1
|
Elnesr SS, Mahmoud BY, da Silva Pires PG, Moraes P, Elwan HAM, El-Shall NA, El-Kholy MS, Alagawany M. Trace Minerals in Laying Hen Diets and Their Effects on Egg Quality. Biol Trace Elem Res 2024; 202:5664-5679. [PMID: 38424327 PMCID: PMC11502586 DOI: 10.1007/s12011-024-04121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
With the advancement in the egg industry sector, egg quality has assumed great significance in certain countries. Enhancements in the nutritional value of eggs may have direct affirmative consequences for daily nutrient intake and therefore for human health. Thus, affirmative improvement in egg quality boosts consumer preferences for eggs. Also, the improvement in eggshell quality can avoid the disposal of broken eggs and consequently economic losses. Therefore, poultry nutrition and mineral supplements have a significant impact on egg quality. Minerals are crucial in poultry feed for a number of biological processes, including catalytic, physiologic, and structural processes. For instance, they contribute to the biological processes necessary for forming and developing eggshells. To produce high-quality eggs for sale, diets must therefore contain the right amount of minerals. This review aims to highlight the role of both organic and inorganic minerals in improving egg quality, in addition to reviewing the interactions of mineral supplements with intestinal microbiota and subsequent effects on the egg quality.
Collapse
Affiliation(s)
- Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Bothaina Y Mahmoud
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Paula Gabriela da Silva Pires
- Department of Animal Science, Faculdade de Agronomia, Campus Do ValeAv. Bento Gonçalves, 7712 - Agronomia, Porto Alegre, RS, Brazil
| | - Priscila Moraes
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 Itacorub, Florianopolis, SC, 88034-000, Brazil
| | - Hamada A M Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, 61519, Egypt
| | - Nahed Ahmed El-Shall
- Department Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Mohamed S El-Kholy
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
St-Germain MW, Létourneau V, Cruaud P, Lemaille C, Robitaille K, Denis É, Boulianne M, Duchaine C. Longitudinal survey of total airborne bacterial and archaeal concentrations and bacterial diversity in enriched colony housing and aviaries for laying hens. Poult Sci 2024; 103:104119. [PMID: 39154606 PMCID: PMC11471094 DOI: 10.1016/j.psj.2024.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Conventional cages for laying hens will be banned in Canada as of 2036, and the egg industry is transitioning toward enriched colony housing and aviaries. While higher concentrations of particulate matter have been previously reported in aviaries and other cage-free housing systems, concentrations of total bacteria and archaea suspended in the air are still uncharacterized in Canadian enriched colonies and aviaries. The aim of the present study was to conduct a longitudinal survey of airborne total bacteria and of airborne total archaea in twelve enriched colonies and twelve aviaries in Eastern Canada during a whole laying period. High-throughput sequencing of 16S rRNA gene amplicons was used to reveal and compare bacterial diversity at the start and the end of the production cycle, and during the cold and the warm seasons. Total bacterial and archaeal concentrations were significantly higher in aviaries (p < 0.05) versus enriched colonies, and in the cold season for both housing types (p < 0.05). While flock age did not have a significant effect on total bacterial and archaeal concentrations, it did on bacterial diversity in both enriched colony houses and aviaries (p < 0.05). The 2 housing systems were significantly different in their diversity of bacteria.
Collapse
Affiliation(s)
- Magali-Wen St-Germain
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | | | | | - Candice Lemaille
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | - Kim Robitaille
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | - Éloïse Denis
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada
| | - Martine Boulianne
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada
| | - Caroline Duchaine
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada.
| |
Collapse
|
3
|
Meinen-Jochum J, Skow CJ, Mellata M. Layer segmented filamentous bacteria colonize and impact gut health of broiler chickens. mSphere 2024:e0049224. [PMID: 39422489 DOI: 10.1128/msphere.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In commercial poultry farms, chicks hatch away from their progenitors from which they acquire key host-specific microbiota, like segmented filamentous bacteria (SFB) involved in gut maturation in early life. This study investigated whether providing chicken SFB to newly hatched broilers would increase their gut maturation and resistance to bacteria relevant to broiler and human health. One-day-old Ross308 broilers were orally treated with either phosphate-buffered saline (CON) or layer-derived SFB (D-SFB). On days 5, 10, 17, and 24, feces were collected to detect and enumerate SFB and Enterobacteriaceae. On days 8, 15, 22, and 29, birds were euthanized, intestinal samples were collected to detect and enumerate SFB through quantitative PCR (qPCR) and microscopy and expression of genes associated with gut immune function through reverse transcription-qPCR. This study showed that, despite their host specificity, layer SFB can colonize their genetically distinct relative broilers. Ileal SFB colonization was accelerated by a week with the SFB treatment and covered the proximal, medial, and distal sections of the ileum. Colonization of the ileum by SFB in early life highly activated gene expression of intestinal barrier proteins and cytokines, e.g., IL-10 and IFNγ but not IL-17. SFB treatment reduced the level of Enterobacteriaceae in the gut and provided superior resistance to intestinal and extraintestinal pathogens as tested in vitro. Overall, early gut colonization of SFB is imperative for the maturation of the gut immune system and the establishment of a homeostatic gut environment. Improving our understanding of gut immune maturation in food-producing animals is crucial for both human and animal health.IMPORTANCEIn commercial farms, newly hatched chicks may lack host-specific microbiota that help mature their gut immune system for lifelong health benefits. Here, introducing an avian segmented filamentous bacteria (SFB) to commercially sourced chickens orally at hatch accelerated SFB colonization of the ileum. Remarkably, SFB from layers were able to colonize broilers and enhance gut immune maturation, and this immunomodulation impacted the ability to increase intestinal and extraintestinal resistance to bacteria relevant to poultry and human health. With the antibiotic restrictions in animal production, strategies that will help mitigate infections are urgently needed. In summary, we developed a live prophylactic for newly hatched chicks to improve animal health and food safety. Due to the host specificity of SFB, our data highlight the importance of investigating the molecular mechanism of SFB interaction in their own host.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Caleb J Skow
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Sun Y, Li Z, Yan M, Zhao H, He Z, Zhu M. Responses of Intestinal Antioxidant Capacity, Morphology, Barrier Function, Immunity, and Microbial Diversity to Chlorogenic Acid in Late-Peak Laying Hens. Animals (Basel) 2024; 14:2957. [PMID: 39457887 PMCID: PMC11503754 DOI: 10.3390/ani14202957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study examined the influence of chlorogenic acid (CGA) on gut antioxidant status, morphology, barrier function, immunity, and cecal microbiota in late-peak laying hens. A total of 240 Hy-Line Brown hens, aged 43 weeks, were randomly assigned to four groups, the basal diet +0, 400, 600, and 800 mg/kg CGA, for 12 weeks. The results revealed that CGA significantly reduced ileal H2O2 and malondialdehyde levels; increased duodenal height, ileal villus height, and villus height-to-crypt depth ratio; while decreasing jejunal crypt depth. The 600 and 800 mg/kg CGA significantly upregulated the duodenal, jejunal, and ileal ZO-1 and occludin gene expression; increased IgG levels in serum and ileum; and upregulated ileal IgA gene expression. The 600 mg/kg CGA significantly upregulated CD3D and CD4 gene expression, while downregulating IL-1β gene expression in duodenum, jejunum, and ileum. Moreover, CGA changed the gut microbiota structure. The SCFA-producing bacteria unclassified_f__Peptostreptococcaceae, unclassified_f_Oscillospiraceae, Pseudoflavonifractor, Lachnospiraceae_FCS020_group, Oscillospira, Elusimicrobium, Eubacterium_ventriosum_group, Intestinimonas, and norank_f_Coriobacteriales_Incertae_Sedis were significantly enriched in the 400, 600, and/or 800 mg/kg CGA groups. The bacteria Lactobacillus, Bacillus, and Akkermansia were significantly enriched in the 600 mg/kg CGA group. Conclusively, dietary CGA (600-800 mg/kg) improved intestinal antioxidant status, morphology, barrier and immune function, and beneficial microbiota growth in late-peak laying hens.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haitong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhengxing He
- Dantu Borough Animal Disease Prevention and Control Center, Zhenjiang 212100, China;
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Chen X, Zheng A, Chen Z, Pirzado SA, Wang Z, Chen J, Zou Z, Liu G. Potassium diformate affects the growth and development of broilers by improving intestinal function and digestive enzyme activity. Poult Sci 2024; 103:104049. [PMID: 39094496 PMCID: PMC11345559 DOI: 10.1016/j.psj.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Gut health of broiler chickens is essential for production performance. The present study aimed to evaluate the impact of dietary supplementation with potassium diformate (KDF) on growth performance and intestinal health in broiler chickens. A total of 180 Arbor Acres (AA) broiler chickens were randomly allocated into 3 treatments, with 6 replicates, containing 10 chicks in each replicate. The treatment groups were: control group (CON) was fed a basal diet; KDF-4 groups fed the basal diet with 4 g/kg KDF; KDF-8 groups fed the basal diet with 8 g/kg KDF. The experiment period lasted for 42 d. During the starter phase, the ADFI and F/G of broilers in KDF groups were lower (P < 0.05) compared to the CON group. Furthermore, the BW and ADG in KDF-4 group was improved (P<0.05). The treatment groups exhibited a significant increase (P < 0.05) in both ADG and ADFI during the grower and overall phase. Moreover, the F/G in KDF-4 group was lower (P < 0.05) compared to the CON and KDF-8 groups. The semi-eviscerated weight rate (SEWR), eviscerated carcass weight rate (ECWR), pectoral muscle rate (PMR), and leg muscle rate (LMR) of broilers were improved (P < 0.05) in KDF groups. The serum levels of glucose (GLU) and UREA (UA) were significantly higher (P < 0.05) in KDF-8 group. Additionally, the nutrient apparent utilization rate of dry matter (DM), energy (EE), and crude protein (CP) were improved (P < 0.05) in KDF-4 group. The villus height (VH) and villus height to crypt depth ratio (V/C) of duodenum, jejunum, and ileum were higher (P < 0.05) in KDF groups compared to the CON group, while crypt depth (CD) was significantly reduced (P < 0.05). The digestive enzyme activities of lipase (LIP), amylase (AMS), or trypsin (TPS) were significantly enhanced (P < 0.05) in the intestinal chyme, while the total bacterial count, Escherichia coli, Lactobacilli, Bifidobacteria, and Bacillus were reduced (P < 0.05) in the ileum. This study demonstrates that the inclusion of KDF in the diet of broilers leads to improvements in growth, slaughter performance, nutrient utilization rate, and maintenance of intestinal health.
Collapse
Affiliation(s)
- Xing Chen
- Institute of Feed Research, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Institute of Feed Research, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Institute of Feed Research, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Shoaib Ahmed Pirzado
- Institute of Feed Research, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agriculture Sciences, Beijing 100081, China; Department of Animal Nutrition, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Zedong Wang
- Institute of Feed Research, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Jiang Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Guohua Liu
- Institute of Feed Research, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agriculture Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Shen X, Zhang A, Zhao R, Yin L, Yin D, Dai Y, Hou H, Wang J, Hu X, Pan X, Zhang D, Liu W, Liu Y, Zhan K. Effects of adding antibiotics to an inactivated oil-adjuvant avian influenza vaccine on vaccine characteristics and chick health. Poult Sci 2024; 103:104135. [PMID: 39106695 PMCID: PMC11343057 DOI: 10.1016/j.psj.2024.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.
Collapse
Affiliation(s)
- Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ruihong Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Hongyan Hou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaomiao Hu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Wei Liu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China.
| |
Collapse
|
7
|
Dedousi A, Kotzamanidis C, Malousi A, Giantzi V, Sossidou E. The Influence of Dietary Supplementation with Dried Olive Pulp on Gut Microbiota, Production Performance, Egg Quality Traits, and Health of Laying Hens. Microorganisms 2024; 12:1916. [PMID: 39338591 PMCID: PMC11433822 DOI: 10.3390/microorganisms12091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study examines the dietary effect of dried olive pulp (OP) on the overall performance, egg quality, health, and gut microbiota of laying hens during a 36-week trial. A total of 180 Isa Brown layers, aged 23 weeks, were assigned to 15-floor pens and divided into three feeding groups (CON, OP4, and OP6) based on the dietary level of OP. Egg quality and biochemical parameters were assessed in 39- and 59-week-old hens. Fecal samples were collected for microbiota analysis. Data were analyzed with an Analysis of Variance. The percentage of broken eggshells was found to be 15-34% lower in the OP groups compared to the CON groups. At 59 weeks of age, a significant reduction in shell thickness was observed in the CON eggs compared to the OP eggs (p < 0.05). At 39 weeks of age, OP6 eggs had the darkest yolk color of all groups (p < 0.05). Fecal microbial diversity was affected only by hens' age. However, an enrichment in bacterial species belonging to the genera Megasphaera and Megamonas was found in the OP groups at 59 weeks of age. Our results demonstrate that OP feeding beneficially affects egg quality and promotes the proliferation of bacteria involved in the degradation of complex plant compounds, potentially contributing to the overall health of the gut microbiota.
Collapse
Affiliation(s)
- Anna Dedousi
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| | - Charalampos Kotzamanidis
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece
| | - Virginia Giantzi
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| | - Evangelia Sossidou
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| |
Collapse
|
8
|
Bellezza Oddon S, Biasato I, Ferrocino I, Imarisio A, Renna M, Caimi C, Gariglio M, Dabbou S, Pipan M, Dekleva D, Corvaglia MR, Bongiorno V, Macchi E, Cocolin L, Gasco L, Schiavone A. Live black soldier fly larvae as environmental enrichment for native chickens: implications for bird performance, welfare, and excreta microbiota. Animal 2024; 18:101341. [PMID: 39396412 DOI: 10.1016/j.animal.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Dietary live insect larvae were recently proposed for use in laying hens and broiler-intensive chicken farming as an innovative form of environmental enrichment, but their use in native dual-purpose chickens has never been investigated. This study aims to evaluate the effects of live black soldier fly (BSF) larvae as environmental enrichment in two autochthonous dual-purpose chicken breeds, namely Bionda Piemontese (BP) and Bianca di Saluzzo (BS), in terms of bird performance, behaviour, integument status, excreta corticosterone metabolites (ECMs), and microbiota analyses. A total of 90 BP and 90 BS hens aged 308 days old were randomly distributed between two treatment groups (three replicates/group/breed, 15 hens/replicate). For the following 90 days, the control group (C) was fed a commercial feed only, whereas the BSF group was fed the commercial diet plus BSF live larvae calculated at 6% of the expected daily feed intake (DFI). Larva ingestion time, bird performance, integument scores, and behavioural observations were assessed at regular intervals, and excreta samples were collected to evaluate ECM and microbiota. The larva ingestion time became faster over the course of the experimental trial (P < 0.001). The DFI of BSF-fed hens was lower than that of C hens independently of breed (P < 0.001), whereas only in the BS hens, the live weight of the BSF-fed group was greater than that of the C group (P < 0.01). The BSF-fed BP hens showed a higher laying rate and feed conversion ratio compared with BSF-BS (P < 0.05). Better total integument scores were observed in BSF-fed BP hens compared with C-birds (P < 0.05). The BSF-fed hens displayed higher frequencies of preening, trotting, and wing flapping than C, as well as a lower incidence of severe feather pecking (P < 0.05). An increase in allopreening was only identified in BSF-fed BS hens with respect to the C hens (P < 0.001). No differences in ECM and faecal microbiota were observed between treatment groups. In conclusion, the administration of BSF live larvae as environmental enrichment has the potential to positively influence the welfare of both BP and BS chickens, by enhancing the frequency of positive behaviours whilst reducing severe feather pecking, without affecting their excreta microbiota. BSF larva administration also has the potential to improve the productive performance and the plumage status of the BP breed.
Collapse
Affiliation(s)
- S Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - I Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - I Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - A Imarisio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - M Renna
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - C Caimi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - M Gariglio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - S Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Via Edmund Mach 1, San Michele all'Adige (TN) 38098, Italy
| | - M Pipan
- Entomics Biosystems Limited, Madingley Rd Cambridge, CB3 0ES, United Kingdom
| | - D Dekleva
- Entomics Biosystems Limited, Madingley Rd Cambridge, CB3 0ES, United Kingdom
| | - M R Corvaglia
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - V Bongiorno
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - E Macchi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - L Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - L Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - A Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
9
|
Yang Y, Shu X, Javed HU, Wu Q, Liu H, Han J, Zhou H. Dietary supplementation of poly-dihydromyricetin-fused zinc nanoparticles alleviates fatty liver hemorrhagic syndrome by improving antioxidant capacity, intestinal health and lipid metabolism of laying hens. Poult Sci 2024; 103:104301. [PMID: 39306955 PMCID: PMC11447411 DOI: 10.1016/j.psj.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Fatty liver hemorrhagic syndrome is the main cause of noninfectious death of laying hens and results in substantial economic losses to the poultry industry. This study focused on evaluating the effects of Poly-dihydromyricetin-fused zinc nanoparticles (PDMY-Zn NPs) on antioxidant capacity, liver lipid metabolism, and intestinal health in laying hens. A total of 288 Jingfen laying hens (52 wk old) with similar body weights were randomly divided into 4 dietary groups with 6 replicates in each group for 8 wk. The control group received a basal diet, while the treatment groups were supplemented with PDMY-Zn NPs at levels of 200, 400, and 600 mg/kg, respectively. The results indicate that PDMY-Zn NPs supplementation can enhance antioxidant parameters (P < 0.05) in the blood and liver of laying hens. Simultaneously, it can mitigate vacuolar degeneration and inflammatory necrosis in hepatocytes, improve the relative expression level of related parameters associated with liver lipid metabolism and key regulatory genes (P < 0.05). Furthermore, it has been observed to reshape the composition and diversity of cecum microbes by increasing beneficial probiotics such as Lactobacillus and Prevotella, while also enhancing villi height and villi/crypt ratio in the duodenum and ileum (P < 0.05). Additionally, it elevates liver bile acid content along with the relative expression of key genes involved in liver synthesis (P < 0.05). In summary, PDMY-Zn NPs showed potential to alleviate fatty liver hemorrhagic syndrome by enhancing antioxidant capacity, regulating liver lipid metabolism, and maintaining intestinal health.
Collapse
Affiliation(s)
- Yuanting Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
| | - Hafiz Umer Javed
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Qun Wu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.
| |
Collapse
|
10
|
Wang J, Jiang M, Li X, Ye Y, Xie Y, Wu T, Chen Y, Yu H, Wu H, Yang Z, Zhou E. Inulin Supplementation Alleviates Ochratoxin A-Induced Kidney Injury through Modulating Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18682-18696. [PMID: 39135376 DOI: 10.1021/acs.jafc.4c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Ochratoxin A (OTA) is a prevalent mycotoxin found in feed that causes significant kidney injury in animals. Further investigation was needed to devise strategies for treating OTA-induced kidney damage through the gut-kidney axis. Evidence indicates the crucial role of intestinal microbiota in kidney damage development. Inulin, a dietary fiber, protects kidneys by modulating intestinal microbiota and promoting short-chain fatty acid (SCFA) production. However, its precise mechanism in OTA-induced kidney damage remained unclear. In this study, chickens were orally administered OTA and inulin for 2 weeks to investigate inulin's effects on OTA-induced kidney damage and underlying mechanisms. The alteration of intestinal microbiota, SCFAs contents, and SCFA receptors was further analyzed. Results demonstrated that inulin supplementation influenced intestinal microbiota, increased SCFAs production, and mitigated OTA-induced kidney damage in chickens. The importance of microbiota in mediating inulin's renal protection was further confirmed by antibiotic and fecal microbiota transplantation experiments. Additionally, inulin exhibited antioxidant and anti-inflammatory properties, alleviating NLRP3 inflammasome activation and pyroptosis. In summary, inulin protected chickens from OTA-induced kidney damage, which might provide a potential strategy to mitigate the harmful effects of mycotoxins through prebiotics and safeguard renal health.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Xuhai Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yueqing Xie
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Ting Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Hongsen Yu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Hanpeng Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| |
Collapse
|
11
|
Li S, Wang Q, Mi J, Chen H, Yuan T, Wang Y, Zhao L, Ma Q, Huang S. Lactobacillus crispatus-Mediated Gut-Reproductive Tract Axis-Alleviated Microbial Dysbiosis and Oviductal Inflammation in a Laying Hen Model. Microorganisms 2024; 12:1559. [PMID: 39203401 PMCID: PMC11356123 DOI: 10.3390/microorganisms12081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Oviductal inflammation (OI) significantly reduces the egg production and economic returns in poultry farming. While Lactobacillus crispatus (LAC) is effective against inflammation, its role in treating or preventing oviductal inflammation is understudied. In this study, we investigated the therapeutic mechanisms of LAC on oviductal inflammation, with a focus on reproductive tract health, microbiome, gene expression, and cytokine levels. This study involved 24 Jingfen No. 6 laying hens aged 60 weeks, divided into four groups: the CON, OI, OI + LAC, and OI + heat-killed Lactobacillus crispatus (HLAC) groups. And it included a 10-day adaptation, a 7-day period for the development of OI using inflammation-inducing drugs (the control received saline), followed by an 8-day treatment in which the CON and OI groups received 1 mL of MRS broth daily, and the OI + LAC and OI + HLAC groups were treated with live and heat-killed Lactobacillus crispatus (109 CFUs/mL), respectively, with six hens in each group. This study showed that Lactobacillus crispatus supplementation significantly reduced the oviductal inflammation and atrophy in the hens, with the affected hens showing markedly lower egg production rates (p < 0.001) compared to the control and treated groups (OI + HLAC and OI + LAC). The daily intake of fresh (OI + LAC, p = 0.076) or heat-killed (OI + HLAC, p < 0.01) Lactobacillus crispatus notably enhanced the feed conversion efficiency. The OI group suffered significant ovarian damage and vascular rupture, more so than the CON group, while Lactobacillus crispatus supplementation mitigated this damage. The IL-1β, IL-6, and IL-8 levels were significantly elevated in the OI group compared to those in the OI + LAC group (p < 0.05), with a significant reduction in the TNF-α levels in the latter (p < 0.001). The supplementation improved the microbial composition in the cecum, isthmus, and shell gland, enriching the cecum with beneficial bacteria, such as Ruminococcus_torques_group and Megamonas. This approach fostered ovarian health and follicle differentiation and preserved the epithelial cell barrier function in the shell gland, reducing inflammatory damage in the genital tract. This dual efficacy underscores the role of the probiotic in diminishing oviductal inflammation, regardless of its state.
Collapse
Affiliation(s)
- Shinuo Li
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Qingfeng Wang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Jinqiu Mi
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Haotian Chen
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Tianhao Yuan
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Yue Wang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Lihong Zhao
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Qiugang Ma
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| | - Shimeng Huang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (Q.W.); (T.Y.); (Y.W.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| |
Collapse
|
12
|
Li D, Fang S, He F, Fan X, Wang T, Chen Z, Wang M. Postbiotic derived from Bacillus subtilis ACCC 11025 improves growth performance, mortality rate, immunity, and tibia health in broiler chicks. Front Vet Sci 2024; 11:1414767. [PMID: 39100762 PMCID: PMC11294237 DOI: 10.3389/fvets.2024.1414767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The objective of this study was to evaluate the effects of dietary supplementation of postbiotics on growth performance, mortality rate, immunity, small intestinal health, tibia characteristics, and hematological parameters of broiler chicks. he postbiotics were derived from Bacillus subtilis ACCC 11025. Methods A total of 480 day-old Arbor acre broiler chicks (52.83 ± 1.38 g) were used in a 42-day study and were randomly allocated into four groups. Each group comprised 6 replicate cages, each containing 20 birds. Dietary treatments were based on a basal diet, supplemented with postbiotics at concentrations of 0.000%, 0.015%, 0.030%, or 0.045%. Results and discussion The results demonstrated an improvement in growth performance, antibody titers against avian influenza virus and Newcastle disease virus, serum albumin levels, and serum total protein levels, as well as a reduction in mortality rate among broiler chicks with increasing levels of postbiotic supplementation. The most significant effect were observed in the group receiving 0.015% postbiotics. Furthermore, a dose-dependent enhancement in tibia weight and tibia weight to length ratio, coupled with a reduction in the robusticity index, was noted. The most favorable outcomes for tibia health were observed in the group receiving 0.030% postbiotics. This improvement in tibia health corresponded to a linear increase in serum calcium and inorganic phosphorus contents. In summary, supplementing broiler chicks with 0.015% postbiotics effectively enhances immunity, leading to improved growth performance and reduced mortality rates. Additionally, a postbiotic dose of 0.030% is suitable for optimizing tibia health.
Collapse
Affiliation(s)
- Desheng Li
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Key Laboratory of Animal Product Quality and Safety of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Shan Fang
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Feng He
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xinyan Fan
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tieliang Wang
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, China
| | - Zeliang Chen
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Mi Wang
- College of Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
13
|
Xu C, Han D, Song X, Zhang X, Liu C, Zhang J, Shen B, Li Z, Ma R, Li Y, Xin Y, Ji W, Zhang L, Wang X, Hu C, Li X. The possibly role of GnIH in stress and gut dysfunction in chicken. Poult Sci 2024; 103:103757. [PMID: 38697006 PMCID: PMC11070904 DOI: 10.1016/j.psj.2024.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 05/04/2024] Open
Abstract
Stress is known to disrupt the intestinal barrier and induce intestinal dysfunction. A critical role for gonadotropin inhibitory hormone (GnIH) in stress has emerged. However, whether GnIH mediates stress-induced intestinal dysfunction remains unknown. The present study explored this question through in vivo and in vitro experiments in hens. Our in vivo experiments showed that continuous intraperitoneal injection of GnIH not only significantly increased the concentration of stress hormones in serum, but also significantly elevated the mRNA expression of glucocorticoid receptor (GR) in the duodenum and jejunum. Moreover, morphological and molecular analyses revealed that GnIH disrupted the physical and chemical barriers of the intestine and dramatically increased inflammatory factor levels in the intestine and serum of hens. Interestingly, the microbiomics results showed that GnIH altered the structure and composition of the gut flora in the cecum, revealing an increased abundance of harmful intestinal bacteria such as Desulfovibrionaceae. Similar results were found in in vitro studies in which the GnIH-induced intestinal mucosal barrier was disrupted, and inflammation increased in jejunal explants, although no significant difference was found in the expression of GR between the control and GnIH groups. Our results demonstrated that GnIH not only directly damaged intestinal barriers and elevated intestinal inflammation but also mediated stress and microflora imbalance-induced intestinal function disorder, suggesting that GnIH is a potential therapeutic target for gut dysfunction, stress-induced intestinal function disorder, and inflammatory bowel disease in animals and humans.
Collapse
Affiliation(s)
- Changlin Xu
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Jiani Zhang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Bingqian Shen
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Runwen Ma
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Yuanyuan Xin
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Wantong Ji
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Lingyuan Zhang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China.
| |
Collapse
|
14
|
Li A, Hu H, Huang Y, Yang F, Mi Q, Jin L, Liu H, Zhang Q, Pan H. Effects of dietary metabolizable energy level on hepatic lipid metabolism and cecal microbiota in aged laying hens. Poult Sci 2024; 103:103855. [PMID: 38796988 PMCID: PMC11153248 DOI: 10.1016/j.psj.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Lipid metabolic capacity, feed utilization, and the diversity of gut microbiota are reduced in the late laying stage for laying hens. This experiment aimed to investigate the effects of different levels of dietary metabolizable energy (ME) on hepatic lipid metabolism and cecal microbiota in late laying hens. The 216 Peking Pink laying hens (57-wk-old) were randomly assigned to experimental diets of 11.56 (HM = high ME), 11.14 (MM = medium ME), or 10.72 (LM = low ME) MJ of ME/kg, with each dietary treatment containing 6 replicates per group and 12 chickens per replicate. The HM group showed higher triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) concentrations in the liver compared with the LM group; second, the HM group showed higher TG concentration and the LM group showed lower T-CHO concentration compared with MM group; finally, the HM group showed a lower hepatic lipase (HL) activity compared with the MM and LM groups (P < 0.05). There was a significant difference in the microbial community structure of the cecum between the HM and MM groups (P < 0.05). The decrease of dietary ME level resulted in a gradual decrease relative abundance of Proteobacteria. At the genus level, beneficial bacteria were significantly enriched in the LM group compared to the MM group, including Faecalibacterium, Lactobacillus, and Bifidobacterium, (linear discriminant analysis [LDA] >2, P <0.05). In addition, at the species level, Lactobacillus crispatus, Parabacteroides gordonii, Blautia caecimuris, and Lactobacillus johnsonii were significantly enriched in the LM group (LDA>2, P < 0.05). The HM group had a higher abundance of Sutterella spp. compared to the LM group (LDA>2, P <0.05). In conclusion, this research suggests that the reduction in dietary energy level did not adversely affect glycolipid metabolism or low dietary ME (10.72 MJ/kg). The findings can be helpful for maintaining intestinal homeostasis and increasing benefit for gut microbiota in late laying hens.
Collapse
Affiliation(s)
- Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Fuyan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liqiang Jin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongli Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; WOD Poultry Research Institute, Beijing, 100193, China.
| |
Collapse
|
15
|
Liu M, Lun J, Huang G, Zhu Y, Zhang W, Jin W, Ding Y, Liu S, Qu Q, Lv W, Guo S. Alpiniae oxyphyllae fructus improves production performance and egg quality of laying breeder hens by regulating reproductive hormones, antioxidant function, immunity and intestinal health. Poult Sci 2024; 103:103770. [PMID: 38652955 PMCID: PMC11063526 DOI: 10.1016/j.psj.2024.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Alpiniae oxyphylla fructus was extensively utilized both as dietary supplements and traditional herbal medicines for healthcare functions and has exhibited a positive impact on animal health. The present study aimed to investigate the effects of Alpiniae oxyphyllae fructus powder (AOP) on production performance, egg quality, egg yolk fatty acid composition, reproductive hormones, antioxidant capacity, immunity, anti-apoptosis ability, and intestinal health in hens. A total of 252 Hainan Wenchang laying hens (30-wk-old) were randomly divided into 3 groups with 6 replicates, a basic diet with 0 (CON), 1 g/kg AOP (AOP1), and 3 g/kg (AOP3) mixed AOP. The AOP supplementation was found to decrease the feed conversion ratio and embryo mortality but to increase the laying rate, average egg weight, and oviduct index linearly (p < 0.05). Furthermore, AOP treatment reduced the total saturated fatty acids and palmitic acid (C16:0) in the egg yolk while increasing eggshell strength, albumen height, and Haugh unit (p < 0.05). The serum levels of albumin and phosphorus were increased, whereas total cholesterol, triglycerides, and glucose levels decreased as a result of AOP treatment (p < 0.05). The inclusion of 3 g/kg AOP had higher 17 β-estradiol and follicle-stimulating hormone levels in serum, while it up-regulated follicle-stimulating hormone receptor and gonadotropin-releasing hormone expression in ovary (p < 0.05). Dietary AOP strengthened the expression of nuclear factor erythroid2-related factor 2 in ovary and increased the activity of superoxide dismutase and total antioxidant capacity, but had a lower malondialdehyde content in serum (p < 0.05). AOP at 3 g/kg up-regulated superoxide dismutase 1 and heme oxygenase 1 expression in jejunum and ovary (p < 0.05). Meanwhile, AOP supplementation down-regulated p53 expression in ovary and bcl-2-associated x expression in liver and jejunum, especially 3 g/kg of AOP had lower caspase-8 concentrations and down-regulated bcl-2-associated x and caspase-3 expression in ovary (p < 0.05). AOP treatment increased serum levels of immunoglobulin A and immunoglobulin M and upregulated interleukin-4 expression in the liver, while decreasing interleukin-1β expression in liver and ovary and nod-like receptor protein 3 expression in jejunum (p < 0.05). Dietary AOP increased the ratio of villus height to crypt depth but decreased crypt depth in jejunum, especially when 1 g/kg AOP increased expression levels of occludin, mucin-2, peptide-transporter 1, and sodium glucose cotransporter 1 in jejunum (p < 0.05). AOP treatment altered the composition of the cecal microbial community, as evidenced by increased abundance of Oscillospira and Phascolarctobacterium and reduced richness of Clostridiaceae_Clostridium. Dietary AOP supplementation enriched lipid, amino acid, and propanoate metabolism. Spearman's correlation analysis revealed that the genera Oscillospira, Blautia, and Megasphaera were related to laying performance and intestinal integrity. In brief, supplementation of AOP, especially at 3 g/kg, could improve production performance and egg quality of hens via modulating reproductive hormones, antioxidant capacity, immunity, intestinal barrier, and cecal microbiota. Overall, the present work recommends the dietary inclusion of AOP as a beneficial additive for improving the performance of hens.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jianchi Lun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Wenbo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Wenxin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
16
|
Nie R, Zhang W, Tian H, Li J, Ling Y, Zhang B, Zhang H, Wu C. Proteo-transcriptomic profiles reveal key regulatory pathways and functions of LDHA in the ovulation of domestic chickens (Gallus gallus). J Anim Sci Biotechnol 2024; 15:68. [PMID: 38725063 PMCID: PMC11083957 DOI: 10.1186/s40104-024-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear. RESULTS Critical biochemical events involved in ovulation in domestic chickens (Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle (F1) and postovulatory follicle (POF1) in continuous laying (CL) and intermittent laying (IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes (DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A (LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro. CONCLUSIONS This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.
Collapse
Affiliation(s)
- Ruixue Nie
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haoyu Tian
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Ling
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Changxin Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci 2024; 103:103604. [PMID: 38484563 PMCID: PMC10951610 DOI: 10.1016/j.psj.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.
Collapse
Affiliation(s)
- Ana Fonseca
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Sophia Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Emily Van Syoc
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephanie Bierly
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Justin Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Statistics, The Pennsylvania State University, University Park, PA, USA; Department of Medicine, The Pennsylvania State University, University Park, PA, USA; Institute for Computational and Data Science, The Pennsylvania State University, University Park, PA, USA
| | - John Boney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Wang M, Yi M, Wang L, Sun S, Ling Y, Zhang Z, Cao H. Multi-Omics Analysis Reveals the Regulatory Mechanism of Probiotics on the Growth Performance of Fattening Sheep. Animals (Basel) 2024; 14:1285. [PMID: 38731289 PMCID: PMC11083020 DOI: 10.3390/ani14091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Probiotics have been proven to improve the growth performance of livestock and poultry. The aim of this experiment was to investigate the effects of probiotic supplementation on the growth performance; rumen and intestinal microbiota; rumen fluid, serum, and urine metabolism; and rumen epithelial cell transcriptomics of fattening meat sheep. Twelve Hu sheep were selected and randomly divided into two groups. They were fed a basal diet (CON) or a basal diet supplemented with 1.5 × 108 CFU/g probiotics (PRB). The results show that the average daily weight gain, and volatile fatty acid and serum antioxidant capacity concentrations of the PRB group were significantly higher than those of the CON group (p < 0.05). Compared to the CON group, the thickness of the rumen muscle layer in the PRB group was significantly decreased (p < 0.01); the thickness of the duodenal muscle layer in the fattening sheep was significantly reduced; and the length of the duodenal villi, the thickness of the cecal and rectal mucosal muscle layers, and the thickness of the cecal, colon, and rectal mucosal layers (p < 0.05) were significantly increased. At the genus level, the addition of probiotics altered the composition of the rumen and intestinal microbiota, significantly upregulating the relative abundance of Subdivision5_genera_incertae_sedis and Acinetobacter in the rumen microbiota, and significantly downregulating the relative abundance of Butyrivibrio, Saccharofermentans, and Fibrobacter. The relative abundance of faecalicoccus was significantly upregulated in the intestinal microbiota, while the relative abundance of Coprococcus, Porphyromonas, and Anaerobacterium were significantly downregulated (p < 0.05). There were significant differences in the rumen, serum, and urine metabolites between the PRB group and the CON group, with 188, 138, and 104 metabolites (p < 0.05), mainly affecting pathways such as vitamin B2, vitamin B3, vitamin B6, and a series of amino acid metabolisms. The differential genes in the transcriptome sequencing were mainly enriched in protein modification regulation (especially histone modification), immune function regulation, and energy metabolism. Therefore, adding probiotics improved the growth performance of fattening sheep by altering the rumen and intestinal microbiota; the rumen, serum, and urine metabolome; and the transcriptome.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Mingliang Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Kadekar D, Udrea AC, Bak SY, Christensen N, Gibbs K, Shen C, Bernardeau M. Cell-Free Culture Supernatant of Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 Reduces the Pathogenicity of NetB-Positive Clostridium perfringens in a Chicken Intestinal Epithelial Cell Line. Microorganisms 2024; 12:839. [PMID: 38674783 PMCID: PMC11052021 DOI: 10.3390/microorganisms12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1-UK; CP10-Sweden; 25037-CP01 and CP22-USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05-0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23-62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77-85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host-pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity.
Collapse
Affiliation(s)
- Darshana Kadekar
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | | | - Steffen Yde Bak
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Niels Christensen
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Kirsty Gibbs
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
| | - Chong Shen
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | - Marion Bernardeau
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
- Agro-Food Department, Normandy University, UNICAEN, ABTE, 14000 Caen, France
| |
Collapse
|
20
|
Hu H, Li A, Shi C, Chen L, Zhao Z, Yin X, Zhang Q, Huang Y, Pan H. Mulberry branch fiber improved lipid metabolism and egg yolk fatty acid composition of laying hens via the enterohepatic axis. MICROBIOME 2024; 12:73. [PMID: 38605412 PMCID: PMC11010431 DOI: 10.1186/s40168-024-01788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Changyou Shi
- University of Maryl and School of Medicine, Baltimore, MD, 21228, USA
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Xiaojian Yin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
21
|
Bernard M, Lecoeur A, Coville JL, Bruneau N, Jardet D, Lagarrigue S, Meynadier A, Calenge F, Pascal G, Zerjal T. Relationship between feed efficiency and gut microbiota in laying chickens under contrasting feeding conditions. Sci Rep 2024; 14:8210. [PMID: 38589474 PMCID: PMC11001975 DOI: 10.1038/s41598-024-58374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
The gut microbiota is known to play an important role in energy harvest and is likely to affect feed efficiency. In this study, we used 16S metabarcoding sequencing to analyse the caecal microbiota of laying hens from feed-efficient and non-efficient lines obtained by divergent selection for residual feed intake. The two lines were fed either a commercial wheat-soybean based diet (CTR) or a low-energy, high-fibre corn-sunflower diet (LE). The analysis revealed a significant line x diet interaction, highlighting distinct differences in microbial community composition between the two lines when hens were fed the CTR diet, and more muted differences when hens were fed the LE diet. Our results are consistent with the hypothesis that a richer and more diverse microbiota may play a role in enhancing feed efficiency, albeit in a diet-dependent manner. The taxonomic differences observed in the microbial composition seem to correlate with alterations in starch and fibre digestion as well as in the production of short-chain fatty acids. As a result, we hypothesise that efficient hens are able to optimise nutrient absorption through the activity of fibrolytic bacteria such as Alistipes or Anaerosporobacter, which, via their production of propionate, influence various aspects of host metabolism.
Collapse
Affiliation(s)
- Maria Bernard
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
- INRAE, SIGENAE, 78350, Jouy-en-Josas, France.
| | - Alexandre Lecoeur
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Luc Coville
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Bruneau
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Deborah Jardet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Annabelle Meynadier
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Fanny Calenge
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Tatiana Zerjal
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
22
|
Tajudeen H, Ha SH, Hosseindoust A, Mun JY, Park S, Park S, Choi P, Hermes RG, Taechavasonyoo A, Rodriguez R, Kim J. Effect of dietary inclusion of Bacillus-based probiotics on performance, egg quality, and the faecal microbiota of laying hen. Anim Biosci 2024; 37:689-696. [PMID: 38271980 PMCID: PMC10915221 DOI: 10.5713/ab.23.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Our study examined the impact of propriety blends of Bacillus strain probiotics on the performance, egg quality, and faecal microflora of laying hens. METHODS A total of 183 Institut de selection Animale (ISA) brown laying hens aged 23 weeks with an average body weight of 1,894±72 g were randomly allocated into 3 groups as control (corn-soybean meal based diet, CON), 0.5 g/kg Enterosure probiotics (ET1, 3×108 colony-forming unit [CFU]/kg feed), and 5 g/kg Enterosure probiotics (ET2, 3×109 CFU/kg feed) administered in mashed form. At the completion of each phase hen day egg production (HDEP), average egg weight (AEW), feed intake, and faecal microbiota were evaluated. RESULTS HDEP and AEW were higher (p<0.05) in the ET2-supplemented diet in phase 3 (week 9 to 12) compared with CON. Egg mass (EM) was higher (p<0.05) in phase 2 at ET2, and also higher (p<0.05) in phase 3 at the ET1 and ET2-supplemented diets compared with CON. Feed conversion ratio was lower (p<0.05) in phase 3 at the ET1 and ET2-supplemented diets, with ET2 being the lowest compared with ET1 and CON. Yolk colour was higher (p<0.05) in the ET-supplemented diets at phase 3 compared with CON. Bifidobacterium spp. was higher (p<0.05) in the ET2- supplemented diet compared with CON in phase 2, while in In phase 3, Lactobacillus spp. and Bifidobacterium spp. were higher (p<0.05) in the ET-supplemented diets compared with CON. Coliforms were lower (p<0.05) in the ETsupplemented diets compared with CON in phase 3. CONCLUSION The propriety blends of Bacillus strain probiotics supplements at 0.5 g/kg and 5 g/kg could improve the production and quality of eggs with more significance at 5 g/kg for HDEP, AEW and EM, which was achieved via the increase of beneficial microbiomes such as Lactobacillus spp., Bifidobacterium spp., and the decrease of pathogenic microbiomes like Escherichia coli and Coliforms which was speculated to improve gut barrier function and the reproductive hormone.
Collapse
Affiliation(s)
- Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Sang Hun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Jun Young Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Serin Park
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - SangIn Park
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - PokSu Choi
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| | - Rafael Gustavo Hermes
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317,
USA
| | | | - Raquel Rodriguez
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317,
USA
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341,
Korea
| |
Collapse
|
23
|
Pires PGS, Oliveira GS, McManus C, Santos VM, Moraes PO. Impact of housing system on intestinal microbiota of laying hens - A systematic review. Res Vet Sci 2024; 170:105184. [PMID: 38382220 DOI: 10.1016/j.rvsc.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024]
Abstract
Studies on the housing system's impact on laying hens' intestinal microbiota were retrieved from the Web of Science, PubMed, and Scopus (between 2017 and 2022). Inclusion criteria were studies that discussed measurable effects related to the topic written in English, Portuguese, and Spanish. Of 3281 articles in the identification stage, 12 studies were used in the systematic review. Asia developed most research relating to the subject. Most studies compared the intestinal microbiota of laying hens from conventional cages versus Cage-Free or Free-Range. However, no study has evaluated the intestinal microbiota of laying hens maintained in an organic system. Greengene and Silva were the most used reference in the studies. According to the results observed in the studies included in the systematic review, there is greater alpha diversity in the alternative system and a high dissimilarity between the conventional and alternative systems. Exposure to environmental factors such as soil, vegetation, natural lighting, access to pastures, and ingesting fibrous foods can lead to changes in the intestinal microbiota. A brief outline of published scientific evidence demonstrates that the housing system can change the gut microbiome of hens. This study summarises the relationship between the housing system and the intestinal microbiome of laying hens and provides a roadmap for future research regarding the gut microbiome of hens.
Collapse
Affiliation(s)
- P G S Pires
- Instituto Federal Catarinense, Campus Concórdia, SC, Brazil.
| | - G S Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - C McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - V M Santos
- Laboratory of Poultry Science, Federal Institute of Brasília - Campus Planaltina, Brasília, Brazil
| | - P O Moraes
- Department of Animal Sciences and Rural Development, Universidade Federal de Santa Catarina - Campus Florianópolis, SC, Brazil
| |
Collapse
|
24
|
Maurer JJ, Cheng Y, Pedroso A, Thompson KK, Akter S, Kwan T, Morota G, Kinstler S, Porwollik S, McClelland M, Escalante-Semerena JC, Lee MD. Peeling back the many layers of competitive exclusion. Front Microbiol 2024; 15:1342887. [PMID: 38591029 PMCID: PMC11000858 DOI: 10.3389/fmicb.2024.1342887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
Baby chicks administered a fecal transplant from adult chickens are resistant to Salmonella colonization by competitive exclusion. A two-pronged approach was used to investigate the mechanism of this process. First, Salmonella response to an exclusive (Salmonella competitive exclusion product, Aviguard®) or permissive microbial community (chicken cecal contents from colonized birds containing 7.85 Log10Salmonella genomes/gram) was assessed ex vivo using a S. typhimurium reporter strain with fluorescent YFP and CFP gene fusions to rrn and hilA operon, respectively. Second, cecal transcriptome analysis was used to assess the cecal communities' response to Salmonella in chickens with low (≤5.85 Log10 genomes/g) or high (≥6.00 Log10 genomes/g) Salmonella colonization. The ex vivo experiment revealed a reduction in Salmonella growth and hilA expression following co-culture with the exclusive community. The exclusive community also repressed Salmonella's SPI-1 virulence genes and LPS modification, while the anti-virulence/inflammatory gene avrA was upregulated. Salmonella transcriptome analysis revealed significant metabolic disparities in Salmonella grown with the two different communities. Propanediol utilization and vitamin B12 synthesis were central to Salmonella metabolism co-cultured with either community, and mutations in propanediol and vitamin B12 metabolism altered Salmonella growth in the exclusive community. There were significant differences in the cecal community's stress response to Salmonella colonization. Cecal community transcripts indicated that antimicrobials were central to the type of stress response detected in the low Salmonella abundance community, suggesting antagonism involved in Salmonella exclusion. This study indicates complex community interactions that modulate Salmonella metabolism and pathogenic behavior and reduce growth through antagonism may be key to exclusion.
Collapse
Affiliation(s)
- John J. Maurer
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ying Cheng
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Adriana Pedroso
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Kasey K. Thompson
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tiffany Kwan
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Gota Morota
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sydney Kinstler
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Margie D. Lee
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
25
|
Hu Y, Wei J, Yuan Y, Wei H, Zhou Y, Xiao N, Xiong J, Ren Z, Peng J, Cui C, Zhou Z. Intervention effects of fructooligosaccharide and astragalus polysaccharide, as typical antibiotic alternatives, on antibiotic resistance genes in feces of layer breeding: advantages and defects. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133172. [PMID: 38071777 DOI: 10.1016/j.jhazmat.2023.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Although antibiotic alternatives are widely used in livestock and poultry breeding industry after in-feed antibiotics ban, their intervention effects on antibiotic resistance genes (ARGs) in these food animals' feces remain poorly understood. Here effects of fructooligosaccharide (FOS) and astragalus polysaccharide (APS), as typical antibiotic alternatives in China, on ARGs in layer feces were estimated by performing metagenomic sequencings and fluorescence quantitative PCR. Fructooligosaccharide significantly reduced sum abundance of ARGs and mobile genetic elements (MGEs) by increasing Lactobacillus clones and reducing Escherichia clones which had relatively higher abundances of ARG subtypes and MGE subtypes in layer feces. However, at least parts of core ARGs and MGEs categories were not reduced by FOS, such as aminoglycosides- and tetracyclines-resistant genes, Tn916, Integrase, and so on. MGEs and microbiome, especially Escherichia genus and Lactobacillus genus, were the key factors affecting ARGs' sum abundance. MGEs had a higher correlation coefficient with ARGs' sum abundance than Escherichia genus and Lactobacillus genus. These findings firstly reveal the defects of antibiotic alternatives in controlling bacterial resistance in livestock and poultry breeding after in-feed antibiotics ban, and more strategies are needed to control pollutions and risks of core ARGs and MGEs in food animals' feces under a special environment.
Collapse
Affiliation(s)
- Yanping Hu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuqing Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, Huazhong Agricultural University, WuHan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Rodrigues RA, Silva LAM, Brugnera HC, Pereira N, Casagrande MF, Makino LC, Bragança CRS, Schocken-Iturrino RP, Cardozo MV. Association of Bacillus subtilis and Bacillus amyloliquefaciens: minimizes the adverse effects of necrotic enteritis in the gastrointestinal tract and improves zootechnical performance in broiler chickens. Poult Sci 2024; 103:103394. [PMID: 38194830 PMCID: PMC10792630 DOI: 10.1016/j.psj.2023.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to evaluate the efficiency and capacity of the probiotic composed of Bacillus subtilis and Bacillus amyloliquefaciens, in improving the zootechnical performance of broiler chickens challenged with Eimeria spp. and Clostridium perfringens. The broilers were distributed in a completely randomized design in poultry isolators (12 birds each), resulting in 3 treatments: T1 (control, no challenge and no Bacillus in diet), T2 (challenged with Eimeria spp., followed by Clostridium perfringens infection and no Bacillus in the diet), and T3 (challenged with Eimeria spp., Clostridium perfringens and treated with Bacillus subtilis and Bacillus amyloliquefaciens). They were evaluated for a period of 29 d, divided into preinitial (1-7 d of age), initial (8-21 d), and growth (22-29 d) phases. Assessments of body weight, weight gain, feed consumption, and feed conversion were conducted, along with the classification of the scores and optical microscopy of the tract gastrointestinal. The animals challenged and treated with the probiotic containing Bacillus spp. showed improved indicators of zootechnical performance. Additionally, the animals challenged and treated (T3) had a better score for intestinal lesions compared to the other treatment groups. Therefore, the probiotic consisting of Bacillus subtilis and Bacillus amyloliquefaciens could be considered an effective option for disease prevention and improving the zootechnical performance of broiler chickens.
Collapse
Affiliation(s)
- Romário A Rodrigues
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Leandro A M Silva
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Heloisa C Brugnera
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Natália Pereira
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Mariana F Casagrande
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lilian C Makino
- Department of Fisheries and Aquaculture Resources, School of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Caio R S Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Rubén Pablo Schocken-Iturrino
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marita V Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| |
Collapse
|
27
|
Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Koch JFA, Callegari MA, Dias CP, de Carvalho RH, da Silva CA. Enhancing Weaned Piglet Health and Performance: The Role of Autolyzed Yeast ( Saccharomyces cerevisiae) and β-Glucans as a Blood Plasma Alternative in Diets. Animals (Basel) 2024; 14:631. [PMID: 38396599 PMCID: PMC10886371 DOI: 10.3390/ani14040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate the inclusion of the autolyzed yeast (AY) Saccharomyces cerevisiae with or without an immunomodulator (1,3/1,6 β-glucans) as a total/partial substitute for blood plasma (BP) in the diet of post-weaning piglets; zootechnical performance, intestinal health and microbiota, immune responses and energy metabolism were assessed. A total of 240 castrated male and female piglets, with a mean age of 22 days and mean initial weight of 5.24 ± 0.82 kg, were randomly divided into blocks of four treatments with 12 replicates. The dietary inclusions were blood plasma (BP), autolyzed yeast (AY), autolyzed yeast + immunomodulator (AYI) and 50% BP and 50% AY (BPAY). In pre-initial phase II (29-35 days), piglets fed AY showed better feed conversion (FCR = 1.358) than the piglets in the BP (1.484), AYI (1.379) and BPAY (1.442) groups, i.e., 8.49% (0.126), 1.52% (0.021) and 4.50% (0.084), respectively (p = 0.0293). In the total period (21-42 days), better FCR was observed in the AYI (1.458) group, i.e., 4.64% (0.071), 1.15% (0.017) and 4.58% (0.070), than in the BP (1.529), AY (1.475) and BPAY (1.528) groups, respectively (p = 0.0150). In piglets fed AY (n = 3) and BPAY (n = 2), there was a reduction in the number of medications, i.e., 82.35% (-14n) and 88.23% (-15n), respectively (p = 0.0001), compared with that in the BP group (n = 17). In the AY group (73.83 mg/dL), AYI group (69.92 mg/dL), and BPAY group (69.58 mg/dL), piglets exhibited increases in triglyceride levels of 79.32%, 69.83%, and 69.00%, respectively, in comparison to those in the BP group, which had triglyceride levels of 41.17 mg/dL (p = 0.0400). The beta-hydroxybutyrate concentration in the AY group (79.96 ng/μL) was lower by 31.95%, 22.64%, and 5.89% compared to the BP group (117.50 ng/μL), AYI group (103.36 ng/μL), and BPAY group (84.67 ng/μL), respectively (p = 0.0072). In the AYI group, there was modulation of the microbiota, with an increase in the relative abundance of bacteria of the genera Lactobacillus, Collinsella and Bulleidia. AY, associated or not associated with an immunomodulator, is a potential substitute for BP in diets for piglets in the nursery phase, with positive effects on immune, metabolic, and intestinal microbial performance.
Collapse
Affiliation(s)
- Robson Sfaciotti Barducci
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | - Leticia Graziele Pacheco
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - Thaila Cristina Putarov
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - João Fernando Albers Koch
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | | | - Rafael Humberto de Carvalho
- Akei Animal Research, Fartura 18870-970, SP, Brazil; (M.A.C.); (C.P.D.); (R.H.d.C.)
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
28
|
Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol 2024; 50:39-63. [PMID: 36583653 DOI: 10.1080/1040841x.2022.2156772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
29
|
Jan TR, Lin CS, Yang WY. Differential cytokine profiling and microbial species involved in cecal microbiota modulations in SPF chicks immunized with a dual vaccine against Salmonella Typhimurium infection. Poult Sci 2024; 103:103334. [PMID: 38104411 PMCID: PMC10765113 DOI: 10.1016/j.psj.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Salmonella Typhimurium (ST) infection in laying hens is a significant threat to public health and food safety. Host resistance against enteric pathogen invasion primarily relies on immunity and gut barrier integrity. This study applied the ST infection model and a dual live vaccine containing Salmonella Enteritidis (SE) strain Sm24/Rif12/Ssq and ST strain Nal2/Rif9/Rtt to investigate the cellular cytokine expression profiles and the differential community structure in the cecal microbiota of specific-pathogen-free (SPF) chicks and field-raised layers. The results showed that ST challenge significantly upregulated expressions of IL-1β in SPF chicks. Vaccination, on the other hand, led to an elevation in IFNγ expression and restrained IL-1β levels. In the group where vaccination preceded the ST challenge (S.STvc), heightened expressions of IL-1β, IL-6, IL-10, and IL-12β were observed, indicating active involvement of both humoral and cell-mediated immunity in the defense against ST. Regarding the cecal microbiota, the vaccine did not affect alpha diversity nor induce a significant shift in the microbial community. Conversely, ST infection significantly affected the alpha and beta diversity in the cecal microbiota, reducing beneficial commensal genera, such as Blautia and Subdoligranulum. MetagenomeSeq analysis reveals a significant increase in the relative abundance of Faecalibacterium prausnitzii in the groups (S.STvc and STvc) exhibiting protection against ST infection. LEfSe further demonstrated Faecalibacterium prausnitzii as the prominent biomarker within the cecal microbiota of SPF chicks and field layers demonstrating protection. Another biomarker identified in the S.STvc group, Eubacterium coprostanoligenes, displayed an antagonistic relationship with Faecalibacterium prausnitzii, suggesting the limited biological significance of the former in reducing cloacal shedding and tissue invasion. In conclusion, the application of AviPro Salmonella DUO vaccine stimulates host immunity and modulates cecal microbiota to defend against ST infection. Among the microbial modulations observed in SPF chicks and field layers with protection, Faecalibacterium prausnitzii emerges as a significant species in the ceca. Further research is warranted to elucidate its role in protecting layers against ST infection.
Collapse
Affiliation(s)
- Tong-Rong Jan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
30
|
Shahbaz F, Muccee F, Shahab A, Safi SZ, Alomar SY, Qadeer A. Isolation and in vitro assessment of chicken gut microbes for probiotic potential. Front Microbiol 2024; 15:1278439. [PMID: 38348194 PMCID: PMC10860760 DOI: 10.3389/fmicb.2024.1278439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Poultry production occupies an important place in the economy of any country. High broiler production in recent years has badly affected its profitability due to bad feed quality, excessive use of chemotherapeutic agents, emergence of diverse pathogens, and the deficiencies in management practices during rearing cycle. Microbiological improvement of the meat quality using potential probiotics can be beneficial for broiler farming. Present study was initiated to isolate chicken gastrointestinal tract (GIT) bacteria with probiotic potential. To isolate probiotics from chicken gut, alimentary canal of chickens of known sizes and ages was suspended in ringers soln. Under shaking conditions for overnight followed by serial dilutions of ringers soln. Bacterial isolates were analyzed via growth curve analysis, biochemical testing using RapID™ NF Plus Panel kit, molecular characterization, antimicrobial activity assay, antibiotic sensitivity assay, GIT adherence assay, bile salt and gastric acid resistant assay, and cholesterol assimilation assay. Four bacteria isolated in present study were identified as Limosilactobacillus antri strain PUPro1, Lactobacillus delbrueckii strain PUPro2, Lacticaseibacillus casei strain PUPro3, and Ligilactobacillus salivarius strain PUPro4. L. delbrueckii strain PUPro2 grew extremely fast. All isolates exhibited exceptional resistance to increasing concentrations of NaCl and bile salts with value of p >0.5. L. delbrueckii strain PUPro2 adhered to chicken ileum epithelial cells and demonstrated the highest viable counts of 320 colony forming units (CFUs). Antagonistic action was found in all isolates against P. aeruginosa, B. subtilis, B. proteus, and S. aureus, with value of p >0.5. Antibiotic susceptibility testing showed sensitivity to all the antibiotics used. Cholesterol assimilation was detected in all bacteria, with values ranging from 216.12 to 192.2 mg/dL. All isolates exhibited γ-hemolysis. In future, these bacteria might be tested for their impact on broilers meat quality and growth and can be recommended for their use as supplements for broilers diet with positive impact on poultry production.
Collapse
Affiliation(s)
- Fatima Shahbaz
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Aansa Shahab
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, MAHSA University, Kuala Lumpur, Malaysia
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
31
|
Yi W, Liu Y, Fu S, Zhuo J, Wang J, Shan T. Dietary novel alkaline protease from Bacillus licheniformis improves broiler meat nutritional value and modulates intestinal microbiota and metabolites. Anim Microbiome 2024; 6:1. [PMID: 38184648 PMCID: PMC10770948 DOI: 10.1186/s42523-023-00287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Different types of exogenous protease supplements have a positive impact on animal performance, but their effects on the nutritional value of meat and the gut microbial community of broilers have not been extensively studied. The objective of this investigation was to determine the impact of supplementation with a novel alkaline protease derived from Bacillus licheniformis (at doses of 0, 100, 200, 300, and 400 g/t) on the fatty acid and amino acid profiles, inosine monophosphate (IMP) levels, total volatile basic nitrogen (TVB-N) content found within the breast muscle, as well as the impact on the cecal microbiota and metabolites. RESULTS Supplementation with 200-400 g/t of the novel protease resulted in a significant elevation in the concentration of essential amino acids (P < 0.001), flavor amino acids (P < 0.001), and total protein (P = 0.013) within the breast muscle. Results derived from the 16S rRNA sequencing and untargeted metabolomics analysis of the cecal content revealed that the novel protease reshaped the cecal microbial and metabolite profiles. In particular, it led to increased relative abundances of Bacteroides, Lactobacillus, Alistipes, and Eubacterium, while simultaneously causing a reduction in the metabolites of D-lactic acid and malonic acid. Moreover, correlation analyses unveiled significant relationships between distinct microbes and metabolites with the contents of IMP, fatty acids, and amino acids in the broiler's breast muscle. CONCLUSION In summary, the novel protease regulated the intestinal microbial community and metabolism, thereby inducing changes in the compositions of fatty acids and amino acids profiles, as well as IMP levels in broiler meat. These alterations significantly contributed to the enhancement of the nutritional value and flavor of the meat.
Collapse
Affiliation(s)
- Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | - Shijun Fu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jianshu Zhuo
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
32
|
Wen K, Zhang K, Gao W, Bai S, Wang J, Song W, Zeng Q, Peng H, Lv L, Xuan Y, Li S, Xu M, Ding X. Effects of stevia extract on production performance, serum biochemistry, antioxidant capacity, and gut health of laying hens. Poult Sci 2024; 103:103188. [PMID: 37980742 PMCID: PMC10665936 DOI: 10.1016/j.psj.2023.103188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
In the present study, we aimed to elucidate the effects of stevia extract on production performance, serum immune indexes, intestinal structure, and cecum microbial structure. We randomly divided eight hundred 46-wk-old Roman hens into 5 groups, with 8 replicates in each group and 20 chickens in each replicate. The control group was fed a basal diet, whereas the 4 experimental groups were fed 50, 100, 200, and 400 mg/kg stevia extracts. The study period was 24 wk. The addition of different concentrations of the stevia extract to the diet resulted in significant secondary changes in the egg production rate at 1 to 12 wk (P < 0.05). Furthermore, the addition of 50 and 100 mg/kg stevia extract to the diet significantly increased serum IgM and IgG levels in laying hens (P < 0.05) but linearly decreased serum IL-1β levels (P < 0.05). Serum T-SOD activity linearly increased (P = 0.057); however, serum biochemical indexes showed no significant differences. Stevia extract tended to increase the ratio of the duodenal villi height to the depth of the crypt (P = 0.067), with no obvious lesions in the duodenum, jejunum, and ileum. In addition, stevia extract increased the relative abundance of species at the phylum level, with the abundance of Bacteroides and Firmicutes exhibiting significant secondary changes (P < 0.05). The ACE and Chao1 indexes suggested that stevia extract addition significantly increased the alpha diversity of cecum microorganisms in laying hens. Furthermore, NMDS analysis based on operational taxonomic units revealed that stevia extract addition increased the beta diversity of cecum microorganisms in laying hens. Adding a certain amount of stevia extract to feed can improve the production performance, immune ability, and intestinal health of laying hens to some extent, and we recommend an effective level of 200mg/kg of stevia extract for laying hen diets.
Collapse
Affiliation(s)
- Kaimei Wen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Wei Gao
- Chenguang Biological Technology Group Co, Ltd., Handan 057250, China; Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan 057250, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Weiguang Song
- Chenguang Biological Technology Group Co, Ltd., Handan 057250, China; Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan 057250, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Li Lv
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Shanshan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China
| | - Meili Xu
- Chenguang Biological Technology Group Co, Ltd., Handan 057250, China; Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan 057250, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
33
|
Qin M, Wang Z, Liang M, Sha Y, Liu M, Liu J, Wang T, Zhao C, Wang Z, Guo D, Li R. Effects of dietary supplementation with tea polyphenols and probiotics on laying performance, biochemical parameters intestinal morphology and microflora of laying hens. Int J Biol Macromol 2024; 256:128368. [PMID: 38029914 DOI: 10.1016/j.ijbiomac.2023.128368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
This study was conducted to investigate the effects of tea polyphenols (TP) and probiotics (PB) on the production performance, biochemical indices, and gut health of laying hens. A total of 400 Hy-line Brown layers (45 weeks old) were randomly assigned to 8 diet groups for 8-week feeding trial. Compared with the control basal diet (CT), dietary high dosage of TP and PB (HTP-PB) increased egg mass (P < 0.05). Supplementation with HTP-PB improved the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the malonic dialdehyde (MDA) content (P < 0.05) without affecting the contents of immunoglobulins in the serum. The combination of HTP and PB supplementation promoted the secretion of estradiol (E2) and progesterone (PROG) compared with treatment with TP or PB alone (P < 0.05). The combined use of HTP and PB induced higher jejunal villus height (VH) than the CT group (P < 0.05). Dietary TP and PB could optimize the functional network of intestinal microflora and the interactions between the intestinal microflora and the host. Therefore, the combined use of the high dosage of TP and PB affected laying performance, improved antioxidant capacity, and promoted intestinal health, which may be associated with regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang 330045, China; GuangDong Shengdilecun Ecological Food Co., Ltd, Kaiping 529300, China
| | - Ting Wang
- Yantai Municipal Agriculture and Rural Affairs Bureau, Yantai 264000, China
| | - Chengxin Zhao
- Yantai Jinhai Pharmaceutical Co., Ltd, Yantai 265323, China
| | - Zhixin Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Duitian Guo
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| |
Collapse
|
34
|
Wang Y, Du J, Li Q, Tao Y, Cheng Y, Lu J, Wang H. Bioconversion of cellulose and hemicellulose in corn cob into L-lactic acid and xylo-oligosaccharides. Int J Biol Macromol 2023; 253:126775. [PMID: 37699460 DOI: 10.1016/j.ijbiomac.2023.126775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
With the banning of antibiotic chemical feed additives, multi-functional bioactive feed additives have been extensively sought after by the feed industry. In this study, low-cost and renewable corn cobs were treated with liquid hot water and converted into bioactive xylo-oligosaccharides and L-lactic acid after enzymatic hydrolysis, strain activation, and fermentation under mild conditions, which achieved a full utilization of cellulose and hemicellulose in corn cobs. Simultaneous saccharification fermentation after strain activation with enzymatic hydrolysate delivered the highest conversion rate of glucose to L-lactic acid (93.00 %) and yielded 17.38 g/L L-lactic acid and 2.68 g/L xylo-oligosaccharides. On this basis, batch-feeding fermentation resulted in a 78.03 % conversion rate of glucose to L-lactic acid, 18.99 g/L L-lactic acid, and 2.84 g/L xylo-oligosaccharides. This work not only provided a green and clean bioconversion strategy to produce multi-functional feed additives but can also boost the full utilization of renewable and cheap biomass resources.
Collapse
Affiliation(s)
- Yiqin Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
35
|
Liu J, Liu J, Zhou S, Fu Y, Yang Q, Li Y. Effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids in layers. Front Vet Sci 2023; 10:1301542. [PMID: 38188719 PMCID: PMC10766699 DOI: 10.3389/fvets.2023.1301542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, the effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids (SCFAs) were compared in layers. Hyline brown layers at 385 days of age with a similar laying rate (81.36% ± 0.62%) and body weight (2.10 kg ± 0.04 kg) were randomly divided into three treatments, six replicates per treatment, and 20 layers per replicate. Layers in control, quercetin, and daidzein treatment were fed by a basal diet supplemented with 0 mg/kg, 500 mg/kg quercetin, and 30 mg/kg of daidzein for 10 weeks. Results showed that eggshell strength and albumen height in week 4, egg yolk diameter in week 10, and eggshell thickness and egg yolk height in weeks 4 and 10 were significantly increased in the quercetin treatment (P ≤ 0.05); contents of phospholipid (PL) and lecithin (LEC) in egg yolk and high-density lipoprotein (HDL) content in serum were significantly increased; however, contents of malondialdehyde (MDA), total cholesterol (TC), and triglyceride (TG) in egg yolk, contents of TC, TG, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) in serum, and contents of TC and TG in the liver were significantly decreased in the quercetin treatment (P ≤ 0.05); contents of isobutyric acid and valeric acid were significantly increased in the cecum of the quercetin treatment (P ≤ 0.05), compared with control. Moreover, egg yolk height in week 10 and eggshell thickness in weeks 4 and 10 were significantly increased in the daidzein treatment (P ≤ 0.05); contents of MDA, TC, and TG in egg yolk, TC, TG, and VLDL in serum, and TC and TG in liver were significantly decreased in the daidzein treatment (P ≤ 0.05); and HDL content was significantly increased in serum of the daidzein treatment (P ≤ 0.05) compared with control. However, daidzein did not affect SCFA content in the cecum. In conclusion, egg quality was improved by quercetin and daidzein by increasing the antioxidant ability of egg yolk and by regulating lipid metabolism in layers. Quercetin worked better than daidzein in improving egg quality under this experimental condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
36
|
Guo S, Tong W, Qi Y, Jiang M, Li P, Zhang Z, Hu Q, Song Z, Ding B. Effects of Dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei Supplementation on the Intestinal Stem Cell Proliferation, Immunity, and Ileal Microbiota of Broiler Chickens Challenged by Coccidia and Clostridium perfringens. Animals (Basel) 2023; 13:3864. [PMID: 38136901 PMCID: PMC10740854 DOI: 10.3390/ani13243864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study was conducted to investigate effects of dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei supplementation on the intestinal stem cell proliferation, immunity, and ileal microbiota of broiler chickens challenged by coccidia and Clostridium perfringens. A total of 336 one-day-old Ross 308 chickens were randomly assigned into four groups. Chickens in the control (CTR) group were fed basal diet, and chickens in the three challenged groups were fed basal diets supplemented with nothing (CCP group), 1.0 × 109 CFU/kg L. fermentum (LF_CCP group), and 1.0 × 109 CFU/kg L. paracasei (LP_CCP group), respectively. All challenged birds were infected with coccildia on day 9 and Clostridium perfringens during days 13-18. The serum and intestinal samples were collected on days 13 and 19. The results showed that L. fermentum significantly increased jejunal gene expression of cdxB (one of the intestinal stem cell marker genes) on day 13. Additionally, L. fermentum significantly up-regulated mRNA levels of JAK3 and TYK2 and tended to increase STAT6 mRNA expression in jejunum on day 19. In the cecal tonsil, both L. fermentum and L. paracasei decreased mRNA expression of JAK2 on day 13, and L. fermentum down-regulated JAK1-2, STAT1, and STAT5-6 gene expressions on day 19. Ileal microbiological analysis showed that coccidial infection increased the Escherichia-Shigella, Lactobacillus, and Romboutsia abundance and decreased Candidatus_Arthromitus richness on day 13, which were reversed by Lactobacillus intervention. Moreover, Lactobacilli increased ileal Lactobacillus richness on day 19. In conclusion, Lactobacilli alleviated the impairment of intestinal stem cell proliferation and immunity in coccidia- and C. perfringens-challenged birds via modulating JAK/STAT signaling and reshaping intestinal microflora.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Wenfei Tong
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Ya Qi
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Meihan Jiang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd., Xianning 437099, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhuan Song
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| |
Collapse
|
37
|
Liang X, Fu Y, Niu K, Zhai Z, Shi H, Wang R, Yin Y. Dietary Eucommia ulmoides leaf extract improves laying performance by altering serum metabolic profiles and gut bacteria in aged laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:307-319. [PMID: 38053802 PMCID: PMC10694046 DOI: 10.1016/j.aninu.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 12/07/2023]
Abstract
The leaves of Eucommia ulmoides are rich in bioactive constituents that have potential gastrointestinal benefits for animals. In aged laying hens, intestinal health issues contribute to a significant decline in egg-laying capacity during intermediate and later stages. It remains unclear whether E. ulmoides leaf extract (ELE) can improve intestinal health and enhance egg production in elderly laying hens, and the underlying mechanisms are yet to be elucidated. Therefore, we conducted a study with 480 laying hens (65 weeks old) randomly allocated into four groups: a control group fed with the basal diet, and three treatment groups supplemented with 500, 1,000, and 2,000 mg/kg of ELE, respectively. The primary active constituents of ELE include flavonoids, polysaccharides, terpenoids, and phenolic acids. Dietary supplementation with ELE at 1,000 mg/kg (ELE1000) significantly improved laying performance and egg quality compared to the other groups. ELE1000 stimulated the maturation of intestinal epithelial cells, increased villus height, and reduced crypt depth. It also influenced the levels of proteins associated with tight junctions (claudin-1 and claudin-2) and intestinal inflammatory factors (IL-6, IL-1β, and IL-2) in different intestinal sections. Integrative analysis of serum metabolomics and gut microbiota revealed that ELE1000 improved nutrient metabolism by modulating amino acid and ubiquinone biosynthesis and influenced the abundance of intestinal microbiota by enriching pivotal genera such as Bacteroides and Rikenellaceae_RC9_gut_group. We identified 15 metabolites significantly correlated with both gut microbiota and laying performance, e.g., DL-methionine sulfoxide, THJ2201 N-valerate metabolite, tetracarbonic acid, etc. In conclusion, ELE1000 improved laying performance in elderly laying hens by affecting intestinal morphology, barrier function, microbiota, and serum metabolite profiles. These findings suggest that ELE can be a beneficial feed additive for extending the peak producing period in aged laying hens.
Collapse
Affiliation(s)
- Xiaoxiao Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yawei Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhenya Zhai
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Hongxun Shi
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou 450001, China
| | - Ruxia Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou 450001, China
| | - Yulong Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
38
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
39
|
Leone F, Ferrante V. Effects of prebiotics and precision biotics on performance, animal welfare and environmental impact. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165951. [PMID: 37532045 DOI: 10.1016/j.scitotenv.2023.165951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
This review aims to analyze the recent studies about prebiotics and precision biotics, as alternatives to animal growth promoters. These substances improve intestinal health, growth performance and poultry environmental impact. Prebiotics are insoluble fibers, that have no nutritive value, but they promote the growth of positive bacteria, increase the nutrients absorption and modulate the immune response. Instead, precision biotics are carbohydrates with glycosidic linkages, which interact with gut bacteria metabolism, reducing the excretion of nitrogen and consequentially, the poultry environmental impact. In the last years, different studies were published in this field, and for this reason, it is necessary to organize the results found. It was shown that mannan-oligosaccharides and β-glucans increase ileal nutrient digestibility, nitrogen retention and antibodies titers. Inulin, arabinoxylans-derived oligosaccharides, and galacto-oligosaccharides improved intestinal morphology, arranging for a larger absorption surface area. It was reported that prebiotics enhance the colonization of positive bacteria and can reduce the count of Campylobacter colonies. Furthermore, xylo-oligosaccharides are often used in animal feed, due to their ability to form organic acids, which decompose noxious substances, improving litter quality, and consequentially, reducing the environmental impact. Litter quality is a relevant aspect for ammonia emissions and for animal welfare. Whether the litter quality is poor, footpad dermatitis increase, worsening animal welfare and increasing nitrogen emissions to air. Precision biotics select metabolic pathways to modulate amino acid degradation, reintegrating the nitrogen discarded, and reducing the ammonia level in litter. It was also reported an improvement of growth performance and a better animal welfare. In conclusion, prebiotics and precision biotics can have positive effects on animal performance and welfare, and they can be a new strategy to reduce the environmental impact of chickens' farms.
Collapse
Affiliation(s)
- Francesca Leone
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Giovanni Celoria 10, 20133 Milan, Italy
| | - Valentina Ferrante
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Giovanni Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
40
|
Logue CM, De Cesare A, Tast-Lahti E, Chemaly M, Payen C, LeJeune J, Zhou K. Salmonella spp. in poultry production-A review of the role of interventions along the production continuum. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:289-341. [PMID: 38461002 DOI: 10.1016/bs.afnr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.
Collapse
Affiliation(s)
- Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, United States.
| | | | - Elina Tast-Lahti
- European Center for Disease Prevention and Control (ECDC), Sweden
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Cyrielle Payen
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Jeff LeJeune
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| | - Kang Zhou
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| |
Collapse
|
41
|
Mörschbächer AP, Berghahn E, Shibuya FY, Cardoso ML, Ulguim GK, de Freitas Michelon N, Torgeski N, Vivian TP, Wissmann D, de Camargo FCDLS, de Andrade GM, Sturza DAF, Dos Santos HF, Dilkin P, Timmers LFSM, Granada CE. Feeding laying hens with lactobacilli improves internal egg quality and animal health. World J Microbiol Biotechnol 2023; 40:5. [PMID: 37925366 DOI: 10.1007/s11274-023-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Feeding animals with lactobacilli strains is a biotechnological strategy to improve production, food quality, and animal health. Thus, this study aimed to select new lactic acid bacteria (LAB) able to improve laying hens health and egg production. Forty Bovans White layers (two days old) were randomly divided into four experimental groups that receive an oral gavage with saline solution (control group) or with one of the three lactobacilli selected (KEG3, TBB10, and KMG127) by their antagonistic activity against the foodborne pathogen Bacillus cereus GGD_EGG01. 16 S rRNA sequencing identified KEG3 as Lentilactobacillus sp., and TBB10 and KMG127 as Lactiplantibacillus sp. The data showed that feeding birds with LAB increased weight uniformity and improved the internal quality of the eggs (high yolk index and Haugh unit) compared with the control group (p < 0.05). Beta-diversity analysis showed that LAB supplementation modifies the cecal microbiota of laying hens. The prokaryotic families Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and Lactobacillaceae were most important to the total dissimilarity of the cecal microbial community (calculated by SIMPER test). At end of in vivo experiments, it was possible to conclude that the feed of laying hens with Lentilactobacillus sp. TBB10 and Lentilactobacillus sp. KEG3 can be an important biotechnological tool for improving food quality and animal health.
Collapse
Affiliation(s)
- Ana Paula Mörschbächer
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Fabio Yuji Shibuya
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria - UFSM, Santa Maria, Brazil
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mateus Luis Cardoso
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gustavo Kutscher Ulguim
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Nathalia de Freitas Michelon
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natália Torgeski
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tamiris Prussiano Vivian
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daiani Wissmann
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Flávia Constância de Los Santos de Camargo
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gabriela Monteiro de Andrade
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Helton Fernandes Dos Santos
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Paulo Dilkin
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | |
Collapse
|
42
|
Choi S, Kim EB. A comprehensive longitudinal study of gut microbiota dynamic changes in laying hens at four growth stages prior to egg production. Anim Biosci 2023; 36:1727-1737. [PMID: 37871901 PMCID: PMC10623045 DOI: 10.5713/ab.23.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The poultry industry is a primary source of animal protein worldwide. The gut microbiota of poultry birds, such as chickens and ducks, is critical in maintaining their health, growth, and productivity. This study aimed to identify longitudinal changes in the gut microbiota of laying hens from birth to the pre-laying stage. METHODS From a total of 80 Hy-Line Brown laying hens, birds were selected based on weight at equal intervals to collect feces (n = 20 per growth) and ileal contents (n = 10 per growth) for each growth stage (days 10, 21, 58, and 101). The V4 regions of the 16S rRNA gene were amplified after extracting DNA from feces and ileal contents. Amplicon sequencing was performed using Illumina, followed by analysis. RESULTS Microbial diversity increased with growth stages, regardless of sampling sites. Microbial community analysis indicated that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in the feces and ileal. The abundance of Lactobacillus was highest on day 10, and that of Escherichia-shigella was higher on day 21 than those at the other stages at the genus level (for the feces and ileal contents; p<0.05). Furthermore, Turicibacter was the most abundant genus after changing feed (for the feces and ileal contents; p<0.05). The fecal Ruminococcus torques and ileal Lysinibacillus were negatively correlated with the body weights of chickens (p<0.05). CONCLUSION The gut microbiota of laying hens changes during the four growth stages, and interactions between microbiota and feed may be present. Our findings provide valuable data for understanding the gut microbiota of laying hens at various growth stages and future applied studies.
Collapse
Affiliation(s)
- Seojin Choi
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341,
Korea
| | - Eun Bae Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341,
Korea
- Institute of Animal Life Science, Kangwon National University, Chuncheon, 24341,
Korea
| |
Collapse
|
43
|
Uehara A, Maekawa M, Nakagawa K. Enhanced intestinal barrier function as the mechanism of antibiotic growth promoters in feed additives. Biosci Biotechnol Biochem 2023; 87:1381-1392. [PMID: 37704399 DOI: 10.1093/bbb/zbad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
Antibiotic growth promoters (AGPs) are a cost-effective tool for improving livestock productivity. However, antimicrobial-resistant bacteria have emerged, and the search for alternatives to AGPs has consequently intensified. To identify these alternatives without the risk of the emergence of antimicrobial resistance, it is important to determine the mechanism of action of AGPs and, subsequently, search for compounds with similar properties. We investigated the antimicrobial and anti-inflammatory activities and intestinal barrier function of several AGPs using epithelial and immune cells. At the minimum administered dose of antibiotics, which effectively function as a growth promoter, the mechanism of action is to enhance the intestinal barrier function, but not the antimicrobial activity as determined using Dunnett's test (n = 3, P < .05). Inflammatory response was dependent on the combination of antibiotics (100 µmol/L) and immune cells. The results suggest that future studies should screen for nonantibiotic compounds that ameliorate intestinal barrier function.
Collapse
Affiliation(s)
- Akinori Uehara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Mayumi Maekawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazuki Nakagawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| |
Collapse
|
44
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
45
|
Pang J, Beyi AF, Looft T, Zhang Q, Sahin O. Fecal Microbiota Transplantation Reduces Campylobacter jejuni Colonization in Young Broiler Chickens Challenged by Oral Gavage but Not by Seeder Birds. Antibiotics (Basel) 2023; 12:1503. [PMID: 37887204 PMCID: PMC10604036 DOI: 10.3390/antibiotics12101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Campylobacter spp., particularly C. jejuni and C. coli, are major food safety concerns, transmitted to humans mainly via contaminated poultry meat. In a previous study, we found that some commercial broiler farms consistently produced Campylobacter-free flocks while others consistently reared Campylobacter-colonized flocks, and significant differences in the gut microbiota compositions between the two types of farm categories were revealed. Therefore, we hypothesized that gut microbiota influences Campylobacter colonization in poultry and that the microbiota from Campylobacter-free flocks may confer colonization resistance to Campylobacter in the chicken intestine. In this study, two fecal microbiota transplantation (FMT) trials were performed to test the hypothesis. Newly hatched chicks were given FMT via oral gavage of the cecal content of Campylobacter-free adult chickens (treatment groups) or PBS (control groups) before the feed consumption. Approximately two weeks after the FMT, the birds were challenged with C. jejuni either by oral gavage (trial 1) or by co-mingling with Campylobacter-colonized seeder birds (trial 2) to evaluate the potential protective effect of the FMT. Cecal contents were collected (3 times, 5 days apart) to determine the Campylobacter colonization levels via culture and microbiota compositions via 16S rRNA gene sequencing. FMT reduced cecal Campylobacter colonization significantly (log10 1.2-2.54 CFU/g) in trial 1 but not in trial 2, although FMT significantly impacted the diversity and compositions of the gut microbiota in both trials. Several genera, such as Butyricimonas, Parabacteroides, Parasutterella, Bilophila, Fournierella, Phascolarctobacterium, and Helicobacter, had increased abundance in the FMT-treated groups in both trials. Furthermore, Campylobacter abundance was found to be negatively correlated with the Escherichia and Ruminococcus_torques_group genera. These findings indicate that even though FMT with adult cecal microbiota can positively affect the subsequent development of the gut microbiota in young broilers, its inhibitory effect on Campylobacter colonization varies and appears to be influenced by the challenge models.
Collapse
Affiliation(s)
- Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Ashenafi Feyisa Beyi
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
| | - Torey Looft
- National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
46
|
Korver DR, Park SH, Costello MK, Olson EG, Saunders-Blades JL, Ricke SC. Research Note: Preliminary assessment of the impact of dietary yeast products on egg production and cecal microbial profiles of laying hens. Poult Sci 2023; 102:102934. [PMID: 37499614 PMCID: PMC10393788 DOI: 10.1016/j.psj.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
The objective of the current study was to conduct an initial comparison of commercial yeast products in layer hen diets on egg production parameters and the corresponding impact on the cecal microbiota. A short-term feeding study was conducted with 35 laying hens receiving either a control, or 1 of 4 different yeast fermentation products, Immunowall, Hilyses (both from ICC, São Paulo, Brazil), Citristim (ADM, Decatur, IL), and Maxi-Gen Plus (CBS Bio Platforms, Calgary, Canada) with 7 hens per treatment from 40 to 46 wk of age. At the end of the trial, hens were euthanized, the ceca removed and prepared for denatured gradient gel electrophoresis (DGGE) microbial compositional analyses. Although initial shell weight and shell thickness were similar among the treatment groups, hens fed Hilyses had lower shell weight and thickness at the end of the experiment. The most predominant DGGE bands with the strongest intensity were identified as Lactobacillus species and excised double bands were identified as Bacillus, Clostridium, or Lachnospiraceae. In this short-term feeding trial, the commercial yeast products tested had little effect on egg production and shell quality, and only moderately impacted the composition of mature layer hen cecal microbiota.
Collapse
Affiliation(s)
- D R Korver
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5.
| | - S H Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | - M K Costello
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, 53706, USA
| | - E G Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, 53706, USA
| | - J L Saunders-Blades
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - S C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
47
|
Suvorov A, Zhao S, Leontieva G, Alekhina G, Yang J, Tsapieva A, Karaseva A, Smelova V, Guo D, Chen L. Evaluation of the Efficacy of Enterococcus faecium L3 as a Feed Probiotic Additive in Chicken. Probiotics Antimicrob Proteins 2023; 15:1169-1179. [PMID: 35904731 DOI: 10.1007/s12602-022-09970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The study was devoted to the comparison of the probiotic effect of enterococcal Enterococcus faecium L3 to the antibiotic enramycin as a chicken feed additive. Two hundred and sixteen chickens were divided into three groups and tested by different parameters including weight gain, food consumption, blood biochemistry, immunology, and caecal microbiome at two checkpoints, 21 and 39 days after birth. By the end of the experiment, a group of chickens getting probiotic demonstrated weight gain of more than 100 g at the average relative to the control group with no additive in animal feed (P < 0.05). Blood serum biochemistry showed a significant increase in HDL level (P < 0.05) relative to the control group. The 16S RNA sequencing demonstrated the growth abundance of Lachnospiraceae and the decrease of Proteobacteria in probiotic fed group. On the contrary, the antibiotic fed group showed a noticeable increase in the abundance of Proteobacteria which included the genus Salmonella. Thus, probiotic E. faecium L3 being added to chicken food as a single additive may be considered as a possible replacement of antibiotic enramycin.
Collapse
Affiliation(s)
- Alexander Suvorov
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia.
- Saint Petersburg State University, University nab., 7-9, St. Petersburg, 199034, Russia.
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Galina Leontieva
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Galina Alekhina
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Jinyu Yang
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Anna Tsapieva
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Valentina Smelova
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Danyang Guo
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Leilei Chen
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
48
|
Xiong X, Rao Y, Ma J, Wang Z, He Q, Gong J, Sheng W, Xu J, Zhu X, Tan Y, Yang Y. A catalog of microbial genes and metagenome-assembled genomes from the quail gut microbiome. Poult Sci 2023; 102:102931. [PMID: 37499616 PMCID: PMC10393819 DOI: 10.1016/j.psj.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The gut microbiome plays an important role in quail feed efficiency, immunity, production, and even behavior. Gut microbial gene catalogs and reference genomes are important for understanding the quail gut microbiome. However, quail gut microbes are lacked sequenced genomes and functional information to date. In this study, we report the first catalog of the microbial genes and metagenome-assembled genomes (MAGs) in fecal and cecum luminal content samples from 3 quail breeds using deep metagenomic sequencing. We identified a total of 2,419,425 nonredundant genes in the quail genome catalog, and a total of 473 MAGs were reconstructed through binning analysis. At 95% average nucleotide identity, the 473 MAGs were clustered into 283 species-level genome bins (SGBs), of which 225 SGBs belonged to species without any available genomes in the current database. Based on the quail gene catalog and MAGs, we identified 142 discriminative bacterial species and 244 discriminative MAGs between Chinese yellow quails and Japanese quails. The discriminative MAGs suggested a strain-level difference in the gut microbial composition. Additionally, a total of 25 Kyoto Encyclopedia of Genes and Genomes functional terms and 88 carbohydrate-active enzymes were distinctly enriched between Chinese yellow quails and Japanese quails. Most of the different species and MAGs were significantly interrelated with the shifts in the functional capacities of the quail gut microbiome. Taken together, we constructed a quail gut microbial gene catalog and enlarged the reference of quail gut microbial genomes. The results of this study provide a powerful and invaluable resource for quail gut microbiome-related research.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China.
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jinge Ma
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Qin He
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Wentao Sheng
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yanbei Yang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| |
Collapse
|
49
|
Watanabe M, Maruo T, Suzuki T. Effects of intake of Lactococcus cremoris subsp. cremoris FC on constipation symptoms and immune system in healthy participants with mild constipation: a double-blind, placebo-controlled study. Int J Food Sci Nutr 2023; 74:695-706. [PMID: 37464459 DOI: 10.1080/09637486.2023.2236805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
This study evaluated the effect of Lactococcus cremoris subsp. cremoris FC (FC) on constipation symptoms and the immune system in healthy participants with mild constipation. Eighty-three participants were randomised into four groups with different doses: 50, 75, and 100 mg of freeze-dried FC (test) or corn starch (placebo). Defaecation frequency significantly increased in all test groups compared to the placebo group. Stool appearance and volume were improved considerably within the groups administered 50 mg and 75 mg of FC. The abundances of total bacteria, Bifidobacterium spp., and Lactobacillus group in the faeces showed increasing trends in the test groups. Regarding immunological parameters, the naive T cell counts in the blood were significantly higher at a dose of 75 mg of FC in the test group than in the placebo group. These results suggest that FC intake improves defaecation and some immunological parameters, especially naive T cell counts, in healthy adults.
Collapse
Affiliation(s)
| | - Toshinari Maruo
- Research & Development Department, Fujicco Co., Ltd, Kobe, Hyogo, Japan
| | - Toshio Suzuki
- Research & Development Department, Fujicco Co., Ltd, Kobe, Hyogo, Japan
| |
Collapse
|
50
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|