1
|
Li W, Kai L, Wei W, Fan Y, Wang Y, Lu Z. Dietary metabolizable energy and crude protein levels affect Taihe silky fowl growth performance, meat quality, and cecal microbiota during fattening. Poult Sci 2024; 103:104363. [PMID: 39437557 DOI: 10.1016/j.psj.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The effects of dietary metabolizable energy (ME) and crude protein (CP) on the growth performance, meat quality, and cecal microbiota of Taihe Silky Fowl (TSF) during fattening were investigated. In total, 900 twelve-week-old female fowl were randomly allocated to 9 treatments (5 replicates per group, 20 fowl per replicate), and were fed a 3 × 3 factorial arrangement of treatments diets (ME: 11.30, 11.93, or 12.56 MJ/kg; CP: 15%, 16%, or 17%). As ME increased, the average daily feed intake (ADFI, P<0.001), feed conversion ratio (FCR, P<0.001), pectoral and thigh shear forces (P<0.05), pectoral and thigh muscle fiber diameter (P<0.001) decreased significantly, while muscle fiber density increased (P<0.001). Pectoral muscle fiber diameter was lower and muscle fiber density higher at 16% CP than 15% or 17%. As ME increased, pectoral crude fat content increased significantly (P = 0.007). Pectoral crude protein, total amino acid (TAA), and essential amino acid (EAA) content were higher at 15% dietary CP than 16% or 17%. As ME increased, pectoral inosine monophosphate (IMP, P = 0.006), uridylic monophosphate (UMP, P = 0.003), guanylic monophosphate (GMP, P = 0.009), and adenosine monophosphate (AMP, P <0.001) decreased significantly, while hypoxanthine riboside (HxR, P = 0.045) increased. As dietary CP increased, IMP (P = 0.019), AMP (P <0.001), and HxR (P = 0.024) increased significantly. Cecal microbiota composition varied with dietary ME: 12.56 MJ/kg ME increased the abundance of Bifidobacteriaceae, and 15% CP increased that of Paraprevotella. These findings suggest that 12.56 MJ/kg dietary ME and 15% CP can enhance growth performance, improve meat quality by reducing shear force, enhancing flavor and nutritional value, and benefit for intestinal microbiota in fattening TSF.
Collapse
Affiliation(s)
- Wentao Li
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou Zhejiang 310058, China; College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Lixia Kai
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou Zhejiang 310058, China; College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Wei Wei
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou Zhejiang 310058, China; College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuqing Fan
- Taihe Silky Fowl Industry Development Center of Taihe County, Jian Jiangxi 343700, China
| | - Yizhen Wang
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou Zhejiang 310058, China; College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Zeqing Lu
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou Zhejiang 310058, China; College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Zhejiang University, Hangzhou Zhejiang 310058, China.
| |
Collapse
|
2
|
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci 2024; 103:103604. [PMID: 38484563 PMCID: PMC10951610 DOI: 10.1016/j.psj.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.
Collapse
Affiliation(s)
- Ana Fonseca
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Sophia Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Emily Van Syoc
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephanie Bierly
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Justin Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Statistics, The Pennsylvania State University, University Park, PA, USA; Department of Medicine, The Pennsylvania State University, University Park, PA, USA; Institute for Computational and Data Science, The Pennsylvania State University, University Park, PA, USA
| | - John Boney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Dankittipong N, Broek JVD, de Vos CJ, Wagenaar JA, Stegeman JA, Fischer EAJ. Transmission rates of veterinary and clinically important antibiotic resistant Escherichia coli: A meta- ANALYSIS. Prev Vet Med 2024; 225:106156. [PMID: 38402649 DOI: 10.1016/j.prevetmed.2024.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The transmission rate per hour between hosts is a key parameter for simulating transmission dynamics of antibiotic-resistant bacteria, and might differ for antibiotic resistance genes, animal species, and antibiotic usage. We conducted a Bayesian meta-analysis of resistant Escherichia coli (E. coli) transmission in broilers and piglets to obtain insight in factors determining the transmission rate, infectious period, and reproduction ratio. We included blaCTX-M-1, blaCTX-M-2, blaOXA-162, catA1, mcr-1, and fluoroquinolone resistant E. coli. The Maximum a Posteriori (MAP) transmission rate in broilers without antibiotic treatment ranged from 0.4∙10-3 to 2.5∙10-3 depending on type of broiler (SPF vs conventional) and inoculation strains. For piglets, the MAP in groups without antibiotic treatment were between 0.7∙10-3 and 0.8∙10-3, increasing to 0.9∙10-3 in the group with antibiotic treatment. In groups without antibiotic treatment, the transmission rate of resistant E. coli in broilers was almost twice the transmission rate in piglets. Amoxicillin increased the transmission rate of E. coli carrying blaCTX-M-2 by three-fold. The MAP infectious period of resistant E. coli in piglets with and without antibiotics is between 971 and 1065 hours (40 - 43 days). The MAP infectious period of resistant E. coli in broiler without antibiotics is between 475 and 2306 hours (20 - 96 days). The MAP infectious period of resistant E. coli in broiler with antibiotics is between 2702 and 3462 hours (113 - 144 days) which means a lifelong colonization. The MAP basic reproduction ratio in piglets of infection with resistant E. coli when using antibiotics is 27.70, which is higher than MAP in piglets without antibiotics between 15.65 and 18.19. The MAP basic reproduction ratio in broilers ranges between 3.46 and 92.38. We consider three possible explanations for our finding that in the absence of antibiotics the transmission rate is higher among broilers than among piglets: i) due to the gut microbiome of animals, ii) fitness costs of bacteria, and iii) differences in experimental set-up between the studies. Regarding infectious period and reproduction ratio, the effect of the resistance gene, antibiotic treatment, and animal species are inconclusive due to limited data.
Collapse
Affiliation(s)
- Natcha Dankittipong
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jan Van den Broek
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Clazien J de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - J Arjan Stegeman
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Faldynova M, Prikrylova H, Sebkova A, Volf J, Karasova D, Crhanova M, Babak V, Rychlik I. Contact with adult hens affects the composition of skin and respiratory tract microbiota in newly hatched chicks. Poult Sci 2024; 103:103302. [PMID: 38052128 PMCID: PMC10746563 DOI: 10.1016/j.psj.2023.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Chickens in commercial production are hatched in hatcheries without any contact with their parents and colonization of their skin and respiratory tract is therefore dependent on environmental sources only. However, since chickens evolved to be hatched in nests, in this study we evaluated the importance of contact between hens and chicks for the development of chicken skin and tracheal microbiota. Sequencing of PCR amplified V3/V4 variable regions of the 16S rRNA gene showed that contact with adult hens decreased the abundance of E. coli, Proteus mirabilis and Clostridium perfringens both in skin and the trachea, and Acinetobacter johnsonii and Cutibacterium acnes in skin microbiota only. These species were replaced by Lactobacillus gallinarum, Lactobacillus aviarius, Limosilactobacillus reuteri, and Streptococcus pasterianus in the skin and tracheal microbiota of contact chicks. Lactobacilli can be therefore investigated for their probiotic effect in respiratory tract in the future. Skin and respiratory microbiota of contact chickens was also enriched for Phascolarctobacterium, Succinatimonas, Flavonifractor, Blautia, and [Ruminococcus] torque though, since these are strict anaerobes from the intestinal tract, it is likely that only DNA from nonviable cells was detected for these taxa.
Collapse
Affiliation(s)
- Marcela Faldynova
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Hana Prikrylova
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Alena Sebkova
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Jiri Volf
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | | | - Vladimir Babak
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic.
| |
Collapse
|
5
|
Nolin SJ, Siegel PB, Ashwell CM. Differences in the microbiome of the small intestine of Leghorn lines divergently selected for antibody titer to sheep erythrocytes suggest roles for commensals in host humoral response. Front Physiol 2024; 14:1304051. [PMID: 38260103 PMCID: PMC10800846 DOI: 10.3389/fphys.2023.1304051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
For forty generations, two lines of White Leghorn chickens have been selected for high (HAS) or low (LAS) antibody response to a low dose injection of sheep red blood cells (SRBCs). Their gut is home to billons of microorganisms and the largest number of immune cells in the body; therefore, the objective of this experiment was to gain understanding of the ways the microbiome may influence the differential antibody response observed in these lines. We achieved this by characterizing the small intestinal microbiome of HAS and LAS chickens, determining their functional microbiome profiles, and by using machine learning to identify microbes which best differentiate HAS from LAS and associating the abundance of those microbes with host gene expression. Microbiome sequencing revealed greater diversity in LAS but statistically higher abundance of several strains, particularly those of Lactobacillus, in HAS. Enrichment of microbial metabolites implicated in immune response such as lactic acid, short chain fatty acids, amino acids, and vitamins were different between HAS and LAS. The abundance of several microbial strains corresponds to enriched host gene expression pathways related to immune response. These data provide a compelling argument that the microbiome is both likely affected by host divergent genetic selection and that it exerts influence on host antibody response by various mechanisms.
Collapse
Affiliation(s)
- Shelly J. Nolin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Paul B. Siegel
- School of Animal Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christopher M. Ashwell
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
6
|
Liu Y, He Y, Fan S, Gong X, Zhou Y, Jian Y, Ouyang J, Jiang Q, Zhang P. Effects of LED Light Colors on the Growth Performance, Intestinal Morphology, Cecal Short-Chain Fatty Acid Concentrations and Microbiota in Broilers. Animals (Basel) 2023; 13:3731. [PMID: 38067082 PMCID: PMC10705592 DOI: 10.3390/ani13233731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/03/2024] Open
Abstract
This study aimed to explore the effects of light-emitting diode (LED) light colors on growth, intestinal morphology, and cecal microbiota in broilers. A total of 360 healthy male Arbor Acres (AA) broilers with similar weights were selected and divided into four groups with six replicates in each group and 15 broilers in each replicate: LED white light (W), LED green light (G), LED blue light (B), and LED blue-green composite light (BG). The experimental period was 42 d, the light cycle of each treatment group was 23L:1D (23 h of light, one hour of darkness) from 1 to 3 d, and the light cycle from 4 to 42 d was 16L:8D; light intensity was 20 Lux. The results showed that the average daily feed intake and final weight of broilers receiving the B group were the highest in 21 d and 42 d compared with other groups. The average daily feed intake of the BG group was lower than that of the B group. In the same light color, small intestine villus height grows with age. On days 21 and 42, compared with other groups, the ileal villus height was higher, the crypt depth was lower, and the V/C ratio (villus to crypt ratio) was higher in the BG group. The combination of blue-green composite light was beneficial to increase the content of propionate, isobutyrate, butyrate, isovalerate, and valerate in the cecum of 21-day-old broilers and the content of isobutyrate in the cecum of 42-day-old broilers, and a decrease in cecal short-chain fatty acid concentrations with age. The B group and the BG group had higher abundances of Bacteroidetes at day 21 of age and lower abundances of Phascolarctobacterium at day 42. However, no cecal microbiota differences were detected by the Bonferroni-corrected test. In general, our research results showed that light color could promote the growth of broilers by affecting intestinal morphology, microbiota abundance (needs to be validated by further experiments), and cecal short-chain fatty acid concentrations. And blue and blue-green composite lights are more suitable for broiler growth.
Collapse
Affiliation(s)
- Yihui Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Youkuan He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Siqin Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Xinyu Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Yuqiao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Yaowei Jian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Jiuyi Ouyang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| | - Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Peihua Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.H.)
| |
Collapse
|
7
|
Jerab JG, Chantziaras I, Van Limbergen T, Van Erum J, Boel F, Hoeven E, Dewulf J. Antimicrobial Use in On-Farm Hatching Systems vs. Traditional Hatching Systems: A Case Study. Animals (Basel) 2023; 13:3270. [PMID: 37893994 PMCID: PMC10603674 DOI: 10.3390/ani13203270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
On-farm hatching is a relatively new method in the broiler industry, in which fertilized broiler eggs are transported to the farms at the stage of 17-19 days of incubation. Once hatched, the broiler chicks have direct access to feed and water. Previous studies have shown on-farm hatching to increase animal welfare and intestinal development. However, no studies have yet aimed to quantify and compare the antimicrobial use in on-farm hatched flocks with that of traditionally hatched flocks. In this study, information on antimicrobial use (AMU) was collected from 211 Belgian conventional broiler farms, including data from 2244 traditionally hatched flocks and 227 on-farm (NestBorn) hatched flocks. On-farm hatched flocks had significantly (p < 0.001) more antimicrobial-free flocks (n = 109, 48.01%) compared to traditional flocks (n = 271, 12.08%) and a 44% lower (p < 0.01) treatment incidence (TI) at flock level (TI 8.40 vs. TI 15.13). Overall, the farms using traditional hatching had 5.6 times (95% CI 3.6-8.7) higher odds to use antimicrobials than the farms using on-farm hatching. Treated on-farm hatched flocks received three times less lincomycin-spectinomycin (linco-spectin) and less (routine) treatments at the start of the production round. However, both traditional and on-farm flocks experienced outbreaks later in the production round. These results show that on-farm hatching can contribute to the reduction in antimicrobial use in conventional broiler production.
Collapse
Affiliation(s)
- Julia G. Jerab
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| | | | - Johan Van Erum
- Pehestat BV, Dwarsstraat 5, 3560 Lummen, Belgium; (T.V.L.); (J.V.E.)
| | - Filip Boel
- Belgabroed, Steenweg op Hoogstraten 141, 2330 Merksplas, Belgium;
| | | | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| |
Collapse
|
8
|
Huang T, Han J, Liu Y, Fei M, Du X, He K, Zhao A. Dynamic distribution of gut microbiota in posthatching chicks and its relationship with average daily gain. Poult Sci 2023; 102:103008. [PMID: 37598556 PMCID: PMC10462888 DOI: 10.1016/j.psj.2023.103008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
The colonization and development of gut microbiota are essential for the health and growth of chicks after hatching. However, the colonization and prevalence of gut microbiota have not been well characterized, and knowledge of which microbes and their relationship with average daily gain in chicks is still limited. This study characterized the dynamic succession of microbiota in the intestinal tract of chicks and investigated its relationship with daily weight gain. A total of 121 fecal samples across 7 time points from d 0 to 10 posthatching were collected from 19 chicks randomly selected from 1,950 chicks. Using 16S rRNA gene sequencing examined microbial composition of fecal samples. The observed species index of alpha diversity increased with age, gradually achieving stability at 3 d of age. The microbiota of chicks after hatching was primarily Clostridium_sensu_stricto_1 (34.49%), and its relative abundance diminishes with age. In contrast, Lactobacillus had a low relative abundance in the first 2 d after hatching and gradually increased with age. Predicted functional capacities found that the microbiota of early-stage posthatching (d 0 and 1 after hatching) was involved in metabolism, including amino acid metabolism, metabolism of cofactors and vitamins, and nitrogen metabolism. However, at the later stage posthatching (from d 3-10 after hatching), the intestinal microbial function was involved in carbohydrate metabolism, amino acid metabolism, cell growth and death, and methane metabolism. It was identified that 47 operational taxonomic units were associated with average daily gain of chicks, 12 of which were annotated with Lactobacillus and significantly positive associated with average daily gain. In addition, Clostridium_sensu_stricto_1 was significantly negatively associated with average daily gain. Taken together, we characterized the dynamic successions of intestinal microbiota in hatching chicks. The intestinal microbiota of chicks has an impact on the host average daily gain. Our findings should be instrumental in improving local chick production.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jie Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Meina Fei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
9
|
Ameer A, Cheng Y, Saleem F, Uzma, McKenna A, Richmond A, Gundogdu O, Sloan WT, Javed S, Ijaz UZ. Temporal stability and community assembly mechanisms in healthy broiler cecum. Front Microbiol 2023; 14:1197838. [PMID: 37779716 PMCID: PMC10534011 DOI: 10.3389/fmicb.2023.1197838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.
Collapse
Affiliation(s)
- Aqsa Ameer
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Youqi Cheng
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Farrukh Saleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Uzma
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - William T. Sloan
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Umer Zeeshan Ijaz
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Salem HM, Saad AM, Soliman SM, Selim S, Mosa WFA, Ahmed AE, Al Jaouni SK, Almuhayawi MS, Abd El-Hack ME, El-Tarabily KA, El-Saadony MT. Ameliorative avian gut environment and bird productivity through the application of safe antibiotics alternatives: a comprehensive review. Poult Sci 2023; 102:102840. [PMID: 37478510 PMCID: PMC10393590 DOI: 10.1016/j.psj.2023.102840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023] Open
Abstract
The avian digestive tract is an important system for converting ingested food into the nutrients their bodies need for maintenance, growth, and reproduction (meat, table eggs, and fertile eggs). Therefore, preserving digestive system integrity is crucial to bird health and productivity. As an alternative to antibiotics, the world has recently turned to the use of natural products to enhance avian development, intestinal health, and production. Therefore, the primary goal of this review is to explain the various characteristics of the avian digestive tract and how to enhance its performance with natural, safe feed additives such as exogenous enzymes, organic acids, photogenic products, amino acids, prebiotics, probiotics, synbiotics, and herbal extracts. In conclusion, the composition of the gut microbiome can be influenced by a number of circumstances, and this has important consequences for the health and productivity of birds. To better understand the connection between pathogens, the variety of therapies available, and the microbiome of the gut, additional research needs to be carried out.
Collapse
Affiliation(s)
- Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
11
|
Franco L, Boulianne M, Parent E, Barjesteh N, Costa MC. Colonization of the Gastrointestinal Tract of Chicks with Different Bacterial Microbiota Profiles. Animals (Basel) 2023; 13:2633. [PMID: 37627423 PMCID: PMC10451890 DOI: 10.3390/ani13162633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the consequences of early-life microbiota transplantation using different caecal content sources in broiler chicks. We hypothesized that chicks receiving at-hatch microbiota from organic hens would harbour a distinct microbiota from chicks receiving industry-raised broiler microbiota after six weeks of age. Three hundred Cobb broilers eggs were randomly assigned to one of four groups according to the caecal content received: organic laying hens (Organic); autoclaved caecal content of organic laying hens (Autoclaved); conventionally grown broilers (Conventional); and sterile saline (Control). caecal microbiota transplantation was given by gavage on day 1. Ten birds/group were euthanized on days 2, 7, 14, 28, and 42. The caecal tonsils and contents were collected for cytokines and microbiota analyses. The microbiota from chicks receiving live inocula resembled the donors' microbiota from day seven until day 42. The microbiota composition from the chickens who received the Organic inoculum remained markedly different. Starting on day 7, the Organic group had higher richness. Simpson and Shannon's indices were higher in the Conventional group on days 2 and 7. Chickens in the Conventional group presented higher production of IL-1β and IL-6 in plasma on days 2 and 28, increased IL-6 expression in the caecal tonsils at days 7 and 42, and increased IL-12 expression on day 7. However, the Conventional group was infected with Eimeria spp., which likely caused inflammation. In conclusion, microbiota transplantation using different microbiota profiles persistently colonized newly hatched broiler chicks. Future studies evaluating the importance of microbiota composition during infections with common enteropathogens are necessary. This study also highlights the need for a strict screening protocol for pathogens in the donors' intestinal content.
Collapse
Affiliation(s)
- Laura Franco
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Martine Boulianne
- Department of Clinical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (E.P.)
| | - Eric Parent
- Department of Clinical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (E.P.)
| | - Neda Barjesteh
- Department of Pathology and Microbiology, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Global Companion Animal Therapeutics, Zoetis, Kalamazoo, MI 49007, USA
| | - Marcio C. Costa
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
12
|
Valečková E, Sun L, Wang H, Dube F, Ivarsson E, Kasmaei KM, Ellström P, Wall H. Intestinal colonization with Campylobacter jejuni affects broiler gut microbiota composition but is not inhibited by daily intake of Lactiplantibacillus plantarum. Front Microbiol 2023; 14:1205797. [PMID: 37577431 PMCID: PMC10416237 DOI: 10.3389/fmicb.2023.1205797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Lactobacilli may prevent broilers from colonization with Campylobacter spp. and other gram-negative zoonotic bacteria through lactic acid production and modulation of the intestinal microbiota. This study evaluated the effects of daily intake of Lactiplantibacillus plantarum 256 (LP256) on Campylobacter jejuni (C. jejuni) loads in ceca and feces of C. jejuni challenged broilers, together with the changes in the gut microbiota. Methods Two experiments were conducted using the broilers Ross 308 (R-308; Experiment 1) for 42 days and Rowan Ranger broilers (RR; Experiment 2) for 63 days. The LP256 strain was administered either via silage inoculated with LP256 or direct supplementation in the drinking water. Concurrently, haylage as a forage similar to silage but without any inoculum was tested. C. jejuni loads in fecal matter and cecal content were determined by plate counts and qPCR, respectively. The cecal microbiota, in response to treatments and the challenge, were assessed by 16S rRNA sequencing. Results and Discussion Culturing results displayed a significant reduction in C. jejuni colonization (2.01 log) in the silage treatment in comparison to the control at 1 dpi (day post-infection) in Experiment 1. However, no treatment effect on C. jejuni was observed at the end of the experiment. In Experiment 2, no treatment effects on C. jejuni colonization were found to be statistically significant. Colonization load comparison at the peak of infection (3 dpi) to that at the end of the trial (32 dpi) revealed a significant reduction in C. jejuni in all groups, regardless of treatment. Colonization dynamics of C. jejuni in the cecal samples analyzed by qPCR showed no difference between any of the treatments in Experiment 1 or 2. In both experiments, no treatment effects on the cecal microbiota were observed. However, proportional changes in the bacterial composition were observed after the C. jejuni challenge, suggesting that colonization affected the gut microbiota. Overall, the daily intake of LP256 was not effective in reducing C. jejuni colonization in either broiler type at the end of the rearing period and did not cause any significant changes in the birds' cecal microbiota composition.
Collapse
Affiliation(s)
- Eliška Valečková
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Faruk Dube
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Emma Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kamyar Mogodiniyai Kasmaei
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Liang X, Zhang Z, Wang H, Lu X, Li W, Lu H, Roy A, Shen X, Irwin DM, Shen Y. Early-life prophylactic antibiotic treatment disturbs the stability of the gut microbiota and increases susceptibility to H9N2 AIV in chicks. MICROBIOME 2023; 11:163. [PMID: 37496083 PMCID: PMC10369819 DOI: 10.1186/s40168-023-01609-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Antibiotics are widely used for prophylactic therapy and for improving the growth performance of chicken. The problem of bacterial drug resistance caused by antibiotic abuse has previously attracted extensive attention; however, the influence of early-day use of prophylactic antibiotics on the gut microflora and on the disease resistance ability in chicks has not been explored. Here, we comprehensively evaluate the growth performance, gut microbial dynamics, level of antibiotic resistance genes (ARGs) in the gut microbial community, and resistance to H9N2 avian influenza virus (AIV) in chickens following long-term and short-term early-day prophylactic antibiotic treatment. RESULTS Unexpectedly, long-term prophylactic enrofloxacin treatment slowed the growth rate of chickens, whereas short-term antibiotics treatments were found to increase the growth rate, but these changes were not statistically significant. Strikingly, expansions of Escherichia-Shigella populations were observed in early-life prophylactic antibiotics-treated groups of chickens, which is in contrast to the general perception that antibiotics should control their pathogenicity in chicks. The gut microbiota composition of chickens treated long term with antibiotics or received early-day antibiotics treatment tend to be more dramatically disturbed compared to the gut microbiome of chickens treated with antibiotics for a short term at a later date, especially after H9N2 AIV infection. CONCLUSIONS Our data provide evidence that early-day and long-term antibiotic treatments have a more adverse effect on the intestinal microbiome of chickens, compared to short-term late age antibiotic treatment. Furthermore, our metagenomic data reveal that both long-term and short-term antibiotic treatment increase the relative abundance of ARGs. Our findings highlight the adverse effects of prophylactic antibiotic treatment and provide a theoretical basis for the cautious administration of antibiotics in food-producing animal management. Video Abstract.
Collapse
Affiliation(s)
- Xianghui Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhipeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ayan Roy
- Mailman School of Public Health, Columbia University, New York, 10032, USA
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Elsasser TH, Ma B, Ravel J, Kahl S, Gajer P, Cross A. Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model. Anim Microbiome 2023; 5:6. [PMID: 36703224 PMCID: PMC9878500 DOI: 10.1186/s42523-023-00225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota. RESULTS A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus. CONCLUSION The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.
Collapse
Affiliation(s)
- Ted H. Elsasser
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Bing Ma
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Stanislaw Kahl
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Pawel Gajer
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan Cross
- grid.411024.20000 0001 2175 4264Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
15
|
Rychlik I, Karasova D, Crhanova M. Microbiota of Chickens and Their Environment in Commercial Production. Avian Dis 2023; 67:1-9. [PMID: 37140107 DOI: 10.1637/aviandiseases-d-22-00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 01/24/2023]
Abstract
Chickens in commercial production are subjected to constant interaction with their environment, including the exchange of microbiota. In this review, we therefore focused on microbiota composition in different niches along the whole line of chicken production. We included a comparison of microbiota of intact eggshells, eggshell waste from hatcheries, bedding, drinking water, feed, litter, poultry house air and chicken skin, trachea, crop, small intestine, and cecum. Such a comparison showed the most frequent interactions and allowed for the identification of microbiota members that are the most characteristic for each type of sample as well as those that are the most widespread in chicken production. Not surprisingly, Escherichia coli was the most widely distributed species in chicken production, although its dominance was in the external aerobic environment and not in the intestinal tract. Other broadly distributed species included Ruminococcus torque, Clostridium disporicum, and different Lactobacillus species. The consequence and meaning of these and other observations are evaluated and discussed.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Brno 621 00, Czech Republic
| | | | | |
Collapse
|
16
|
Cisse S, Bahut M, Marais C, Zemb O, Chicoteau P, Benarbia MEA, Guilet D. Fine characterization and microbiota assessment as keys to understanding the positive effect of standardized natural citrus extract on broiler chickens. J Anim Sci 2023; 101:skad069. [PMID: 36881787 PMCID: PMC10032183 DOI: 10.1093/jas/skad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
The objective of this study was to investigate the effect and composition of a standardized natural citrus extract (SNCE) on both broiler chickens' growth performances and intestinal microbiota. A total of 930 one-day-old males were randomly assigned to three dietary treatments: a control treatment (CTL) in which broiler chickens were fed with a standard diet and two citrus treatments in which broiler chickens were fed with the same standard diet supplemented with 250 ppm and 2,500 ppm of SNCE, respectively. Each dietary treatment was composed of 10 experimental units (pen) of 31 broiler chickens each. Growth performances such as feed consumption, body weight, and feed conversion ratio (FCR) were recorded weekly until day 42. Litter quality was also weekly recorded while mortality was daily recorded. One broiler chicken was randomly selected from each pen (10 chickens/group) and ceca samples were collected for microbiota analysis at day 7 and 42. Chromatographic methods were used to determine molecules that enter into the composition of the SNCE. Results from the characterization of SNCE allowed to identify pectic oligosaccharides (POS) as a major component of the SNCE. In addition, 35 secondary metabolites, including eriocitrin, hesperidin, and naringin, were identified. The experiment performed on broiler chickens showed that the final body weight of broiler chickens fed diets supplemented with SNCE was higher than those fed the CTL diets (P < 0.01). Broiler cecal microbiota was impacted by age (P < 0.01) but not by the dietary supplementation of SNCE. Results indicate that SNCE allowed enhancing chickens' performances without any modulation of the cecal microbiota of broiler chickens. The characterization of SNCE allowed to identify compounds such as eriocitrin, naringin, hesperidin, and POS. Thus, opening new horizons for a better understanding of the observed effect on broiler chickens' growth performances.
Collapse
Affiliation(s)
- Sekhou Cisse
- Substances d’origines naturelles et analogues structuraux (SONAS), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers, F-49000 Angers, France
- Nor-Feed SAS, 3 rue Amedeo Avogadro, 49070 Beaucouzé, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Muriel Bahut
- Analyse des acides nucléiques (ANAN), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers F-49000 Angers, France
| | - Coralie Marais
- Analyse des acides nucléiques (ANAN), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers F-49000 Angers, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31320 Castanet Tolosan, France
| | - Pierre Chicoteau
- Nor-Feed SAS, 3 rue Amedeo Avogadro, 49070 Beaucouzé, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Mohammed El Amine Benarbia
- Nor-Feed SAS, 3 rue Amedeo Avogadro, 49070 Beaucouzé, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - David Guilet
- Substances d’origines naturelles et analogues structuraux (SONAS), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers, F-49000 Angers, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| |
Collapse
|
17
|
Alvarenga BO, Paiva JB, Souza AI, Rodrigues DR, Tizioto PC, Ferreira AJP. Metagenomics analysis of the morphological aspects and bacterial composition of broiler feces. Poult Sci 2022; 102:102401. [PMID: 36565637 PMCID: PMC9800314 DOI: 10.1016/j.psj.2022.102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In this descriptive study, we used metagenomics to analyze the relationship between the morphological aspects of chicken feces and its respective bacterial compositions. The microbiota composition was determined by sequencing the V4 region of the 16S rRNA genes collected from fresh broiler feces at 19 d old. In total, 48 samples were collected and divided into 8 groups of 6 samples each. The morphological changes studied were feed passage (FP) and reddish mucus (RM). Each was classified into 3 levels of intensity: 1 (slight), 2 (moderate), or 3 (intense). Thus, the 8 groups studied were feed passage (FP-1; FP-2; FP-3), reddish mucus (RM-1; RM-2; RM-3), normal ileal feces (NIF), and cecal discharge (CD). The alpha diversity (Shannon's index) revealed that the CD group showed greater diversity, and was significantly different from FP-2, FP-3, and RM-1. The beta diversity showed that the CD group samples were more homogeneous than the ileal feces groups. The relative abundance analysis revealed that Firmicutes and Proteobacteria were the most abundant phyla in the ileal feces groups. In CD, Firmicutes and Bacteroidetes were the most abundant. The relative abundance at the genus level revealed 136 different bacterial genera. In the ileal feces groups, the two most abundant genera were Lactobacillus and Escherichia/Shigella, except in the FP-1 and RM-2 groups, which had the opposite order. Unlike the others, the CD group had a higher abundance of Bacteroides and Faecalibacterium. When comparing the NIF group with the others, significant changes were found in the fecal microbiota, with nine genera for the FP groups, 19 for the RM groups, and 61 when compared to CD. The results of the present study suggest that evaluation of fecal morphology is a fundamental task that makes it possible to act quickly and assertively, as the morphological aspects of the feces may be related to the composition and structure of fecal microbiota.
Collapse
Affiliation(s)
| | | | | | - Denise R. Rodrigues
- Department of Inspection of Animal Products, Ministry of Agriculture, Livestock and Food Supply (MAPA), Brasília, Brazil
| | | | - Antonio J. Piantino Ferreira
- School of Veterinary Medicine and Animal Science of University of São Paulo, São Paulo, Brazil,Corresponding author:
| |
Collapse
|
18
|
Gao F, Zhang L, Li H, Xia F, Bai H, Piao X, Sun Z, Cui H, Shi L. Dietary Oregano Essential Oil Supplementation Influences Production Performance and Gut Microbiota in Late-Phase Laying Hens Fed Wheat-Based Diets. Animals (Basel) 2022; 12:ani12213007. [PMID: 36359131 PMCID: PMC9654440 DOI: 10.3390/ani12213007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the potential effects of OEO on production performance, egg quality, fatty acid composition in yolk, and cecum microbiota of hens in the late phase of production. A total of 350 58-week-old Jing Tint Six laying hens were randomly divided into five groups: (1) fed a basal diet (control); (2) fed a basal diet + 5 mg/kg flavomycin (AGP); (3) fed a basal diet + 100 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO1); (4) fed a basal diet + 200 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO2); (5) fed a basal diet + 300 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO3). Compared to the control group, group EO2 exhibited higher (p < 0.05) egg production during weeks 5−8 and 1−8. EO2 had a lower feed conversion ratio than the control group during weeks 1−8. The content of monounsaturated fatty acid (MUFA) in EO2 was higher (p < 0.05) than that of the control and AGP groups. EO2 increased (p < 0.05) the abundance of Actinobacteriota and decreased the abundance of Desulfovibri in the cecum. The abundances of Anaerofilum, Fournierella, Fusobacterium, and Sutterella were positively correlated with egg production, feed conversion ratio, and average daily feed intake, while the abundances of Bacteroides, Desulfovibrio, Lactobacillus, Methanobrevibacter, and Rikenellaceae_RC9_gut_group were negatively correlated with egg production, feed conversion ratio, and average daily feed intake. Dietary supplementation with 200 mg/kg OEO and 20 mg/kg cinnamaldehyde could improve egg-production performance, decrease feed conversion ratio, and alter the fatty acid and microbial composition of eggs from late-phase laying hens.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lianhua Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiying Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongxia Cui
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
19
|
Potential Probiotics Role in Excluding Antibiotic Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5590004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Antibiotic supplementation in feed has been continued for the previous 60 years as therapeutic use. They can improve the growth performance and feed efficiency in the chicken flock. A favorable production scenario could favor intestinal microbiota interacting with antibiotic growth promoters and alter the gut bacterial composition. Antibiotic growth promoters did not show any beneficial effect on intestinal microbes. Scope and Approach. Suitable and direct influence of growth promoters are owed to antimicrobial activities that reduce the conflict between host and intestinal microbes. Unnecessary use of antibiotics leads to resistance in microbes, and moreover, the genes can relocate to microbes including Campylobacter and Salmonella, resulting in a great risk of food poisoning. Key Findings and Conclusions. This is a reason to find alternative dietary supplements that can facilitate production, growth performance, favorable pH, and modulate gut microbial function. Therefore, this review focus on different nutritional components and immune genes used in the poultry industry to replace antibiotics, their influence on the intestinal microbiota, and how to facilitate intestinal immunity to overcome antibiotic resistance in chicken.
Collapse
|
20
|
Duangnumsawang Y, Zentek J, Vahjen W, Tarradas J, Goodarzi Boroojeni F. Alterations in bacterial metabolites, cytokines, and mucosal integrity in the caecum of broilers caused by feed additives and host-related factors. Front Physiol 2022; 13:935870. [PMID: 36171972 PMCID: PMC9512067 DOI: 10.3389/fphys.2022.935870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
A total of 2,880 one-day-old male and female broiler chicks from two breeds, Ross308 and Cobb500 were randomly assigned to 72 pens. Broilers were offered three diets: a wheat-soybean diet without (CO), or with either a probiotic (probiotic; 2.4 x 109 CFU/kg diet of Bacillus subtilis DSM32324 and DSM32325 and B. amyloliquefaciens DSM25840) or a phytobiotic (phytobiotic; grape extract with 165 ppm procyanidin and 585 ppm polyphenol) product. The trial was conducted with a 3 × 2 × 2 factorial arrangement of diet, breed and sex in a completely randomized design and consisted of 6 replicate-pens per treatment (40 birds per pen). At day 7, 21, and 35, one chicken per pen was slaughtered for caecal sampling to quantify bacterial metabolites (digesta) as well as evaluate mRNA abundance and histomorphology (tissue). Data were subjected to ANOVA using GLM procedure to evaluate age, diet, breed and sex and their interactions. Spearman’s correlation (r) was analyzed between metabolite concentration and mRNA abundance. Overall, the concentration of short chain fatty acids increased with age, while lactate decreased from day 7 to 21 (p < 0.05). The mRNA abundance of IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17α, IL-18, IFN-γ and TGF-β2 increased with age but IL-1β and TNF-α increased in abundance from day 7 to 21 and then decreased (p < 0.05). Abundance of MUC2 and CLDN5 increased after day 21 (p < 0.05). Caecal crypt depth increased with age (p < 0.05). Acidic goblet cell (GC) number peaked at day 21 (p < 0.05), while mixed GC number was not affected by age. A few impacts of breed, diet and interactions on the investigated variables showed no meaningful biological pattern. Propionate positively correlated with all cytokines investigated (r = 0.150–0.548), except TNF-α. Lactate negatively correlated with pro-inflammatory cytokines like IL-1β (r = −0.324). Aging affected caecal histomorphology, bacterial activity and genes responsible for barrier integrity and inflammatory response. This effect could be attributed to the interaction between gut microbiota and immune system as well as the direct effect of metabolites on gut histomorphology and cytokine mRNA abundance.
Collapse
Affiliation(s)
- Yada Duangnumsawang
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Faculty of Veterinary Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joan Tarradas
- Animal nutrition, Institute of Agrifood Research and Technology IRTA, Constantí, Spain
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Farshad Goodarzi Boroojeni,
| |
Collapse
|
21
|
Traditional Subsistence Farming of Smallholder Agroforestry Systems in Indonesia: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14148631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Agroforestry has been practiced for decades and is undoubtedly an important source of income for Indonesian households living near forests. However, there are still many cases of poverty among farmers due to a lack of ability to adopt advanced technology. This literature review aims to identify the characteristics and factors causing the occurrence of agricultural subsistence and analyze its implications for the level of farmer welfare and the regional forestry industry. The literature analysis conducted reveals that small land tenure, low literacy rates, and lack of forest maintenance are the main causes of the subsistence of small agroforestry farmers. Another reason is that subsistence-oriented agroforestry practices are considered a strong form of smallholder resilience. All of these limitations have implications for low land productivity and high-sawn timber waste from community forests. To reduce the subsistence level of farmers, government intervention is needed, especially in providing managerial assistance packages, capital assistance, and the marketing of forest products. Various agroforestry technologies are available but have not been implemented consistently by farmers. Therefore, it is necessary to develop an integrated collaboration between researchers, farmers, and regionally owned enterprises (BUMD) to increase access to technology and markets. Although it is still difficult to realize, forest services, such as upstream–downstream compensation and carbon capture, have the potential to increase farmer income.
Collapse
|
22
|
Farkas V, Csitári G, Menyhárt L, Such N, Pál L, Husvéth F, Rawash MA, Mezőlaki Á, Dublecz K. Microbiota Composition of Mucosa and Interactions between the Microbes of the Different Gut Segments Could Be a Factor to Modulate the Growth Rate of Broiler Chickens. Animals (Basel) 2022; 12:ani12101296. [PMID: 35625142 PMCID: PMC9137591 DOI: 10.3390/ani12101296] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The microbial communities inhabiting the gastrointestinal tract (GIT) of chickens are essential for the gut homeostasis, metabolism, and health status of the host animal. Previous studies exploring the relationship between chicken growth performance and gut microbiota focused mostly on gut content and excreta samples, neglecting the mucosa that promotes colonisation by distinct groups of microorganisms. These observations emphasised the importance of studying the variations between the bacterial communities of the lumen and mucosa throughout the different sections of the GIT. The novelty of this study is that we have evaluated the microbial communities of the jejunum chymus, jejunum mucosa, and caecum chymus of broiler chickens with different growth rates. Besides the bacteriota composition, the interactions between the bacteria were also evaluated. We have confirmed that the microbiota composition is influenced mostly by the sampling place. However, some body weight (BW)-related changes and interactions have also been found. In these cases, the mucosa seems to play a crucial role. Abstract The study reported here aimed to determine whether correlations can be found between the intestinal segment-related microbiota composition and the different growing intensities of broiler chickens. The bacterial community structures of three intestinal segments (jejunum chymus—JC, jejunum mucosa—JM, caecum chymus—CC) from broiler chickens with low body weight (LBW) and high body weight (HBW) were investigated. Similar to the previous results in most cases, significant differences were found in the bacteriota diversity and composition between the different sampling places. However, fewer body weight (BW)-related differences were detected. In the JM of the HBW birds, the Bacteroidetes/Firmicutes ratio (B/F) was also higher. At the genus level significant differences were observed between the BW groups in the relative abundance of Enterococcus, mainly in the JC; Bacteroides and Ruminococcaceae UCG-010, mainly in the JM; and Ruminococcaceae UCG-013, Negativibacillus, and Alistipes in the CC. These genera and others (e.g., Parabacteroides and Fournierella in the JM; Butyricoccus, Ruminiclostridium-9, and Bilophila in the CC) showed a close correlation with BW. The co-occurrence interaction results in the JC revealed a correlation between the genera of Actinobacteria (mainly with Corynebacterium) and Firmicutes Bacilli classes with different patterns in the two BW groups. In the JM of LBW birds, two co-occurring communities were found that were not identifiable in HBW chickens and their members belonged to the families of Ruminococcaceae and Lachnospiraceae. In the frame of the co-occurrence evaluation between the jejunal content and mucosa, the two genera (Trichococcus and Oligella) in the JC were found to have a significant positive correlation with other genera of the JM only in LBW chickens.
Collapse
Affiliation(s)
- Valéria Farkas
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
| | - Gábor Csitári
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
| | - László Menyhárt
- Institute of Mathematics and Basic Science, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Nikoletta Such
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
| | - László Pál
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
| | - Ferenc Husvéth
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
| | - Mohamed Ali Rawash
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
| | - Ákos Mezőlaki
- Agrofeed Ltd., Duna Kapu Square 10, 9022 Győr, Hungary;
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (V.F.); (G.C.); (N.S.); (L.P.); (F.H.); (M.A.R.)
- Correspondence: ; Tel.: +36-30-6418597
| |
Collapse
|
23
|
Jia L, Hsu CY, Zhang X, Li X, Schilling MW, Peebles ED, Kiess AS, Zhang L. Effects of dietary bacitracin or Bacillus subtilis on the woody breast myopathy-associated gut microbiome of Eimeria spp. challenged and unchallenged broilers. Poult Sci 2022; 101:101960. [PMID: 35690000 PMCID: PMC9192972 DOI: 10.1016/j.psj.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Study suggested that dysbiosis of the gut microbiota may affect the etiology of woody breast (WB). In the current study, the cecal microbiota and WB in chickens fed three different diets were investigated. A total of 504 male chicks were used in a randomized complete block design with a 3 (Diet) × 2 (Challenge) factorial arrangement of treatments with 6 replicates per treatment, 6 treatments per block, and 14 birds per treatment. The experimental diets were a control diet (corn-soybean meal basal diet), an antibiotic diet (basal diet + 6.075 mg bacitracin/kg feed), and a probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6/kg feed). On d 14, birds that were assigned to the challenge treatment received a 20 × live cocci vaccine. On d 41, breast muscle hardness in live birds was palpated and grouped into normal (NB) and WB phenotypes. Cecal contents were collected and their bacterial compositions were analyzed and compared. The genomic DNA of the cecal contents was extracted and the V3 and V4 regions of 16S rRNA gene were amplified and sequenced via an Illumina MiSeq platform. There were no differences (P > 0.05) in Shannon and Chao 1 indexes between the challenges, diets, and phenotypes (NB vs. WB). However, there was a difference (P = 0.001) in the beta diversity of the samples between the challenged and nonchallenged groups. Relative bacterial abundance differed (false discovery rate, FDR < 0.05) between the challenge treatments, but there were no significant differences (FDR > 0.05) among the three diets or two phenotypes. Predicted energy metabolism, nucleotide metabolism, and amino acid and coenzyme biosynthesis activities only differed (q-value < 0.05) between challenged and nonchallenged groups. The cocci challenge altered the gut microbial composition on Butyricicoccus pullicaecorum, Sporobacter termitidis, and Subdoligranulum variabile, but the dietary antibiotic and probiotic treatments did not impact gut microbial composition. No strong association was found between WB myopathy and gut microbial composition in this study.
Collapse
|
24
|
Robinson K, Yang Q, Stewart S, Whitmore MA, Zhang G. Biogeography, succession, and origin of the chicken intestinal mycobiome. MICROBIOME 2022; 10:55. [PMID: 35365230 PMCID: PMC8976367 DOI: 10.1186/s40168-022-01252-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Extensive work has been accomplished to characterize the intestinal bacterial community, known as the microbiota, and its association with host health and disease. However, very little is known about the spatiotemporal development and the origin of a minor intestinal fungal community, known as the mycobiota, in humans and animals, particularly in avian species. RESULTS In this study, we comprehensively characterized the biogeography and succession of the gastrointestinal (GI) mycobiota of broiler chickens and further revealed the fungal sources that are responsible for initial and long-term establishment of the mycobiota in the GI tract. Using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region of fungal rRNA genes, we detected significant spatial and temporal differences in the mycobiota along the GI tract. In contrary to the microbiota, the mycobiota was more diverse in the upper than the lower GI tract with no apparent trend of succession up to 42 days of age. The intestinal mycobiota was dominated by the phyla Ascomycota and Basidiomycota with Gibberella, Aspergillus, and Candida being the most abundant genera. Although the chicken mycobiota was highly dynamic, Fusarium pseudonygamai was dominant throughout the GI tract regardless of age in this study. The core chicken mycobiome consisted of 26 fungal taxa accounting for greater than 85% of the fungal population in each GI location. However, we observed high variations of the intestinal mycobiota among different studies. We also showed that the total fungal population varied greatly from 1.0 × 104 to 1.1 × 106 /g digesta along the GI tract and only accounted for less than 0.06% of the bacteria in day-42 broilers. Finally, we revealed that the mycobiota from the hatchery environment was responsible for initial colonization in the GI tract of newly hatched chickens, but was quickly replaced by the fungi in the diet within 3 days. CONCLUSIONS Relative to the intestinal microbiota that consists of trillions of bacteria in hundreds of different species and becomes relatively stabilized as animals age, the chicken intestinal mycobiota is a minor microbial community that is temporally dynamic with limited diversity and no obvious pattern of successive changes. However, similar to the microbiota, the chicken mycobiota is spatially different along the GI tract, although it is more diverse in the upper than the lower GI tract. Dietary fungi are the major source of the intestinal mycobiota in growing chickens. Video abstract.
Collapse
Affiliation(s)
- Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
- Present Address: Poultry Research Unit, USDA–Agricultural Research Service, Mississippi State, MS USA
| | - Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
| | - Sydney Stewart
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
- Present Address: Safety and Security Division, Institute for Public Research, CNA, Arlington, VA USA
| | - Melanie A. Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma USA
| |
Collapse
|
25
|
Dou J, Ilina P, Hemming J, Malinen K, Mäkkylä H, Oliveira de Farias N, Tammela P, de Aragão Umbuzeiro G, Räisänen R, Vuorinen T. Effect of Hybrid Type and Harvesting Season on Phytochemistry and Antibacterial Activity of Extracted Metabolites from Salix Bark. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2948-2956. [PMID: 35200036 PMCID: PMC8915259 DOI: 10.1021/acs.jafc.1c08161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Hundreds of different fast-growing Salix hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material. Preparative high-performance liquid chromatography is proven here as a fast and highly efficient tool in the small-scale recovery of raffinose from Salix bark crude extracts for structural elucidation. Less than half of the dissolved material was assigned by chromatographic (gas chromatography and liquid chromatography) and spectroscopic (mass spectrometry and nuclear magnetic resonance spectroscopy) techniques for low-molecular-weight compounds, including mono- and oligosaccharides (sucrose, raffinose, and stachyose) and aromatic phytochemicals (triandrin, catechin, salicin, and picein). The composition of the extracts varied greatly depending on the hybrid or species and the harvesting season. This information generated new scientific knowledge on the variation in the content and composition of the extracts between Salix hybrids and harvesting season depending on the desired molecule. The extracts showed high antibacterial activity on Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 0.6-0.8 mg/mL; however, no inhibition was observed against Escherichia coli, Enterococcus faecalis, and Salmonella typhimurium. MIC of triandrin (i.e., 1.25 mg/mL) is reported for the first time. Although antibacterial triandrin and (+)-catechin were present in extracts, clear correlation between the antibacterial effect and the chemical composition was not established, which indicates that antibacterial activity of the extracts mainly originates from some not yet elucidated substances. Aquatic toxicity and mutagenicity assessments showed the safe usage of Salix water extracts as possible antibacterial additives.
Collapse
Affiliation(s)
- Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Polina Ilina
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Jarl Hemming
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Natural Materials
Technology, Åbo Akademi University, Turku 20500, Finland
| | - Kiia Malinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Heidi Mäkkylä
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Natália Oliveira de Farias
- Laboratory
of Ecotoxicology and Genotoxicity—LAEG, School of Technology, University of Campinas, Campinas 13083-970, Brazil
| | - Päivi Tammela
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Gisela de Aragão Umbuzeiro
- Laboratory
of Ecotoxicology and Genotoxicity—LAEG, School of Technology, University of Campinas, Campinas 13083-970, Brazil
| | - Riikka Räisänen
- HELSUS
Helsinki Institute of Sustainability Science, Craft Studies, University of Helsinki, Helsinki 00014, Finland
| | - Tapani Vuorinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
26
|
Naghizadeh M, Dalgaard TS, Klaver L, Engberg RM. Effects of encapsulated butyrate and salinomycin on gut leakage and intestinal inflammation in broilers. Br Poult Sci 2022; 63:499-509. [PMID: 35170392 DOI: 10.1080/00071668.2022.2042483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objectives of this study were to i) compare the effects of a commercial product providing encapsulated butyrate (EB) in combination with salinomycin in diets of broilers with impaired intestinal integrity and ii) to identify easy-to-measure biomarkers to evaluate intestinal integrity and health.2. In total, 672, one-day-old male broilers (Ross 308) were randomly assigned to three experimental groups (eight replicates/group): no dietary supplement (control); EB (500 mg/kg, UltraGuard™-DUO, Devenish, Ireland); salinomycin (69 mg/kg feed, Sacox® 120). Impaired gut integrity was induced by a 10 times overdose of a commercial attenuated live vaccine against coccidiosis (Hipracox®, Hipra) on d 17 combined with a grower feed providing rye (50 g/kg diet).3. Improved intestinal integrity and functionality were reflected by reduced fluorescein isothiocyanate-dextran (FITC-D) plasma levels, reduced bacterial translocation to the liver (on d 21) and increased plasma coloration level on d 21 after dietary supplementation of salinomycin, compared to a non-supplemented control diet. Both EB and salinomycin reduced plasma levels of D-lactate (P<0.05).4. An anti-inflammatory effect of salinomycin was indicated as the transient increase in circulating monocytes observed in the EB and control group from 20 to 28 d of age was slightly, but not significantly reduced, in the salinomycin-fed group. Interestingly, greater expression of tumour necrosis factor α (TNF-α) and mucin 2 (MUC2) genes (P=0.039 and P = 0.067, respectively) were detected in the group receiving salinomycin.5. These effects may have collectively contributed to the significantly improved performance of broilers supplemented with salinomycin. The results indicated that EB at 500 mg/kg in feed, in contrast to salinomycin, neither supported gut health nor modulated intestinal integrity in broilers.
Collapse
Affiliation(s)
- Mohammad Naghizadeh
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Tina Sørensen Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Laura Klaver
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Ricarda Margarete Engberg
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
27
|
Naghizadeh M, Klaver L, Schönherz AA, Rani S, Dalgaard TS, Engberg RM. Impact of Dietary Sodium Butyrate and Salinomycin on Performance and Intestinal Microbiota in a Broiler Gut Leakage Model. Animals (Basel) 2022; 12:111. [PMID: 35011218 PMCID: PMC8749775 DOI: 10.3390/ani12010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Unfavorable alterations of the commensal gut microbiota and dysbacteriosis is a major health problem in the poultry industry. Understanding how dietary intervention alters the microbial ecology of broiler chickens is important for prevention strategies. A trial was conducted with 672 Ross 308 day-old male broilers fed a basic diet (no additives, control) or the basic diet supplemented with 500 mg/kg encapsulated butyrate or 68 mg/kg salinomycin. Enteric challenge was induced by inclusion of 50 g/kg rye in a grower diet and oral gavage of a 10 times overdose of a vaccine against coccidiosis. Compared to control and butyrate-supplemented birds, salinomycin supplementation alleviated growth depression. Compared to butyrate and non-supplemented control, salinomycin increased potentially beneficial Ruminococcaceae and reduced potentially pathogenic Enterobacteriaceae and counts of Lactobacillus salivarius and Clostridium perfringens. Further, salinomycin supplementation was accompanied by a pH decrease and succinic acid increase in ceca, while coated butyrate (0.5 g/kg) showed no or limited effects. Salinomycin alleviated growth depression and maintained intestinal homeostasis in the challenged broilers, while butyrate in the tested concentration showed limited effects. Thus, further investigations are required to identify optimal dietary inclusion rates for butyrate used as alternative to ionophore coccidiostats in broiler production.
Collapse
Affiliation(s)
- Mohammad Naghizadeh
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.K.); (A.A.S.); (S.R.); (T.S.D.)
| | - Laura Klaver
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.K.); (A.A.S.); (S.R.); (T.S.D.)
| | - Anna A. Schönherz
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.K.); (A.A.S.); (S.R.); (T.S.D.)
| | - Sundas Rani
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.K.); (A.A.S.); (S.R.); (T.S.D.)
- SA-Center for Interdisciplinary Research in Basic Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Tina Sørensen Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.K.); (A.A.S.); (S.R.); (T.S.D.)
| | - Ricarda Margarete Engberg
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.K.); (A.A.S.); (S.R.); (T.S.D.)
| |
Collapse
|
28
|
Yu J, Zhou Y, Wen Q, Wang B, Gong H, Zhu L, Lan H, Wu B, Lang W, Zheng X, Wu M. Effects of faecal microbiota transplantation on the growth performance, intestinal microbiota, jejunum morphology and immune function of laying-type chicks. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Context Recent studies have indicated that the early stage of growth is a critical window for intestinal microbiota manipulation to optimise the immunity and body growth. Faecal microbiota transplantation (FMT) is often used to regulate intestinal microbiota colonisation. Aims The aim of this study was to explore the effect of FMT on the growth performance, intestinal microbiota, jejunum morphology and immune function of newly hatched laying-type chicks. Methods The chicks (Hy-line Brown) were randomly divided into the control group (CON) and FMT group (FMT), which were treated with sterile saline and faecal microbiota suspension of Hy-line Brown breeder hens on Days 1, 3 and 5 respectively. For each group, there were five replications of 12 birds each for 4 weeks. This study investigated the body weight, tibia length, intestinal microflora, jejunum morphology and immune indexes of the chicks. Key results The results showed that the body weight and tibia length of birds in the FMT group were significantly increased at 7, 14 and 21 days of age (P < 0.01). Furthermore, we found that FMT altered the intestinal microbiota community of the birds and improved the richness, evenness, diversity and stability of their intestinal microbiota (P < 0.05). The faecal microbiota of the donor hens and birds that received the transplantation were very similar. The villus height and the ratio of the villus to crypt of the birds in the FMT group were significantly (P < 0.0001) higher than those in the control group. In addition, Spearman’s correlation analysis showed that the villus height of the FMT group showed positive correlation with Bacteroides (P < 0.05), and the villus height and the ratio of the villus to crypt in the FMT group showed positive correlations with Megasphaera (P < 0.05). The birds in the FMT group had no significant difference in intestinal length, immune organ indexes, serum β-defensin and IgA concentrations. Conclusions In summary, FMT can promote the early growth performance and jejunum morphology of laying-type chicks and improve the intestinal microbiota. FMT has no significant effect on the immune function of chicks. Implications FMT may be a potential method to improve the health of chicks to enhance the poultry industry.
Collapse
|
29
|
Bindari YR, Gerber PF. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult Sci 2021; 101:101612. [PMID: 34872745 PMCID: PMC8713025 DOI: 10.1016/j.psj.2021.101612] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Maintenance of "gut health" is considered a priority in commercial chicken farms, although a precise definition of what constitutes gut health and how to evaluate it is still lacking. In research settings, monitoring of gut microbiota has gained great attention as shifts in microbial community composition have been associated with gut health and productive performance. However, microbial signatures associated with productivity remain elusive because of the high variability of the microbiota of individual birds resulting in multiple and sometimes contradictory profiles associated with poor or high performance. The high costs associated with the testing and the need for the terminal sampling of a large number of birds for the collection of gut contents also make this tool of limited use in commercial settings. This review highlights the existing literature on the chicken digestive system and associated microbiota; factors affecting the gut microbiota and emergence of the major chicken enteric diseases coccidiosis and necrotic enteritis; methods to evaluate gut health and their association with performance; main issues in investigating chicken microbial populations; and the relationship of microbial profiles and production outcomes. Emphasis is given to emerging noninvasive and easy-to-collect sampling methods that could be used to monitor gut health and microbiological changes in commercial flocks.
Collapse
Affiliation(s)
- Yugal Raj Bindari
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
30
|
Phytogenic Ingredients from Hops and Organic Acids Improve Selected Indices of Welfare, Health Status Markers, and Bacteria Composition in the Caeca of Broiler Chickens. Animals (Basel) 2021; 11:ani11113249. [PMID: 34827980 PMCID: PMC8614400 DOI: 10.3390/ani11113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The selection for the rapid growth rate in broiler chickens that has been carried out over the years has negatively influenced their health and welfare status. In recent years, a number of reports have been delivered on the use of additives that improve broilers’ intestinal peristalsis and production results. The authors of this paper have proved that applying a mixture with 50% hops (manifesting strong antioxidant, antibacterial, and antifungal properties) may bring benefits to the quantity and quality of the final product. This may refer to the production performance, flock health status, and welfare of birds. The thematic scope of this research is currently of significant importance, as veterinary inspections pay particular attention to the quality of litter and the welfare of birds, and this motivates producers to improve breeding conditions, which will contribute to better production systems. Abstract The objective of this study was to determine the influence of phytogenic product-supplemented, organic acid-supplemented, and prebiotic-supplemented diets on the production results, antioxidative status, and selected welfare indices in broiler chickens. A total of 1155 one-day old male Ross 308 broilers were randomly assigned to one of three treatment groups: Group C, no additives; Group A, supplemented with phytogenic supplement (50% hop); and Group P, supplemented with 65% organic acids and their salts, and 30% prebiotic complex. Health condition and production results were monitored during the entire experiment. After 42 days, 10 birds from each dietary treatment group were selected for blood sampling and slaughter analysis. The results obtained revealed that over the whole feeding period, none of the investigated additives significantly affected broiler performance indices. However, feeding the birds treatment-A increased the relative abundance of Bifidobacterium in caecal digesta compared to the other treatments, whereas feeding treatment-P increased the relative abundance of Lactobacillus compared to the control treatment. Overall, treatment-A was more effective at increasing relative abundance of Clostridia in birds at 42 days of age than treatment-P. Finally, there were no changes in blood levels of antioxidant indices or liver function indicators.
Collapse
|
31
|
Zhou Q, Lan F, Li X, Yan W, Sun C, Li J, Yang N, Wen C. The Spatial and Temporal Characterization of Gut Microbiota in Broilers. Front Vet Sci 2021; 8:712226. [PMID: 34527716 PMCID: PMC8435590 DOI: 10.3389/fvets.2021.712226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota of chickens plays an important role in host physiology. However, the colonization and prevalence of gut microbiota have not been well-characterized. Here, we performed 16S rRNA gene sequencing on the duodenal, cecal and fecal microbiota of broilers at 1, 7, 21, and 35 days of age and characterized the dynamic succession of microbiota across the intestinal tract. Our results showed that Firmicutes was the most abundant phylum detected in each gut site at various ages, while the microbial diversity and composition varied among the duodenum, cecum, and feces at different ages. The microbial diversity and complexity of the cecal microbiota increased with age, gradually achieving stability at 21 days of age. As a specific genus in the cecum, Clostridium_sensu_stricto_1 accounted for 83.50% of the total abundance at 1 day of age, but its relative abundance diminished with age. Regarding the feces, the highest alpha diversity was observed at 1 day of age, significantly separated from the alpha diversity of other ages. In addition, no significant differences were observed in the alpha diversity of duodenal samples among 7, 21, and 35 days of age. The predominant bacterium, Lactobacillus, was relatively low (0.68–6.04%) in the intestinal tract of 1-day-old chicks, whereas its abundance increased substantially at 7 days of age and was higher in the duodenum and feces. Escherichia-Shigella, another predominant bacterium in the chicken intestinal tract, was also found to be highly abundant in fecal samples, and the age-associated dynamic trend coincided with that of Lactobacillus. In addition, several genera, including Blautia, Ruminiclostridium_5, Ruminococcaceae_UCG-014, and [Ruminococcus]_torques_group, which are related to the production of short-chain fatty acids, were identified as biomarker bacteria of the cecum after 21 days of age. These findings shed direct light on the temporal and spatial dynamics of intestinal microbiota and provide new opportunities for the improvement of poultry health and production.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Wei Yan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Such N, Farkas V, Csitári G, Pál L, Márton A, Menyhárt L, Dublecz K. Relative Effects of Dietary Administration of a Competitive Exclusion Culture and a Synbiotic Product, Age and Sampling Site on Intestinal Microbiota Maturation in Broiler Chickens. Vet Sci 2021; 8:vetsci8090187. [PMID: 34564581 PMCID: PMC8472864 DOI: 10.3390/vetsci8090187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
In this research, the effects of early post-hatch inoculation of a competitive exclusion product (Br) and the continuous feeding of a synbiotic supplement (Sy) containing probiotic bacteria, yeast, and inulin on the production traits and composition of ileal chymus (IC), ileal mucosa (IM), and caecal chymus (CC) microbiota of broiler chickens were evaluated. The dietary treatments had no significant effects on the pattern of intestinal microbiota or production traits. The digestive tract bacteriota composition was affected mostly by the sampling place and age of birds. The dominant family of IC was Lactobacillaceae, without change with the age. The abundance of the two other major families, Enterococcaceae and Lachnospiraceae decreased with the age of birds. In the IM, Clostridiaceae was the main family in the first three weeks. Its ratio decreased later and Lactobacillaceae became the dominant family. In the CC, Ruminococcaceae and Lachnospiraceae were the main families with decreasing tendency in the age. In IC, Br treatment decreased the abundance of genus Lactobacillus, and both Br and Sy increased the ratio of Enterococcus at day 7. In all gut segments, a negative correlation was found between the IBD antibody titer levels and the ratio of genus Leuconostoc in the first three weeks, and a positive correlation was found in the case of Bifidobacterium, Rombutsia, and Turicibacter between day 21 and 40.
Collapse
Affiliation(s)
- Nikoletta Such
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Valéria Farkas
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Gábor Csitári
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - László Pál
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Aliz Márton
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - László Menyhárt
- Institute of Technology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
- Correspondence: ; Tel.: +36-30-6418597
| |
Collapse
|
33
|
Alghirani MM, Chung ELT, Sabri DSM, Tahir MNJM, Kassim NA, Kamalludin MH, Nayan N, Jesse FFA, Sazili AQ, Loh TC. Can Yucca schidigera Be Used to Enhance the Growth Performance, Nutrient Digestibility, Gut Histomorphology, Cecal Microflora, Carcass Characteristic, and Meat Quality of Commercial Broilers Raised under Tropical Conditions? Animals (Basel) 2021; 11:2276. [PMID: 34438734 PMCID: PMC8388359 DOI: 10.3390/ani11082276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
This study aims to study the effect of Yucca shidigera as a phytobiotic supplementation in enhancing the production performance of commercial broilers reared under tropical environments. A total of 300 male day-old Ross 308 broiler chicks were randomly allocated into six treatment groups. Treatment 1 broilers were fed with commercial diets without antibiotics. Treatment 2 broilers were fed with commercial diets added with 100 mg/kg oxytetracycline antibiotic. Treatment 3, 4, 5, and 6 were fed with the same commercial diets added with 25, 50, 75, and 100 mg/kg Y. shidigera, respectively, without antibiotic. Throughout the six weeks study period, body weight and feed intake were recorded weekly for each replicate to calculate the body weight gain and feed conversion ratio. In addition, the nutrient digestibility, gut histomorphology, cecal microflora population, carcass characteristics, and meat quality were determined. The results showed significant differences (p < 0.05) in the growth performance, apparent ileal nutrient digestibility, gut histomorphology, carcass traits, and meat quality. Overall, T6 broilers supplemented with 100 mg/kg Y. shidigera demonstrated the best production performances as compared to the other treatment broilers. In summary, information from this study will be valuable for the usability of Y. schidigera, which could be developed as a feed additive to replace antibiotics in the poultry sector in the tropics.
Collapse
Affiliation(s)
- Mohamed M. Alghirani
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
| | - Eric Lim Teik Chung
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Danial Shah Mohd Sabri
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
| | - Muhammad Nasir Jalaluddin Mohd Tahir
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
| | - Nafeesa Abu Kassim
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Mamat Hamidi Kamalludin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Nazri Nayan
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.M.A.); (D.S.M.S.); (M.N.J.M.T.); (M.H.K.); (N.N.); (A.Q.S.); (T.C.L.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
34
|
Employment of Phenolic Compounds from Olive Vegetation Water in Broiler Chickens: Effects on Gut Microbiota and on the Shelf Life of Breast Fillets. Molecules 2021; 26:molecules26144307. [PMID: 34299582 PMCID: PMC8306377 DOI: 10.3390/molecules26144307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Olive vegetation water (OVW) is a by-product with a noticeable environmental impact; however, its polyphenols may be reused food and feed manufacture as high-value ingredients with antioxidant/antimicrobial activities. The effect of dietary supplementation with OVW polyphenols on the gut microbiota, carcass and breast quality, shelf life, and lipid oxidation in broiler chickens has been studied. Chicks were fed diets supplemented with crude phenolic concentrate (CPC) obtained from OVW (220 and 440 mg/kg phenols equivalent) until reaching commercial size. Cloacal microbial community (rRNA16S sequencing) was monitored during the growth period. Breasts were submitted to culture-dependent and -independent microbiological analyses during their shelf-life. Composition, fatty acid concentration, and lipid oxidation of raw and cooked thawed breasts were measured. Growth performance and gut microbiota were only slightly affected by the dietary treatments, while animal age influenced the cloacal microbiota. The supplementation was found to reduce the shelf life of breasts due to the growth of spoilers. Chemical composition and lipid oxidation were not affected. The hydroxytyrosol (HT) concentration varied from 178.6 to 292.4 ug/kg in breast muscle at the beginning of the shelf-life period. The identification of HT in meat demonstrates that the absorption and metabolism of these compounds was occurring efficiently in the chickens.
Collapse
|
35
|
Delaney S, Do TT, Corrigan A, Murphy R, Walsh F. Investigation into the effect of mannan-rich fraction supplementation on the metagenome of broiler chickens. Microb Genom 2021; 7. [PMID: 34259622 PMCID: PMC8477404 DOI: 10.1099/mgen.0.000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is regarded as one of the most serious threats to human health worldwide. The rapid increase in resistance rates has been attributed to the extensive use of antibiotics since they became commercially available. The use of antibiotics as growth promotors has been banned in numerous regions for this reason. Mannan-rich fraction (MRF) has been reported to show similar growth-promoting effects to antibiotics. We investigated the effect of MRF on the microbial community, resistome and metabolic pathways within the caecum of commercial broilers at two different timepoints within the growth of the broiler, day 27 and day 34. The data indicated an overall increase in health and economic gain for the producer with the addition of MRF to the diet of the broilers. The only significant difference across the microbial composition of the samples was in the richness of the microbial communities across all samples. While all samples harboured resistance genes conferring resistance to the same classes of antibiotics, there was significant variation in the antimicrobial resistance gene richness across time and treatment and across combinations of time and treatment. The taxa with positive correlation comprised Bacilli and Clostridia. The negative correlation taxa were also dominated by Bacilli, specifically the Streptococcus genera. The KEGG-pathway analysis identified an age-related change in the metabolism pathway abundances of the caecal microflora. We suggest that the MRF-related increases in health and weight gain in the broilers may be associated with changes in the metabolism of the microbiomes rather than the microbial composition. The resistome variations across samples were correlated with specific genera. These data may be used to further enhance the development of feed supplements to reduce the presence of antibiotic resistance genes (ARGs) within poultry. While the ARGs of greatest concern to human or animal health were not detected in this study, it has identified the potential to reduce the presence of ARGs by the increase in specific genera.
Collapse
Affiliation(s)
- Sarah Delaney
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Alltech European Bioscience CentreDunboyne, Co. Meath, Ireland
| | - Thi Thuy Do
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Aoife Corrigan
- Alltech European Bioscience CentreDunboyne, Co. Meath, Ireland
| | - Richard Murphy
- Alltech European Bioscience CentreDunboyne, Co. Meath, Ireland
| | - Fiona Walsh
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
36
|
Volf J, Crhanova M, Karasova D, Faldynova M, Kubasova T, Seidlerova Z, Sebkova A, Zeman M, Juricova H, Matiasovicova J, Foltyn M, Tvrdon Z, Rychlik I. Eggshell and Feed Microbiota Do Not Represent Major Sources of Gut Anaerobes for Chickens in Commercial Production. Microorganisms 2021; 9:microorganisms9071480. [PMID: 34361916 PMCID: PMC8305510 DOI: 10.3390/microorganisms9071480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we addressed the origin of chicken gut microbiota in commercial production by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during prenatal or neonatal development it is possible to successfully administer probiotics. We found that eggshell microbiota was a combination of environmental and adult hen gut microbiota but was completely different from caecal microbiota of 7-day-old chicks. Similarly, we observed that the composition of feed microbiota was different from caecal microbiota. Neither eggshell nor feed acted as an important source of gut microbiota for the chickens in commercial production. Following the experimental administration of potential probiotics, we found that chickens can be colonised only when already hatched and active. Spraying of eggs with gut anaerobes during egg incubation or hatching itself did not result in effective chicken colonisation. Such conclusions should be considered when selecting and administering probiotics to chickens in hatcheries. Eggshells, feed or drinking water do not act as major sources of gut microbiota. Newly hatched chickens must be colonised from additional sources, such as air dust with spores of Clostridiales. The natural colonisation starts only when chickens are already hatched, as spraying of eggs or even chickens at the very beginning of the hatching process did not result in efficient colonisation.
Collapse
Affiliation(s)
- Jiri Volf
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Magdalena Crhanova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Marcela Faldynova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Tereza Kubasova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Zuzana Seidlerova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Alena Sebkova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Michal Zeman
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Helena Juricova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Jitka Matiasovicova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
| | - Marian Foltyn
- Hatchery Vodnanske Kure, Komenskeho 75, 768 11 Chropyne, Czech Republic; (M.F.); (Z.T.)
| | - Zdenek Tvrdon
- Hatchery Vodnanske Kure, Komenskeho 75, 768 11 Chropyne, Czech Republic; (M.F.); (Z.T.)
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (J.V.); (M.C.); (D.K.); (M.F.); (T.K.); (Z.S.); (A.S.); (M.Z.); (H.J.); (J.M.)
- Correspondence: ; Tel.: +420-533331201
| |
Collapse
|
37
|
Yaqoob MU, El-Hack MEA, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, Yehia N, Elnesr SS, Alagawany M, El-Tarabily KA, Wang M. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult Sci 2021; 100:101143. [PMID: 34062442 PMCID: PMC8170421 DOI: 10.1016/j.psj.2021.101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 12/02/2022] Open
Abstract
Prebiotics may modify the biological processes in the chickens' gastrointestinal tract to improve poultry performance and health. Prebiotics are natural feed additives that offer many economic advantages by decreasing mortality rates, increasing growth rates, and improving birds' feed efficiency. Prebiotic action potentially affects the degradation of indigestible dietary compounds, the synthesis of nitrogen components and vitamins, and simplifies the removal of undesirable elements in the diet. Prebiotics could also induce desirable gut microbiome modifications and affect host metabolism and immune health. It is worth mentioning that gut bacteria metabolize the prebiotic compounds into organic compounds that the host can subsequently use. It is important to limit the concept of prebiotics to compounds that influence the metabolism of resident microorganisms. Any medicinal component or feed ingredient beneficial to the intestinal microecosystem can be considered a prebiotic. In this review, the impacts of prebiotics on the gut microbiome and physiological structure are discussed, emphasizing the poultry's growth performance. The current review will highlight the knowledge gaps in this area and future research directions.
Collapse
Affiliation(s)
- M U Yaqoob
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - M E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - F Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - M T El-Saadony
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - A F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - G E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 080-8555, Obihiro, Hokkaido, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| | - N Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research center, Cairo, Egypt
| | - S S Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - M Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - K A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates; Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - M Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
38
|
Schokker D, de Klerk B, Borg R, Bossers A, Rebel JM. Factors Influencing the Succession of the Fecal Microbiome in Broilers. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Saracila M, Panaite TD, Papuc CP, Criste RD. Heat Stress in Broiler Chickens and the Effect of Dietary Polyphenols, with Special Reference to Willow ( Salix spp .) Bark Supplements-A Review. Antioxidants (Basel) 2021; 10:antiox10050686. [PMID: 33925609 PMCID: PMC8146860 DOI: 10.3390/antiox10050686] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been a growing interest in the use of a wide range of phytoadditives to counteract the harmful effects of heat stress in poultry. Willow (Salix spp.) is a tree with a long history. Among various forms, willow bark is an important natural source of salicin, β-O-glucoside of saligenin, but also of polyphenols (flavonoids and condensed tannins) with antioxidant, antimicrobial, and anti-inflammatory activity. In light of this, the current review presents some literature data aiming to: (1) describe the relationship between heat stress and oxidative stress in broilers, (2) present or summarize literature data on the chemical composition of Salix species, (3) summarize the mechanisms of action of willow bark in heat-stressed broilers, and (4) present different biological effects of the extract of Salix species in different experimental models.
Collapse
Affiliation(s)
- Mihaela Saracila
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucuresti, 1, Balotesti, 077015 Ilfov, Romania; (T.D.P.); (R.D.C.)
- Faculty of Animal Production Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-351-2081
| | - Tatiana Dumitra Panaite
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucuresti, 1, Balotesti, 077015 Ilfov, Romania; (T.D.P.); (R.D.C.)
| | - Camelia Puia Papuc
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania;
- Academy of Romanian Scientists (AOSR), 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Rodica Diana Criste
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucuresti, 1, Balotesti, 077015 Ilfov, Romania; (T.D.P.); (R.D.C.)
| |
Collapse
|
40
|
Hadieva G, Lutfullin M, Pudova D, Akosah Y, Shagimardanova E, Gogoleva N, Sharipova M, Mardanova A. Supplementation of Bacillus subtilis GM5 enhances broiler body weight gain and modulates cecal microbiota. 3 Biotech 2021; 11:126. [PMID: 33643761 DOI: 10.1007/s13205-020-02634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/25/2023] Open
Abstract
We investigated the effect of the strain Bacillus subtilis GM5 on growth, feed conversion, and the composition of cecum microbiota in broiler chickens. Half of which received a control diet, while the other half was fed a diet supplemented with GM5 spores. Cecal contents on days 1, 10, and 42 were subjected to metataxonomic analysis. Principal Component Analysis showed that the control and probiotic groups formed three separate clusters, indicating changes, which occurred gradually in microbial communities. On day 1, Firmicutes (53.87-57.61%) and Proteobacteria (43.77-38.93%) were prevalent in both groups, whereas samples of days 10 and 42 were predominantly occupied by Firmicutes (54.55-81.79%) and Bacteroidetes (26.94-30.45%). In the group of chickens treated with probiotic, the average daily gain in body weight was higher, while feed conversion decreased by 1.44%. A surge in the presence of beneficial bacteria of the Ruminococcaceae family was observed. The introduction of the probiotic led to an elevated Firmicutes/Bacteroidetes ratio, which positively correlated with chickens' bodyweight (Spearman ρ = 1.0, P < 0.05). Supplementing broiler feed with B. subtilis GM5 spores leads to improved feed intake and digestibility, which is paramount in reducing the cost of the final product. Thus, the probiotic strain GM5 modulates the cecal microbiota of broiler chickens and increases microbial diversity, which is well exhibited on the 42nd day. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02634-2.
Collapse
|
41
|
Patuzzi I, Orsini M, Cibin V, Petrin S, Mastrorilli E, Tiengo A, Gobbo F, Catania S, Barco L, Ricci A, Losasso C. The Interplay between Campylobacter and the Caecal Microbial Community of Commercial Broiler Chickens over Time. Microorganisms 2021; 9:221. [PMID: 33499060 PMCID: PMC7911313 DOI: 10.3390/microorganisms9020221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Campylobacter is the most frequent foodborne zoonotic bacteria worldwide, with chicken meat being overwhelmingly the most important reservoir for human infections. Control measures implemented at the farm level (i.e., biosecurity or vaccination), which have been successfully applied to limit other pathogens, such as Salmonella, have not been effective in reducing Campylobacter occurrence. Thus, new approaches are needed to fully understand the ecological interactions of Campylobacter with host animals to effectively comprehend its epidemiology. The objective of this study was to analyse longitudinally the gut microbiota composition of Campylobacter-infected and non-infected farms to identify any difference that could potentially be indicative of gut colonization by Campylobacter spp. Differences in the colonization rate and timing were observed at the farms that became positive for Campylobacter jejuni over the investigated time points, even though in positive tests, the occurrence of Campylobacter jejuni gut colonization was not observed before the second week of the life of the birds. Significant differences were observed in the abundances of specific bacterial taxa between the microbiota of individuals belonging to farms that became Campylobacter positive during the study and those who remained negative with particular reference to Bacteroidales and Clostridiales, respectively. Moreover, Campylobacter colonization dramatically influenced the microbiota richness, although to a different extent depending on the infection timing. Finally, a key role of Faecalibacterium and Lactobacillus genera on the Campylobacter microbial network was observed. Understanding the ecology of the Campylobacter interaction with host microbiota during infection could support novel approaches for broiler microbial barrier restoration. Therefore, evidence obtained through this study can be used to identify options to reduce the incidence of infection at a primary production level based on the targeted influence of the intestinal microbiota, thus helping develop new control strategies in order to mitigate the risk of human exposure to Campylobacter by chicken meat consumption.
Collapse
Affiliation(s)
- Ilaria Patuzzi
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Massimiliano Orsini
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Veronica Cibin
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Sara Petrin
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Eleonora Mastrorilli
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Alessia Tiengo
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Federica Gobbo
- Avian Pathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (F.G.); (S.C.)
| | - Salvatore Catania
- Avian Pathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (F.G.); (S.C.)
| | - Lisa Barco
- Experimental Microbiology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy;
| | - Antonia Ricci
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Carmen Losasso
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| |
Collapse
|
42
|
Knudsen C, Arroyo J, Even M, Cauquil L, Pascal G, Fernandez X, Lavigne F, Davail S, Combes S, Ricaud K. The intestinal microbial composition in Greylag geese differs with steatosis induction mode: spontaneous or induced by overfeeding. Anim Microbiome 2021; 3:6. [PMID: 33499980 PMCID: PMC7934468 DOI: 10.1186/s42523-020-00067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Relationships between microbial composition and steatosis are being extensively studied in mammals, and causal relations have been evidenced. In migratory birds the liver can transiently store lipids during pre-migratory and migratory phases, but little is known about the implications of the digestive microbiota in those mechanisms. The Landaise greylag goose (Anser anser) is a good model to study steatosis in migratory birds as it is domesticated, but is still, from a genetic point of view, close to its wild migratory ancestor. It also has a great ingestion capacity and a good predisposition for hepatic steatosis, whether spontaneous or induced by conventional overfeeding. The conventional (overfeeding) and alternative (spontaneous steatosis induction) systems differ considerably in duration and feed intake level and previous studies have shown that aptitudes to spontaneous steatosis are very variable. The present study thus aimed to address two issues: (i) evaluate whether microbial composition differs with steatosis-inducing mode; (ii) elucidate whether a digestive microbial signature could be associated with variable aptitudes to spontaneous liver steatosis. Results Performances, biochemical composition of the livers and microbiota differed considerably in response to steatosis stimulation. We namely identified the genus Romboutsia to be overrepresented in birds developing a spontaneous steatosis in comparison to those submitted to conventional overfeeding while the genera Ralstonia, Variovorax and Sphingomonas were underrepresented only in birds that did not develop a spontaneous steatosis compared to conventionally overfed ones, birds developing a spontaneous steatosis having intermediate values. Secondly, no overall differences in microbial composition were evidenced in association with variable aptitudes to spontaneous steatosis, although one OTU, belonging to the Lactobacillus genus, was overrepresented in birds having developed a spontaneous steatosis compared to those that had not. Conclusions Our study is the first to evaluate the intestinal microbial composition in association with steatosis, whether spontaneous or induced by overfeeding, in geese. Steatosis induction modes were associated with distinct digestive microbial compositions. However, unlike what can be observed in mammals, no clear microbial signature associated with spontaneous steatosis level was identified.
Collapse
Affiliation(s)
- Christelle Knudsen
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.
| | - Julien Arroyo
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, 24420, Coulaures, France
| | - Maxime Even
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Xavier Fernandez
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Franck Lavigne
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, 24420, Coulaures, France
| | - Stéphane Davail
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Karine Ricaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| |
Collapse
|
43
|
Ibrahim D, Abdelfattah-Hassan A, Arisha AH, El-Aziz RMA, Sherief WR, Adli SH, El Sayed R, Metwally AE. Impact of feeding anaerobically fermented feed supplemented with acidifiers on its quality and growth performance, intestinal villi and enteric pathogens of mulard ducks. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, Wang Z. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep 2020; 10:19978. [PMID: 33203893 PMCID: PMC7673032 DOI: 10.1038/s41598-020-76821-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
Pigeons, as the only altricial birds in poultry, are the primary Trichomonas gallinae (T. gallinae) host. To study the effects of T. gallinae infection on gut microbiota, we compared the microbiota diversity and composition in gastrointestinal (GI) tracts of pigeons at the age of 14 and 21 day with different degrees of T. gallinae infection. Thirty-six nestling pigeons were divided into three groups: the healthy group, low-grade and high-grade trichomonosis group. Then, the crop, small intestine and rectum contents were obtained for sequencing of the 16S rRNA gene V3–V4 hypervariable region. The results showed that the microbiota diversity was higher in crop than in small intestine and rectum, and the abundance of Lactobacillus genus was dominant in small intestine and rectum of healthy pigeons at 21 days. T. gallinae infection decreased the microbiota richness in crop at 14 days. The abundance of the Firmicutes phylum and Lactobacillus genus in small intestine of birds at 21 days were decreased by infection, however the abundances of Proteobacteria phylum and Enterococcus, Atopobium, Roseburia, Aeriscardovia and Peptostreptococcus genus increased. The above results indicated that crop had the highest microbiota diversity among GI tract of pigeons, and the gut microbiota diversity and composition of pigeon squabs were altered by T. gallinae infection.
Collapse
Affiliation(s)
- Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaohan Yu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dacong Shan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
45
|
Neijat M, Habtewold J, Li S, Jing M, House JD. Effect of dietary n-3 polyunsaturated fatty acids on the composition of cecal microbiome of Lohmann hens. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102182. [PMID: 33038831 DOI: 10.1016/j.plefa.2020.102182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Supplementation of n-3 fatty acids to poultry diets is widely acknowledged for its role in enhancing poultry products, however, little is known about the compositional responses of gut microbial communities to type and dosage of these supplements. Here, we compared the effects of n-3 polyunsaturated fatty acids (PUFA), supplied as alpha-linolenic acid (ALA) or docosahexaenoic acid (DHA), on the composition of bacterial communities in ceca of laying hens. Corn-soybean basal diets were supplemented with either flaxseed oil (FO, ALA-rich) or marine algal biomass (MA, DHA-rich), and each supplied 0.20 and 0.60% of total n-3 PUFA in the diet. Lohmann LSL-Classic laying hens (n = 10/treatment) were randomly allocated to one of the 4 diets. After 8 weeks of feeding, blood, liver and cecal digesta samples were obtained for plasma glucose, fatty acids, and short chain fatty acids analyses, respectively. The gut bacterial communities were characterized using genomic DNA extracted from cecal contents, whereby the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina Miseq® platform. Firmicutes and Bacteroidetes were the predominant phyla in both the FO- and MA-fed groups. The relative abundance of Tenericutes, often associated with immunomodulation, was relatively higher (P<0.0001) in the FO than MA group. Although the relative abundance of Bacteroides was greater for the FO- than the MA-fed group, this genus was negatively correlated (P<0.05) with total n-3 PUFA in the liver at higher dosages of both FO- and MA-fed hens. Higher dose of FO (0.60%) and both dosages of MA (0.20 and 0.60%) substantially enriched several members of Firmicutes (e.g., Faecalibacterium, Clostridium and Ruminococcus) which are known to produce butyrate. Moreover, co-occurrence network analysis revealed that, in the FO 0.60- and MA 0.20-fed hens, Ruminococcaceae was the most influential taxon accounting for about 31% of the network complexity. These findings demonstrate that supplementation of different type and level of n-3 PUFA in hens' diets could enrich microbial communities with potential role in lipid metabolism and health.
Collapse
Affiliation(s)
- M Neijat
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - J Habtewold
- Agriculture and Agri-Food Canada (AAFC), Ottawa, Ontario, Canada
| | - S Li
- Department of Animal Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - M Jing
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - J D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Department of Animal Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, R3T 2E1, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
46
|
Kers JG, de Oliveira JE, Fischer EAJ, Tersteeg‐Zijderveld MHG, Konstanti P, Stegeman JA(A, Smidt H, Velkers FC. Associations between phenotypic characteristics and clinical parameters of broilers and intestinal microbial development throughout a production cycle: A field study. Microbiologyopen 2020; 9:e1114. [PMID: 33068065 PMCID: PMC7658455 DOI: 10.1002/mbo3.1114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
Disturbances in intestinal health are a common problem affecting commercial broiler chickens worldwide. Several studies have revealed associations between health, production performance, and intestinal microbiota. This study aimed to describe the development of the intestinal microbiota of broilers within a production cycle to evaluate to what extent clinical parameters and phenotypic characteristics can explain the intestinal microbiota variation. Of four well-performing flocks within two farms, the cecal content was collected of nine broilers at 0, 2, 4, or 5, 7, 11, or 12, 14, 21, 28, 35, and 40 days of the production cycle. In total, 342 samples were analyzed using 16S ribosomal RNA gene amplicon sequencing. Variables as macroscopic gut abnormalities, gut lesions, age, individual body weight, sex, footpad integrity, the color of ceca, and foam in cecal content were determined. Ileum tissue was collected for histological quantification of villus length and crypt depth. Flock infection levels of the intestinal disease coccidiosis were measured in pooled feces from the poultry house. Increases in phylogenetic diversity were observed from hatch until day 21 of age. Constrained multivariate analysis indicated that age, farm, body weight, ileum crypt depth, cecal color, and the coccidiosis lesion score were important variables to describe the variation in cecal microbiota. These results contribute to determining relevant variables in flocks that may be indicative of the intestinal microbiota composition. Moreover, this knowledge increases the awareness of interactions between the intestinal microbiota and broiler health as well as their relative importance.
Collapse
Affiliation(s)
- Jannigje G. Kers
- Department of Population Health SciencesDivision of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Jean E. de Oliveira
- Cargill Animal Nutrition and HealthInnovation Center VelddrielVelddrielThe Netherlands
| | - Egil A. J. Fischer
- Department of Population Health SciencesDivision of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Monique H. G. Tersteeg‐Zijderveld
- Department of Population Health SciencesInstitute for Risk Assessment SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Prokopis Konstanti
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Jan Arend (Arjan) Stegeman
- Department of Population Health SciencesDivision of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Francisca C. Velkers
- Department of Population Health SciencesDivision of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
47
|
Pascual A, Trocino A, Birolo M, Cardazzo B, Bordignon F, Ballarin C, Carraro L, Xiccato G. Dietary supplementation with sodium butyrate: growth, gut response at different ages, and meat quality of female and male broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1824590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Antón Pascual
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Angela Trocino
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Marco Birolo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Padova, Italy
| | - Barbara Cardazzo
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Francesco Bordignon
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
- Institute of Animal Science and Technology, Polytechnic University of Valencia, Valencia, Spain
| | - Cristina Ballarin
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Lisa Carraro
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Gerolamo Xiccato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Padova, Italy
| |
Collapse
|
48
|
The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult Sci 2020; 99:5883-5895. [PMID: 33142506 PMCID: PMC7647869 DOI: 10.1016/j.psj.2020.08.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
The gut microbiota play an important role in the growth and intestinal health of broilers. The present study was to investigate the gut microbiota, short-chain fatty acids, and intestinal morphology of broilers at different ages. A total of 320 one-day-old male broilers were raised in 8 replicates and fed the same corn–soybean diets for 42 D. The duodenal, jejunal, and ileal segments and their and cecal microbiota were collected on day 1, 7, 14, 21, and 42, respectively. The villous height (VH), crypt depth (CD), and their ratio of VH:CD in the duodenum, jejunum, and ileum all increased (P < 0.05) with age. Caecal acetate, propionate, butyrate, valerate, and isovalerate increased (P < 0.01), but isobutyrate decreased (P < 0.001) with age. The cecum had the greatest (P < 0.001) alpha diversity of bacterial community in broilers at different ages. Beta diversities showed distinct differences in gut microbial compositions among different ages (R = 0.55, P < 0.002) and different intestinal segments (R = 0.53, P < 0.002). Lactobacillus was the most abundant genus in the duodenum (36∼97%), jejunum (39∼72%), and ileum (24∼96%) at all ages, and in the ileum, it was positively correlated with VH (R = 0.559, P < 0.03), VH:CD (R = 0.55, P < 0.03), and acetate contents (R = 0.541, P < 0.04) but negatively correlated (R = -0.50, P < 0.05) with isobutyrate contents. Escherichia–Shigella and Salmonella dominated in the cecum of newly hatched broilers, and then the Bacteroides dominated in the cecum on day 42. In the cecum, Escherichia–Shigella was positively correlated (R = 0.577∼0.662, P < 0.05) with isobutyrate contents and Salmonella negatively correlated (R = -0.539∼-0.843, P < 0.05) with isovalerate, butyrate, and acetate contents. These aforementioned results indicated that the most abundant Lactobacillus from the small intestine and the most diversity of microflora community and short-chain fatty acids in the cecum might contribute to the development of intestinal structure in the whole growing period of broilers.
Collapse
|
49
|
Duquenoy A, Ania M, Boucher N, Reynier F, Boucinha L, Andreoni C, Thomas V. Caecal microbiota compositions from 7-day-old chicks reared in high-performance and low-performance industrial farms and systematic culturomics to select strains with anti-Campylobacter activity. PLoS One 2020; 15:e0237541. [PMID: 32834007 PMCID: PMC7446796 DOI: 10.1371/journal.pone.0237541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
There is growing interest in exploring the chickens' intestinal microbiota and understanding its interactions with the host. The objective is to optimize this parameter in order to increase the productivity of farm animals. With the goal to isolate candidate probiotic strains, specific culturomic methods were used in our study to culture commensal bacteria from 7-days old chicks raised in two farms presenting long history of high performance. A total of 347 isolates were cultured, corresponding to at least 64 species. Among the isolates affiliated to the Firmicutes, 26 had less than 97% identity of their partial 16S sequence with that of the closest described species, while one presented less than 93% identity, thus revealing a significant potential for new species in this ecosystem. In parallel, and in order to better understand the differences between the microbiota of high-performing and low-performing animals, caecal contents of animals collected from these two farms and from a third farm with long history of low performance were collected and sequenced. This compositional analysis revealed an enrichment of Faecalibacterium-and Campylobacter-related sequences in lower-performing animals whereas there was a higher abundance of enterobacteria-related sequences in high-performing animals. We then investigated antibiosis activity against C. jejuni ATCC 700819 and C. jejuni field isolate as a first phenotypic trait to select probiotic candidates. Antibiosis was found to be limited to a few strains, including several lactic acid bacteria, a strain of Bacillus horneckiae and a strain of Escherichia coli. The antagonist activity depended on test conditions that mimicked the evolution of the intestinal environment of the chicken during its lifetime, i.e. temperature (37°C or 42°C) and oxygen levels (aerobic or anaerobic conditions). This should be taken into account according to the stage of development of the animal at which administration of the active strain is envisaged.
Collapse
|
50
|
Effects of Vitamin B2 Supplementation in Broilers Microbiota and Metabolome. Microorganisms 2020; 8:microorganisms8081134. [PMID: 32727134 PMCID: PMC7464963 DOI: 10.3390/microorganisms8081134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/04/2023] Open
Abstract
The study of the microbiome in broiler chickens holds great promise for the development of strategies for health maintenance and performance improvement. Nutritional strategies aimed at modulating the microbiota-host relationship can improve chickens' immunological status and metabolic fitness. Here, we present the results of a pilot trial aimed at analyzing the effects of a nutritional strategy involving vitamin B2 supplementation on the ileum, caeca and litter microbiota of Ross 308 broilers, as well as on the metabolic profile of the caecal content. Three groups of chickens were administered control diets and diets supplemented with two different dosages of vitamin B2. Ileum, caeca, and litter samples were obtained from subgroups of birds at three time points along the productive cycle. Sequencing of the 16S rRNA V3-V4 region and NMR metabolomics were used to explore microbiota composition and the concentration of metabolites of interest, including short-chain fatty acids. Vitamin B2 supplementation significantly modulated caeca microbiota, with the highest dosage being more effective in increasing the abundance of health-promoting bacterial groups, including Bifidobacterium, resulting in boosted production of butyrate, a well-known health-promoting metabolite, in the caeca environment.
Collapse
|