Deng
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Joanne E Tomassini
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Robert Paris
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Florian Schödel
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Rituparna Das
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Allison August
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Brett Leav
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Jacqueline M Miller
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Honghong Zhou
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Rolando Pajon
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
27
|
Longitudinal Analyses after COVID-19 Recovery or Prolonged Infection Reveal Unique Immunological Signatures after Repeated Vaccinations. Vaccines (Basel) 2022; 10:vaccines10111815. [DOI: 10.3390/vaccines10111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
To develop preventive and therapeutic measures against coronavirus disease 2019, the complete characterization of immune response and sustained immune activation following viral infection and vaccination are critical. However, the mechanisms controlling intrapersonal variation in antibody titers against SARS-CoV-2 antigens remain unclear. To gain further insights, we performed a robust molecular and cellular investigation of immune responses in infected, recovered, and vaccinated individuals. We evaluated the serum levels of 29 cytokines and their correlation with neutralizing antibody titer. We investigated memory B-cell response in patients infected with the original SARS-CoV-2 strain or other variants, and in vaccinated individuals. Longitudinal correlation analyses revealed that post-vaccination neutralizing potential was more strongly associated with various serum cytokine levels in recovered patients than in naïve individuals. We found that IL-10, CCL2, CXCL10, and IL-12p40 are candidate biomarkers of serum-neutralizing antibody titer after the vaccination of recovered individuals. We found a similar distribution of virus-specific antibody gene families in triple-vaccinated individuals and a patient with COVID-19 pneumonia for 1 year. Thus, distinct immune responses occur depending on the viral strain and clinical history, suggesting that therapeutic options should be selected on a case-by-case basis. Candidate biomarkers that correlate with repeated vaccination may support the efficacy and safety evaluation systems of mRNA vaccines and lead to the development of novel vaccine strategies.
Collapse
|
28
|
Kister I, Curtin R, Pei J, Perdomo K, Bacon TE, Voloshyna I, Kim J, Tardio E, Velmurugu Y, Nyovanie S, Valeria Calderon A, Dibba F, Stanzin I, Samanovic MI, Raut P, Raposo C, Priest J, Cabatingan M, Winger RC, Mulligan MJ, Patskovsky Y, Silverman GJ, Krogsgaard M. Hybrid and vaccine-induced immunity against SAR-CoV-2 in MS patients on different disease-modifying therapies. Ann Clin Transl Neurol 2022; 9:1643-1659. [PMID: 36165097 PMCID: PMC9538694 DOI: 10.1002/acn3.51664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To compare "hybrid immunity" (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. METHODS Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed primary COVID-19 vaccination series ≥6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFNγ and IL-2 assay and, in a subset, with IFNγ and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. RESULTS Between 6/01/2021 and 11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 (±7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. INTERPRETATION Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Jinglan Pei
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Katherine Perdomo
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Tamar E. Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Iryna Voloshyna
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Joseph Kim
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Ethan Tardio
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Andrea Valeria Calderon
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Fatoumatta Dibba
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Igda Stanzin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Marie I. Samanovic
- NYU Langone Vaccine Center, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Pranil Raut
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | | | - Mark J. Mulligan
- NYU Langone Vaccine Center, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Gregg J. Silverman
- Division of Rheumatology, Department of MedicineNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| |
Collapse
|
29
|
Rodriguez PE, Silva AP, Miglietta EA, Rall P, Pascuale CA, Ballejo C, López Miranda L, Ríos AS, Ramis L, Marro J, Poncet V, Mazzitelli B, Salvatori M, Ceballos A, Gonzalez Lopez Ledesma MM, Ojeda DS, Aguirre MF, Miragaya Y, Gamarnik AV, Rossi AH. Humoral response and neutralising capacity at 6 months post-vaccination against COVID-19 among institutionalised older adults in Argentina. Front Immunol 2022; 13:992370. [PMID: 36225925 PMCID: PMC9549602 DOI: 10.3389/fimmu.2022.992370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has particularly affected older adults residing in nursing homes, resulting in high rates of hospitalisation and death. Here, we evaluated the longitudinal humoral response and neutralising capacity in plasma samples of volunteers vaccinated with different platforms (Sputnik V, BBIBP-CorV, and AZD1222). A cohort of 851 participants, mean age 83 (60-103 years), from the province of Buenos Aires, Argentina were included. Sequential plasma samples were taken at different time points after vaccination. After completing the vaccination schedule, infection-naïve volunteers who received either Sputnik V or AZD1222 exhibited significantly higher specific anti-Spike IgG titers than those who received BBIBP-CorV. Strong correlation between anti-Spike IgG titers and neutralising activity levels was evidenced at all times studied (rho=0.7 a 0.9). Previous exposure to SARS-CoV-2 and age <80 years were both associated with higher specific antibody levels. No differences in neutralising capacity were observed for the infection-naïve participants in either gender or age group. Similar to anti-Spike IgG titers, neutralising capacity decreased 3 to 9-fold at 6 months after initial vaccination for all platforms. Neutralising capacity against Omicron was between 10-58 fold lower compared to ancestral B.1 for all vaccine platforms at 21 days post dose 2 and 180 days post dose 1. This work provides evidence about the humoral response and neutralising capacity elicited by vaccination of a vulnerable elderly population. This data could be useful for pandemic management in defining public health policies, highlighting the need to apply reinforcements after a complete vaccination schedule.
Collapse
Affiliation(s)
| | - Andrea P. Silva
- Departamento Laboratorio de Diagnóstico y Referencia, Instituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina
| | | | - Pablo Rall
- Instituto Nacional de Servicios Sociales para Jubilados y Pensionados (INSSJP-PAMI), Buenos Aires, Argentina
| | | | - Christian Ballejo
- Departamento de Investigación Epidemiológica, Instituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina
| | - Lucía López Miranda
- Departamento Laboratorio de Diagnóstico y Referencia, Instituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina
| | | | - Lila Ramis
- Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| | - Jimena Marro
- Departamento de Investigación Epidemiológica, Instituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina
| | - Verónica Poncet
- Departamento Laboratorio de Diagnóstico y Referencia, Instituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina
| | - Bianca Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)-CONICET, Facultad de Medicina Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Melina Salvatori
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)-CONICET, Facultad de Medicina Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)-CONICET, Facultad de Medicina Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Diego S. Ojeda
- Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| | - María F. Aguirre
- Departamento de Investigación Epidemiológica, Instituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina
| | - Yanina Miragaya
- Instituto Nacional de Servicios Sociales para Jubilados y Pensionados (INSSJP-PAMI), Buenos Aires, Argentina
| | | | - Andrés H. Rossi
- Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina,*Correspondence: Andrés Hugo Rossi,
| | | | | |
Collapse
|
30
|
A Quantitative ELISA to Detect Anti-SARS-CoV-2 Spike IgG Antibodies in Infected Patients and Vaccinated Individuals. Microorganisms 2022; 10:microorganisms10091812. [PMID: 36144414 PMCID: PMC9502828 DOI: 10.3390/microorganisms10091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022] Open
Abstract
There is an ongoing need for high-precision serological assays for the quantitation of anti-SARS-CoV-2 antibodies. Here, a trimeric SARS-CoV-2 spike (S) protein was used to develop an ELISA to quantify specific IgG antibodies present in serum, plasma, and dried blood spots (DBS) collected from infected patients or vaccine recipients. The quantitative S-ELISA was calibrated with international anti-SARS-CoV-2 immunoglobulin standards to provide test results in binding antibody units per mL (BAU/mL). The assay showed excellent linearity, precision, and accuracy. A sensitivity of 100% was shown for samples collected from 54 patients with confirmed SARS-CoV-2 infection more than 14 days after symptom onset or disease confirmation by RT-PCR and 58 vaccine recipients more than 14 days after vaccination. The assay specificity was 98.3%. Furthermore, antibody responses were measured in follow-up samples from vaccine recipients and infected patients. Most mRNA vaccine recipients had a similar response, with antibody generation starting 2-3 weeks after the first vaccination and maintaining positive for at least six months after a second vaccination. For most infected patients, the antibody titers increased during the second week after PCR confirmation. This S-ELISA can be used to quantify the seroprevalence of SARS-CoV-2 in the population exposed to the virus or vaccinated.
Collapse
|
31
|
Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol 2022; 13:957107. [PMID: 36059541 PMCID: PMC9428579 DOI: 10.3389/fimmu.2022.957107] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is primarily an airborne infection of the upper respiratory tract, which on reaching the lungs causes the severe acute respiratory disease, COVID-19. Its first contact with the immune system, likely through the nasal passages and Waldeyer's ring of tonsils and adenoids, induces mucosal immune responses revealed by the production of secretory IgA (SIgA) antibodies in saliva, nasal fluid, tears, and other secretions within 4 days of infection. Evidence is accumulating that these responses might limit the virus to the upper respiratory tract resulting in asymptomatic infection or only mild disease. The injectable systemic vaccines that have been successfully developed to prevent serious disease and its consequences do not induce antibodies in mucosal secretions of naïve subjects, but they may recall SIgA antibody responses in secretions of previously infected subjects, thereby helping to explain enhanced resistance to repeated (breakthrough) infection. While many intranasally administered COVID vaccines have been found to induce potentially protective immune responses in experimental animals such as mice, few have demonstrated similar success in humans. Intranasal vaccines should have advantage over injectable vaccines in inducing SIgA antibodies in upper respiratory and oral secretions that would not only prevent initial acquisition of the virus, but also suppress community spread via aerosols and droplets generated from these secretions.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jiri Mestecky
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
32
|
Liang B, Xiang T, Wang H, Li Z, Quan X, Feng X, Li S, Lu S, Fan L, Xu L, Wang T, Wang X, Zhu B, Wang J, Yang D, Liu J, Zheng X. Robust humoral and cellular immune responses in long-term convalescent COVID-19 individuals following one-dose SARS-CoV-2 inactivated vaccination. Front Immunol 2022; 13:966098. [PMID: 35979361 PMCID: PMC9377315 DOI: 10.3389/fimmu.2022.966098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in hundreds of millions of infections and millions of deaths worldwide. Preliminary results exhibited excellent efficacy of SARS-CoV-2 vaccine in preventing hospitalization and severe disease. However, data on inactivated vaccine-induced immune responses of naturally infected patients are limited. Here, we characterized SARS-CoV-2 RBD-specific IgG (anti-S-RBD IgG) and neutralizing antibodies (NAbs) against SARS-CoV-2 wild type and variants of concerns (VOCs), as well as RBD-specific IgG-secreting B cells and antigen-specific T cells respectively in 51 SARS-CoV-2 recovered subjects and 63 healthy individuals. In SARS-CoV-2 recovered patients, a single dose vaccine is sufficient to reactivate robust anti-S-RBD IgG and NAbs. The neutralizing capacity against VOCs increased significantly post-vaccination no matter healthy individuals or SARS-CoV-2 recovered patients. In addition, RBD-specific IgG-secreting B cells in SARS-CoV-2 recovered patients were significantly higher than that in healthy vaccine recipients. After the vaccine booster, the frequencies of specific IFN-γ+ CD4+ T cell, IL-2+ CD4+ T cell, and TNF-α+ CD4+ T cell responses were significantly increased in SARS-CoV-2 recovered patients. Our data highlighted the safety and utility of SARS-CoV-2 inactivated vaccine and demonstrated that robust humoral and cellular immune response can be reactivated by one-dose inactivated vaccine in SARS-CoV-2 recovered patients.
Collapse
Affiliation(s)
- Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xufeng Quan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Sumeng Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Sihong Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Fan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xin Zheng,
| |
Collapse
|
33
|
Nguyen DC, Lamothe PA, Woodruff MC, Saini AS, Faliti CE, Sanz I, Lee FE. COVID-19 and plasma cells: Is there long-lived protection? Immunol Rev 2022; 309:40-63. [PMID: 35801537 PMCID: PMC9350162 DOI: 10.1111/imr.13115] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has resulted in over 450 million cases with more than 6 million deaths worldwide, causing global disruptions since early 2020. Memory B cells and durable antibody protection from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. However, ending the pandemic has been hampered by the lack of long-lived immunity after infection or vaccination. Although immunizations offer protection from severe disease and hospitalization, breakthrough infections still occur, most likely due to new mutant viruses and the overall decline of neutralizing antibodies after 6 months. Here, we review the current knowledge of B cells, from extrafollicular to memory populations, with a focus on distinct plasma cell subsets, such as early-minted blood antibody-secreting cells and the bone marrow LLPC, and how these humoral compartments contribute to protection after SARS-CoV-2 infection and immunization.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ankur S. Saini
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Caterina E. Faliti
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ignacio Sanz
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Frances Eun‐Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
34
|
Vega-Magaña N, Muñoz-Valle JF, Peña-Rodríguez M, Viera-Segura O, Pereira-Suárez AL, Hernández-Bello J, García-Chagollan M. Specific T-Cell Immune Response to SARS-CoV-2 Spike Protein over Time in Naïve and SARS-CoV-2 Previously Infected Subjects Vaccinated with BTN162b2. Vaccines (Basel) 2022; 10:vaccines10071117. [PMID: 35891281 PMCID: PMC9319730 DOI: 10.3390/vaccines10071117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the COVID-19 pandemic, the rapid development of vaccines against SARS-CoV-2 has been promoted. BNT162b2 is a lipid-nanoparticle mRNA vaccine with 95% efficacy and is the most administered vaccine globally. Nevertheless, little is known about the cellular immune response triggered by vaccination and the immune behavior over time. Therefore, we evaluated the T-cell immune response against the SARS-CoV-2 spike protein and neutralization antibodies (nAbs) in naïve and SARS-CoV-2 previously infected subjects vaccinated with BTN162b2. Methods: Forty-six BTN162b2 vaccinated subjects were included (twenty-six naïve and twenty SARS-CoV-2 previously infected subjects vaccinated with BTN162b2). Blood samples were obtained at basal (before vaccination), 15 days after the first dose, and 15 days after the second dose, to evaluate cellular immune response upon PBMC’s stimulation and cytokine levels. The nAbs were determined one and six months after the second dose. Results: SARS-CoV-2 previously infected subjects vaccinated with BTN162b2 showed the highest proportion of nAbs compared to naïve individuals one month after the second dose. However, women were more prone to lose nAbs percentages over time significantly. Furthermore, a diminished CD154+ IFN-γ+ CD4+ T-cell response was observed after the second BTN162b2 dose in those with previous SARS-CoV-2 infection. In contrast, naïve participants showed an overall increased CD8+ IFN-γ+ TNF-α+ T-cell response to the peptide stimulus. Moreover, a significant reduction in IP-10, IFN-λI, and IL-10 cytokine levels was found in both studied groups. Additionally, the median fluorescence intensity (MFI) levels of IL-6, IFNλ-2/3, IFN-𝛽, and GM-CSF (p < 0.05) were significantly reduced over time in the naïve participants. Conclusion: We demonstrate that a previous SARS-CoV-2 infection can also impact cellular T-cell response, nAbs production, and serum cytokine concentration. Therefore, the study of T-cell immune response is essential for vaccination scheme recommendations; future vaccine boost should be carefully addressed as continued stimulation by vaccination might impact the T-cell response.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - José Francisco Muñoz-Valle
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Marcela Peña-Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
| | - Oliver Viera-Segura
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Jorge Hernández-Bello
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Mariel García-Chagollan
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
- Correspondence:
| |
Collapse
|
35
|
Stępień M, Zalewska M, Knysz B, Świątoniowska-Lonc N, Jankowska-Polańska B, Łaczmański Ł, Piwowar A, Kuźniarski A. How Humoral Response and Side Effects Depend on the Type of Vaccine and Past SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1042. [PMID: 35891206 PMCID: PMC9324271 DOI: 10.3390/vaccines10071042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Since the end of December 2020, it has been possible to vaccinate against COVID-19. Our aim was to evaluate and compare the effectiveness of the vaccines available at the time of the mass vaccination program in Poland and also to look into the most common adverse side effects. Patients' anti-SARS-CoV-2 antibodies levels were checked before vaccination and after the first and after the second/last dose by the anti-SARS-CoV-2 QuantiVac ELISA (IgG) (EUROIMMUN MedicinischeLabordiagnostica AG; Luebeck; Germany) test. Before each blood collection, all patients filled out a questionnaire regarding experienced side effects. We observed that 100% of patients responded to the vaccinations. After the first dose, convalescents had much higher levels of anti-SARS-CoV-2 antibodies than naive patients, although after the second dose, 61 out of 162 convalescents (37.7%) had lower results than before. The comparison of immunological responses in the convalescents group after the first dose and in the naive group after the second dose showed that convalescents had higher antibody titers, which may suggest the possibility of changing the vaccination schedule for convalescents. The highest antibody titers after both the first and second doses were observed after Moderna shots. Fever was identified as a significant factor regarding higher levels of antibodies after the first and second doses of the vaccine.
Collapse
Affiliation(s)
- Monika Stępień
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.Z.); (B.K.)
| | - Małgorzata Zalewska
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.Z.); (B.K.)
| | - Brygida Knysz
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.Z.); (B.K.)
| | - Natalia Świątoniowska-Lonc
- Center for Research and Innovation, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (N.Ś.-L.); (B.J.-P.)
| | - Beata Jankowska-Polańska
- Center for Research and Innovation, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (N.Ś.-L.); (B.J.-P.)
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy PAS, 53-114 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Amadeusz Kuźniarski
- Department of Dental Prosthetics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
36
|
Kassianos G, Puig-Barberà J, Dinse H, Teufel M, Türeci Ö, Pather S. Addressing COVID-19 vaccine hesitancy. Drugs Context 2022; 11:2021-12-3. [PMID: 35814493 PMCID: PMC9225513 DOI: 10.7573/dic.2021-12-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Immunization programmes have been globally recognized as one of the most successful medical interventions against infectious diseases. Despite the proven efficacy and safety profiles of coronavirus disease 2019 (COVID-19) vaccines, there are still a substantial number of people who express vaccine hesitancy. Factors that influence vaccine decision-making are heterogenous, complex, and context specific and may be caused or amplified by uncontrolled online information or misinformation. With respect to COVID-19, the recent emergence of novel variants of concern that give rise to milder disease also drives vaccine hesitancy. Healthcare professionals remain one of the most trusted groups to advise and provide information to those ambivalent about COVID-19 vaccination and should be equipped with adequate resources and information as well as practical guidance to empower them to effectively discuss concerns. This article seeks to summarize the currently available information to address the most common concerns regarding COVID-19 vaccination.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London, UK
- The British Global and Travel Health Association, London, UK
| | - Joan Puig-Barberà
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Hannah Dinse
- University of Duisburg-Essen, Clinic for Psychosomatic Medicine and Psychotherapy, LVR University Hospital, Essen, Germany
| | - Martin Teufel
- University of Duisburg-Essen, Clinic for Psychosomatic Medicine and Psychotherapy, LVR University Hospital, Essen, Germany
| | | | | |
Collapse
|
37
|
Desmecht S, Tashkeev A, El Moussaoui M, Marechal N, Perée H, Tokunaga Y, Fombellida-Lopez C, Polese B, Legrand C, Wéry M, Mni M, Fouillien N, Toussaint F, Gillet L, Bureau F, Lutteri L, Hayette MP, Moutschen M, Meuris C, Vermeersch P, Desmecht D, Rahmouni S, Darcis G. Kinetics and Persistence of the Cellular and Humoral Immune Responses to BNT162b2 mRNA Vaccine in SARS-CoV-2-Naive and -Experienced Subjects: Impact of Booster Dose and Breakthrough Infections. Front Immunol 2022; 13:863554. [PMID: 35711445 PMCID: PMC9195074 DOI: 10.3389/fimmu.2022.863554] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Understanding and measuring the individual level of immune protection and its persistence at both humoral and cellular levels after SARS-CoV-2 vaccination is mandatory for the management of the vaccination booster campaign. Our prospective study was designed to assess the immunogenicity of the BNT162b2 mRNA vaccine in triggering the cellular and humoral immune response in healthcare workers up to 12 months after the initial vaccination, with one additional boosting dose between 6 and 12 months. Methods This prospective study enrolled 208 healthcare workers (HCWs) from the Liège University Hospital (CHU) of Liège in Belgium. Participants received two doses of BioNTech/Pfizer COVID-19 vaccine (BNT162b2) and a booster dose 6-12 months later. Fifty participants were SARS-CoV-2 experienced and 158 were naïve before the vaccination. Blood sampling was performed at the day of the first (T0) and second (T1) vaccine doses administration, then at 2 weeks (T2), 4 weeks (T3), 6 months (T4) and 12 months (T5) after the second dose. Between T4 and T5, participants also got the third boosting vaccine dose. A total of 1145 blood samples were collected. All samples were tested for the presence of anti-Spike antibodies, using the DiaSorin LIAISON SARS-CoV-2 Trimeric S IgG assay, and for anti-Nucleocapsid antibodies, using Elecsys anti-SARS-CoV-2 assay. Neutralizing antibodies against the SARS-CoV-2 Wuhan-like variant strain were quantified in all samples using a Vero E6 cell-based neutralization assay. Cell-mediated immune response was evaluated at T4 and T5 on 80 and 55 participants, respectively, by measuring the secretion of IFN-γ on peripheral blood lymphocytes using the QuantiFERON Human IFN-γ SARS-CoV-2, from Qiagen. We analyzed separately the naïve and experienced participants. Findings We found that anti-spike antibodies and neutralization capacity levels were significantly higher in SARS-CoV-2 experienced HCWs compared to naïve HCWs at all time points analyzed except the one after boosting dose. Cellular immune response was also higher in experienced HCWs six months following vaccination. Besides the impact of SARS-CoV-2 infection history on immune response to BNT162b2 mRNA vaccine, we observed a significant negative association between age and persistence of humoral response. The booster dose induced an increase in humoral and cellular immune responses, particularly in naive individuals. Breakthrough infections resulted in higher cellular and humoral responses after the booster dose. Conclusions Our data strengthen previous findings demonstrating that immunization through vaccination combined with natural infection is better than 2 vaccine doses immunization or natural infection alone. The benefit of the booster dose was greater in naive individuals. It may have implications for personalizing mRNA vaccination regimens used to prevent severe COVID-19 and reduce the impact of the pandemic on the healthcare system. More specifically, it may help prioritizing vaccination, including for the deployment of booster doses.
Collapse
Affiliation(s)
- Salomé Desmecht
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
- Laboratory of Infectious Diseases, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Aleksandr Tashkeev
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Majdouline El Moussaoui
- Laboratory of Infectious Diseases, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
- Department of Infectious Diseases, Liège University Hospital, Liège, Belgium
| | - Nicole Marechal
- Department of Infectious Diseases, Liège University Hospital, Liège, Belgium
| | - Hélène Perée
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Yumie Tokunaga
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Celine Fombellida-Lopez
- Laboratory of Infectious Diseases, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Barbara Polese
- Laboratory of Cellular and Molecular Immunology, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA) Institute, University of Liège, Liège, Belgium
| | - Céline Legrand
- Laboratory of Cellular and Molecular Immunology, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA) Institute, University of Liège, Liège, Belgium
| | - Marie Wéry
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Myriam Mni
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Nicolas Fouillien
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Françoise Toussaint
- Department of Clinical Microbiology, University Hospital of Liège, Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA) Institute, University of Liège, Liège, Belgium
| | - Laurence Lutteri
- Clinical Chemistry Department, University Hospital of Liège, Liège, Belgium
| | | | - Michel Moutschen
- Laboratory of Infectious Diseases, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
- Department of Infectious Diseases, Liège University Hospital, Liège, Belgium
| | - Christelle Meuris
- Department of Infectious Diseases, Liège University Hospital, Liège, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Daniel Desmecht
- Department of Animal Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Liège University, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of Animal Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Medical Genomics, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
| | - Gilles Darcis
- Laboratory of Infectious Diseases, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-I3, Grappe Interdisciplinaire de Génoprotéomique Appliquée-Institute (GIGA)-Institute, University of Liège, Liège, Belgium
- Department of Infectious Diseases, Liège University Hospital, Liège, Belgium
| |
Collapse
|
38
|
Kister I, Patskovsky Y, Curtin R, Pei J, Perdomo K, Rimler Z, Voloshyna I, Samanovic MI, Cornelius AR, Velmurugu Y, Nyovanie S, Kim J, Tardio E, Bacon TE, Zhovtis Ryerson L, Raut P, Rosetta P, Hawker K, Raposo C, Priest J, Cabatingan M, Winger RC, Mulligan MJ, Krogsgaard M, Silverman GJ. Cellular and humoral immunity to SARS-CoV-2 infection in multiple sclerosis patients on ocrelizumab and other disease-modifying therapies: a multi-ethnic observational study. Ann Neurol 2022; 91:782-795. [PMID: 35289960 PMCID: PMC9082484 DOI: 10.1002/ana.26346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To determine the impact of MS disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to SARS-CoV-2 infection. METHODS MS patients aged 18-60 were evaluated for anti-nucleocapsid and anti-Spike RBD antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture ELISA; and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS Between 1/6/2021 and 7/21/2021, 389 MS patients were recruited (mean age 40.3 years; 74% female; 62% non-White). Most common DMTs were ocrelizumab (OCR) - 40%; natalizumab - 17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. 177 patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, 47 - asymptomatic. Antibody responses were markedly attenuated in OCR compared to other groups (p≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p=0.03), increased in natalizumab (p<0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r=0.45, p=0.0002) and non-OCR (r=0.64, p<0.0001). Immune responses did not differ by race/ethnicity. COVID-19 clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and non-disabled group of MS patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jinglan Pei
- Genentech, Inc., South San Francisco, CA, USA
| | - Katherine Perdomo
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Zoe Rimler
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Iryna Voloshyna
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marie I Samanovic
- NYU Langone Vaccine Center, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Amber R Cornelius
- NYU Langone Vaccine Center, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Joseph Kim
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ethan Tardio
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tamar E Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lana Zhovtis Ryerson
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Pranil Raut
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | - Mark J Mulligan
- NYU Langone Vaccine Center, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Gregg J Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
39
|
Bagno FF, Andrade LAF, Sérgio SAR, Parise PL, Toledo-Teixeira DA, Gazzinelli RT, Fernandes APSM, Teixeira SMR, Granja F, Proença-Módena JL, da Fonseca FG. Previous Infection with SARS-CoV-2 Correlates with Increased Protective Humoral Responses after a Single Dose of an Inactivated COVID-19 Vaccine. Viruses 2022; 14:510. [PMID: 35336917 PMCID: PMC8955604 DOI: 10.3390/v14030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Flávia F. Bagno
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
| | - Luis A. F. Andrade
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
| | - Sarah A. R. Sérgio
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
| | - Pierina L. Parise
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, Brazil; (P.L.P.); (D.A.T.-T.); (F.G.); (J.L.P.-M.)
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, Brazil; (P.L.P.); (D.A.T.-T.); (F.G.); (J.L.P.-M.)
| | - Ricardo T. Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas René Rachou, Belo Horizonte 30190-002, Brazil
| | - Ana P. S. M. Fernandes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
| | - Santuza M. R. Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, Brazil; (P.L.P.); (D.A.T.-T.); (F.G.); (J.L.P.-M.)
- Biodiversity Research Center, Federal University of Roraima, Boa Vista 72000-000, Brazil
| | - José L. Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, Brazil; (P.L.P.); (D.A.T.-T.); (F.G.); (J.L.P.-M.)
- Experimental Medicine Research Cluster, State University of Campinas, Campinas 13083-862, Brazil
| | - Flavio G. da Fonseca
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.F.B.); (L.A.F.A.); (S.A.R.S.); (R.T.G.); (A.P.S.M.F.); (S.M.R.T.)
| |
Collapse
|
40
|
Kim D, Lee YJ. Vaccination strategies and transmission of COVID-19: Evidence across advanced countries. JOURNAL OF HEALTH ECONOMICS 2022; 82:102589. [PMID: 35094881 PMCID: PMC8769883 DOI: 10.1016/j.jhealeco.2022.102589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 05/30/2023]
Abstract
Given limited supply of approved vaccines and constrained medical resources, design of a vaccination strategy to control a pandemic is an economic problem. We use time-series and panel methods with real-world country-level data to estimate effects on COVID-19 cases and deaths of two key elements of mass vaccination - time between doses and vaccine type. We find that new infections and deaths are both significantly negatively associated with the fraction of the population vaccinated with at least one dose. Conditional on first-dose coverage, an increased fraction with two doses appears to offer no further reductions in new cases and deaths. For vaccines from China, however, we find significant effects on both health outcomes only after two doses. Our results support a policy of extending the interval between first and second doses of vaccines developed in Europe and the US. As vaccination progresses, population mobility increases, which partially offsets the direct effects of vaccination. This suggests that non-pharmaceutical interventions remain important to contain transmission as vaccination is rolled out.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Young Jun Lee
- Department of Economics, University of Copenhagen, Øster Farimagsgade 5, Building 26, Copenhagen K DK-1353, Denmark.
| |
Collapse
|
41
|
Won T, Gilotra NA, Wood MK, Hughes DM, Talor MV, Lovell J, Milstone AM, Steenbergen C, Čiháková D. Increased Interleukin 18-Dependent Immune Responses Are Associated With Myopericarditis After COVID-19 mRNA Vaccination. Front Immunol 2022; 13:851620. [PMID: 35251049 PMCID: PMC8894592 DOI: 10.3389/fimmu.2022.851620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
Myocarditis and myopericarditis may occur after COVID-19 vaccination with an incidence of two to twenty cases per 100,000 individuals, but underlying mechanisms related to disease onset and progression remain unclear. Here, we report a case of myopericarditis following the first dose of the mRNA-1273 COVID-19 vaccine in a young man who had a history of mild COVID-19 three months before vaccination. The patient presented with chest pain, elevated troponin I level, and electrocardiogram abnormality. His endomyocardial biopsy revealed diffuse CD68+ cell infiltration. We characterized the immune profile of the patient using multiplex cytokine assay and flow cytometry analysis. Sex-matched vaccinated individuals and healthy individuals were used as controls. IL-18 and IL-27, Th1-type cytokines, were highly increased in the patient with COVID-19 vaccine-related myopericarditis compared with vaccinated controls who experienced no cardiac complications. In the patient, circulating NK cells and T cells showed an activated phenotype and mRNA profile, and monocytes expressed increased levels of IL-18 and its upstream NLRP3 inflammasome. We found that recombinant IL-18 administration into mice caused mild cardiac dysfunction and activation of NK cells and T cells in the hearts, similar to the findings in the patient with myopericarditis after COVID-19 mRNA vaccination. Collectively, myopericarditis following COVID-19 mRNA vaccination may be associated with increased IL-18-mediated immune responses and cardiotoxicity.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nisha Aggarwal Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Megan Kay Wood
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - David Matthew Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States
| | - Monica Vladut Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jana Lovell
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aaron Michael Milstone
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
- *Correspondence: Daniela Čiháková, ; orcid.org/0000-0002-8713-2860
| |
Collapse
|
42
|
Azzolini E, Pozzi C, Germagnoli L, Oresta B, Carriglio N, Calleri M, Selmi C, De Santis M, Finazzi S, Carlo-Stella C, Bertuzzi A, Motta F, Ceribelli A, Mantovani A, Bonelli F, Rescigno M. mRNA COVID-19 vaccine booster fosters B- and T-cell responses in immunocompromised patients. Life Sci Alliance 2022; 5:5/6/e202201381. [PMID: 35169017 PMCID: PMC8860093 DOI: 10.26508/lsa.202201381] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Immunocompromised patients poorly respond to two doses of SARS-CoV-2 mRNA vaccines. However, an additional booster dose elicits a strong humoral and cellular immune response in these subjects. SARS-CoV-2 vaccination has proven effective in inducing an immune response in healthy individuals and is progressively us allowing to overcome the pandemic. Recent evidence has shown that response to vaccination in some vulnerable patients may be diminished, and it has been proposed a booster dose. We tested the kinetic of development of serum antibodies to the SARS-CoV-2 Spike protein, their neutralizing capacity, the CD4 and CD8 IFN-γ T-cell response in 328 subjects, including 131 immunocompromised individuals (cancer, rheumatologic, and hemodialysis patients), 160 health-care workers (HCW) and 37 subjects older than 75 yr, after vaccination with two or three doses of mRNA vaccines. We stratified the patients according to the type of treatment. We found that immunocompromised patients, depending on the type of treatment, poorly respond to SARS-CoV-2 mRNA vaccines. However, an additional booster dose of vaccine induced a good immune response in almost all of the patients except those receiving anti-CD20 antibody. Similarly to HCW, previously infected and vaccinated immunocompromised individuals demonstrate a stronger SARS-CoV-2–specific immune response than those who are vaccinated without prior infection.
Collapse
Affiliation(s)
- Elena Azzolini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Chiara Pozzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Luca Germagnoli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | | | | | | | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Silvia Finazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Alexia Bertuzzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele MI, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano MI, Italy
| |
Collapse
|
43
|
Uprichard SL, O’Brien A, Evdokimova M, Rowe CL, Joyce C, Hackbart M, Cruz-Pulido YE, Cohen CA, Rock ML, Dye JM, Kuehnert P, Ricks KM, Casper M, Linhart L, Anderson K, Kirk L, Maggiore JA, Herbert AS, Clark NM, Reid GE, Baker SC. Antibody Response to SARS-CoV-2 Infection and Vaccination in COVID-19-naïve and Experienced Individuals. Viruses 2022; 14:370. [PMID: 35215962 PMCID: PMC8878640 DOI: 10.3390/v14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose, both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the response to Pfizer-BioNTech. Ongoing studies with this cohort will continue to contribute to our understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Susan L. Uprichard
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Monika Evdokimova
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Cynthia L. Rowe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Cara Joyce
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Matthew Hackbart
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Yazmin E. Cruz-Pulido
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Courtney A. Cohen
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
- The Geneva Foundation, Tacoma, WA 98042, USA
| | - Michelle L. Rock
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
- The Geneva Foundation, Tacoma, WA 98042, USA
| | - John M. Dye
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
| | - Paul Kuehnert
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (P.K.); (K.M.R.)
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (P.K.); (K.M.R.)
| | - Marybeth Casper
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Lori Linhart
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Katrina Anderson
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Laura Kirk
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Jack A. Maggiore
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Andrew S. Herbert
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
| | - Nina M. Clark
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gail E. Reid
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|