1
|
Kim M, Kim M, Ryu S. Identification of amino acid residue in the Cronobacter sakazakii LamB responsible for the receptor compatibility of polyvalent coliphage CSP1. J Virol 2024; 98:e0067624. [PMID: 39248490 PMCID: PMC11494877 DOI: 10.1128/jvi.00676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Polyvalent bacteriophages show the feature of infecting bacteria across multiple species or even orders. Infectivity of a polyvalent phage is variable depending on the host bacteria, which can disclose differential inhibition of bacteria by the phage. In this study, a polyvalent phage CSP1 infecting both Cronobacter sakazakii ATCC 29544 and Escherichia coli MG1655 was isolated. CSP1 showed higher growth inhibition and adsorption rate in E. coli compared to C. sakazakii, and identification of host receptors revealed that CSP1 uses E. coli LamB (LamBE) as a receptor but that CSP1 requires both C. sakazakii LamB (LamBC) and lipopolysaccharide (LPS) core for C. sakazakii infection. The substitution of LamBC with LamBE in C. sakazakii enhanced CSP1 susceptibility and made C. sakazakii LPS core no more essential for CSP1 infection. Comparative analysis of LamBC and LamBE disclosed that the extra proline at amino acid residue 284 in LamBC made a structural distinction by forming a longer loop and that the deletion of 284P in LamBC aligns its structure and makes LamBC function like LamBE, enhancing CSP1 adsorption and growth inhibition of C. sakazakii. These results suggest that 284P of LamBC plays a critical role in determining the CSP1-host bacteria interaction. These findings could provide insight into the elucidation of molecular determinants in the interaction between polyvalent phages and host bacteria and help us to understand the phage infectivity for efficient phage application. IMPORTANCE Polyvalent phages have the advantage of a broader host range, overcoming the limitation of the narrow host range of phages. However, the limited molecular biological understanding on the host bacteria-polyvalent phage interaction hinders its effective application. Here, we revealed that the ability of the polyvalent phage CSP1 to infect Cronobacter sakazakii ATCC 29544 is disturbed by a single proline residue in the LamB protein and that lipopolysaccharide is used as an auxiliary receptor for CSP1 to support the adsorption and the subsequent infection of C. sakazakii. These results can contribute to a better understanding of the interaction between polyvalent phages and host bacteria for efficient phage application.
Collapse
Affiliation(s)
- Moosung Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kwon M, Lee Y, Kim M. Complete genome sequences of Klebsiella pneumoniae bacteriophages YMR1 and YMR2 isolated from sewage. Microbiol Resour Announc 2024; 13:e0054424. [PMID: 39083726 PMCID: PMC11385110 DOI: 10.1128/mra.00544-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Two Klebsiella pneumoniae bacteriophages, YMR1 and YMR2, which form plaques with halos, were isolated from sewage in Seoul, South Korea. YMR1 and YMR2 have double-stranded DNA genomes of 40,338 bp and 40,756 bp with 49 and 52 predicted protein-coding genes, respectively. Both are predicted to be members of the family Autographiviridae.
Collapse
Affiliation(s)
- Miri Kwon
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Yonghyun Lee
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Minsik Kim
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Getz LJ, Maxwell KL. Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. Annu Rev Virol 2024; 11:343-362. [PMID: 38950439 DOI: 10.1146/annurev-virology-100422-125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Karen L Maxwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
4
|
Liu W, Wu Y, Wang H, Wang H, Zhou M. Isolation and Biological Characteristics of a Novel Phage and Its Application to Control Vibrio Parahaemolyticus in Shellfish Meat. Foodborne Pathog Dis 2024; 21:467-477. [PMID: 38757692 DOI: 10.1089/fpd.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Vibrio parahaemolyticus is a common foodborne pathogenic bacterium. With the overuse of antibiotics, an increasing proportion of drug-resistant strains are emerging, which puts enormous pressure on public health. In this study, a V. parahaemolyticus-specific phage, VP41s3, was isolated. The head length, width, and tail length of the phage were 77.7 nm, 72.2 nm, and 17.5 nm, respectively. It remained active in the temperature range of 30-50°C and pH range of 4-11. The lytic curve of phage VP41s3 showed that the host bacteria did not grow until 11 h under phage treatment at MOI of 1000, indicating that the phage had good bacteriostatic ability. When it was added to shellfish contaminated with V. parahaemolyticus (15°C, 48 h), the number of bacteria in the experimental group was 2.11 log10 CFU/mL lower than that in the control group at 24 h. Furthermore, genomic characterization and phylogenetic analysis indicated that phage VP41s3 was a new member of the Podoviridae family. The genome contained 50 open reading frames (ORFs), in which the ORF19 (thymidine kinase) was an enzyme involved in the pyrimidine salvage pathway, which might lead to the accelerated DNA synthesis efficiency after phage entered into host cells. This study not only contributed to the improvement of phage database and the development of beneficial phage resources but also revealed the potential application of phage VP41s3 in food hygiene and safety.
Collapse
Affiliation(s)
- Wenting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Yiming Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| |
Collapse
|
5
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine,
University of California, Irvine, 811 Health Sciences Road,
CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of
Guelph, Guelph, 419 Gordon St, Guelph, ON N1G
2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| |
Collapse
|
6
|
Bisesi AT, Möbius W, Nadell CD, Hansen EG, Bowden SD, Harcombe WR. Bacteriophage specificity is impacted by interactions between bacteria. mSystems 2024; 9:e0117723. [PMID: 38376179 PMCID: PMC11237722 DOI: 10.1128/msystems.01177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.
Collapse
Affiliation(s)
- Ave T. Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Wolfram Möbius
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Eleanore G. Hansen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven D. Bowden
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
Oh M, Cevallos-Urena A, Kim BS. Bacteriophages PECP14, PECP20, and their endolysins as effective biocontrol agents for Escherichia coli O157:H7 and other foodborne pathogens. Int J Food Microbiol 2024; 409:110460. [PMID: 37925886 DOI: 10.1016/j.ijfoodmicro.2023.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Escherichia coli O157:H7 is a notorious foodborne pathogen known to cause severe illnesses such as hemolytic colitis and hemolytic uremic syndrome, with fresh produce consumption being implicated in recent outbreaks. The inappropriate use of antimicrobials to combat pathogens has led to the emergence and rapid dissemination of antimicrobial-resistant microorganisms including pathogenic E. coli, presenting a significant risk to humans. Here, we isolated two E. coli O157:H7 infecting bacteriophages, PECP14 and PECP20, from irrigation water and city sewage, respectively, as alternatives to antimicrobials. Both phages were stable for at least 16 h in a broad range of pH (pH 3-11) and temperature (4-40 °C) conditions and have a double-stranded DNA chromosome. PECP14 and PECP20, classified under the Epseptimavirus and Mosigvirus genera, respectively, exhibit specificity in targeting different host receptors, BtuB protein and lipopolysaccharide. Interestingly, these phages demonstrate the ability to infect not only E. coli O157:H7 but also other foodborne enteric pathogens like Shigella sonnei and S. flexneri. Upon mixing phages with their respective host bacteria, rapid adsorption (at least 68 % adsorption within 10 min) and substantial bacterial lysis were observed. The efficacy of phage treatment was further validated through the reduction of E. coli O157:H7 on radish sprouts. Moreover, purified endolysins, LysPECP14 and LysPECP20, derived from each phage exhibited remarkable bacteriolytic activity against E. coli O157:H7 cells pretreated with EDTA. In particular, the activity of LysPECP20 was also noticeable against Listeria monocytogenes and Bacillus cereus, suggesting its potential for broader antimicrobial applications in food industry. The combined results showed that the phages PECP14, PECP20, and their endolysins could be used for biological control of E. coli O157:H7 in various circumstances, from production, harvesting, and storage stages to processing and distribution steps of agricultural products.
Collapse
Affiliation(s)
- Minjin Oh
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ana Cevallos-Urena
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
8
|
Kim D, Kim M. Sensitive detection of viable Cronobacter sakazakii by bioluminescent reporter phage emitting stable signals with truncated holin. Food Res Int 2023; 174:113665. [PMID: 37981373 DOI: 10.1016/j.foodres.2023.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
As outbreaks of foodborne illness caused by the opportunistic pathogen Cronobacter sakazakii (Cs) continue to occur, particularly in infants consuming powdered infant formula (PIF), the need for sensitive, rapid, and easy-to-use detection of Cs from food and food processing environments is increasing. Here, we developed bioluminescent reporter bacteriophages for viable Cs-specific, substrate-free, rapid detection by introducing luciferase and its corresponding substrate-providing enzyme complex into the virulent phage ΦC01. Although the reporter phage ΦC01_lux, constructed by replacing non-essential genes for phage infectivity with a luxCDABE reporter operon, produced bioluminescence upon Cs infection, the emitted signal was quickly decayed due to the superior bacteriolytic activity of ΦC01. By truncating the membrane pore-forming protein holin and thus limiting its function, the bacterial lysis was delayed and the resultant engineered reporter phage ΦC01_lux_Δhol could produce a more stable and reliable bioluminescent signal. Accordingly, ΦC01_lux_Δhol was able to detect at least an average of 2 CFU/ml of Cs artificially contaminated PIF and Sunsik and food contact surface models within a total of 7 h of assays, including 5 h of pre-enrichment for Cs amplification. The sensitive, easy-to-use, and specific detection of live Cs with the developed reporter phage could be applied as a novel complementary tool for monitoring Cs in food and food-related environments for food safety and public health.
Collapse
Affiliation(s)
- Doyeon Kim
- Laboratory of Molecular Food Microbiology, Department of Food and Nutrition, Brain Korea 21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minsik Kim
- Laboratory of Molecular Food Microbiology, Department of Food and Nutrition, Brain Korea 21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Ioannou P, Baliou S, Samonis G. Bacteriophages in Infectious Diseases and Beyond-A Narrative Review. Antibiotics (Basel) 2023; 12:1012. [PMID: 37370331 PMCID: PMC10295561 DOI: 10.3390/antibiotics12061012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of antibiotics has revolutionized medicine and has changed medical practice, enabling successful fighting of infection. However, quickly after the start of the antibiotic era, therapeutics for infectious diseases started having limitations due to the development of antimicrobial resistance. Since the antibiotic pipeline has largely slowed down, with few new compounds being produced in the last decades and with most of them belonging to already-existing classes, the discovery of new ways to treat pathogens that are resistant to antibiotics is becoming an urgent need. To that end, bacteriophages (phages), which are already used in some countries in agriculture, aquaculture, food safety, and wastewater plant treatments, could be also used in clinical practice against bacterial pathogens. Their discovery one century ago was followed by some clinical studies that showed optimistic results that were limited, however, by some notable obstacles. However, the rise of antibiotics during the next decades left phage research in an inactive status. In the last decades, new studies on phages have shown encouraging results in animals. Hence, further studies in humans are needed to confirm their potential for effective and safe treatment in cases where there are few or no other viable therapeutic options. This study reviews the biology and applications of phages for medical and non-medical uses in a narrative manner.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
10
|
Gao D, Ji H, Li X, Ke X, Li X, Chen P, Qian P. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiol Res 2023; 273:127412. [PMID: 37243984 DOI: 10.1016/j.micres.2023.127412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Salmonella and pathogenic Escherichia coli are important foodborne pathogens. Phages are being recognized as potential antibacterial agents to control foodborne pathogens. In the current study, a polyvalent broad-spectrum phage, GSP044, was isolated from pig farm sewage. It can simultaneously lyse many different serotypes of Salmonella and E. coli, exhibiting a broad host range. Using S. Enteritidis SE006 as the host bacterium, phage GSP044 was further characterized. GSP044 has a short latent period (10 min), high stability at different temperatures and pH, and good tolerance to chloroform. Genome sequencing analysis revealed that GSP044 has a double-stranded DNA (dsDNA) genome consisting of 110,563 bp with G + C content of 39%, and phylogenetic analysis of the terminase large subunit confirmed that GSP044 belonged to the Demerecviridae family, Epseptimavirus genus. In addition, the genomic sequence did not contain any lysogenicity-related, virulence-related, or antibiotic resistance-related genes. Analysis of phage-targeted host receptors revealed that the outer membrane protein (OMP) BtuB was identified as a required receptor for phage infection of host bacteria. The initial application capability of phage GSP044 was assessed using S. Enteritidis SE006. Phage GSP044 could effectively reduce biofilm formation and degrade the mature biofilm in vitro. Moreover, GSP044 significantly decreased the viable counts of artificially contaminated S. Enteritidis in chicken feed and drinking water. In vivo tests, a mouse model of intestinal infection demonstrated that phage GSP044 was able to reduce the number of colonized S. Enteritidis in the intestine. These results suggest that phage GSP044 may be a promising candidate biologic agent for controlling Salmonella infections.
Collapse
Affiliation(s)
- Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Hongyue Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiquan Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Pin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
11
|
Choi J, Chang Y. Complete Genome Sequence of Bacteriophage EO1, Which Infects Both Escherichia coli O157:H7 and Shigella. Microbiol Resour Announc 2023:e0017723. [PMID: 37184395 DOI: 10.1128/mra.00177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The lytic bacteriophage EO1 has been newly isolated. This phage infects Escherichia coli O157:H7 and has a broad antibacterial spectrum, including against Shigella. The complete genome sequence of phage EO1 was determined; its full length is 166,941 bp, and it has a G+C content of 35.46%.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Jo D, Kim H, Lee Y, Kim J, Ryu S. Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant Escherichia coli. Front Microbiol 2023; 14:1194435. [PMID: 37250060 PMCID: PMC10213699 DOI: 10.3389/fmicb.2023.1194435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) Escherichia coli has noticeably increased in recent years worldwide and causes serious public health concerns. As alternatives to antibiotics, bacteriophages are regarded as promising antimicrobial agents. In this study, we isolated and characterized a novel jumbo phage EJP2 that specifically targets AMR E. coli strains. EJP2 belonged to the Myoviridae family with an icosahedral head (120.9 ± 2.9 nm) and a non-contractile tail (111.1 ± 0.6 nm), and contained 349,185 bp double-stranded DNA genome with 540 putative ORFs, suggesting that EJP2 could be classified as jumbo phage. The functions of genes identified in EJP2 genome were mainly related to nucleotide metabolism, DNA replication, and recombination. Comparative genomic analysis revealed that EJP2 was categorized in the group of Rak2-related virus and presented low sequence similarity at the nucleotide and amino acid level compared to other E. coli jumbo phages. EJP2 had a broad host spectrum against AMR E. coli as well as pathogenic E. coli and recognized LPS as a receptor for infection. Moreover, EJP2 treatment could remove over 80% of AMR E. coli biofilms on 96-well polystyrene, and exhibit synergistic antimicrobial activity with cefotaxime against AMR E. coli. These results suggest that jumbo phage EJP2 could be used as a potential biocontrol agent to combat the AMR issue in food processing and clinical environments.
Collapse
|
13
|
The application of adaptively evolved thermostable bacteriophage ΦYMFM0293 to control spp. in poultry skin. Food Res Int 2023; 167:112665. [PMID: 37087250 DOI: 10.1016/j.foodres.2023.112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Bacteriophages, bacterial viruses, are now being re-highlighted as one of the promising alternative antimicrobial agents to control bacterial pathogens in various fields, including the food industry. However, wild-type (WT) phages isolated from nature are vulnerable to external stresses such as heat, limiting the usability of phages in thermal processing. Here, we applied an adaptive laboratory evolution approach to improving the heat stability of newly isolated Salmonella-infecting lytic phage ΦYMFM0293 and examined its application in the poultry scalding process. After 15 cycles of exposure to sub-lethal temperature, the obtained adaptively evolved (AE) phages maintained approximately 3-log more infectious particles at 73 or 74 °C than the WT and non-heat-treated control phages. Missense mutations mainly concentrated in the genes related to the phage tail module were identified from the independently obtained heat-challenged phages, regardless of host Salmonella's heat-shock protein chaperone induction. These results demonstrated the necessity and sufficiency of the phage exposures to heat for thermal adaptation and suggested the involvement of the phage tail in heat stability. No significant physiological or morphological changes except the mutually offsetting phage replication parameters were observed in the AE phages. Accordingly, hot water supplemented with the AE phages significantly reduced the number of artificially contaminated Salmonella cells on chicken and duck skin in the mimicked scalding process. The AE strategy used here could be applied to other WT phages to improve their usability as more feasible antimicrobials for food safety.
Collapse
|
14
|
Lee JH, Oh M, Kim BS. Phage biocontrol of zoonotic food-borne pathogen Vibrio parahaemolyticus for seafood safety. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Vasquez I, Retamales J, Parra B, Machimbirike V, Robeson J, Santander J. Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. Viruses 2023; 15:v15020379. [PMID: 36851593 PMCID: PMC9961651 DOI: 10.3390/v15020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Julio Retamales
- Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Barbara Parra
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago 9140000, Chile
| | - Vimbai Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - James Robeson
- Laboratory of Microbiology, Institute of Biology, Pontifical Catholic University of Valparaíso, Valparaiso 2370000, Chile
- Correspondence: (J.R.); (J.S.)
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
- Correspondence: (J.R.); (J.S.)
| |
Collapse
|
16
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
17
|
Zhang HZ, Shu M, Yang WY, Pan H, Tang MX, Zhao YY, Zhong C, Wu GP. Isolation and characterization of a novel Salmonella bacteriophage JNwz02 capable of lysing Escherichia coli O157:H7 and its antibacterial application in foods. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Alexyuk P, Bogoyavlenskiy A, Alexyuk M, Akanova K, Moldakhanov Y, Berezin V. Isolation and Characterization of Lytic Bacteriophages Active against Clinical Strains of E. coli and Development of a Phage Antimicrobial Cocktail. Viruses 2022; 14:v14112381. [PMID: 36366479 PMCID: PMC9697832 DOI: 10.3390/v14112381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Pathogenic E. coli cause urinary tract, soft tissue and central nervous system infections, sepsis, etc. Lytic bacteriophages can be used to combat such infections. We investigated six lytic E. coli bacteriophages isolated from wastewater. Transmission electron microscopy and whole genome sequencing showed that the isolated bacteriophages are tailed phages of the Caudoviricetes class. One-step growth curves revealed that their latent period of reproduction is 20-30 min, and the average value of the burst size is 117-155. During co-cultivation with various E. coli strains, the phages completely suppressed bacterial host culture growth within the first 4 h at MOIs 10-7 to 10-3. The host range lysed by each bacteriophage varied from six to two bacterial strains out of nine used in the study. The cocktail formed from the isolated bacteriophages possessed the ability to completely suppress the growth of all the E. coli strains used in the study within 6 h and maintain its lytic activity for 8 months of storage. All the isolated bacteriophages may be useful in fighting pathogenic E. coli strains and in the development of phage cocktails with a long storage period and high efficiency in the treatment of bacterial infections.
Collapse
|
19
|
Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. carotovorum and Its Effects on Pectobacterium Virulence. Appl Environ Microbiol 2022; 88:e0076122. [PMID: 36165651 PMCID: PMC9552609 DOI: 10.1128/aem.00761-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.
Collapse
|
20
|
Liu W, Han L, Song P, Sun H, Zhang C, Zou L, Cui J, Pan Q, Ren H. Complete genome sequencing of a Tequintavirus bacteriophage with a broad host range against Salmonella Abortus equi isolates from donkeys. Front Microbiol 2022; 13:938616. [PMID: 36051756 PMCID: PMC9424859 DOI: 10.3389/fmicb.2022.938616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica subspecies enterica serovar abortus equi (S. Abortus equi) is the most common cause of abortion in mares. It has recently been found to cause abortion in donkeys more frequently in China. A novel virulent bacteriophage vB_SabS_Sds2 (hereafter designated as Sds2) was isolated from the feces of donkeys using a S. Abortus equi strain as a host. Phage Sds2 had an isometric polyhedral head and an uncontracted long tail, belonging to the Tequintavirus, Markadamsvirinae, Demerecviridae, Caudovirales. The genome of phage Sds2 was 114,770 bp, with a GC content of 40.26%. The genome contained 160 open reading frames (ORFs), and no ORFs were associated with pathogenicity, drug resistance, or lysogenization by sequence analysis. Both genome annotation and phylogenetic analysis indicated that phage Sds2 was highly similar to T5-like bacteriophages. Phage Sds2 could lyse 100% (30/30) of S. Abortus equi strains, 25.3% (24/95) of other serotypes of Salmonella strains, and 27.6% (8/29) of Escherichia coli strains using the double-layer agar plate method. The in vitro test showed that phage Sds2 had high bactericidal activity against S. Abortus equi at a wide range of MOIs. The in vivo test indicated that phage Sds2 had an inhibitory effect on abortion in mice challenged with S. Abortus equi. In general, phage Sds2 is a novel lytic phage with a wide host range and has the potential to prevent abortion caused by S. Abortus equi.
Collapse
Affiliation(s)
- Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Letian Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Peng Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaqi Cui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, Shandong, China
- *Correspondence: Qiang Pan,
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Huiying Ren,
| |
Collapse
|
21
|
Isolation, characterization, and comparative genomic analysis of vB_PlaM_Pd22F, a new bacteriophage of the family Myoviridae. Arch Virol 2022; 167:1269-1284. [PMID: 35366103 DOI: 10.1007/s00705-022-05429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The use of phage and phage-based products for the prevention and treatment of bee disease is one of the promising natural alternatives to chemical or antibiotic treatments in beekeeping. A novel lysogenic bacteriophage, phage Pd22F (vB_PlaM_Pd22F), was isolated from Paenibacillus dendritiformis by the prophage induction method. This phage, which is capable of infecting Paenibacillus larvae and P. dendritiformis strains, was characterized by microbiological and comparative genomic analysis. Transmission electron microscopy images showed that phage Pd22F had the morphology of a myovirus. Whole-genome sequencing results showed that vB_Pla M_Pd22F has an 86,388-bp linear dsDNA genome with a GC content of 50.68%. This genome has 124 coding sequences (CDSs), 53% of which encode functionally unknown proteins and 57 of which encode proteins that show similarity to known proteins. In addition, one tRNA gene was found. The phage Pd22F genome does not contain any antimicrobial resistance genes. The similarity between the genome sequence of phage Pd22F and the whole genome sequences of other Paenibacillus phages available in the NCBI Virus Database was found to be below 50% (42%), indicating that phage Pd22F differs greatly from previously characterized phages at the DNA level. The results of comparative genomics and phylogenetic analysis revealed that Pd22F is a new phage belonging to the family Myoviridae, order Caudovirales. This is the first report of genomic and morphological characterization of a Paenibacillus dendritiformis prophage.
Collapse
|
22
|
Yamaki S, Yamazaki K, Kawai Y. Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. Int J Food Microbiol 2022; 372:109680. [DOI: 10.1016/j.ijfoodmicro.2022.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
23
|
Isolation and characterization of Escherichia coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Res 2022; 315:198754. [PMID: 35346752 DOI: 10.1016/j.virusres.2022.198754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022]
Abstract
Escherichia coli O157: H7 is known as a high-risk food-born pathogen, and its removal is vital for maintaining food safety. The increasing trend of food-borne diseases caused by this bacterium and other pathogens indicates the low efficiency of the methods to remove pathogens from foodstuffs. One of the new and effective methods is to use of a bio-control agent called bacteriophage, which has shown good function in eliminating and reducing pathogens. In this study, a novel bacteriophage was isolated and identified from the slaughterhouse wastewater to control E. coli O157: H7. This bacteriophage belonged to the Myoviridae family. Two bacterial genera including E. coli and Salmonella, were allocated to determine the bacteriophage host range; the result showed that the anti- Salmonella effect of phage was low. The phage was stable at high temperature (80°C) and caused an acceptable reduction in the E. coli O157: H7 (4.18 log CFU / mL for 10 hours). The isolated bacteriophage was corroborated to be completely safe based on the whole genome sequencing and lack of any virulence factor from the host bacteria. Considering the characteristics of this phage and its function in vitro, this bacteriophage may be used as an effective bio-control agent in foods with the possible E. coli O157: H7 -induced contamination.
Collapse
|
24
|
Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food Res Int 2021; 150:110779. [PMID: 34865794 DOI: 10.1016/j.foodres.2021.110779] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
The opportunistic pathogen V. parahaemolyticus is a major causative agent for seafood-borne illness worldwide. It also causes severe vibriosis in aquaculture animals, affecting seafood production with huge economic loss. These issues are getting worse due to the current global warming in oceans, spread of antibiotic resistance, and changes in consumer preference toward ready-to-eat (RTE) food items including seafood. To answer the urgent need for sustainable biocontrol agents against V. parahaemolyticus, we isolated and characterized a novel lytic bacteriophage VPT02 from market oyster. VPT02 lysed antibiotic resistant V. parahaemolyticus strains including FORC_023. Moreover, it exhibited notable properties as a biocontrol agent suitable for seafood-related settings, like short eclipse/latent periods, high burst size, broad thermal and pH stability, and no toxin/antibiotic resistance genes in the genome. Further comparative genomic analysis with the previously reported homologue phage pVp-1 revealed that VPT02 additionally possesses genes related to the nucleotide scavenging pathway, presumably enabling the phage to propagate quickly. Consistent with its strong in vitro bacteriolytic activity, treatment of only a small quantity of VPT02 (multiplicity of infection of 10) significantly increased the survival rate of V. parahaemolyticus-infected brine shrimp (from 16.7% to 46.7%). When applied to RTE raw fish flesh slices, the same quantity of VPT02 achieved up to 3.9 log reduction of spiked V. parahaemolyticus compared with the phage untreated control. Taken together, these results suggest that VPT02 may be a sustainable anti-V. parahaemolyticus agent useful in seafood-related settings including for RTE items.
Collapse
|
25
|
Improved bactericidal efficacy and thermostability of Staphylococcus aureus-specific bacteriophage SA3821 by repeated sodium pyrophosphate challenges. Sci Rep 2021; 11:22951. [PMID: 34824363 PMCID: PMC8616913 DOI: 10.1038/s41598-021-02446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
As antibiotic resistance is being a threat to public health worldwide, bacteriophages are re-highlighted as alternative antimicrobials to fight with pathogens. Various wild-type phages isolated from diverse sources have been tested, but potential mutant phages generated by genome engineering or random mutagenesis are drawing increasing attention. Here, we applied a chelating agent, sodium pyrophosphate, to the staphylococcal temperate Siphoviridae phage SA3821 to introduce random mutations. Through 30 sequential sodium pyrophosphate challenges and random selections, the suspected mutant phage SA3821M was isolated. SA3821M maintained an intact virion morphology, but exhibited better bactericidal activity against its host Staphylococcous aureus CCARM 3821 for up to 17 h and thermostability than its parent, SA3821. Sodium pyrophosphate-mediated mutations in SA3821M were absent in lysogenic development genes but concentrated (83.9%) in genes related to the phage tail, particularly in the tail tape measure protein, indicating that changes in the tail module might have been responsible for the altered traits. This intentional random mutagenesis through controlled treatments with sodium pyrophosphate could be applied to other phages as a simple but potent method to improve their traits as alternative antimicrobials.
Collapse
|
26
|
Liu Y, Liu M, Hu R, Bai J, He X, Jin Y. Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae. Viruses 2021; 13:v13112275. [PMID: 34835081 PMCID: PMC8622976 DOI: 10.3390/v13112275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bacteriophages are viruses that specifically infect target bacteria. Recently, bacteriophages have been considered potential biological control agents for bacterial pathogens due to their host specificity. Pseudomonas syringae pv. actinidiae (Psa) is a reemerging pathogen that causes bacterial canker of kiwifruit (Actinidia sp.). The economic impact of this pest and the development of resistance to antibiotics and copper sprays in Psa and other pathovars have led to investigation of alternative management strategies. Phage therapy may be a useful alternative to conventional treatments for controlling Psa infections. Although the efficacy of bacteriophage φ6 was evaluated for the control of Psa, the characteristics of other DNA bacteriophages infecting Psa remain unclear. In this study, the PHB09 lytic bacteriophage specific to Psa was isolated from kiwifruit orchard soil. Extensive host range testing using Psa isolated from kiwifruit orchards and other Pseudomonas strains showed PHB09 has a narrow host range. It remained stable over a wide range of temperatures (4-50 °C) and pH values (pH 3-11) and maintained stability for 50 min under ultraviolet irradiation. Complete genome sequence analysis indicated PHB09 might belong to a new myovirus genus in Caudoviricetes. Its genome contains a total of 94,844 bp and 186 predicted genes associated with phage structure, packaging, host lysis, DNA manipulation, transcription, and additional functions. The isolation and identification of PHB09 enrich the research on Pseudomonas phages and provide a promising biocontrol agent against kiwifruit bacterial canker.
Collapse
|
27
|
BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021; 13:v13112171. [PMID: 34834977 PMCID: PMC8624392 DOI: 10.3390/v13112171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Yersinia enterocolitica is a food-borne Gram-negative pathogen responsible for several gastrointestinal disorders. Host-specific lytic bacteriophages have been increasingly used recently as an alternative or complementary treatment to combat bacterial infections, especially when antibiotics fail. Here, we describe the proteogenomic characterization and host receptor identification of the siphovirus vB_YenS_ϕR2-01 (in short, ϕR2-01) that infects strains of several Yersinia enterocolitica serotypes. The ϕR2-01 genome contains 154 predicted genes, 117 of which encode products that are homologous to those of Escherichia bacteriophage T5. The ϕR2-01 and T5 genomes are largely syntenic, with the major differences residing in areas encoding hypothetical ϕR2-01 proteins. Label-free mass-spectrometry-based proteomics confirmed the expression of 90 of the ϕR2-01 genes, with 88 of these being either phage particle structural or phage-particle-associated proteins. In vitro transposon-based host mutagenesis and ϕR2-01 adsorption experiments identified the outer membrane vitamin B12 receptor BtuB as the host receptor. This study provides a proteogenomic characterization of a T5-type bacteriophage and identifies specific Y. enterocolitica strains sensitive to infection with possible future applications of ϕR2-01 as a food biocontrol or phage therapy agent.
Collapse
|
28
|
Bozdeveci A, Akpınar R, Karaoğlu ŞA. Isolation, characterization, and comparative genomic analysis of vB_PlaP_SV21, new bacteriophage of Paenibacillus larvae. Virus Res 2021; 305:198571. [PMID: 34555441 DOI: 10.1016/j.virusres.2021.198571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Paenibacillus larvae cause an American foulbrood disease (AFB) that is responsible for the extinction of honeybee colonies and is a honeybee bacterial disease that has to be obligatory notified worldwide. Recently, bacteriophage studies targeting Paenibacillus larvae have emerged as a promising alternative treatment method. The inability of bacteria to create resistance against bacteriophages makes this method advantageous. As a consequence, this study was conducted to describe the genome and biological characteristics of a novel phage capable of lysing Paenibacillus larvae samples isolated from honeybee larva samples in Turkey. The Paenibacillus phage SV21 (vB_PlaP_SV21) was isolated by inducing Paenibacillus larvae strain SV21 with Mitomycin-C. Whole-genome sequencing, comparative genomics, and phylogenetic analysis of vB_PlaP_SV21 were performed. Transmission electron microscopy images showed that vB_PlaP_SV21 phage was a Podovirus morphology. The vB_PlaP_SV21 phage specific for Paenibacillus larvae was determined to belong to the Podoviridae family. Host range and specificity, burst size, lytic activity, and morphological characteristics of the phage were determined. Bioinformatic analysis of the Paenibacillus phage SV21 showed 77 coding sequences in its linear 44,949 bp dsDNA genome with a GC content of 39.33%. In this study, we analysed the genomes of all of the currently sequenced P. larvae phage genomes and classified them into five clusters and a singleton. According to molecular, morphological, and bioinformatics results, ıt was observed that API480 (podovirus), which was reported as a singleton in previous studies and public databases, and Paenibacillus phage SV21 phage could form a new cluster together.
Collapse
Affiliation(s)
- Arif Bozdeveci
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Rahşan Akpınar
- Veterınary Control Instıtute, Bee Diseases, Samsun, Turkey
| | - Şengül Alpay Karaoğlu
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
29
|
Kim J, Park H, Ryu S, Jeon B. Inhibition of Antimicrobial-Resistant Escherichia coli Using a Broad Host Range Phage Cocktail Targeting Various Bacterial Phylogenetic Groups. Front Microbiol 2021; 12:699630. [PMID: 34512575 PMCID: PMC8425383 DOI: 10.3389/fmicb.2021.699630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial-resistant (AMR) commensal Escherichia coli is a major reservoir that disseminates antimicrobial resistance to humans through the consumption of contaminated foods, such as retail poultry products. This study aimed to control AMR E. coli on retail chicken using a broad host range phage cocktail. Five phages (JEP1, 4, 6, 7, and 8) were isolated and used to construct a phage cocktail after testing infectivity on 67 AMR E. coli strains isolated from retail chicken. Transmission electron microscopic analysis revealed that the five phages belong to the Myoviridae family. The phage genomes had various sizes ranging from 39 to 170 kb and did not possess any genes associated with antimicrobial resistance and virulence. Interestingly, each phage exhibited different levels of infection against AMR E. coli strains depending on the bacterial phylogenetic group. A phage cocktail consisting of the five phages was able to infect AMR E. coli in various phylogenetic groups and inhibited 91.0% (61/67) of AMR E. coli strains used in this study. Furthermore, the phage cocktail was effective in inhibiting E. coli on chicken at refrigeration temperatures. The treatment of artificially contaminated raw chicken skin with the phage cocktail rapidly reduced the viable counts of AMR E. coli by approximately 3 log units within 3 h, and the reduction was maintained throughout the experiment without developing resistance to phage infection. These results suggest that phages can be used as a biocontrol agent to inhibit AMR commensal E. coli on raw chicken.
Collapse
Affiliation(s)
- Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Haejoon Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Byeonghwa Jeon
- Divison of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Isolation, characterization and comparison of lytic Epseptimavirus phages targeting Salmonella. Food Res Int 2021; 147:110480. [PMID: 34399476 DOI: 10.1016/j.foodres.2021.110480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
This study describes the characterization and genomic analysis of six lytic Salmonella phages. To examine the feasibility of using these phages as biocontrol agents, we analyzed their genomes and compared them to those of similar phages. These six phages belong to genus Epseptimavirus, family Demerecviridae. We identified the genes of these six phages by comparing their genomes with those of three type phages in subfamily Markadamsvirinae. All six phages examined in this study were obligately lytic and did not carry undesirable genes. Two phages (vB_SalS_1-23 and vB_SalS_3-29) were selected as the representative phages for general characterization and physiological tests. The biocontrol efficacy of the representative phages was determined by comparing the viable counts of recovered host Salmonella ser. Newlands ZC-S1 from treatment and phage-free control samples. The biocontrol experiment showed that the representative phages were able to reduce the counts of ZC-S1 to below 2 log10 CFU/mL (~4.3 log10 CFU/mL reduction) at 3 h post-infection at 37 °C. Furthermore, we investigated the application of these two phages in the control of ZC-S1 contamination in chicken products and on eggshells. When applied to the surfaces of the samples, the phage cocktail (MOI = 100) reduced the ZC-S1 count to below 2 log10 CFU/mL on chicken skin and to undetectable levels (1 log10 CFU/mL) in chicken breast meat, ground chicken meat and eggshell samples (p < 0.01). Compared to the initial experiment, the phage cocktail reduced the ZC-S1 count by 2-4.08 log10 CFU/mL when applied at an MOI = 1 (except in the ground chicken meat group) and by 4.48-5.67 log10 CFU/mL at an MOI = 100 after 7 h. In conclusion, these two phages with lytic effects show a high potential to inhibit the growth of Salmonella contaminants and can be used as candidate biocontrol agents.
Collapse
|
31
|
Makalatia K, Kakabadze E, Bakuradze N, Grdzelishvili N, Stamp B, Herman E, Tapinos A, Coffey A, Lee D, Papadopoulos NG, Robertson DL, Chanishvili N, Megremis S. Investigation of Salmonella Phage-Bacteria Infection Profiles: Network Structure Reveals a Gradient of Target-Range from Generalist to Specialist Phage Clones in Nested Subsets. Viruses 2021; 13:1261. [PMID: 34203492 PMCID: PMC8310288 DOI: 10.3390/v13071261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages that lyse Salmonella enterica are potential tools to target and control Salmonella infections. Investigating the host range of Salmonella phages is a key to understand their impact on bacterial ecology, coevolution and inform their use in intervention strategies. Virus-host infection networks have been used to characterize the "predator-prey" interactions between phages and bacteria and provide insights into host range and specificity. Here, we characterize the target-range and infection profiles of 13 Salmonella phage clones against a diverse set of 141 Salmonella strains. The environmental source and taxonomy contributed to the observed infection profiles, and genetically proximal phages shared similar infection profiles. Using in vitro infection data, we analyzed the structure of the Salmonella phage-bacteria infection network. The network has a non-random nested organization and weak modularity suggesting a gradient of target-range from generalist to specialist species with nested subsets, which are also observed within and across the different phage infection profile groups. Our results have implications for our understanding of the coevolutionary mechanisms shaping the ecological interactions between Salmonella phages and their bacterial hosts and can inform strategies for targeting Salmonella enterica with specific phage preparations.
Collapse
Affiliation(s)
- Khatuna Makalatia
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| | - Elene Kakabadze
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Nata Bakuradze
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Nino Grdzelishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Ben Stamp
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (B.S.); (D.L.R.)
| | - Ezra Herman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
| | - Avraam Tapinos
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M13 9GB, UK;
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (A.C.); (D.L.)
| | - David Lee
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (A.C.); (D.L.)
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester M13 9PL, UK;
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (B.S.); (D.L.R.)
| | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M13 9GB, UK;
| |
Collapse
|
32
|
Park H, Kim J, Kim M, Park Y, Ryu S. Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention. Food Res Int 2021; 145:110415. [PMID: 34112418 DOI: 10.1016/j.foodres.2021.110415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Heat treatment is an effective method for ensuring food safety and quality by controlling microbial contamination. However, food poisoning outbreaks have continuously occurred in heat-treated products due to improper thermal treatment and/or post-contamination of foodborne pathogens. This study proposes a novel strategy combining thermostable bacteriophages with thermal processing of food production plants to control foodborne pathogens and even bacterial contamination. Typically, bacteriophages' susceptibility to heat is a major challenge to their application with thermal processing, we isolated thermostable bacteriophages by a modified isolation method of applying heat to samples and characterized the thermostable bacteriophages. Furthermore, we optimized the bacteriophage cocktail components to expand the controllable host range and reduce the risk of bacteriophage resistance development. Finally, we verified this antibacterial strategy by combining heat treatment with thermostable bacteriophages in model systems, including milk and chicken breast. After the phage cocktail and heat treatment, we artificially contaminated the food products to mimic the post-contamination event. Surprisingly, the remaining bacteriophages that withstood heat treatment significantly reduced the number of post-contaminated Salmonella. Altogether, thermostable phages could be applied as complementary tools to control post-contamination after thermal processing of food products.
Collapse
Affiliation(s)
- Haejoon Park
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yerin Park
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
The Development of Bacteriophage Resistance in Vibrio alginolyticus Depends on a Complex Metabolic Adaptation Strategy. Viruses 2021; 13:v13040656. [PMID: 33920240 PMCID: PMC8069663 DOI: 10.3390/v13040656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Lytic bacteriophages have been well documented to play a pivotal role in microbial ecology due to their complex interactions with bacterial species, especially in aquatic habitats. Although the use of phages as antimicrobial agents, known as phage therapy, in the aquatic environment has been increasing, recent research has revealed drawbacks due to the development of phage-resistant strains among Gram-negative species. Acquired phage resistance in marine Vibrios has been proven to be a very complicated process utilizing biochemical, metabolic, and molecular adaptation strategies. The results of our multi-omics approach, incorporating transcriptome and metabolome analyses of Vibrio alginolyticus phage-resistant strains, corroborate this prospect. Our results provide insights into phage-tolerant strains diminishing the expression of phage receptors ompF, lamB, and btuB. The same pattern was observed for genes encoding natural nutrient channels, such as rbsA, ptsG, tryP, livH, lysE, and hisp, meaning that the cell needs to readjust its biochemistry to achieve phage resistance. The results showed reprogramming of bacterial metabolism by transcript regulations in key-metabolic pathways, such as the tricarboxylic acid cycle (TCA) and lysine biosynthesis, as well as the content of intracellular metabolites belonging to processes that could also significantly affect the cell physiology. Finally, SNP analysis in resistant strains revealed no evidence of amino acid alterations in the studied putative bacterial phage receptors, but several SNPs were detected in genes involved in transcriptional regulation. This phenomenon appears to be a phage-specific, fine-tuned metabolic engineering, imposed by the different phage genera the bacteria have interacted with, updating the role of lytic phages in microbial marine ecology.
Collapse
|
34
|
Korf IHE, Kittler S, Bierbrodt A, Mengden R, Rohde C, Rohde M, Kroj A, Lehnherr T, Fruth A, Flieger A, Lehnherr H, Wittmann J. In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli. Viruses 2020; 12:v12121470. [PMID: 33352791 PMCID: PMC7768485 DOI: 10.3390/v12121470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
Collapse
Affiliation(s)
- Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
- Correspondence:
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | | | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Andrea Kroj
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Angelika Fruth
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Antje Flieger
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| |
Collapse
|
35
|
Makalatia K, Kakabadze E, Wagemans J, Grdzelishvili N, Bakuradze N, Natroshvili G, Macharashvili N, Sedrakyan A, Arakelova K, Ktsoyan Z, Zakharyan M, Gevorgyan Z, Mnatsakanyan A, Tishkova F, Lood C, Vandenheuvel D, Lavigne R, Pirnay JP, De Vos D, Chanishvili N, Merabishvili M. Characterization of Salmonella Isolates from Various Geographical Regions of the Caucasus and Their Susceptibility to Bacteriophages. Viruses 2020; 12:v12121418. [PMID: 33321823 PMCID: PMC7764154 DOI: 10.3390/v12121418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Non-typhoidal Salmonella present a major threat to animal and human health as food-borne infectious agents. We characterized 91 bacterial isolates from Armenia and Georgia in detail, using a suite of assays including conventional microbiological methods, determining antimicrobial susceptibility profiles, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, serotyping (using the White-Kauffmann-Le Minor scheme) and genotyping (repetitive element sequence-based PCR (rep-PCR)). No less than 61.5% of the isolates were shown to be multidrug-resistant. A new antimicrobial treatment strategy is urgently needed. Phage therapy, the therapeutic use of (bacterio-) phages, the bacterial viruses, to treat bacterial infections, is increasingly put forward as an additional tool for combatting antibiotic resistant infections. Therefore, we used this representative set of well-characterized Salmonella isolates to analyze the therapeutic potential of eleven single phages and selected phage cocktails from the bacteriophage collection of the Eliava Institute (Georgia). All isolates were shown to be susceptible to at least one of the tested phage clones or their combinations. In addition, genome sequencing of these phages revealed them as members of existing phage genera (Felixounavirus, Seunavirus, Viunavirus and Tequintavirus) and did not show genome-based counter indications towards their applicability against non-typhoidal Salmonella in a phage therapy or in an agro-food setting.
Collapse
Affiliation(s)
- Khatuna Makalatia
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
- Correspondence:
| | - Elene Kakabadze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium; (J.W.); (C.L.); (R.L.)
| | - Nino Grdzelishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
- Department of Natural Sciences and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Nata Bakuradze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Gulnara Natroshvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
| | - Nino Macharashvili
- Bacteriology Laboratory, Infectious Diseases and AIDS Center, Tbilisi 0160, Georgia;
| | - Anahit Sedrakyan
- Laboratory of Molecular Genetics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia; (A.S.); (K.A.); (Z.K.); (M.Z.)
| | - Karine Arakelova
- Laboratory of Molecular Genetics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia; (A.S.); (K.A.); (Z.K.); (M.Z.)
| | - Zhanna Ktsoyan
- Laboratory of Molecular Genetics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia; (A.S.); (K.A.); (Z.K.); (M.Z.)
| | - Magdalina Zakharyan
- Laboratory of Molecular Genetics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia; (A.S.); (K.A.); (Z.K.); (M.Z.)
| | - Zaruhi Gevorgyan
- Department of Clinical Laboratory Diagnostics, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia;
| | - Armine Mnatsakanyan
- Microbiological Laboratory, Nork Infectious Clinical Hospital, Ministry of Health of the Republic of Armenia, Yerevan 0047, Armenia;
| | - Farida Tishkova
- Virology Laboratory, Tajik Research Institute of Preventive Medicine, 734025 Dushanbe, Tajikistan;
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium; (J.W.); (C.L.); (R.L.)
- Laboratory of Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, 3000 Leuven, Belgium
| | - Dieter Vandenheuvel
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium; (J.W.); (C.L.); (R.L.)
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (J.-P.P.); (D.D.V.)
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (J.-P.P.); (D.D.V.)
| | - Nina Chanishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
| | - Maia Merabishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (E.K.); (N.G.); (N.B.); (G.N.); (N.C.); (M.M.)
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (J.-P.P.); (D.D.V.)
| |
Collapse
|
36
|
Pessione E. The Russian Doll Model: How Bacteria Shape Successful and Sustainable Inter-Kingdom Relationships. Front Microbiol 2020; 11:573759. [PMID: 33193180 PMCID: PMC7606975 DOI: 10.3389/fmicb.2020.573759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Successful inter-kingdom relationships are based upon a dynamic balance between defense and cooperation. A certain degree of competition is necessary to guarantee life spread and development. On the other hand, cooperation is a powerful tool to ensure a long lasting adaptation to changing environmental conditions and to support evolution to a higher level of complexity. Bacteria can interact with their (true or potential) parasites (i.e., phages) and with their multicellular hosts. In these model interactions, bacteria learnt how to cope with their inner and outer host, transforming dangerous signals into opportunities and modulating responses in order to achieve an agreement that is beneficial for the overall participants, thus giving rise to a more complex "organism" or ecosystem. In this review, particular attention will be addressed to underline the minimal energy expenditure required for these successful interactions [e.g., moonlighting proteins, post-translational modifications (PTMs), and multitasking signals] and the systemic vision of these processes and ways of life in which the system proves to be more than the sum of the single components. Using an inside-out perspective, I will examine the possibility of multilevel interactions, in which viruses help bacteria to cope with the animal host and bacteria support the human immune system to counteract viral infection in a circular vision. In this sophisticated network, bacteria represent the precious link that insures system stability with relative low energy expenditure.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, School of Nature Sciences, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
37
|
Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol 2020; 68:115-123. [PMID: 33202354 DOI: 10.1016/j.copbio.2020.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Phage therapy, the clinical use of viruses that kill bacteria, is a promising strategy in the fight against antimicrobial resistance. Before administration, phages undergo a careful examination of their safety and interactions with target bacteria. This characterization seldom includes identifying the receptor on the bacterial surface involved in phage adsorption. In this perspective article, we propose that understanding the function and location of these phage receptors can open the door to improved and innovative ways to use phage therapy. With knowledge of phage receptors, we can design intelligent phage cocktails, discover new phage-derived antimicrobials, and steer the evolution of phage-resistance towards clinically exploitable phenotypes. In an effort to jump-start this initiative, we recommend priority groups of hosts and phages. Finally, we review modern approaches for the identification of phage receptors, including molecular platforms for high-throughput mutagenesis, synthetic biology, and machine learning.
Collapse
|
38
|
Kim HJ, Kim YT, Kim HB, Choi SH, Lee JH. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiol 2020; 94:103630. [PMID: 33279062 DOI: 10.1016/j.fm.2020.103630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is a major food-borne pathogen that causes septicemia and cellulitis with a mortality rate of >50%. However, there are no efficient natural food preservatives or biocontrol agents to control V. vulnificus in seafood. In this study, we isolated and characterized a novel bacteriophage VVP001. Host range and transmission electron microscopy morphology observations revealed that VVP001 belongs to the family Siphoviridae and specifically infects V. vulnificus. Phage stability tests showed that VVP001 is stable at a broad temperature range of -20 °C to 65 °C and a pH range from 3 to 11, which are conditions for food applications (processing, distribution, and storage). In vitro challenge assays revealed that VVP001 inhibited V. vulnificus MO6-24/O (a clinical isolate) growth up to a 3.87 log reduction. In addition, complete genome analysis revealed that the 76 kb VVP001 contains 102 open reading frames with 49.64% G + C content and no gene encoding toxins or other virulence factors, which is essential for food applications. Application of VVP001 to fresh abalone samples contaminated with V. vulnificus demonstrated its ability to inhibit V. vulnificus growth, and an in vivo mouse survival test showed that VVP001 protects mice against high mortality (survival rate >70% at a multiplicity of infection of 1000 for up to 7 days). Therefore, the bacteriophage VVP001 can be used as a good natural food preservative and biocontrol agent for food applications.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Potential for Bacteriophage Cocktail to Complement Commercial Sanitizer Use on Produce Against Escherichia coli O157:H7. Microorganisms 2020; 8:microorganisms8091316. [PMID: 32872459 PMCID: PMC7563534 DOI: 10.3390/microorganisms8091316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023] Open
Abstract
The increasing concern for food safety has created a need to evaluate novel techniques to eliminate or control pathogens, resulting in safe food. In this study, four bacteriophages of bovine origin, specific to E. coli O157:H7, were successfully isolated and characterized. A microplate reader assay demonstrated the efficacy of the bacteriophage (phage) cocktail against E. coli O157:H7 resulting in a significant reduction (p < 0.01) in the target pathogen population. The phage cocktail demonstrated significant efficacy (p < 0.05) against E. coli O157:H7 in the presence of the most utilized sanitizers in the United States, namely 100 parts per million (ppm) free chlorine and 100-ppm peroxyacetic acid. Survival in the sanitizer concentrations demonstrates the potential use of phage cocktail and sanitizer synergistically to enhance sanitation operations in the food industry.
Collapse
|
40
|
Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun 2020; 88:e00926-19. [PMID: 32094257 PMCID: PMC7309606 DOI: 10.1128/iai.00926-19] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
41
|
Lee C, Choi IY, Park DH, Park MK. Isolation and characterization of a novel Escherichia coli O157:H7-specific phage as a biocontrol agent. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:189-199. [PMID: 32399231 PMCID: PMC7203308 DOI: 10.1007/s40201-020-00452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/20/2020] [Indexed: 05/05/2023]
Abstract
PURPOSE Escherichia coli O157:H7 is one of the major foodborne pathogens of global public concern. Bacteriophages (phages) have emerged as a promising alternative to antibiotics for controlling pathogenic bacteria. Here, a lytic E. coli O157:H7-specific phage (KFS-EC) was isolated, identified, and characterized to evaluate its potential as a biocontrol agent for E. coli O157:H7. METHODS KFS-EC was isolated from slaughterhouse in Korea. Morphological analysis, genomic analysis and several physiological tests were performed to identify and characterize the KFS-EC. RESULTS A specificity test indicated KFS-EC was strictly specific to E. coli O157:H7 strains among 60 bacterial strains tested. Morphological and phylogenetic analyses confirmed that KFS-EC belongs to the Rb49virus genus, Tevenvirinae subfamily, and the Myoviridae family of phages. KFS-EC genome consists of 164,725 bp and a total of 270 coding sequence features, of which 114 open reading frames (ORFs) were identified as phage functional genes. KFS-EC does not contain genes encoding lysogenic property and pathogenicity, which ensure its safe application. KFS-EC was relatively stable (~1 log decrease) under stressed conditions such as temperatures (20 °C-50 °C), pHs (3-11), organic solvents (ethanol and chloroform), and biocides (0.1% citric acid, 1% citric acid, and 0.1% peracetic acid). KFS-EC was able to inhibit E. coli O157:H7 efficiently at a multiplicity of infection (MOI) of 0.01 for 8 h with greater inhibitory effect and durability and was stable at 4 °C and 22 °C over a 12-week storage period. CONCLUSIONS Our results suggest that KFS-EC could be used as a biocontrol agent to E. coli O157:H7.
Collapse
Affiliation(s)
- Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - In Young Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Do Hyeon Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Food and Bio-industry Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
42
|
Niu YD, Liu H, Johnson RP, McAllister TA, Stanford K. Effect of a bacteriophage T5virus on growth of Shiga toxigenic Escherichia coli and Salmonella strains in individual and mixed cultures. Virol J 2020; 17:3. [PMID: 31910855 PMCID: PMC6947960 DOI: 10.1186/s12985-019-1269-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/10/2019] [Indexed: 02/03/2023] Open
Abstract
A previously isolated a bacteriophage, vB_EcoS_AKFV33 of T5virus, demonstrated great potential in biocontrol of Shiga toxigenic Escherichia coli (STEC) O157. This study further evaluated its potential as a biocontrol agent in broth culture against other important non-O157 serogroups of STEC and Salmonella. AKFV33 was capable of lysing isolates of STEC serogroups O26 (n = 1), O145 (n = 1) and Salmonella enterica serovars (n = 6). In a broth culture microplate system, efficacy of AKFV33 for killing STEC O26:H11, O145:NM and Salmonella was improved (P < 0.05) at a lower multiplicity of infection and sampling time (6–10 h), when STEC O157:H7 was also included in the culture. This phage was able to simultaneously reduce numbers of STEC and Salmonella in mixtures with enhanced activity (P < 0.05) against O157:H7 and O26:H11, offering great promise for control of multiple zoonotic pathogens at both pre and post-harvest.
Collapse
Affiliation(s)
- Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Hui Liu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, N1G 3W4, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Agriculture Centre, Lethbridge, AB, T1J 4V6, Canada
| |
Collapse
|
43
|
Duc HM, Son HM, Yi HPS, Sato J, Ngan PH, Masuda Y, Honjoh KI, Miyamoto T. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Res Int 2020; 131:108977. [PMID: 32247506 DOI: 10.1016/j.foodres.2020.108977] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
Salmonella Enteritidis, Salmonella Typhimurium, and Escherichia coli O157:H7 are the most important foodborne pathogens, causing serious food poisoning outbreaks worldwide. Bacteriophages are increasingly considered as novel antibacterial agents to control foodborne pathogens. In this study, 8 Salmonella phages and 10 E. coli O157:H7 phages were isolated from chicken products. A polyvalent phage PS5 capable of infecting S. Enteritidis, S. Typhimurium, and E. coli O157:H7 was further characterized and its efficacy in reducing these foodborne pathogens was evaluated in in vitro and in foods. Morphology, one-step growth, and stability assay showed that phage PS5 was a myovirus, with relatively short latent periods, large burst sizes, and high stability. Genome sequencing analysis revealed that the genome of PS5 does not contain any genes associated to antibiotic resistance, toxins, lysogeny, and virulence factors. In broth, phage PS5 significantly decreased the viable counts of all the three bacterial hosts by more than 1.3 log CFU/mL compared to controls after 2 h of incubation at 4 °C and 24 °C. In foods, treatment with PS5 also resulted in significant reductions of viable counts of all the three bacterial hosts compared to controls at temperatures tested. This is the first report on single phage capable of simultaneously controlling S. Enteritidis, S. Typhimurium and E. coli O157:H7 in both in vitro and in foods.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Laboratory of Food Hygienic Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University. 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hoang Minh Son
- Laboratory of Food Hygienic Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University. 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hazel Pang Shu Yi
- Laboratory of Food Hygienic Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University. 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jun Sato
- Safety Science Research, R&D, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Viet Nam
| | - Yoshimitsu Masuda
- Laboratory of Food Hygienic Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University. 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Ken-Ichi Honjoh
- Laboratory of Food Hygienic Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University. 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Takahisa Miyamoto
- Laboratory of Food Hygienic Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University. 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
44
|
Ha E, Chun J, Kim M, Ryu S. Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1. Viruses 2019; 11:v11111002. [PMID: 31683584 PMCID: PMC6893597 DOI: 10.3390/v11111002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic bacteria. Here we isolated a virulent C. perfringens phage, CPS1, and analysis of its whole genome and morphology revealed a small genome (19 kbps) and a short noncontractile tail, suggesting that CPS1 can be classified as a member of Picovirinae, a subfamily of Podoviridae. To determine the host receptor of CPS1, the EZ-Tn5 random transposon mutant library of C. perfringens ATCC 13124 was constructed and screened for resistance to CPS1 infection. Analysis of the CPS1-resistant mutants revealed that the CPF_0486 was disrupted by Tn5. The CPF_0486 was annotated as galE, a gene encoding UDP-glucose 4-epimerase (GalE). However, biochemical analyses demonstrated that the encoded protein possessed dual activities of GalE and UDP-N-acetylglucosamine 4-epimerase (Gne). We found that the CPF_0486::Tn5 mutant produced a reduced amount of capsular polysaccharides (CPS) compared with the wild type. We also discovered that glucosamine and galactosamine could competitively inhibit host adsorption of CPS1. These results suggest that CPS acts as a receptor for this phage.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jihwan Chun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
45
|
Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019; 25:219-232. [PMID: 30763536 DOI: 10.1016/j.chom.2019.01.014] [Citation(s) in RCA: 602] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Jonathan L Koff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paul E Turner
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
46
|
Assessment of antibiotic resistance in bacteriophage-insensitive Klebsiella pneumoniae. Microb Pathog 2019; 135:103625. [PMID: 31325570 DOI: 10.1016/j.micpath.2019.103625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
Abstract
This study was design to evaluate the physiological properties of bacteriophage-insensitive Klebsiella pneumoniae (BIKP) mutants in association with the antibiotic cross-resistance, β-lactamase activity, and gene expression. Klebsiella pneumoniae ATCC 23357(KPWT), ciprofloxacin-induced antibiotic-resistant K. pneumoniae ATCC 23357 (KPCIP), and clinically isolated antibiotic-resistant K. pneumoniae 10263 (KPCLI) were used to isolate BIKP mutants against KPB1, PBKP02, PBKP21, PBKP29, PBKP33, and PBKP35. PBKP35-induced mutants, including bacteriophage-insensitive K. pneumoniae ATCC 23357 (BIKPWT), ciprofloxacin-induced K. pneumoniae ATCC 23357 (BIKPCIP), and clinically isolated antibiotic-resistant K. pneumoniae CCARM 10263 (BIKPCLI). BIKPWT, BIKPCIP, and BIKPCLI were resistant to Klebsiella bacteriophages, KPB1, PBKP02, PBKP21, PBKP29, and PBKP33. The antibiotic cross-resistance to cefotaxime, cephalothin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, levofloxacin, and nalidixic acid was observed in BIKPWT. The relative expression levels of vagC was increased by more than 8-folds in BIKPWT, corresponding to the increased β-lactamase activity. The aac(6')-Ib-cr was overexpressed in BIKP mutants, responsible for aminoglycoside and quinolone resistance. The phage-resistant mutants decreased the antibiotic susceptibilities in association with β-lactamase activity and antibiotic resistance-related gene expression. The results pointed out the cross-resistance of BIKP mutants to antibiotics, which might be considered when applying for the therapeutic use of bacteriophage.
Collapse
|
47
|
Geng H, Zou W, Zhang M, Xu L, Liu F, Li X, Wang L, Xu Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol (Praha) 2019; 65:339-351. [PMID: 31256341 DOI: 10.1007/s12223-019-00729-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023]
Abstract
Mastitis in dairy cows is generally considered to be the most expensive disease for dairy farmers worldwide. The overuse of antibiotics is a major problem in the treatment of bovine mastitis, and bacteriophage therapy is expected to provide an alternative treatment. The primary aim of this study was to evaluate the efficacy of a phage cocktail against mastitis in a mouse model. First, a Staphylococcus aureus strain was isolated from milk samples taken from mastitis cows from dairy farms in Xinjiang, China, and it was designated as Sau-XJ-21. Next, two phages (designated as vBSM-A1 and vBSP-A2) with strong lytic activity against Sau-XJ-21 were isolated from mixed sewage samples collected from three cattle farms in Xinjiang. Phages vBSM-A1 and vBSP-A2 were identified as members of the Myoviridae and Podoviridae families, respectively. The two phages exhibited a wide range of hosts, especially phage vBSM-A1. To evaluate the effectiveness of the two phages in the treatment against mastitis, female lactating mice were used 10-14 days after giving births. The mice were divided into six groups; one group was kept as healthy control, while the remaining five groups were inoculated with the isolated S. aureus strain to induce mastitis. Four hours after bacterial inoculation, mice in these groups were injected with 25 μL phosphate buffer saline (negative control), ceftiofur sodium (positive control), or phage, either individually or as a cocktail. The mice were sacrificed 20 h later, and the mammary glands were removed and subjected to further analysis, including the quantitation of colony-forming units (CFU), plaque-forming units (PFU), and gross macroscopic as well as histopathology observation. Mice with induced mastitis exhibited significantly improved mastitic pathology and decreased bacterial counts after they had been given phage treatments, with the phage cocktail being more superior than either phage alone. Furthermore, the cocktail treatment also maintained the highest intramammary phage titer without spreading systemically. The effectiveness of the phage cocktail was comparable to that produced by ceftiofur sodium. According to the data obtained for the mouse model of mastitis, phage therapy could be considered as an innovative alternative to antibiotics for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Huijun Geng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Wei Zou
- School of Life Science and Biotechnology, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Meixia Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Le Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Fanming Liu
- School of Life Science and Biotechnology, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Xiaoyu Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lili Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yongping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116600, People's Republic of China.
| |
Collapse
|
48
|
|
49
|
Li P, Lin H, Mi Z, Xing S, Tong Y, Wang J. Screening of Polyvalent Phage-Resistant Escherichia coli Strains Based on Phage Receptor Analysis. Front Microbiol 2019; 10:850. [PMID: 31105661 PMCID: PMC6499177 DOI: 10.3389/fmicb.2019.00850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
Bacteria-based biotechnology processes are constantly under threat from bacteriophage infection, with phage contamination being a non-neglectable problem for microbial fermentation. The essence of this problem is the complex co-evolutionary relationship between phages and bacteria. The development of phage control strategies requires further knowledge about phage-host interactions, while the widespread use of Escherichia coli strain BL21 (DE3) in biotechnological processes makes the study of phage receptors in this strain particularly important. Here, eight phages infecting E. coli BL21 (DE3) via different receptors were isolated and subsequently identified as members of the genera T4virus, Js98virus, Felix01virus, T1virus, and Rtpvirus. Phage receptors were identified by whole-genome sequencing of phage-resistant E. coli strains and sequence comparison with wild-type BL21 (DE3). Results showed that the receptors for the isolated phages, designated vB_EcoS_IME18, vB_EcoS_IME253, vB_EcoM_IME281, vB_EcoM_IME338, vB_EcoM_IME339, vB_EcoM_IME340, vB_EcoM_IME341, and vB_EcoS_IME347 were FhuA, FepA, OmpF, lipopolysaccharide, Tsx, OmpA, FadL, and YncD, respectively. A polyvalent phage-resistant BL21 (DE3)-derived strain, designated PR8, was then identified by screening with a phage cocktail consisting of the eight phages. Strain PR8 is resistant to 23 of 32 tested phages including Myoviridae and Siphoviridae phages. Strains BL21 (DE3) and PR8 showed similar expression levels of enhanced green fluorescent protein. Thus, PR8 may be used as a phage resistant strain for fermentation processes. The findings of this study contribute significantly to our knowledge of phage-host interactions and may help prevent phage contamination in fermentation.
Collapse
Affiliation(s)
- Ping Li
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, China.,State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shaozhen Xing
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Department of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jingxue Wang
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
Gencay YE, Gambino M, Prüssing TF, Brøndsted L. The genera of bacteriophages and their receptors are the major determinants of host range. Environ Microbiol 2019; 21:2095-2111. [PMID: 30888719 DOI: 10.1111/1462-2920.14597] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
The host range of phages is a key to understand their impact on bacterial ecology and evolution. Because of the complexity of phage-host interactions, the variables that determine the breadth of a phage host range remain poorly understood. Here, we propose a novel holistic approach to identify the host range determinants of a new collection of phages infecting Salmonella, isolated from animal, environmental and wastewater samples that were able to infect 58 of the 71 Salmonella strains in our collection. By using a set of statistic approaches (non-metric dimensional scaling, Bray-Curtis distance, PERMANOVA), we analysed phenotypic (host range on wild-type and receptor mutants) and genetic data (taxonomic assignment and receptor binding proteins) to evaluate the impact of isolation strain and niche, phage receptor and genus on the host range. Statistical analysis revealed that two phage characteristics influence the host range by explaining the most variance: the receptor by 45% and the genus by 51%. Interestingly, phage genus and receptor in combination explained 79% of the variance, establishing these characteristics as the major determinants of the host range. This study demonstrates the power and the novelty of applying statistical approaches to phenotypic and genetic data to investigate the ecology of phage-host interactions.
Collapse
Affiliation(s)
- Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Tessa From Prüssing
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| |
Collapse
|