1
|
Ji Y, Wang L, Zhou R, Yang X, Li S, Cen S, Li Y. Design, synthesis, and antiviral activity of 1-aryl-4-arylmethylpiperazine derivatives as Zika virus inhibitors with broad antiviral spectrum. Bioorg Med Chem 2024; 103:117682. [PMID: 38493729 DOI: 10.1016/j.bmc.2024.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Zika virus (ZIKV) disease has been given attention due to the risk of congenital microcephaly and neurodevelopmental disorders after ZIKV infection in pregnancy, but no vaccine or antiviral drug is available. Based on a previously reported ZIKV inhibitor ZK22, a series of novel 1-aryl-4-arylmethylpiperazine derivatives was designed, synthesized, and investigated for antiviral activity by quantify cellular ZIKV RNA amount using RT-qPCR method in ZIKV-infected human venous endothelial cells (HUVECs) assay. Structure-activity relationship (SAR) analysis demonstrated that anti-ZIKV activity of 1-aryl-4-arylmethylpiperazine derivatives is not correlated with molecular hydrophobicity, multiple new derivatives with pyridine group to replace the benzonitrile moiety of ZK22 showed stronger antiviral activity, higher ligand lipophilicity efficiency as well as lower cytotoxicity. Two active compounds 13 and 33 were further identified as novel ZIKV entry inhibitors with the potential of oral available. Moreover, both ZK22 and newly active derivatives also possess of obvious inhibition on the viral replication of coronavirus and influenza A virus at low micromolar level. In summary, this work provided better candidates of ZIKV inhibitor for preclinical study and revealed the promise of 1-aryl-4-arylmethylpiperazine chemotype in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Yingjie Ji
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lidan Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Zhou
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaotang Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Siqi Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yanping Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Magalhães CM, Esteves da Silva JCG, Pinto da Silva L. Investigation of the Chemiluminescent Reaction of a Fluorinated Analog of Marine Coelenterazine. MATERIALS (BASEL, SWITZERLAND) 2024; 17:868. [PMID: 38399119 PMCID: PMC10890627 DOI: 10.3390/ma17040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Bioluminescence (BL) and chemiluminescence (CL) are remarkable processes in which light is emitted due to (bio)chemical reactions. These reactions have attracted significant attention for various applications, such as biosensing, bioimaging, and biomedicine. Some of the most relevant and well-studied BL/CL systems are that of marine imidazopyrazine-based compounds, among which Coelenterazine is a prime example. Understanding the mechanisms behind efficient chemiexcitation is essential for the optimization and development of practical applications for these systems. Here, the CL of a fluorinated Coelenterazine analog was studied using experimental and theoretical approaches to obtain insight into these processes. Experimental analysis revealed that CL is more efficient under basic conditions than under acidic ones, which could be attributed to the higher relative chemiexcitation efficiency of an anionic dioxetanone intermediate over a corresponding neutral species. However, theoretical calculations indicated that the reactions of both species are similarly associated with both electron and charge transfer processes, which are typically used to explain efficiency chemiexcitation. So, neither process appears to be able to explain the relative chemiexcitation efficiencies observed. In conclusion, this study provides further insight into the mechanisms behind the chemiexcitation of imidazopyrazinone-based systems.
Collapse
Affiliation(s)
| | | | - Luís Pinto da Silva
- Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (J.C.G.E.d.S.)
| |
Collapse
|
3
|
Dolliver SM, Galbraith C, Khaperskyy DA. Human Betacoronavirus OC43 Interferes with the Integrated Stress Response Pathway in Infected Cells. Viruses 2024; 16:212. [PMID: 38399988 PMCID: PMC10893100 DOI: 10.3390/v16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.
Collapse
Affiliation(s)
| | | | - Denys A. Khaperskyy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Martínez-Arribas B, Annang F, Díaz-González R, Pérez-Moreno G, Martín J, Mackenzie TA, Castillo F, Reyes F, Genilloud O, Ruiz-Pérez LM, Vicente F, Ramos MC, González-Pacanowska D. Establishment of a screening platform based on human coronavirus OC43 for the identification of microbial natural products with antiviral activity. Microbiol Spectr 2024; 12:e0167923. [PMID: 38009959 PMCID: PMC10783114 DOI: 10.1128/spectrum.01679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic has revealed the lack of effective treatments against betacoronaviruses and the urgent need for new broad-spectrum antivirals. Natural products are a valuable source of bioactive compounds with pharmaceutical potential that may lead to the discovery of new antiviral agents. Specifically, compared to conventional synthetic molecules, microbial natural extracts possess a unique and vast chemical diversity and are amenable to large-scale production. The implementation of a high-throughput screening platform using the betacoronavirus OC43 in a human cell line infection model has provided proof of concept of the approach and has allowed for the rapid and efficient evaluation of 1,280 microbial extracts. The identification of several active compounds validates the potential of the platform for the search for new compounds with antiviral capacity.
Collapse
Affiliation(s)
- Blanca Martínez-Arribas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Rosario Díaz-González
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Francisco Castillo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - María C. Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
5
|
Diefenbacher MV, Baric TJ, Martinez DR, Baric RS, Catanzaro NJ, Sheahan TP. A nano-luciferase expressing human coronavirus OC43 for countermeasure development. Virus Res 2024; 339:199286. [PMID: 38016504 PMCID: PMC10714359 DOI: 10.1016/j.virusres.2023.199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
The genetic diversity of the coronavirus (CoV) family poses a significant challenge for drug discovery and development. Traditional antiviral drugs often target specific viral proteins from specific viruses which limits their use, especially against novel emerging viruses. Antivirals with broad-spectrum activity overcome this limitation by targeting highly conserved regions or catalytic domains within viral proteins that are essential for replication. For rapid identification of small molecules with broad antiviral activity, assays with viruses representing family-wide genetic diversity are needed. Viruses engineered to express a reporter gene (i.e. luminescence, fluorescence, etc.) can increase the efficiency, sensitivity or precision of drug screening over classical measures of replication like observation of cytopathic effect or measurement of infectious titers. We have previously developed reporter virus systems for multiple other endemic, pandemic, epidemic and enzootic CoV. Human CoV OC43 (HCoV-OC43) is a human endemic CoV that causes respiratory infection with age-related exacerbations of pathogenesis. Here, we describe the development of a novel recombinant HCoV-OC43 reporter virus that expresses nano-luciferase (HCoV-OC43 nLuc), and its potential application for screening of antivirals against CoV.
Collapse
Affiliation(s)
- Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Zhou H, Xie P, Qiu M, Dong S, Xia X, Yang Z, Yuan Y, Shen L. Arbidol increases the survival rate by mitigating inflammation in suckling mice infected with human coronavirus OC43 virus. J Med Virol 2023; 95:e29052. [PMID: 37650132 DOI: 10.1002/jmv.29052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Human coronavirus OC43 (HCoV-OC43) often causes common cold and is able to neuroinvasive, but it can also induce lower respiratory tract infections (LRTI) especially in children and the elderly adults with underlying diseases. HCoV-OC43 infections currently have no approved antiviral treatment. Arbidol (ARB) is a broad-spectrum antiviral and is an antiviral medication for the treatment of influenza used in Russia and China. Due to its multiple mechanisms of action, such as inhibition of viral fusion and entry, immunomodulation, and modulation of host cell signaling pathways, ARB has the potential to be an effective treatment option for viral infections. Therefore, the study aims to investigate the activities of ARB against HCoV-OC43 infections. Suckling mice were infected with HCoV-OC43 and treated with ARB (50, 25 and 12.5 mg/kg/d) by gavage once daily for 4 days. the survival rates and body weight were recorded, the viral titer was measured by real-time quantitative polymerase chain reaction, cytokine levels were measured by Bio-Plex assays. Histopathological changes of the lungs and brain were analyzed. Our results show ARB increased the survival rate, reduced viral copy numbers in the lung, mitigated pro-inflammatory cytokine production, and improved brain and lung histopathology significantly without any significant toxicity or side effects in vivo. Our results suggest ARB could be a promising approach for the prevention and treatment of HCoV-OC43 while further studies are needed to address these possibilities and the underlying mechanism.
Collapse
Affiliation(s)
- Hongxia Zhou
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Peifang Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minshan Qiu
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Shuwei Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoqin Yuan
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Lihan Shen
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| |
Collapse
|
7
|
Kim MI, Lee C. Human Coronavirus OC43 as a Low-Risk Model to Study COVID-19. Viruses 2023; 15:v15020578. [PMID: 36851792 PMCID: PMC9965565 DOI: 10.3390/v15020578] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had irreversible and devastating impacts on every aspect of human life. To better prepare for the next similar pandemic, a clear understanding of coronavirus biology is a prerequisite. Nevertheless, the high-risk nature of the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires the use of a cumbersome biosafety level-3 (BSL-3) confinement facility. To facilitate the development of preventive and therapeutic measures against SARS-CoV-2, one of the endemic strains of low-risk coronaviruses has gained attention as a useful research alternative: human coronavirus OC43 (HCoV-OC43). In this review, its history, classification, and clinical manifestations are first summarized. The characteristics of its viral genomes, genes, and evolution process are then further explained. In addition, the host factors necessary to support the life cycle of HCoV-OC43 and the innate, as well as adaptive, immunological responses to HCoV-OC43 infection are discussed. Finally, the development of in vitro and in vivo systems to study HCoV-OC43 and its application to the discovery of potential antivirals for COVID-19 by using HCoV-OC43 models are also presented. This review should serve as a concise guide for those who wish to use HCoV-OC43 to study coronaviruses in a low-risk research setting.
Collapse
|
8
|
Vu NN, Venne C, Ladhari S, Saidi A, Moskovchenko L, Lai TT, Xiao Y, Barnabe S, Barbeau B, Nguyen-Tri P. Rapid Assessment of Biological Activity of Ag-Based Antiviral Coatings for the Treatment of Textile Fabrics Used in Protective Equipment Against Coronavirus. ACS APPLIED BIO MATERIALS 2022; 5:3405-3417. [PMID: 35776851 DOI: 10.1021/acsabm.2c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants have rapidly spread worldwide, causing coronavirus disease (COVID-19) with numerous infected cases and millions of deaths. Therefore, developing approaches to fight against COVID-19 is currently the most priority goal of the scientific community. As a sustainable solution to stop the spread of the virus, a green dip-coating method is utilized in the current work to prepare antiviral Ag-based coatings to treat cotton and synthetic fabrics, which are the base materials used in personal protective equipment such as gloves and gowns. Characterization results indicate the successful deposition of silver (Ag) and stabilizers on the cotton and polypropylene fiber surface, forming Ag coatings. The deposition of Ag and stabilizers on cotton and etched polypropylene (EPP) fabrics is dissimilar due to fiber surface behavior. The obtained results of biological tests reveal the excellent antibacterial property of treated fabrics with large zones of bacterial inhibition. Importantly, these treated fabrics exhibit an exceptional antiviral activity toward human coronavirus OC43 (hCoV-OC43), whose infection could be eliminated up to 99.8% when it was brought in contact with these fabrics after only a few tens of minutes. Moreover, the biological activity of treated fabrics is well maintained after a long period of up to 40 days of post-treatment.
Collapse
Affiliation(s)
- Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Camille Venne
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Alireza Saidi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada.,Institut de recherche Robert-Sauvé en santé et en Sécurité du travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, Quebec H3A 3C2, Canada
| | - Lana Moskovchenko
- NanoBrand Inc., 230 Bernard-Belleau, suite 123, Laval, Quebec H7V 4A9, Canada
| | - Thanh Tung Lai
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Yong Xiao
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, avenue du Président-Kennedy, Montréal, Quebec H2X 1Y4, Canada
| | - Simon Barnabe
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Benoit Barbeau
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, avenue du Président-Kennedy, Montréal, Quebec H2X 1Y4, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| |
Collapse
|
9
|
Guo X, Zhao K, Liu X, Lei B, Zhang W, Li X, Yuan W. Construction and Generation of a Recombinant Senecavirus a Stably Expressing the NanoLuc Luciferase for Quantitative Antiviral Assay. Front Microbiol 2021; 12:745502. [PMID: 34659180 PMCID: PMC8517534 DOI: 10.3389/fmicb.2021.745502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Senecavirus A (SVA), also known as Seneca Valley virus, is a recently emerged picornavirus that can cause swine vesicular disease, posing a great threat to the global swine industry. A recombinant reporter virus (rSVA-Nluc) stably expressing the nanoluciferase (Nluc) gene between SVA 2A and 2B was developed to rapidly detect anti-SVA neutralizing antibodies and establish a high-throughput screen for antiviral agents. This recombinant virus displayed similar growth kinetics as the parental virus and remained stable for more than 10 passages in BHK-21 cells. As a proof-of-concept for its utility for rapid antiviral screening, this reporter virus was used to rapidly quantify anti-SVA neutralizing antibodies in 13 swine sera samples and screen for antiviral agents, including interferons ribavirin and interferon-stimulated genes (ISGs). Subsequently, interfering RNAs targeting different regions of the SVA genome were screened using the reporter virus. This reporter virus (rSVA-Nluc) represents a useful tool for rapid and quantitative screening and evaluation of antivirals against SVA.
Collapse
Affiliation(s)
- Xiaoran Guo
- College of Animal Medicine, Hebei Agricultural University, Baoding, China
| | - Kuan Zhao
- College of Animal Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaona Liu
- College of Animal Medicine, Hebei Agricultural University, Baoding, China
| | - Baishi Lei
- College of Animal Medicine, Hebei Agricultural University, Baoding, China
| | - Wuchao Zhang
- College of Animal Medicine, Hebei Agricultural University, Baoding, China
| | - Xiuli Li
- College of Animal Medicine, Hebei Agricultural University, Baoding, China
| | - Wanzhe Yuan
- College of Animal Medicine, Hebei Agricultural University, Baoding, China.,Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China.,North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding, China
| |
Collapse
|
10
|
Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN. Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104944. [PMID: 34052418 PMCID: PMC8159710 DOI: 10.1016/j.meegid.2021.104944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023]
Abstract
Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Department of Chemistry, Kwara State University, P. M. B. 1530, Malete, Ilorin, Nigeria
| | - Sani Najib Yahaya
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | - Waleed A. Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | | | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Corresponding author
| |
Collapse
|
11
|
Tao S, Zandi K, Bassit L, Ong YT, Verma K, Liu P, Downs-Bowen JA, McBrayer T, LeCher JC, Kohler JJ, Tedbury PR, Kim B, Amblard F, Sarafianos SG, Schinazi RF. Comparison of anti-SARS-CoV-2 activity and intracellular metabolism of remdesivir and its parent nucleoside. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100045. [PMID: 34870151 PMCID: PMC8357487 DOI: 10.1016/j.crphar.2021.100045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Remdesivir, a monophosphate prodrug of nucleoside analog GS-441524, is widely used for the treatment of moderate to severe COVID-19. It has been suggested to use GS-441524 instead of remdesivir in the clinic and in new inhalation formulations. Thus, we compared the anti-SARS-CoV-2 activity of remdesivir and GS-441524 in Vero E6, Vero CCL-81, Calu-3, Caco-2 cells, and anti-HCoV-OC43 activity in Huh-7 cells. We also compared the cellular pharmacology of these two compounds in Vero E6, Vero CCL-81, Calu-3, Caco-2, Huh-7, 293T, BHK-21, 3T3 and human airway epithelial (HAE) cells. Overall, remdesivir exhibited greater potency and superior intracellular metabolism than GS-441524 except in Vero E6 and Vero CCL-81 cells.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- Anti-SARS-CoV-2
- Antiviral agents
- CES1, carboxylesterase 1
- COVID-19
- COVID-19, coronavirus disease 2019
- CatA, cathepsin A
- Coronavirus
- DP, diphosphate
- GS-441524
- HAE, human airway epithelial
- HCoV-OC43
- HINT1, histidine triad nucleotide-binding protein 1
- MP, monophosphate
- NTP, nucleoside triphosphate
- Pharmacology
- Remdesivir
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- TP, triphosphate
- WHO, World Health Organization
- icSARS-CoV-2-mNG, SARS-CoV-2 infectious clone virus containing mNeonGreen reporter
Collapse
Affiliation(s)
- Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Keivan Zandi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yee Tsuey Ong
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kiran Verma
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica A. Downs-Bowen
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tamara McBrayer
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Julia C. LeCher
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - James J. Kohler
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Philip R. Tedbury
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Baek Kim
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
12
|
Grygiel-Górniak B. Antimalarial drugs-are they beneficial in rheumatic and viral diseases?-considerations in COVID-19 pandemic. Clin Rheumatol 2021; 41:1-18. [PMID: 34218393 PMCID: PMC8254634 DOI: 10.1007/s10067-021-05805-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023]
Abstract
The majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
13
|
Discovery and optimization of 2-((1H-indol-3-yl)thio)-N-benzyl-acetamides as novel SARS-CoV-2 RdRp inhibitors. Eur J Med Chem 2021; 223:113622. [PMID: 34147744 PMCID: PMC8191315 DOI: 10.1016/j.ejmech.2021.113622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global pandemic coronavirus disease (COVID-19), but no specific antiviral drug has been proven effective for controlling this pandemic to date. In this study, several 2-((indol-3-yl)thio)-N-benzyl-acetamides were identified as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors. After a two-round optimization, a new series of 2-((indol-3-yl)thio)-N-benzyl-acetamides was designed, synthesized, and evaluated for SARS-CoV-2 RdRp inhibitory effect. Compounds 6b2, 6b5, 6c9, 6d2, and 6d5 were identified as potent inhibitors with IC50 values of 3.35 ± 0.21 μM, 4.55 ± 0.2 μM, 1.65 ± 0.05 μM, 3.76 ± 0.79 μM, and 1.11 ± 0.05 μM, respectively; the IC50 of remdesivir (control) was measured as 1.19 ± 0.36 μM. All of the compounds inhibited RNA synthesis by SARS-CoV-2 RdRp. The most potent compound 6d5, which showed a stronger inhibitory activity against the human coronavirus HCoV-OC43 than remdesivir, is a promising candidate for further investigation.
Collapse
|
14
|
Karimzadeh S, Bhopal R, Nguyen Tien H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol Infect 2021; 149:e96. [PMID: 33849679 DOI: 10.20944/preprints202007.0613.v3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Collapse
Affiliation(s)
- Sedighe Karimzadeh
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Raj Bhopal
- Usher Institute, University of Edinburgh, EdinburghEH3 9AG, UK
| | - Huy Nguyen Tien
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
15
|
Karimzadeh S, Bhopal R, Nguyen Tien H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol Infect 2021; 149:e96. [PMID: 33849679 PMCID: PMC8082124 DOI: 10.1017/s0950268821000790] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Collapse
Affiliation(s)
- Sedighe Karimzadeh
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Raj Bhopal
- Usher Institute, University of Edinburgh, EdinburghEH3 9AG, UK
| | - Huy Nguyen Tien
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Sorouri F, Emamgholipour Z, Keykhaee M, Najafi A, Firoozpour L, Sabzevari O, Sharifzadeh M, Foroumadi A, Khoobi M. The situation of small molecules targeting key proteins to combat SARS-CoV-2: Synthesis, metabolic pathway, mechanism of action, and potential therapeutic applications. Mini Rev Med Chem 2021; 22:273-311. [PMID: 33687881 DOI: 10.2174/1389557521666210308144302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Due to the global epidemic and high mortality of 2019 coronavirus disease (COVID-19), there is an immediate need to discover drugs that can help before a vaccine becomes available. Given that the process of producing new drugs is so long, the strategy of repurposing existing drugs is one of the promising options for the urgent treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19 disease. Although FDA has approved Remdesivir for the use in hospitalized adults and pediatric patients suffering from COVID-19, no fully effective and reliable drug has been yet identified worldwide to treat COVID-19 specifically. Thus, scientists are still trying to find antivirals specific to COVID-19. This work reviews the chemical structure, metabolic pathway, mechanism of action of existing drugs with potential therapeutic applications for COVID-19. Further, we summarized the molecular docking stimulation of the medications related to key protein targets. These already drugs could be developed for further clinical trials to supply suitable therapeutic options for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Alireza Najafi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| |
Collapse
|
17
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
18
|
Luo W, Ige OO, Beacon TH, Su RC, Huang S, Davie JR, Lakowski TM. The treatment of SARS-CoV2 with antivirals and mitigation of the cytokine storm syndrome: the role of gene expression. Genome 2020; 64:400-415. [PMID: 33197212 DOI: 10.1139/gen-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the absence of a vaccine, the treatment of SARS-CoV2 has focused on eliminating the virus with antivirals or mitigating the cytokine storm syndrome (CSS) that leads to the most common cause of death: respiratory failure. Herein we discuss the mechanisms of antiviral treatments for SARS-CoV2 and treatment strategies for the CSS. Antivirals that have shown in vitro activity against SARS-CoV2, or the closely related SARS-CoV1 and MERS-CoV, are compared on the enzymatic level and by potency in cells. For treatment of the CSS, we discuss medications that reduce the effects or expression of cytokines involved in the CSS with an emphasis on those that reduce IL-6 because of its central role in the development of the CSS. We show that some of the medications covered influence the activity or expression of enzymes involved in epigenetic processes and specifically those that add or remove modifications to histones or DNA. Where available, the latest clinical data showing the efficacy of the medications is presented. With respect to their mechanisms, we explain why some medications are successful, why others have failed, and why some untested medications may yet prove useful.
Collapse
Affiliation(s)
- Wenxia Luo
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Olufola O Ige
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, MB R3E 3R2, Canada
| | - Shujun Huang
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ted M Lakowski
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
19
|
Shane AL, Sato AI, Kao C, Adler-Shohet FC, Vora SB, Auletta JJ, Nachman S, Raabe VN, Inagaki K, Akinboyo IC, Woods C, Alsulami AO, Kainth MK, Santos RP, Espinosa CM, Burns JE, Cunningham CK, Dominguez SR, Martinez BL, Zhu F, Crews J, Kitano T, Saiman L, Kotloff K. A Pediatric Infectious Diseases Perspective of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Novel Coronavirus Disease 2019 (COVID-19) in Children. J Pediatric Infect Dis Soc 2020; 9:596-608. [PMID: 32840614 PMCID: PMC7499621 DOI: 10.1093/jpids/piaa099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Understanding the role that children play in the clinical burden and propagation of severe acute respiratory syndrome coronavirus 2, responsible for coronavirus disease 2019 (COVID-19) infections, is emerging. While the severe manifestations and acute clinical burden of COVID-19 have largely spared children compared with adults, understanding the epidemiology, clinical presentation, diagnostics, management, and prevention opportunities and the social and behavioral impacts on child health is vital. Foremost is clarifying the contribution of asymptomatic and mild infections to transmission within the household and community and the clinical and epidemiologic significance of uncommon severe post-infectious complications. Here, we summarize the current knowledge, identify resources, and outline research opportunities. Pediatric infectious diseases clinicians have a unique opportunity to advocate for the inclusion of children in epidemiological, clinical, treatment, and prevention studies to optimize their care as well as to represent children in the development of guidance and policy during pandemic response.
Collapse
MESH Headings
- Asymptomatic Diseases
- Betacoronavirus
- COVID-19
- COVID-19 Testing
- Child
- Child Health Services
- Clinical Laboratory Techniques
- Coronavirus Infections/diagnosis
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/transmission
- Female
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/epidemiology
- Infant, Newborn, Diseases/prevention & control
- Infectious Disease Transmission, Vertical
- Pandemics/prevention & control
- Pediatrics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Pneumonia, Viral/transmission
- Practice Guidelines as Topic
- Pregnancy
- Pregnancy Complications, Infectious
- SARS-CoV-2
Collapse
Affiliation(s)
- Andi L Shane
- Division of Pediatric Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Alice I Sato
- Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Children’s Hospital & Medical Center, Omaha, Nebraska, USA
| | - Carol Kao
- Division of Pediatric Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Felice C Adler-Shohet
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Children’s Hospital of Orange County, Orange, California, USA
| | - Surabhi B Vora
- Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Jeffery J Auletta
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant and Infectious Diseases, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sharon Nachman
- Department of Pediatrics, Stony Brook Children’s, Stony Brook, New York, USA
| | - Vanessa N Raabe
- Division of Infectious Disease, Department of Medicine and Pediatrics, New York University Langone Grossman School of Medicine, New York, New York, USA
| | - Kengo Inagaki
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ibukunoluwa C Akinboyo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Charles Woods
- Department of Pediatrics, University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee, USA
| | - Abdulsalam O Alsulami
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mundeep K Kainth
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, New York, USA
| | - Roberto Parulan Santos
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Mississippi Medical Center, University Hospital, Jackson, Mississippi, USA
| | - Claudia M Espinosa
- Division of Pediatric Infectious Disease, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Julianne E Burns
- Division of Hospital Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Coleen K Cunningham
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Samuel R Dominguez
- Section of Infectious Diseases, Department of Pediatrics, University of Colorado and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Beatriz Larru Martinez
- Division of Paediatric Infectious Diseases & Immunology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Frank Zhu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jonathan Crews
- Division of Pediatric Infectious Diseases, Baylor College of Medicine, Children’s Hospital of San Antonio, San Antonio, Texas, USA
| | - Taito Kitano
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Saiman
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Columbia University Medical Center, New York–Presbyterian Morgan Stanley Children’s Hospital, New York, New York, USA
| | - Karen Kotloff
- Division of Pediatric Infectious Diseases and Tropical Medicine, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Oscanoa TJ, Romero-Ortuno R, Carvajal A, Savarino A. A pharmacological perspective of chloroquine in SARS-CoV-2 infection: An old drug for the fight against a new coronavirus? Int J Antimicrob Agents 2020; 56:106078. [PMID: 32629115 PMCID: PMC7334645 DOI: 10.1016/j.ijantimicag.2020.106078] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having serious consequences on health and the economy worldwide. All evidence-based treatment strategies need to be considered to combat this new virus. Drugs need to be considered on scientific grounds of efficacy, safety and cost. Chloroquine (CQ) and hydroxychloroquine (HCQ) are old drugs used in the treatment of malaria. Moreover, their antiviral properties have been previously studied, including against coronaviruses, where evidence of efficacy has been found. In the current race against time triggered by the COVID-19 pandemic, the search for new antivirals is very important. However, consideration should be given to old drugs with known anti-coronavirus activity, such as CQ and HCQ. These could be integrated into current treatment strategies while novel treatments are awaited, also in light of the fact that they display an anticoagulant effect that facilitates the activity of low-molecular-weight heparin, aimed at preventing acute respiratory distress syndrome (ARDS)-associated thrombotic events. The safety of CQ and HCQ has been studied for over 50 years, however recently published data raise concerns for cardiac toxicity of CQ/HCQ in patients with COVID-19. This review also re-examines the real information provided by some of the published alarming reports, although concluding that cardiac toxicity should in any case be stringently monitored in patients receiving CQ/HCQ.
Collapse
Affiliation(s)
- Teodoro J Oscanoa
- Department of Pharmacology, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru, and Drug Safety Research Center, Facultad de Medicina Humana, Universidad de San Martín de Porres, Hospital Almenara, ESSALUD, Lima, Peru.
| | - Roman Romero-Ortuno
- Discipline of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland, and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Carvajal
- Centro de Estudios sobre la Seguridad de los Medicamentos (CESME), Universidad de Valladolid, Valladolid, Spain
| | - Andrea Savarino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
21
|
Sanclemente-Alaman I, Moreno-Jiménez L, Benito-Martín MS, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Gómez-Pinedo U. Experimental Models for the Study of Central Nervous System Infection by SARS-CoV-2. Front Immunol 2020; 11:2163. [PMID: 32983181 PMCID: PMC7485091 DOI: 10.3389/fimmu.2020.02163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions. DEVELOPMENT We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed models used to assess the presence and effects of SARS-CoV-2 on the CNS, including neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59 strain), and the use of brain organoids. CONCLUSION Given the clear need to increase our understanding of SARS-CoV-2, as well as its potential effects on the CNS, we must endeavor to obtain new information with cellular or animal models, with an appropriate resemblance between models and human patients.
Collapse
Affiliation(s)
- Inmaculada Sanclemente-Alaman
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology, CIATEJ-CONACYT, Guadalajara, Mexico
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Santos IDA, Grosche VR, Bergamini FRG, Sabino-Silva R, Jardim ACG. Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment? Front Microbiol 2020; 11:1818. [PMID: 32903349 PMCID: PMC7438404 DOI: 10.3389/fmicb.2020.01818] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a group of viruses from the family Coronaviridae that can infect humans and animals, causing mild to severe diseases. The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a global threat, urging the development of new therapeutic strategies. Here we present a selection of relevant compounds that have been described from 2005 until now as having in vitro and/or in vivo antiviral activities against human and/or animal CoVs. We also present compounds that have reached clinical trials as well as further discussing the potentiality of other molecules for application in (re)emergent CoVs outbreaks. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential SARS-CoV-2 drug candidates.
Collapse
Affiliation(s)
- Igor de Andrade Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Victória Riquena Grosche
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
- Institute of Biosciences, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| | | | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
- Institute of Biosciences, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| |
Collapse
|
23
|
Mitra P. Inhibiting fusion with cellular membrane system: therapeutic options to prevent severe acute respiratory syndrome coronavirus-2 infection. Am J Physiol Cell Physiol 2020; 319:C500-C509. [PMID: 32687406 PMCID: PMC7839238 DOI: 10.1152/ajpcell.00260.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), an enveloped virus with a positive-sense single-stranded RNA genome, facilitates the host cell entry through intricate interactions with proteins and lipids of the cell membrane. The detailed molecular mechanism involves binding to the host cell receptor and fusion at the plasma membrane or after being trafficked to late endosomes under favorable environmental conditions. A crucial event in the process is the proteolytic cleavage of the viral spike protein by the host's endogenous proteases that releases the fusion peptide enabling fusion with the host cellular membrane system. The present review details the mechanism of viral fusion with the host and highlights the therapeutic options that prevent SARS-CoV-2 entry in humans.
Collapse
Affiliation(s)
- Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
24
|
Overcoming nonstructural protein 15-nidoviral uridylate-specific endoribonuclease (nsp15/NendoU) activity of SARS-CoV-2. FUTURE DRUG DISCOVERY 2020. [PMCID: PMC7255426 DOI: 10.4155/fdd-2020-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
COVID-19 has become the gravest global public health crisis since the Spanish Flu of 1918. Combination antiviral therapy with repurposed broad-spectrum antiviral agents holds a highly promising immediate treatment strategy, especially given uncertainties of vaccine efficacy and developmental timeline. Here, we describe a novel hypothetical approach: combining available broad-spectrum antiviral agents such as nucleoside analogs with potential inhibitors of NendoU, for example nsp15 RNA substrate mimetics. While only hypothesis-generating, this approach may constitute a ‘double-hit’ whereby two CoV-unique protein elements of the replicase–transcriptase complex are inhibited simultaneously; this may be an Achilles' heel and precipitate lethal mutagenesis in a coronavirus. It remains to be seen whether structurally optimized RNA substrate mimetics in combination with clinically approved and repurposed backbone antivirals can synergistically inhibit this endonuclease in vitro, thus fulfilling the ‘double-hit hypothesis’.
Collapse
|
25
|
Al-Bari AA. Facts and Myths: Efficacies of Repurposing Chloroquine and Hydroxychloroquine for the Treatment of COVID-19. Curr Drug Targets 2020; 21:1703-1721. [PMID: 32552642 DOI: 10.2174/1389450121666200617133142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) is caused by the 2019 novel coronavirus (2019-nCoV). The 2019-nCoV first broke out in Wuhan and subsequently spread worldwide owing to its extreme transmission efficiency. The fact that the COVID-19 cases and mortalities are reported globally and the WHO has declared this outbreak as the pandemic, the international health authorities have focused on rapid diagnosis and isolation of patients as well as search for therapies able to counter the disease severity. Due to the lack of known specific, effective and proven therapies as well as the situation of public-health emergency, drug repurposing appears to be the best armour to find a therapeutic solution against 2019-nCoV infection. Repurposing anti-malarial drugs and chloroquine (CQ)/ hydroxychloroquine (HCQ) have shown efficacy to inhibit most coronaviruses, including SARS-CoV-1 coronavirus. These CQ analogues have shown potential efficacy to inhibit 2019-nCoV in vitro that leads to focus several future clinical trials. This review discusses the possible effective roles and mechanisms of CQ analogues for interfering with the 2019-nCoV replication cycle and infection.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
26
|
Mei Y, Luo D, Wei S, Liao X, Pan Y, Yang X, Lin Y. Obstetric Management of COVID-19 in Pregnant Women. Front Microbiol 2020; 11:1186. [PMID: 32574255 PMCID: PMC7264107 DOI: 10.3389/fmicb.2020.01186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The 2019 novel coronavirus disease (COVID-19), which is caused by the novel beta coronavirus, SARS-CoV-2, is currently prevalent all over the world, causing thousands of deaths with relatively high virulence. Like two other notable beta coronaviruses, severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 can lead to severe contagious respiratory disease. Due to impaired cellular immunity and physiological changes, pregnant women are susceptible to respiratory disease and are more likely to develop severe pneumonia. Given the prevalence of COVID-19, it is speculated that some pregnant women have already been infected. However, limited data are available for the clinical course and management of COVID-19 in pregnancy. Therefore, we conducted this review to identify strategies for the obstetric management of COVID-19. We compared the clinical course and outcomes of COVID-19, SARS, and MERS in pregnancy and discussed several drugs for the treatment of COVID-19 in pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonghong Lin
- Department of Obstetrics and Gynecology, Chengdu Women and Children's Central Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Kumar R, Gupta N, Kodan P, Mittal A, Soneja M, Wig N. Battling COVID-19: using old weapons for a new enemy. Trop Dis Travel Med Vaccines 2020; 6:6. [PMID: 32454984 PMCID: PMC7237624 DOI: 10.1186/s40794-020-00107-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) has reached pandemic proportions. Most of the drugs that are being tried for the treatment have not been evaluated in any randomized controlled trials. The purpose of this review was to summarize the in-vitro and in-vivo efficacy of these drugs on Severe Acute Respiratory Syndrome (SARS-CoV-2) and related viruses (SARS and Middle East Respiratory Syndrome) and evaluate their potential for re-purposing them in the management of COVID-19.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Nitin Gupta
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Karnataka 576104 India
| | - Parul Kodan
- Dr Ram Manohar Lohia hospital & Post-Graduate Institute of Medica education and Research, New Delhi, 110001 India
| | - Ankit Mittal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
28
|
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55:105938. [PMID: 32171740 PMCID: PMC7118659 DOI: 10.1016/j.ijantimicag.2020.105938] [Citation(s) in RCA: 662] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The efforts of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a public-health emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
29
|
Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, Wu W, Huang S, Jiang L, Luo X, Deng M. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents 2020; 55:105950. [PMID: 32234465 PMCID: PMC7118423 DOI: 10.1016/j.ijantimicag.2020.105950] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
Viral respiratory diseases such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) always pose a severe threat to people. First identified in late December 2019, a novel coronavirus (2019-nCoV; SARS-CoV-2) has affected many provinces in China and multiple countries worldwide. The viral outbreak has aroused panic and a public-health emergency around the world, and the number of infections continues to rise. However, the causes and consequences of the pneumonia remain unknown. To effectively implement epidemic prevention, early identification and diagnosis are critical to disease control. Here we scrutinise a series of available studies by global scientists on the clinical manifestations, detection methods and treatment options for the disease caused by SARS-CoV-2, named coronavirus disease 2019 (COVID-19), and also propose potential strategies for preventing the infection.
Collapse
Affiliation(s)
- Shuntong Kang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenyao Peng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuhao Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Shiyao Lu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Min Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shu Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xuan Luo
- Hunan Yuanpin Cell Biotechnology Co., Ltd., Changsha, Hunan 410100, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
30
|
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020. [PMID: 32171740 DOI: 10.1016/j.ijantimicag.2020.105938.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The efforts of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a public-health emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
31
|
Cimolai N. Potentially repurposing adamantanes for COVID‐19. J Med Virol 2020; 92:531-532. [DOI: 10.1002/jmv.25752] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, Children's and Women's Health Centre of British ColumbiaThe University of British ColumbiaVancouver British Columbia Canada
| |
Collapse
|
32
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 678] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
33
|
Niu J, Shen L, Huang B, Ye F, Zhao L, Wang H, Deng Y, Tan W. Non-invasive bioluminescence imaging of HCoV-OC43 infection and therapy in the central nervous system of live mice. Antiviral Res 2019; 173:104646. [PMID: 31705922 PMCID: PMC7114176 DOI: 10.1016/j.antiviral.2019.104646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/27/2022]
Abstract
Human coronaviruses (HCoVs) are important pathogens that cause upper respiratory tract infections and have neuroinvasive abilities; however, little is known about the dynamic infection process of CoVs in vivo, and there are currently no specific antiviral drugs to prevent or treat HCoV infection. Here, we verified the replication ability and pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (Rluc; rOC43-ns2DelRluc) in mice with different genetic backgrounds (C57BL/6 and BALB/c). Additionally, we monitored the spatial and temporal progression of HCoV-OC43 through the central nervous system (CNS) of live BALB/c mice after intranasal or intracerebral inoculation with rOC43-ns2DelRluc. We found that rOC43-ns2DelRluc was fatal to suckling mice after intranasal inoculation, and that viral titers and Rluc expression were detected in the brains and spinal cords of mice infected with rOC43-ns2DelRluc. Moreover, viral replication was initially observed in the brain by non-invasive bioluminescence imaging before the infection spread to the spinal cord of BALB/c mice, consistent with its tropism in the CNS. Furthermore, the Rluc readout correlated with the HCoV replication ability and protein expression, which allowed quantification of antiviral activity in live mice. Additionally, we validated that chloroquine strongly inhibited rOC43-ns2DelRluc replication in vivo. These results provide new insights into the temporal and spatial dissemination of HCoV-OC43 in the CNS, and our methods provide an extremely sensitive platform for evaluating the efficacy of antiviral therapies to treat neuroinvasive HCoVs in live mice. We verified the pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (rOC43-ns2DelRluc) in mice. HCoV-OC43 spatio-temporal progression in CNS of mice was monitored by non-invasive bioluminescence imaging (BLI). Chloroquine was validated strongly inhibited rOC43-ns2DelRluc replication in in live mice. rOC43-ns2DelRluc-based BLI was reported as a promising platform for non-invasively screening antiviral compounds in vivo.
Collapse
Affiliation(s)
- Junwei Niu
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Liang Shen
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China; Key Laboratory of Molecular Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Baoying Huang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Fei Ye
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Li Zhao
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Huijuan Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Yao Deng
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Wenjie Tan
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, China.
| |
Collapse
|
34
|
Brown AJ, Won JJ, Graham RL, Dinnon KH, Sims AC, Feng JY, Cihlar T, Denison MR, Baric RS, Sheahan TP. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169:104541. [PMID: 31233808 PMCID: PMC6699884 DOI: 10.1016/j.antiviral.2019.104541] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
The genetically diverse Orthocoronavirinae (CoV) family is prone to cross species transmission and disease emergence in both humans and livestock. Viruses similar to known epidemic strains circulating in wild and domestic animals further increase the probability of emergence in the future. Currently, there are no approved therapeutics for any human CoV presenting a clear unmet medical need. Remdesivir (RDV, GS-5734) is a monophosphoramidate prodrug of an adenosine analog with potent activity against an array of RNA virus families including Filoviridae, Paramyxoviridae, Pneumoviridae, and Orthocoronavirinae, through the targeting of the viral RNA dependent RNA polymerase (RdRp). We developed multiple assays to further define the breadth of RDV antiviral activity against the CoV family. Here, we show potent antiviral activity of RDV against endemic human CoVs OC43 (HCoV-OC43) and 229E (HCoV-229E) with submicromolar EC50 values. Of known CoVs, the members of the deltacoronavirus genus have the most divergent RdRp as compared to SARS- and MERS-CoV and both avian and porcine members harbor a native residue in the RdRp that confers resistance in beta-CoVs. Nevertheless, RDV is highly efficacious against porcine deltacoronavirus (PDCoV). These data further extend the known breadth and antiviral activity of RDV to include both contemporary human and highly divergent zoonotic CoV and potentially enhance our ability to fight future emerging CoV. In vitro antiviral assays were developed for human CoV OC43 and 229E and the zoonotic PDCoV. The nucleoside analog RDV inhibited HCoV-OC43 and 229E as well as deltacoronavirus member PDCoV. RDV has broad-spectrum antiviral activity against CoV and should be evaluated for future emerging CoV.
Collapse
Affiliation(s)
- Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John J Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Mark R Denison
- Department of Pediatrics-Infectious Diseases, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. J Virol 2019; 93:JVI.00023-19. [PMID: 30918074 PMCID: PMC6613765 DOI: 10.1128/jvi.00023-19] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro. We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.
Collapse
|
36
|
Abstract
Introduction: The highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are lethal zoonotic viruses that have emerged into human populations these past 15 years. These coronaviruses are associated with novel respiratory syndromes that spread from person-to-person via close contact, resulting in high morbidity and mortality caused by the progression to Acute Respiratory Distress Syndrome (ARDS). Areas covered: The risks of re-emergence of SARS-CoV from bat reservoir hosts, the persistence of MERS-CoV circulation, and the potential for future emergence of novel coronaviruses indicate antiviral drug discovery will require activity against multiple coronaviruses. In this review, approaches that antagonize viral nonstructural proteins, neutralize structural proteins, or modulate essential host elements of viral infection with varying levels of efficacy in models of highly pathogenic coronavirus disease are discussed. Expert opinion: Treatment of SARS and MERS in outbreak settings has focused on therapeutics with general antiviral activity and good safety profiles rather than efficacy data provided by cellular, rodent, or nonhuman primate models of highly pathogenic coronavirus infection. Based on lessons learned from SARS and MERS outbreaks, lack of drugs capable of pan-coronavirus antiviral activity increases the vulnerability of public health systems to a highly pathogenic coronavirus pandemic.
Collapse
Affiliation(s)
- Allison L Totura
- a Division of Molecular and Translational Sciences , United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Sina Bavari
- a Division of Molecular and Translational Sciences , United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|