1
|
Szemraj M, Glajzner P, Olszowiec K, Sienkiewicz M. The prevalence of multidrug resistance in Staphylococcus hominis isolated from clinical materials. Sci Rep 2025; 15:414. [PMID: 39747570 PMCID: PMC11696355 DOI: 10.1038/s41598-024-84500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics. Forty-six strains were both methicillin-resistant and harbored the mecA gene. Twenty-three of these strains had mec complex A and ccr complex AB1. Such a combination of the mec and ccr complexes does not correspond to any cassettes that have been demonstrated so far. However, over 80% of the tested strains were multidrug-resistant, of which as many as 12 were resistant to at least seven antibiotics. More than a half of strains harbored the tetK, acc(6')-Ie aph(2''), and ant(4')-I genes. erm(C) was the most common resistant gene to antibiotics from the MLS group. Two strains had as many as five antibiotic resistance genes from the tested groups (erm(C), msr(A), msr(B), mph(C), lnu(A)). The presence of the vga gene encoding resistance to streptogramins A was detected in one strain. All of strains were sensitive to vancomycin. However, 11 of them had reduced sensitivity to this antibiotic and eight of them were characterized by a heterogeneous resistance profile to this antibiotic. Our results clearly shows increasing threat of S. hominis caused by their multi-resistance. Moreover, these bacteria can constitute a reservoir of resistance genes for more pathogenic bacteria.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland.
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, Łódź, Poland
| | - Kamila Olszowiec
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
2
|
Delgado-Tejedor A, Medina R, Begik O, Cozzuto L, López J, Blanco S, Ponomarenko J, Novoa EM. Native RNA nanopore sequencing reveals antibiotic-induced loss of rRNA modifications in the A- and P-sites. Nat Commun 2024; 15:10054. [PMID: 39613750 DOI: 10.1038/s41467-024-54368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The biological relevance and dynamics of mRNA modifications have been extensively studied; however, whether rRNA modifications are dynamically regulated, and under which conditions, remains unclear. Here, we systematically characterize bacterial rRNA modifications upon exposure to diverse antibiotics using native RNA nanopore sequencing. To identify significant rRNA modification changes, we develop NanoConsensus, a novel pipeline that is robust across RNA modification types, stoichiometries and coverage, with very low false positive rates, outperforming all individual algorithms tested. We then apply NanoConsensus to characterize the rRNA modification landscape upon antibiotic exposure, finding that rRNA modification profiles are altered in the vicinity of A and P-sites of the ribosome, in an antibiotic-specific manner, possibly contributing to antibiotic resistance. Our work demonstrates that rRNA modification profiles can be rapidly altered in response to environmental exposures, and provides a robust workflow to study rRNA modification dynamics in any species, in a scalable and reproducible manner.
Collapse
Affiliation(s)
- Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Kolář MH, McGrath H, Nepomuceno FC, Černeková M. Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1873. [PMID: 39496527 DOI: 10.1002/wrna.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
All proteins in living organisms are produced in ribosomes that facilitate the translation of genetic information into a sequence of amino acid residues. During translation, the ribosome undergoes initiation, elongation, termination, and recycling. In fact, peptide bonds are formed only during the elongation phase, which comprises periodic association of transfer RNAs and multiple auxiliary proteins with the ribosome and the addition of an amino acid to the nascent polypeptide one at a time. The protein spends a considerable amount of time attached to the ribosome. Here, we conceptually divide this portion of the protein lifetime into three stages. We define each stage on the basis of the position of the N-terminus of the nascent polypeptide within the ribosome exit tunnel and the context of the catalytic center. We argue that nascent polypeptides experience a variety of forces that determine how they translocate through the tunnel and interact with the tunnel walls. We review current knowledge about nascent polypeptide translocation and identify several white spots in our understanding of the birth of proteins.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Felipe C Nepomuceno
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
4
|
Saha S, Kanaujia SP. Structural and functional characterization of archaeal DIMT1 unveils distinct protein dynamics essential for efficient catalysis. Structure 2024; 32:1760-1775.e7. [PMID: 39146930 DOI: 10.1016/j.str.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Dimethyladenosine transferase 1 (DIMT1), an ortholog of bacterial KsgA is a conserved protein that assists in ribosome biogenesis by modifying two successive adenosine bases near the 3' end of small subunit (SSU) rRNA. Although KsgA/DIMT1 proteins have been characterized in bacteria and eukaryotes, they are yet unexplored in archaea. Also, their dynamics are not well understood. Here, we structurally and functionally characterized the apo and holo forms of archaeal DIMT1 from Pyrococcus horikoshii. Wild-type protein and mutants were analyzed to capture different transition states, including open, closed, and intermediate states. This study reports a unique inter-domain movement that is needed for substrate (RNA) positioning in the catalytic pocket, and is only observed in the presence of the cognate cofactors S-adenosyl-L-methionine (SAM) or S-adenosyl-L-homocysteine (SAH). The binding of the inhibitor sinefungine, an analog of SAM or SAH, to archaeal DIMT1 blocks the catalytic pocket and renders the enzyme inactive.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Zhang XW, Song JJ, Zeng SH, Huang YL, Luo JJ, Guo WL, Li XY. Plasmid-mediated azithromycin resistance in non-typhoidal Salmonella recovered from human infections. J Antimicrob Chemother 2024; 79:2688-2697. [PMID: 39119898 PMCID: PMC11442001 DOI: 10.1093/jac/dkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES Mechanisms of non-typhoidal Salmonella (NTS) resistance to azithromycin have rarely been reported. Here we investigate the epidemiology and genetic features of 10 azithromycin-resistant NTS isolates. METHODS A total of 457 NTS isolates were collected from a tertiary hospital in Guangzhou. We performed antimicrobial susceptibility tests, conjugation experiments, efflux pump expression tests, whole-genome sequencing and bioinformatics analysis to conduct the study. RESULTS The results showed that 10 NTS isolates (2.8%) were resistant to azithromycin with minimum inhibitory concentration values ranging from 128 to 512 mg/L and exhibited multidrug resistance. The phylogenetic tree revealed that 5 S. London isolates (AR1-AR5) recognized at different times and departments were closely related [3-74 single-nucleotide polymorphisms (SNPs)] and 2 S. Typhimurium isolates (AR7 and AR8) were clones (<3 SNPs) at 3-month intervals. The azithromycin resistance was conferred by mph(A) gene found on different plasmids, including IncFIB, IncHI2, InFII, IncC and IncI plasmids. Among them, IncFIB, InFII and IncHI2 plasmids carried different IS26-class 1 integron (intI1) arrangement patterns that mediated multidrug resistance transmission. Conjugative IncC plasmid encoded resistance to ciprofloxacin, ceftriaxone and azithromycin. Furthermore, phylogenetic analysis demonstrated that mph(A)-positive plasmids closely related to 10 plasmids in this study were mainly discovered from NTS, Escherichia coli, Klebsiella pneumonia and Enterobacter hormaechei. The genetic environment of mph(A) in 10 NTS isolates was IS26-mph(A)-mrx(A)-mphR(A)-IS6100/IS26 that co-arranged with intI1 harbour multidrug-resistant (MDR) gene cassettes on diverse plasmids. CONCLUSIONS These findings highlighted that the dissemination of these plasmids carrying mph(A) and various intI1 MDR gene cassettes would seriously restrict the availability of essential antimicrobial agents for treating NTS infections.
Collapse
Affiliation(s)
- Xi-Wei Zhang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Jing-Jie Song
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Shi-Han Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Yu-Lan Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Jia-Jun Luo
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Wei-Long Guo
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Xiao-Yan Li
- Shunde Hospital, Southern Medical University (The First People’s Hospital
of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District,
Foshan City, Guangdong Province, China
| |
Collapse
|
6
|
Wright G, Jangra M, Travin D, Aleksandrova E, Kaur M, Darwish L, Koteva K, Klepacki D, Wang W, Tiffany M, Sokaribo A, Coombes B, Vázquez-Laslop N, Polikanov Y, Mankin A. A Broad Spectrum Lasso Peptide Antibiotic Targeting the Bacterial Ribosome. RESEARCH SQUARE 2024:rs.3.rs-5058118. [PMID: 39372947 PMCID: PMC11451635 DOI: 10.21203/rs.3.rs-5058118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Lasso peptides, biologically active molecules with a distinct structurally constrained knotted fold, are natural products belonging to the class of ribosomally-synthesized and posttranslationally modified peptides (RiPPs). Lasso peptides act upon several bacterial targets, but none have been reported to inhibit the ribosome, one of the main antibiotic targets in the bacterial cell. Here, we report the identification and characterization of the lasso peptide antibiotic, lariocidin (LAR), and its internally cyclized derivative, lariocidin B (LAR-B), produced by Paenabacillussp. M2, with broad-spectrum activity against many bacterial pathogens. We show that lariocidins inhibit bacterial growth by binding to the ribosome and interfering with protein synthesis. Structural, genetic, and biochemical data show that lariocidins bind at a unique site in the small ribosomal subunit, where they interact with the 16S rRNA and aminoacyl-tRNA, inhibiting translocation and inducing miscoding. LAR is unaffected by common resistance mechanisms, has a low propensity for generating spontaneous resistance, shows no human cell toxicity, and has potent in vivo activity in a mouse model of Acinetobacter baumannii infection. Our finding of the first ribosome-targeting lasso peptides uncovers new routes toward discovering alternative protein synthesis inhibitors and offers a new chemical scaffold for developing much-needed antibacterial drugs.
Collapse
|
7
|
Nor Amdan NA, Shahrulzamri NA, Hashim R, Mohamad Jamil N. Understanding the evolution of macrolides resistance: A mini review. J Glob Antimicrob Resist 2024; 38:368-375. [PMID: 39117142 DOI: 10.1016/j.jgar.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel. OBJECTIVE Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues. RESULTS Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence-due to this obscurity, research into macrolide modes of action continues to this day. CONCLUSION In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.
Collapse
Affiliation(s)
- Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Nur Atikah Shahrulzamri
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Norashirene Mohamad Jamil
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
8
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
9
|
Acevedo-Barrios R, Tirado-Ballestas I, Bertel-Sevilla A, Cervantes-Ceballos L, Gallego JL, Leal MA, Tovar D, Olivero-Verbel J. Bioprospecting of extremophilic perchlorate-reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation 2024; 35:601-620. [PMID: 38625437 PMCID: PMC11246272 DOI: 10.1007/s10532-024-10079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Three extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and 3.08 × 0.70 μm, respectively. The reported strains tolerate a wide range of pH (6.5 to 10.0); concentrations of NaCl (3.5 to 7.5% w/v) and KClO4- (250 to 10000 mg/L), reduction of KClO4- from 10 to 25%. LB broth with NaCl (3.5-30% w/v) and KClO4- (250-10000 mg/L) were used in independent trials to evaluate susceptibility to salinity and perchlorate, respectively. Isolates increased their biomass at 7.5 % (w/v) NaCl with optimal development at 3.5 % NaCl. Subsequently, ClO4- reduction was assessed using LB medium with 3.5% NaCl and 10000 mg/L ClO4-. BBCOL-009, BBCOL-014 and BBCOL-015 achieved 10%, 17%, and 25% reduction of ClO4-, respectively. The 16 S rRNA gene sequence grouped them as Bacillus flexus T6186-2, Bacillus marisflavi TF-11 (T), and Bacillus vietnamensis 15 - 1 (T) respectively, with < 97.5% homology. In addition, antimicrobial resistance to ertapenem, vancomycine, amoxicillin clavulanate, penicillin, and erythromycin was present in all the isolates, indicating their high adaptability to stressful environments. The isolated strains from marine sediments in Cartagena Bay, Colombia are suitable candidates to reduce perchlorate contamination in different environments. Although the primary focus of the study of perchlorate-reducing and resistant bacteria is in the ecological and agricultural realms, from an astrobiological perspective, perchlorate-resistant bacteria serve as models for astrobiological investigations.
Collapse
Affiliation(s)
- Rosa Acevedo-Barrios
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia.
- Grupo de Estudios Químicos y Biológicos, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, POB 130001, Cartagena de Indias D. T. y C, Colombia.
| | - Irina Tirado-Ballestas
- GENOMA Group, Health Sciences Department, Universidad del Sinú, Santillana Campus, Cartagena, 130015, Colombia
- Group of Functional Toxicology, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| | - Angela Bertel-Sevilla
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| | - Leonor Cervantes-Ceballos
- Group of Functional Toxicology, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| | - Jorge L Gallego
- Department of Engineering, University of Medellin, Medellín, 050026, Colombia
| | - María Angélica Leal
- Planetary Sciences and Astrobiology Research Group (GCPA), Universidad Nacional de Colombia and Corporación Científica Laguna, Bogotá, 111321, Colombia
- Biosphere and Cosmos Research Group (BIOC). Corporación Científica Laguna, Bogotá, 111163, Colombia
| | - David Tovar
- Planetary Sciences and Astrobiology Research Group (GCPA), Universidad Nacional de Colombia and Corporación Científica Laguna, Bogotá, 111321, Colombia
- Biosphere and Cosmos Research Group (BIOC). Corporación Científica Laguna, Bogotá, 111163, Colombia
| | - Jesús Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| |
Collapse
|
10
|
Tan Y, Scornet AL, Yap MNF, Zhang D. Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance. mSystems 2024; 9:e0043024. [PMID: 38953319 PMCID: PMC11264731 DOI: 10.1128/msystems.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The erythromycin resistance RNA methyltransferase (erm) confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of erm is often induced by the macrolide-mediated ribosome stalling in the upstream co-transcribed leader sequence, thereby triggering a conformational switch of the intergenic RNA hairpins to allow the translational initiation of erm. We investigated the evolutionary emergence of the upstream erm regulatory elements and the impact of allelic variation on erm expression and the MLS phenotype. Through systematic profiling of the upstream regulatory sequences across all known erm operons, we observed that specific erm subfamilies, such as ermB and ermC, have independently evolved distinct configurations of small upstream ORFs and palindromic repeats. A population-wide genomic analysis of the upstream ermB regions revealed substantial non-random allelic variation at numerous positions. Utilizing machine learning-based classification coupled with RNA structure modeling, we found that many alleles cooperatively influence the stability of alternative RNA hairpin structures formed by the palindromic repeats, which, in turn, affects the inducibility of ermB expression and MLS phenotypes. Subsequent experimental validation of 11 randomly selected variants demonstrated an impressive 91% accuracy in predicting MLS phenotypes. Furthermore, we uncovered a mixed distribution of MLS-sensitive and MLS-resistant ermB loci within the evolutionary tree, indicating repeated and independent evolution of MLS resistance. Taken together, this study not only elucidates the evolutionary processes driving the emergence and development of MLS resistance but also highlights the potential of using non-coding genomic allele data to predict antibiotic resistance phenotypes. IMPORTANCE Antibiotic resistance (AR) poses a global health threat as the efficacy of available antibiotics has rapidly eroded due to the widespread transmission of AR genes. Using Erm-dependent MLS resistance as a model, this study highlights the significance of non-coding genomic allelic variations. Through a comprehensive analysis of upstream regulatory elements within the erm family, we elucidated the evolutionary emergence and development of AR mechanisms. Leveraging population-wide machine learning (ML)-based genomic analysis, we transformed substantial non-random allelic variations into discernible clusters of elements, enabling precise prediction of MLS phenotypes from non-coding regions. These findings offer deeper insight into AR evolution and demonstrate the potential of harnessing non-coding genomic allele data for accurately predicting AR phenotypes.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Alexandre Le Scornet
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mee-Ngan Frances Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Mercuri C, Bulotta RM, Britti D, Palma E. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics (Basel) 2024; 13:551. [PMID: 38927217 PMCID: PMC11200672 DOI: 10.3390/antibiotics13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance represents an alarming public health problem; its importance is related to the significant clinical implications (increased morbidity, mortality, disease duration, development of comorbidities, and epidemics), as well as its economic effects on the healthcare sector. In fact, therapeutic options are severely limited by the advent and spread of germs resistant to many antibiotics. The situation worldwide is worrying, especially in light of the prevalence of Gram-negative bacteria-Klebsiella pneumoniae and Acinetobacter baumannii-which are frequently isolated in hospital environments and, more specifically, in intensive care units. The problem is compounded by the ineffective treatment of infections by patients who often self-prescribe therapy. Resistant bacteria also show resistance to the latest generation antibiotics, such as carbapenems. In fact, superbacteria, grouped under the acronym extended-spectrum betalactamase (ESBL), are becoming common. Antibiotic resistance is also found in the livestock sector, with serious repercussions on animal production. In general, this phenomenon affects all members of the biosphere and can only be addressed by adopting a holistic "One Health" approach. In this literature overview, a stock is taken of what has been learned about antibiotic resistance, and suggestions are proposed to stem its advance.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Caterina Mercuri
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Amin A, Naim MD, Islam N, Mollah MNH. Genome-wide identification and characterization of DTX family genes highlighting their locations, functions, and regulatory factors in banana (Musa acuminata). PLoS One 2024; 19:e0303065. [PMID: 38843276 PMCID: PMC11156367 DOI: 10.1371/journal.pone.0303065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.
Collapse
Affiliation(s)
- Al Amin
- Department of Statistics, Bioinformatics Laboratory, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Darun Naim
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Nurul Islam
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nurul Haque Mollah
- Department of Statistics, Bioinformatics Laboratory, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
13
|
Liu W, Yang T, Kong Y, Xie X, Ruan Z. Ureaplasma infections: update on epidemiology, antimicrobial resistance, and pathogenesis. Crit Rev Microbiol 2024:1-31. [PMID: 38794781 DOI: 10.1080/1040841x.2024.2349556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Human Ureaplasma species are being increasingly recognized as opportunistic pathogens in human genitourinary tract infections, infertility, adverse pregnancy, neonatal morbidities, and other adult invasive infections. Although some general reviews have focused on the detection and clinical manifestations of Ureaplasma spp., the molecular epidemiology, antimicrobial resistance, and pathogenesis of Ureaplasma spp. have not been adequately explained. The purpose of this review is to offer valuable insights into the current understanding and future research perspectives of the molecular epidemiology, antimicrobial resistance, and pathogenesis of human Ureaplasma infections. This review summarizes the conventional culture and detection methods and the latest molecular identification technologies for Ureaplasma spp. We also reviewed the global prevalence and mechanisms of antibiotic resistance for Ureaplasma spp. Aside from regular antibiotics, novel antibiotics with outstanding in vitro antimicrobial activity against Ureaplasma spp. are described. Furthermore, we discussed the pathogenic mechanisms of Ureaplasma spp., including adhesion, proinflammatory effects, cytotoxicity, and immune escape effects, from the perspectives of pathology, related molecules, and genetics.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Ting Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
André C, Van Camp AG, Ung L, Gilmore MS, Bispo PJM. Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Antimicrob Agents Chemother 2024; 68:e0124723. [PMID: 38289077 PMCID: PMC10916405 DOI: 10.1128/aac.01247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/03/2023] [Indexed: 02/04/2024] Open
Abstract
Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages.
Collapse
Affiliation(s)
- Camille André
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew G. Van Camp
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S. Gilmore
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Zhang K, Potter RF, Marino J, Muenks CE, Lammers MG, Dien Bard J, Dingle TC, Humphries R, Westblade LF, Burnham CAD, Dantas G. Comparative genomics reveals the correlations of stress response genes and bacteriophages in developing antibiotic resistance of Staphylococcus saprophyticus. mSystems 2023; 8:e0069723. [PMID: 38051037 PMCID: PMC10734486 DOI: 10.1128/msystems.00697-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Staphylococcus saprophyticus is the second most common bacteria associated with urinary tract infections (UTIs) in women. The antimicrobial treatment regimen for uncomplicated UTI is normally nitrofurantoin, trimethoprim-sulfamethoxazole (TMP-SMX), or a fluoroquinolone without routine susceptibility testing of S. saprophyticus recovered from urine specimens. However, TMP-SMX-resistant S. saprophyticus has been detected recently in UTI patients, as well as in our cohort. Herein, we investigated the understudied resistance patterns of this pathogenic species by linking genomic antibiotic resistance gene (ARG) content to susceptibility phenotypes. We describe ARG associations with known and novel SCCmec configurations as well as phage elements in S. saprophyticus, which may serve as intervention or diagnostic targets to limit resistance transmission. Our analyses yielded a comprehensive database of phenotypic data associated with the ARG sequence in clinical S. saprophyticus isolates, which will be crucial for resistance surveillance and prediction to enable precise diagnosis and effective treatment of S. saprophyticus UTIs.
Collapse
Affiliation(s)
- Kailun Zhang
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Robert F. Potter
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jamie Marino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Carol E. Muenks
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew G. Lammers
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tanis C. Dingle
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Romney Humphries
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Yan R, M'ikanatha NM, Nachamkin I, Hudson LK, Denes TG, Kovac J. Prevalence of ciprofloxacin resistance and associated genetic determinants differed among Campylobacter isolated from human and poultry meat sources in Pennsylvania. Food Microbiol 2023; 116:104349. [PMID: 37689423 DOI: 10.1016/j.fm.2023.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Poultry is the primary source of Campylobacter infections and severe campylobacteriosis cases are treated with macrolides and fluoroquinolones. However, these drugs are less effective against antimicrobial-resistant strains. Here, we investigated the prevalence of phenotypic antimicrobial resistance and associated resistance genetic determinants in Campylobacter isolates collected from human clinical (N = 123) and meat (N = 80) sources in Pennsylvania in 2017 and 2018. Our goal was to assess potential differences in the prevalence of antimicrobial resistance in Campylobacter isolated from human and poultry meat sources in Pennsylvania and to assess the accuracy of predicting antimicrobial resistance phenotypes based on resistance genotypes. We whole genome sequenced isolates and identified genetic resistance determinants using the National Antimicrobial Resistance Monitoring System Campylobacter AMR workflow v2.0 in GalaxyTrakr. Phenotypic antimicrobial susceptibility testing was carried out using the E-Test and Sensititre CAMPYCMV methods for human clinical and poultry meat isolates, respectively, and the results were interpreted using the EUCAST epidemiological cutoff values. The 193 isolates were represented by 85 MLST sequence types and 23 clonal complexes, suggesting high genetic diversity. Resistance to erythromycin was confirmed in 6% human and 4% meat isolates. Prevalence of ciprofloxacin resistance was significantly higher in human isolates as compared to meat isolates. A good concordance was observed between phenotypic resistance and the presence of the corresponding known resistance genetic determinants.
Collapse
Affiliation(s)
- Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Joshi AA, Patil RH. Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. INFECTIOUS MEDICINE 2023; 2:294-307. [PMID: 38205183 PMCID: PMC10774769 DOI: 10.1016/j.imj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Staphylococcus aureus is an aerobic Gram-positive spherical bacterium known to cause a broad range of infections worldwide. It is a major cause of infective skin and soft infections and severe and life-threatening conditions, such as pneumonia, bloodstream infections, and endocarditis. The emergence of drug-resistant strains of S aureus, particularly methicillin-resistant S aureus (MRSA), has become a significant concern in the healthcare community. Antibiotic-resistant S aureus is commonly acquired in hospitals and long-term care facilities. It often affects patients with weakened immune systems, those undergoing invasive medical procedures, or those who have been hospitalized for extended periods. In the US, S aureus is known to cause potentially fatal illnesses, such as toxic shock syndrome (TSS) and acute-onset toxic shock syndrome (TSS), which are characterized by fever and hypotension. It develops resistance to antibiotics through several mechanisms, such as the production of enzymes that inactivate antibiotics, target site modification, efflux pumps, and plasmid-mediated resistance. Therefore, preventing the spread of drug-resistant S aureus is needed, and there is an urgent need to explore novel approaches in the development of anti-staphylococcal agents. This article reviews the principal infections caused by S aureus, major virulence factors, mechanisms of resistance development, and nanotechnology-based solutions for the control of drug-resistant S aureus.
Collapse
Affiliation(s)
- Amruta A. Joshi
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| | - Ravindra H. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| |
Collapse
|
19
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
20
|
Furugaito M, Arai Y, Uzawa Y, Kamisako T, Ogura K, Okamoto S, Kikuchi K. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics (Basel) 2023; 12:1538. [PMID: 37887239 PMCID: PMC10604004 DOI: 10.3390/antibiotics12101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 drugs and defined the resistant genes using PCR in 58 Gemella strains, including 52 clinical isolates and six type strains. The type strains and clinical isolates included 22 G. morbillorum, 18 G. haemolysans (GH) group (genetically indistinguishable from G. haemolysans and G. parahaemolysans), 13 G. taiwanensis, three G. sanguinis, and two G. bergeri. No strain was resistant to beta-lactams and vancomycin. In total, 6/22 (27.3%) G. morbillorum strains were erythromycin- and clindamycin-resistant ermB-positive, whereas 5/18 (27.8%) in the GH group, 6/13 (46.2%) G. taiwanensis, and 1/3 (33.3%) of the G. sanguinis strains were erythromycin-non-susceptible mefE- or mefA-positive and clindamycin-susceptible. The MIC90 of minocycline and the ratios of tetM-positive strains varied across the different species-G. morbillorum: 2 µg/mL and 27.3% (6/22); GH group: 8 µg/mL and 22.2% (4/18); G. taiwanensis: 8 µg/mL and 53.8% (7/13), respectively. Levofloxacin resistance was significantly higher in G. taiwanensis (8/13 61.5%) than in G. morbillorum (2/22 9.1%). Levofloxacin resistance was associated with a substitution at serine 83 for leucine, phenylalanine, or tyrosine in GyrA. The mechanisms of resistance to erythromycin and clindamycin differed across Gemella species. In addition, the rate of susceptibility to levofloxacin differed across Gemella sp., and the quinolone resistance mechanism was caused by mutations in GyrA alone.
Collapse
Affiliation(s)
- Michiko Furugaito
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (M.F.); (S.O.)
- Department of Clinical Laboratory, Kindai University Hospital, Osakasayama, Osaka 589-8511, Japan
| | - Yuko Arai
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| | - Yutaka Uzawa
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| | - Toshinori Kamisako
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Kindai University, Osakasayama, Osaka 589-8511, Japan;
| | - Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Shigefumi Okamoto
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (M.F.); (S.O.)
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| |
Collapse
|
21
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
22
|
Leite DPDSBM, Barbosa IC, da Silva RA, Fernandes PR, Abad ACA, da Silva JG, Mota RA, Porto TS. Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment. Braz J Microbiol 2023; 54:2393-2401. [PMID: 37407882 PMCID: PMC10485224 DOI: 10.1007/s42770-023-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Antimicrobial resistance is a threat to public health. The emergence of antibiotic-resistant Staphylococcus aureus represents a priority for the implementation of preventive measures. The objective was to isolate S. aureus in humans, animals, and animal health care environment, and to characterize the genotypic and phenotypic profile of antimicrobial resistance in these isolates. We isolated S. aureus from staff, animals, and environment of a veterinary hospital, and identified their antimicrobial resistance profiles. Samples were collected from 20 humans, 13 animals, 14 surfaces, 8 mobile phones, and 7 veterinarians' stethoscopes by using sterile swabs. S. aureus was isolated by culturing on mannitol salt agar and preliminary identification was done by Gram staining and catalase test. Subsequently, a polymerase chain reaction was performed for species confirmation and investigating their antimicrobial-resistant genotypic profiles. Phenotypic profiles of resistant isolates were determined using the disk-diffusion technique. Ten S. aureus isolates were recovered from 5/20 humans (25%), it was also recovered from 2/13 animals (15.38%), including 1 dog and 1 cat, and from 1/14 of surfaces (7.14%). The oxacillin-susceptible mecA-positive Staphylococcus aureus phenotype was identified in a feline. Most of the isolates carried at least two resistance genes of different antimicrobial classes, with 90% (9/10) presenting the gene blaZ, with 10% (1/10) presenting the gene mecA, 20% (2/10) presenting tet38, 10% (1/10) presenting tetM, 90% (9/10) presenting norA, 50% (5/10) presenting norC, 10% (1/10) presenting ermA, and 60% (6/10) presenting ermB. In antibiograms, resistance to penicillin was identified in all the isolates, resistance to erythromycin was identified in 80% (8/10), and all the isolate's resistance to erythromycin presented erythromycin-induced resistance to clindamycin. Antimicrobial resistance in the veterinary hospital requires attention due to the risk of interspecies transmission, gene transfer between bacteria that colonize companion animals and humans and, can make antimicrobial therapy difficult.
Collapse
Affiliation(s)
- Denny Parente de Sá Barreto Maia Leite
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Iago Carvalho Barbosa
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Renato Amorim da Silva
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Pollyanne Raysa Fernandes
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Atzel Candido Acosta Abad
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - José Givanildo da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| | - Tatiana Souza Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| |
Collapse
|
23
|
Lee WL, Sinha A, Lam LN, Loo HL, Liang J, Ho P, Cui L, Chan CSC, Begley T, Kline KA, Dedon P. An RNA modification enzyme directly senses reactive oxygen species for translational regulation in Enterococcus faecalis. Nat Commun 2023; 14:4093. [PMID: 37433804 DOI: 10.1038/s41467-023-39790-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteria possess elaborate systems to manage reactive oxygen and nitrogen species (ROS) arising from exposure to the mammalian immune system and environmental stresses. Here we report the discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of stress-response proteins in the gut commensal and opportunistic pathogen Enterococcus faecalis. We analyze the tRNA epitranscriptome of E. faecalis in response to reactive oxygen species (ROS) or sublethal doses of ROS-inducing antibiotics and identify large decreases in N2-methyladenosine (m2A) in both 23 S ribosomal RNA and transfer RNA. This we determine to be due to ROS-mediated inactivation of the Fe-S cluster-containing methyltransferase, RlmN. Genetic knockout of RlmN gives rise to a proteome that mimics the oxidative stress response, with an increase in levels of superoxide dismutase and decrease in virulence proteins. While tRNA modifications were established to be dynamic for fine-tuning translation, here we report the discovery of a dynamically regulated, environmentally responsive rRNA modification. These studies lead to a model in which RlmN serves as a redox-sensitive molecular switch, directly relaying oxidative stress to modulating translation through the rRNA and the tRNA epitranscriptome, adding a different paradigm in which RNA modifications can directly regulate the proteome.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Ling Ning Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Hooi Linn Loo
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Jiaqi Liang
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Peiying Ho
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Cheryl Siew Choo Chan
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Thomas Begley
- Department of Biological Sciences and The RNA Institute, University at Albany, Albany, NY, USA
| | - Kimberly Ann Kline
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore.
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Saroj DB, Ahire JJ, Shukla R. Genetic and phenotypic assessments for the safety of probiotic Bacillus clausii 088AE. 3 Biotech 2023; 13:238. [PMID: 37333714 PMCID: PMC10275836 DOI: 10.1007/s13205-023-03662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
In this study, we report on whole genome sequence analysis of clinically documented, commercial probiotic Bacillus clausii 088AE and genome features contributing to probiotic properties. The whole genome sequence of B. clausii 088AE generated a single scaffold of 4,598,457 bp with 44.74 mol% G + C. This assembled genome sequence annotated by the RAST resulted in 4371 coding genes, 75 tRNAs, and 22 rRNAs. Gene ontology classification indicated 39.5% proteins with molecular function, 44.24% cellular component, and 16.25% proteins involved in biological processes. In taxonomic analysis, B. clausii 088AE shared 99% identity with B. clausii DSM 8716. The gene sequences related to safety and genome stability such as antibiotic resistance (840), virulence factors (706), biogenic amines (1), enterotoxin (0), emetic toxin (0), lanthipeptides (4), prophage (4) and clustered regularly interspaced short palindromic repeats (CRISPR) sequences (11), were identified and evaluated for safety and functions. The absence of functional prophage sequences and the presence of CRISPR indicated an advantage in genome stability. Moreover, the presence of genome features contributing to probiotic characteristics such as acid, and bile salt tolerance, adhesion to the gut mucosa, and environmental resistance ensure the strains survivability when consumed as a probiotic. In conclusion, the absence of risks associated with sequences/genes in the B. clausii 088AE genome and the presence of essential probiotic traits confirm the strain to be safe for use as a probiotic.
Collapse
Affiliation(s)
- Dina B. Saroj
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Jayesh J. Ahire
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Rohit Shukla
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| |
Collapse
|
25
|
Kao CC, Lai CH, Wong MY, Huang TY, Tseng YH, Lu CH, Lin CC, Huang YK. Insight into the Clonal Lineage and Antimicrobial Resistance of Staphylococcus aureus from Vascular Access Infections before and during the COVID-19 Pandemic. Antibiotics (Basel) 2023; 12:1070. [PMID: 37370389 DOI: 10.3390/antibiotics12061070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Patients receiving hemodialysis are at risk of vascular access infections (VAIs) and are particularly vulnerable to the opportunistic pathogen Staphylococcus aureus. Hemodialysis patients were also at increased risk of infection during the COVID-19 pandemic. Therefore, this study determined the change in the molecular and antibiotic resistance profiles of S. aureus isolates from VAIs during the pandemic compared with before. A total of 102 S. aureus isolates were collected from VAIs between November 2013 and December 2021. Before the pandemic, 69 isolates were collected, 58%, 39.1%, and 2.9% from arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs), respectively. The prevalence of AVG and TCC isolates changed to 39.4% and 60.6%, respectively, of the 33 isolates during the pandemic. Sequence type (ST)59 was the predominant clone in TCC methicillin-resistant S. aureus (MRSA) and AVG-MRSA before the pandemic, whereas the predominant clone was ST8 in AVG-MRSA during the pandemic. ST59 carrying the ermB gene was resistant to clindamycin and erythromycin. By contrast, ST8 carrying the msrA gene was exclusively resistant to erythromycin. The ST distribution for different VAIs changed from before to during the pandemic. The change in antibiotic resistance rate for different VAIs was closely related to the distribution of specific STs.
Collapse
Affiliation(s)
- Chih-Chen Kao
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33041, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, MOHW, Chiayi City 10020, Taiwan
| | - Chi-Hsiang Lai
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Min-Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Tsung-Yu Huang
- College of Medicine, Chang Gung University, Taoyuan 33041, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Yuan-Hsi Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- Division of Cardiovascular Surgery, New Taipei Municipal Tu-Cheng Hospital, New Taipei City 23656, Taiwan
| | - Chu-Hsueh Lu
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Chien-Chao Lin
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 10020, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33041, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, MOHW, Chiayi City 10020, Taiwan
| |
Collapse
|
26
|
Romero-Martínez R, Maher A, Àlvarez G, Figueiredo R, León R, Arredondo A. Whole Genome Sequencing and Phenotypic Analysis of Antibiotic Resistance in Filifactor alocis Isolates. Antibiotics (Basel) 2023; 12:1059. [PMID: 37370380 DOI: 10.3390/antibiotics12061059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
There is scarce knowledge regarding the antimicrobial resistance profile of F. alocis. Therefore, the objective of this research was to assess antimicrobial resistance in recently obtained F. alocis clinical isolates and to identify the presence of antimicrobial resistance genes. Isolates were obtained from patients with periodontal or peri-implant diseases and confirmed by sequencing their 16S rRNA gene. Confirmed isolates had their genome sequenced by whole genome sequencing and their phenotypical resistance to nine antibiotics (amoxicillin clavulanate, amoxicillin, azithromycin, clindamycin, ciprofloxacin, doxycycline, minocycline, metronidazole, and tetracycline) tested by E-test strips. Antimicrobial resistance genes were detected in six of the eight isolates analyzed, of which five carried tet(32) and one erm(B). Overall, susceptibility to the nine antibiotics tested was high except for azithromycin in the isolate that carried erm(B). Moreover, susceptibility to tetracycline, doxycycline, and minocycline was lower in those isolates that carried tet(32). The genetic surroundings of the detected genes suggested their inclusion in mobile genetic elements that might be transferrable to other bacteria. These findings suggest that, despite showing high susceptibility to several antibiotics, F. alocis might obtain new antimicrobial resistance traits due to its acceptance of mobile genetic elements with antibiotic resistance genes in their genome.
Collapse
Affiliation(s)
| | - Anushiravan Maher
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, 08290 Barcelona, Spain
| | - Rui Figueiredo
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Rubén León
- Department of Microbiology, DENTAID Research Center, 08290 Barcelona, Spain
| | | |
Collapse
|
27
|
Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, Alhamdi HWS, Ahmad S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:881. [PMID: 37375828 DOI: 10.3390/ph16060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Shreekar Pant
- Centre for Biodiversity Studies, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - M A Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mouna Jeridi
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| |
Collapse
|
28
|
Maki JJ, Howard M, Connelly S, Pettengill MA, Hardy DJ, Cameron A. Species Delineation and Comparative Genomics within the Campylobacter ureolyticus Complex. J Clin Microbiol 2023; 61:e0004623. [PMID: 37129508 PMCID: PMC10204631 DOI: 10.1128/jcm.00046-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Campylobacter ureolyticus is an emerging pathogen increasingly appreciated as a common cause of gastroenteritis and extra-intestinal infections in humans. Outside the setting of gastroenteritis, little work has been done to describe the genomic content and relatedness of the species, especially regarding clinical isolates. We reviewed the epidemiology of clinical C. ureolyticus cultured by our institution over the past 10 years. Fifty-one unique C. ureolyticus isolates were identified between January 2010 and August 2022, mostly originating from abscesses and blood cultures. To clarify the taxonomic relationships between isolates and to attribute specific genes with different clinical manifestations, we sequenced 19 available isolates from a variety of clinical specimen types and conducted a pangenomic analysis with publicly available C. ureolyticus genomes. Digital DNA:DNA hybridization suggested that these C. ureolyticus comprised a species complex of 10 species clusters (SCs) and several subspecies clusters. Although some orthologous genes or gene functions were enriched in isolates found in different SCs and clinical specimens, no association was significant. Nearly a third of the isolates possessed antimicrobial resistance genes, including the ermA resistance gene, potentially conferring resistance to macrolides, the treatment of choice for severe human campylobacteriosis. This work effectively doubles the number of publicly available C. ureolyticus genomes, provides further clarification of taxonomic relationships within this bacterial complex, and identifies target SCs for future analysis.
Collapse
Affiliation(s)
- Joel J. Maki
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mondraya Howard
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara Connelly
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew A. Pettengill
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dwight J. Hardy
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
29
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
30
|
Yuan X, Lv Z, Zhang Z, Han Y, Liu Z, Zhang H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. TOXICS 2023; 11:toxics11050420. [PMID: 37235235 DOI: 10.3390/toxics11050420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Antibiotics are commonly used to prevent and control diseases in aquaculture. However, long-term/overuse of antibiotics not only leaves residues but results in the development of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Antibiotics, ARB, and ARGs are widespread in aquaculture ecosystems. However, their impacts and interaction mechanisms in biotic and abiotic media remain to be clarified. In this paper, we summarized the detection methods, present status, and transfer mechanisms of antibiotics, ARB, and ARGs in water, sediment, and aquaculture organisms. Currently, the dominant methods of detecting antibiotics, ARB, and ARGs are UPLC-MS/MS, 16S rRNA sequencing, and metagenomics, respectively. Tetracyclines, macrolides, fluoroquinolones, and sulfonamides are most frequently detected in aquaculture. Generally, antibiotic concentrations and ARG abundance in sediment are much higher than those in water. Yet, no obvious patterns in the category of antibiotics or ARB are present in organisms or the environment. The key mechanisms of resistance to antibiotics in bacteria include reducing the cell membrane permeability, enhancing antibiotic efflux, and structural changes in antibiotic target proteins. Moreover, horizontal transfer is a major pathway for ARGs transfer, including conjugation, transformation, transduction, and vesiculation. Identifying, quantifying, and summarizing the interactions and transmission mechanisms of antibiotics, ARGs, and ARB would provide useful information for future disease diagnosis and scientific management in aquaculture.
Collapse
Affiliation(s)
- Xia Yuan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Ziqing Lv
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Zeyu Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Yu Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
31
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
32
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
33
|
Kim SK, Min YH, Jin HJ. Characteristics of the ErmK Protein of Bacillus halodurans C-125. Microbiol Spectr 2023; 11:e0259822. [PMID: 36511701 PMCID: PMC9927578 DOI: 10.1128/spectrum.02598-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bacillus halodurans C-125 is an alkaliphilic microorganism that grows best at pH 10 to 10.5. B. halodurans C-125 harbors the erm (erythromycin resistance methylase) gene as well as the mphB (macrolide phosphotransferase) and putative mef (macrolide efflux) genes, which confer resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics. The Erm protein expressed in B. halodurans C-125 could be classified as ErmK because it shares 66.2% and 61.2% amino acid sequence identity with the closest ErmD and Erm(34), respectively. ErmK can be regarded as a dimethylase, as evidenced by reverse transcriptase analysis and the antibiotic resistance profile exhibited by E. coli expressing ermK. Although ErmK showed one-third or less in vitro methylating activity compared to ErmC', E. coli cells expressing ErmK exhibited comparable resistance to erythromycin and tylosin, and a similar dimethylation proportion of 23S rRNA due to the higher expression rate in a T7 promoter-mediated expression system. The less efficient methylation activity of ErmK might reflect an adaption to mitigate the fitness cost caused by dimethylation through the Erm protein presumably because B. halodurans C-125 has less probability to encounter the antibiotics in its favorable growth conditions and grows retardedly in neutral environments. IMPORTANCE Erm proteins confer MLSB antibiotic resistance (minimal inhibitory concentration [MIC] value up to 4,096 μg/mL) on microorganisms ranging from antibiotic producers to pathogens, imposing one of the most pressing threats to clinics. Therefore, Erm proteins have long been speculated to be plausible targets for developing inhibitor(s). In our laboratory, it has been noticed that there are variations in enzymatic activity among the Erm proteins, Erm in antibiotic producers being better than that in pathogens. In this study, it has been observed that Erm protein in B. halodurans C-125 extremophile is a novel member of Erm protein and acts more laggardly, compared to that in pathogen. While this sluggishness of Erm protein in extremophile might be evolved to reduce the fitness cost incurred by Erm activity adapting to its environments, this feature could be exploited to develop the more potent and/or efficacious drug to combat formidably problematic antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sung Keun Kim
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| | - Yu Hong Min
- College of Health and Welfare, Daegu Haany University, Gyeongsangbuk-Do, South Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| |
Collapse
|
34
|
Li Y, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Fleming-Dutra KE, Nanduri SA, Beall B. Continued Increase of Erythromycin Nonsusceptibility and Clindamycin Nonsusceptibility Among Invasive Group A Streptococci Driven by Genomic Clusters, United States, 2018-2019. Clin Infect Dis 2023; 76:e1266-e1269. [PMID: 35684991 PMCID: PMC11120049 DOI: 10.1093/cid/ciac468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
We analyzed 9630 invasive GAS surveillance isolates in the USA. From 2015-2017 to 2018-2019, significant increases in erythromycin-nonsusceptibility (18% vs 25%) and clindamycin-nonsusceptibility (17% vs 24%) occurred, driven by rapid expansions of genomic subclones. Prevention and control of clustered infections appear key to containing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E Fleming-Dutra
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Lepczyński A, Herosimczyk A, Bucław M, Adaszyńska-Skwirzyńska M. Antibiotics in avian care and husbandry-status and alternative antimicrobials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Undoubtedly, the discovery of antibiotics was one of the greatest milestones in the treatment of human and animal diseases. Due to their over-use mainly as antibiotic growth promoters (AGP) in livestock farming, antimicrobial resistance has been reported with increasing intensity, especially in the last decades. In order to reduce the scale of this phenomenon, initially in the Scandinavian countries and then throughout the entire European Union, a total ban on the use of AGP was introduced, moreover, a significant limitation in the use of these feed additives is now observed almost all over the world. The withdrawal of AGP from widespread use has prompted investigators to search for alternative strategies to maintain and stabilize the composition of the gut microbiota. These strategies include substances that are used in an attempt to stimulate the growth and activity of symbiotic bacteria living in the digestive tract of animals, as well as living microorganisms capable of colonizing the host’s gastrointestinal tract, which can positively affect the composition of the intestinal microbiota by exerting a number of pro-health effects, i.e., prebiotics and probiotics, respectively. In this review we also focused on plants/herbs derived products that are collectively known as phytobiotic.
Collapse
Affiliation(s)
- Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics , West Pomeranian University of Technology , Szczecin , Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics , West Pomeranian University of Technology , Szczecin , Poland
| | - Mateusz Bucław
- Department of Monogastric Animal Sciences , West Pomeranian University of Technology , Szczecin , Poland
| | | |
Collapse
|
36
|
Li Q, An Z, Sun T, Ji S, Wang W, Peng Y, Wang Z, Salentijn GIJ, Gao Z, Han D. Sensitive colorimetric detection of antibiotic resistant Staphylococcus aureus on dairy farms using LAMP with pH-responsive polydiacetylene. Biosens Bioelectron 2023; 219:114824. [PMID: 36327562 DOI: 10.1016/j.bios.2022.114824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Rapidly and accurately detecting antibiotic-resistant pathogens in agriculture and husbandry is important since these represent a major threat to public health. While much attention has been dedicated to detecting now-common resistant bacteria, such as methicillin-resistant Staphylococcus aureus, fewer methods have been developed to assess resistance against macrolides in Staphylococcus aureus (SA). Here, we report a visual on-site detection system for macrolide resistant SA in dairy products. First, metagenomic sequencing in raw milk, cow manure, water and aerosol deposit collected from dairy farms around Tianjin was used to identify the most abundant macrolide resistance gene, which was found to be the macB gene. In parallel, SA housekeeping genes were screened to allow selective identification of SA, which resulted in the selection of the SAOUHSC_01275 gene. Next, LAMP assays targeting the above-mentioned genes were developed and interpreted by agarose gel electrophoresis. For on-site application, different pH-sensitive colorimetric LAMP indicators were compared, which resulted in selection of polydiacetylene (PDA) as the most sensitive candidate. Additionally, a semi-quantitative detection could be realized by analyzing the RGB information via smartphone with a LOD of 1.344 × 10-7 ng/μL of genomic DNA from a milk sample. Finally, the proposed method was successfully carried out at a real farm within 1 h from sample to result by using freeze-dried reagents and portable devices. This is the first instance in which PDA is used to detect LAMP products, and this generic read-out system can be expanded to other antibiotic resistant genes and bacteria.
Collapse
Affiliation(s)
- Qiaofeng Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands
| | - Zhaoxia An
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuaifeng Ji
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Weiya Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Gert I J Salentijn
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Wageningen, 6708, WE, the Netherlands.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
37
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
38
|
Immunomodulatory Effects of Macrolides Considering Evidence from Human and Veterinary Medicine. Microorganisms 2022; 10:microorganisms10122438. [PMID: 36557690 PMCID: PMC9784682 DOI: 10.3390/microorganisms10122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Macrolide antimicrobial agents have been in clinical use for more than 60 years in both human and veterinary medicine. The discovery of the non-antimicrobial properties of macrolides and the effect of immunomodulation of the inflammatory response has benefited patients with chronic airway diseases and impacted morbidity and mortality. This review examines the evidence of antimicrobial and non-antimicrobial properties of macrolides in human and veterinary medicine with a focus toward veterinary macrolides but including important and relevant evidence from the human literature. The complete story for these complex and important molecules is continuing to be written.
Collapse
|
39
|
Ivaska L, Barkoff AM, Mertsola J, He Q. Macrolide Resistance in Bordetella pertussis: Current Situation and Future Challenges. Antibiotics (Basel) 2022; 11:1570. [PMID: 36358225 PMCID: PMC9686491 DOI: 10.3390/antibiotics11111570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 01/19/2024] Open
Abstract
Pertussis is a highly contagious respiratory infection caused by Bordetella pertussis bacterium. The mainstay of treatment is macrolide antibiotics that reduce transmissibility, shorten the duration of symptoms and decrease mortality in infants. Recently, the macrolide resistance of B. pertussis has been reported globally but is especially widespread in mainland China. In this review, we aim to summarise the current understanding of the epidemiology, resistance mechanisms and clinical implications of B. pertussis macrolide resistance. Since the first appearance of macrolide-resistant B. pertussis in Arizona, USA, in 1994, only sporadic cases have been reported outside China. In certain parts of China, on the other hand, up to 70-100% of the recent clinical isolates have been found to be macrolide resistant. Reasons for macrolide resistance being centred upon China during the last decade can only be speculated on, but the dominant B. pertussis lineage is different between China and most of the high-income countries. It seems evident that efforts to increase awareness, guide molecular epidemiological surveillance and carry out systematic screening of B. pertussis positive samples for macrolide resistance should be implemented globally. In addition, practices to improve the clinical care of infants with pertussis caused by resistant strains should be studied vigorously.
Collapse
Affiliation(s)
- Lauri Ivaska
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, Centre for Infections and Immunity, University of Turku, 20520 Turku, Finland
| | - Jussi Mertsola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland
- Institute of Biomedicine, Centre for Infections and Immunity, University of Turku, 20520 Turku, Finland
| | - Qiushui He
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Institute of Biomedicine, Centre for Infections and Immunity, University of Turku, 20520 Turku, Finland
| |
Collapse
|
40
|
Lade H, Joo HS, Kim JS. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1378. [PMID: 36290036 PMCID: PMC9598170 DOI: 10.3390/antibiotics11101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful human pathogens with the potential to cause significant morbidity and mortality. MRSA has acquired resistance to almost all β-lactam antibiotics, including the new-generation cephalosporins, and is often also resistant to multiple other antibiotic classes. The expression of penicillin-binding protein 2a (PBP2a) is the primary basis for β-lactams resistance by MRSA, but it is coupled with other resistance mechanisms, conferring resistance to non-β-lactam antibiotics. The multiplicity of resistance mechanisms includes target modification, enzymatic drug inactivation, and decreased antibiotic uptake or efflux. This review highlights the molecular basis of resistance to non-β-lactam antibiotics recommended to treat MRSA infections such as macrolides, lincosamides, aminoglycosides, glycopeptides, oxazolidinones, lipopeptides, and others. A thorough understanding of the molecular and biochemical basis of antibiotic resistance in clinical isolates could help in developing promising therapies and molecular detection methods of antibiotic resistance.
Collapse
Affiliation(s)
- Harshad Lade
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| |
Collapse
|
41
|
An lnu(A)-Carrying Multi-Resistance Plasmid Derived from Sequence Type 3 Methicillin-Resistant Staphylococcus lugdunensis May Contribute to Antimicrobial Resistance in Staphylococci. Antimicrob Agents Chemother 2022; 66:e0019722. [PMID: 35876576 PMCID: PMC9380557 DOI: 10.1128/aac.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus lugdunensis (MRSL) strains showing resistance to several common antibiotics have been reported recently. Sequence type (ST) 3 MRSL carrying SCCmec types IV, V, or Vt is the major lineage associated with health care-associated infections. We aimed to investigate the distribution and dissemination of antimicrobial resistance determinants in this lineage. Two representative ST3-MRSL strains, CGMH-SL131 (SCCmec V) and CGMH-SL138 (SCCmec IV), were subjected to whole-genome sequencing. Detection of antibiotic resistance genes and screening of susceptibility patterns were performed for 30 ST3-MRSL and 16 ST6-MRSL strains via PCR and standard methods. Except for mecA and blaZ, antimicrobial resistance genes were located within two plasmids: a 28.6 kb lnu(A)-carrying plasmid (pCGMH_SL138) in CGMH-SL138 and a 26 kb plasmid carrying non-lnu(A) resistance genes (pCGMH_SL131) in CGMH-SL131. Both plasmids shared common genetic features with multiple copies of IS257 flanked by genes conferring resistance to aminoglycoside (aacA-aphD and aadD), TET (tetk), and cadmium (cadDX) and tolerance to chlorhexidine (qacA/R); however, only pCGMH_SL138 harbored lnu(A) that conferred resistance to lincomycin and rep13 that encodes a replication initiation protein. Unlike ST6-MRSL, none of the ST3-MRSL isolates contained the ermA gene. Instead, most isolates harbored lnu(A) (20/30, 66.7%), and several other resistance genes found on pCGMH_SL138. These isolates and transformants containing pCGMH_SL138 exhibited susceptibility to ERY and higher MICs for lincomycin and aforementioned antibiotics. A novel lnu(A)-carrying plasmid, pCGMH_SL138, that harbored a multiresistance gene cluster, was identified in ST3-MRSL strains and may contribute to the dissemination of antibiotic resistance in staphylococci.
Collapse
|
42
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
43
|
Phenotypic and Genotypic Characterization of Macrolide, Lincosamide and Streptogramin B Resistance among Clinical Methicillin-Resistant Staphylococcus aureus Isolates in Chile. Antibiotics (Basel) 2022; 11:antibiotics11081000. [PMID: 35892390 PMCID: PMC9332560 DOI: 10.3390/antibiotics11081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Macrolides, lincosamides, and type B streptogramins (MLSB) are important therapeutic options to treat methicillin-resistant Staphylococcus aureus (MRSA) infections; however, resistance to these antibiotics has been emerging. In Chile, data on the MLSB resistance phenotypes are scarce in both community-(CA) and hospital-acquired (HA) MRSA isolates. Antimicrobial susceptibility to MLSB was determined for sixty-eight non-repetitive isolates of each HA-(32) and CA-MRSA (36). Detection of SCCmec elements, ermA, ermB, ermC, and msrA genes was performed by PCR. The predominant clones were SCCmec I-ST5 (HA-MRSA) and type IVc-ST8 (CA-MRSA). Most of the HA-MRSA isolates (97%) showed resistance to clindamycin, erythromycin, azithromycin, and clarithromycin. Among CA-MRSA isolates, 28% were resistant to erythromycin, azithromycin, and 25% to clarithromycin. All isolates were susceptible to linezolid, vancomycin, daptomycin and trimethoprim/sulfamethoxazole, and over 97% to rifampicin. The ermA gene was amplified in 88% of HA-MRSA and 17% of CA-MRSA isolates (p < 0.001). The ermC gene was detected in 6% of HA-SARM and none of CA-SARM isolates, whereas the msrA gene was only amplified in 22% of CA-MRSA (p < 0.005). Our results demonstrate the prevalence of the cMLSB resistance phenotype in all HA-MRSA isolates in Chile, with the ermA being the predominant gene identified among these isolates.
Collapse
|
44
|
Zaitsev SS, Khizhnyakova MA, Feodorova VA. Retrospective Investigation of the Whole Genome of the Hypovirulent Listeria monocytogenes Strain of ST201, CC69, Lineage III, Isolated from a Piglet with Fatal Neurolisteriosis. Microorganisms 2022; 10:microorganisms10071442. [PMID: 35889161 PMCID: PMC9324732 DOI: 10.3390/microorganisms10071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes (Lm), the causative agent for both human and animal listeriosis, is considered to be a rare but potentially fatal foodborne pathogen. While Lm strains associated with current cases of human listeriosis are now being intensely investigated, our knowledge of this microorganism which has caused listerial infection in the past is still extremely limited. The objective of this study was a retrospective whole-genome sequence analysis of the Lm collection strain, 4/52-1953, isolated in the middle of the 20th century from a piglet with listerial neuroinfection. The multi-locus sequence typing (MLST) analysis based on seven housekeeping genes (abcZ, bglA, cat, dapE, dat, ldh, and lhkA) showed that the Lm strain 4/52-1953 was assigned to the sequence type 201 (ST201), clonal complex 69 (CC69), and phylogenetic lineage III. The strain 4/52-1953, similarly to other ST201 strains, probably originated from the ST9, CC69 via ST157. At least eight different STs, ST69, ST72, ST130, ST136, ST148, ST469, ST769, and ST202, were identified as the descendants of the first generation and a single one, ST2290, was proved to be the descendant of the second generation. Among them there were strains either associated with some sporadic cases of human and animal listerial infection in the course of more than 60 years worldwide or isolated from food samples, fish and dairy products, or migratory birds. Phylogenetic analysis based on whole genomes of all the Lm strains available in the NCBI GenBank (n = 256) demonstrated that the strain 4/52-1953 belonged to minor Cluster I, represented by lineage III only, while two other major Clusters, II and III, were formed by lineages I and II. In the genome of the strain 4/52-1953, 41 virulence-associated genes, including the Listeria pathogenicity island 1 (LIPI-1), and LIPI-2 represented by two internalin genes, the inlA and inlB genes, and five genes related to antibiotic resistance, were found. These findings can help to make the emergence of both hyper- and hypovirulent variants, including those bearing antibiotic resistance genes, more visible and aid the aims of molecular epidemiology as well.
Collapse
Affiliation(s)
- Sergey S Zaitsev
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Mariya A Khizhnyakova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Valentina A Feodorova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| |
Collapse
|
45
|
Handel F, Kulik A, Wex KW, Berscheid A, Saur J, Winkler A, Wibberg D, Kalinowski J, Brötz-Oesterhelt H, Mast Y. Ψ-Footprinting approach for the identification of protein synthesis inhibitor producers. NAR Genom Bioinform 2022; 4:lqac055. [PMID: 35855324 PMCID: PMC9290621 DOI: 10.1093/nargab/lqac055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Today, one of the biggest challenges in antibiotic research is a targeted prioritization of natural compound producer strains and an efficient dereplication process to avoid undesired rediscovery of already known substances. Thereby, genome sequence-driven mining strategies are often superior to wet-lab experiments because they are generally faster and less resource-intensive. In the current study, we report on the development of a novel in silico screening approach to evaluate the genetic potential of bacterial strains to produce protein synthesis inhibitors (PSI), which was termed the protein synthesis inhibitor ('psi’) target gene footprinting approach = Ψ-footprinting. The strategy is based on the occurrence of protein synthesis associated self-resistance genes in genome sequences of natural compound producers. The screening approach was applied to 406 genome sequences of actinomycetes strains from the DSMZ strain collection, resulting in the prioritization of 15 potential PSI producer strains. For twelve of them, extract samples showed protein synthesis inhibitory properties in in vitro transcription/translation assays. For four strains, namely Saccharopolyspora flava DSM 44771, Micromonospora aurantiaca DSM 43813, Nocardioides albertanoniae DSM 25218, and Geodermatophilus nigrescens DSM 45408, the protein synthesis inhibitory substance amicoumacin was identified by HPLC-MS analysis, which proved the functionality of the in silico screening approach.
Collapse
Affiliation(s)
- Franziska Handel
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
| | - Katharina W Wex
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Julian S Saur
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tübingen , Tübingen , Baden-Württemberg 72076 , Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
- Cluster of Excellence Controlling Microbes to Fight Infection , Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
- Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Inhoffenstraße 7B, 38124 Braunschweig , Germany
- Technical University Braunschweig, Department of Microbiology , Rebenring 56, 38106 Braunschweig , Germany
| |
Collapse
|
46
|
Synthesis and biological evaluation of antibacterial activity of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Bioorg Chem 2022; 127:106020. [PMID: 35841669 DOI: 10.1016/j.bioorg.2022.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Bacterial infection is still one of the diseases that threaten human health, and bacterial drug resistance is widespread worldwide. As a result, their eradication now largely relies on antibacterial drug discovery. Here, we reveal a novel approach to the development of 14-membered macrolide antibiotics by describing the design, synthesis, and evaluation of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Using chemical synthesis, 35 clarithromycin derivatives were prepared, and their antibacterial properties were profiled. We found that compounds 8e-8h, 8l-8o, 8v, and 19d were as potent as azithromycin against Enterococcus faecalis ATCC29212. Furthermore, compounds 8c, 8d, 8n, and 8o showed slightly improved antibacterial activity (2-fold) against Acinetobacter baumannii ATCC19606 when compared with azithromycin and clarithromycin. In addition, compounds 8e, 8f, 8h, 8l, and 8v exhibited excellent antibacterial activity against Staphylococcus aureus ATCC43300, Staphylococcus aureus PR, and Streptococcus pneumoniae ER-2. These compounds were generally 64- to 128-fold more active than azithromycin, and 32- to 128-fold more active than clarithromycin. The results of molecular docking indicated that compound 8f may bind to the nucleotide residue A752 through hydrogen-bonding, hydrophobic, electrostatic, or π-π stacking interactions. The predicted ClogP data suggested that higher values of ClogP (>6.65) enhanced the antibacterial activity of compounds such as 8e, 8f, 8h, 8l, and 8v. The determination of the minimum bactericidal concentration showed that most of the tested compounds were bacteriostatic agents. From this study of bactericidal kinetics, we can conclude that compound 8f had a concentration- and time-dependent effect on the proliferation of Staphylococcus aureus ATCC43300. Finally, the results of the cytotoxicity assay showed that compound 8f exhibited no toxicity at the effective antibacterial concentration.
Collapse
|
47
|
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis. Microorganisms 2022; 10:microorganisms10071366. [PMID: 35889084 PMCID: PMC9320666 DOI: 10.3390/microorganisms10071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.
Collapse
|
48
|
Liu X, Yang X, Ye L, Chan EWC, Chen S. Genetic Characterization of a Conjugative Plasmid That Encodes Azithromycin Resistance in Enterobacteriaceae. Microbiol Spectr 2022; 10:e0078822. [PMID: 35471094 PMCID: PMC9241616 DOI: 10.1128/spectrum.00788-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Mechanisms of azithromycin resistance have rarely been reported. In this study, an IncFIB/IncHI1B plasmid that confers resistance to azithromycin was recovered from a clinical Klebsiella pneumoniae strain. This plasmid could be efficiently disseminated to Escherichia coli, Salmonella, and other Gram-negative bacterial pathogens through conjugation. This plasmid was shown to carry three macrolide resistance genes: erm(B), a novel erm(42) gene, and mph(A). The functions of erm(42) were confirmed by direct cloning of this gene and determination of the MIC of azithromycin in strains of various bacterial species which have acquired this gene. Of particular concern is the potential transmission of azithromycin-resistance to extensively drug-resistant (XDR) Salmonella, which causes infections for which treatment options are extremely limited. Monitoring and preventing dissemination of this azithromycin resistance-encoding conjugative plasmid in Enterobacteriaceae is of utmost importance. IMPORTANCE In this study, we identified a conjugative plasmid carrying a novel azithromycin resistance gene, erm(42), from a clinical K. pneumoniae strain. Conjugation of this plasmid into Salmonella conjugants conferred resistance to azithromycin, which is considered a choice for treating Salmonella infections. Of particular concern is the dissemination of this type of azithromycin resistance-encoding conjugative plasmid to extensively drug-resistant (XDR) Salmonella. The study shows that further monitoring of the dissemination of this plasmid in clinical strains of Salmonella spp. is warranted.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
49
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022; 14:pharmaceutics14030586. [PMID: 35335962 PMCID: PMC8950514 DOI: 10.3390/pharmaceutics14030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.
Collapse
|
50
|
Iskandar K, Murugaiyan J, Hammoudi Halat D, Hage SE, Chibabhai V, Adukkadukkam S, Roques C, Molinier L, Salameh P, Van Dongen M. Antibiotic Discovery and Resistance: The Chase and the Race. Antibiotics (Basel) 2022; 11:182. [PMID: 35203785 PMCID: PMC8868473 DOI: 10.3390/antibiotics11020182] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The history of antimicrobial resistance (AMR) evolution and the diversity of the environmental resistome indicate that AMR is an ancient natural phenomenon. Acquired resistance is a public health concern influenced by the anthropogenic use of antibiotics, leading to the selection of resistant genes. Data show that AMR is spreading globally at different rates, outpacing all efforts to mitigate this crisis. The search for new antibiotic classes is one of the key strategies in the fight against AMR. Since the 1980s, newly marketed antibiotics were either modifications or improvements of known molecules. The World Health Organization (WHO) describes the current pipeline as bleak, and warns about the scarcity of new leads. A quantitative and qualitative analysis of the pre-clinical and clinical pipeline indicates that few antibiotics may reach the market in a few years, predominantly not those that fit the innovative requirements to tackle the challenging spread of AMR. Diversity and innovation are the mainstays to cope with the rapid evolution of AMR. The discovery and development of antibiotics must address resistance to old and novel antibiotics. Here, we review the history and challenges of antibiotics discovery and describe different innovative new leads mechanisms expected to replenish the pipeline, while maintaining a promising possibility to shift the chase and the race between the spread of AMR, preserving antibiotic effectiveness, and meeting innovative leads requirements.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | - Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Beirut 1103, Lebanon
| | - Said El Hage
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
| | - Vindana Chibabhai
- Division of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Microbiology Laboratory, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Christine Roques
- Laboratoire de Génie Chimique, Department of Bioprocédés et Systèmes Microbiens, Université Paul Sabtier, Toulouse III, UMR 5503, 31330 Toulouse, France;
| | - Laurent Molinier
- Department of Medical Information, Centre Hospitalier Universitaire, INSERM, UMR 1295, Université Paul Sabatier Toulouse III, 31000 Toulouse, France;
| | - Pascale Salameh
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | | |
Collapse
|