1
|
Margot C, Rhoads W, Gabrielli M, Olive M, Hammes F. Dynamics of drinking water biofilm formation associated with Legionella spp. colonization. NPJ Biofilms Microbiomes 2024; 10:101. [PMID: 39368992 PMCID: PMC11455961 DOI: 10.1038/s41522-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 105 cells/cm2, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 104 MPN/cm2 after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.
Collapse
Affiliation(s)
- Céline Margot
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - William Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Margot Olive
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
2
|
Waegenaar F, García-Timermans C, Van Landuyt J, De Gusseme B, Boon N. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential. Appl Environ Microbiol 2024; 90:e0004224. [PMID: 38647288 PMCID: PMC11107155 DOI: 10.1128/aem.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Biofilms within drinking water distribution systems serve as a habitat for drinking water microorganisms. However, biofilms can negatively impact drinking water quality by causing water discoloration and deterioration and can be a reservoir for unwanted microorganisms. In this study, we investigated whether indicator organisms for drinking water quality, such as coliforms, can settle in mature drinking water biofilms. Therefore, a biofilm monitor consisting of glass rings was used to grow and sample drinking water biofilms. Two mature drinking water biofilms were characterized by flow cytometry, ATP measurements, confocal laser scanning microscopy, and 16S rRNA sequencing. Biofilms developed under treated chlorinated surface water supply exhibited lower cell densities in comparison with biofilms resulting from treated groundwater. Overall, the phenotypic as well as the genotypic characteristics were significantly different between both biofilms. In addition, the response of the biofilm microbiome and possible biofilm detachment after minor water quality changes were investigated. Limited changes in pH and free chlorine addition, to simulate operational changes that are relevant for practice, were evaluated. It was shown that both biofilms remained resilient. Finally, mature biofilms were prone to invasion of the coliform, Serratia fonticola. After spiking low concentrations (i.e., ±100 cells/100 mL) of the coliform to the corresponding bulk water samples, the coliforms were able to attach and get established within the mature biofilms. These outcomes emphasize the need for continued research on biofilm detachment and its implications for water contamination in distribution networks. IMPORTANCE The revelation that even low concentrations of coliforms can infiltrate into mature drinking water biofilms highlights a potential public health concern. Nowadays, the measurement of coliform bacteria is used as an indicator for fecal contamination and to control the effectiveness of disinfection processes and the cleanliness and integrity of distribution systems. In Flanders (Belgium), 533 out of 18,840 measurements exceeded the established norm for the coliform indicator parameter in 2021; however, the source of microbial contamination is mostly unknown. Here, we showed that mature biofilms, are susceptible to invasion of Serratia fonticola. These findings emphasize the importance of understanding and managing biofilms in drinking water distribution systems, not only for their potential to influence water quality, but also for their role in harboring and potentially disseminating pathogens. Further research into biofilm detachment, long-term responses to operational changes, and pathogen persistence within biofilms is crucial to inform strategies for safeguarding drinking water quality.
Collapse
Affiliation(s)
- Fien Waegenaar
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Cristina García-Timermans
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Josefien Van Landuyt
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Bart De Gusseme
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
- Farys, Department R&D – Innovation Water, Ghent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| |
Collapse
|
3
|
Niu J, Chen D, Shang C, Xiao L, Wang Y, Zeng W, Zheng X, Chen Z, Du X, Chen X. Niche Differentiation of Biofilm Microorganisms in a Full-scale Municipal Drinking Water Distribution System in China and Their Implication for Biofilm Control. MICROBIAL ECOLOGY 2023; 86:2770-2780. [PMID: 37542538 DOI: 10.1007/s00248-023-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Biofilms on the inner surface of a drinking water distribution system (DWDS) affect water quality and stability. Understanding the niche differentiation of biofilm microbial communities is necessary for the efficient control of DWDS biofilms. However, biofilm studies are difficult to conduct in the actual DWDS because of inaccessibility to the pipes buried underground. Taking the opportunity of infrastructure construction and relevant pipeline replacement in China, biofilms in a DWDS (a water main and its branch pipes) were collected in situ, followed by analysis on the abundances and community structures of bacterial and archaeal using quantitative PCR and high-throughput sequencing, respectively. Results showed that archaea were detected only in the biofilms of the water main, with a range of 9.4×103~1.1×105 copies/cm2. By contrast, bacteria were detected in the biofilms of branch pipes and the distal part of the water main, with a range of 8.8×103~9.6×106 copies/cm2. Among the biofilm samples, the archaeal community in the central part of the water main showed the highest richness and diversity. Nitrosopumilus was found to be predominant (86.22%) in the biofilms of the proximal part of the water main. However, Methanobrevibacter (87.15%) predominated in the distal part of the water main. The bacterial community of the water main and branch pipes was primarily composed of Firmicutes and Proteobacteria at the phylum level, respectively. Regardless of archaea or bacteria, only few operational taxonomic units (OTUs) (<0.5% of total OTUs) were shared by all the biofilms, indicating the niche differentiation of biofilm microorganisms. Moreover, the high Mn content in the biofilms of the distal sampling location (D3) in the water main was linked to the predominance of Bacillus. Functional gene prediction revealed that the proportion of infectious disease-related genes was 0.44-0.67% in the tested biofilms. Furthermore, functional genes related to the resistance of the bacterial community to disinfections and antibiotics were detected in all the samples, that is, glutathione metabolism-relating genes (0.14-0.65%) and beta-lactam resistance gene (0.01-0.05%). The results of this study indicate the ubiquity of archaea and bacteria in the biofilms of water main and branch pipes, respectively, and pipe diameters could be a major influencing factor on bacterial community structure. In the water main, the key finding was the predominant existence of archaea, particularly Nitrosopumilus and methanogen. Hence, their routine monitoring and probable influences on water quality in pipelines with large diameter should be given more attention. Besides, since Mn-related Bacillus and suspected pathogenic Enterococcus were detected in the biofilm, supplementation of disinfectant may be a feasible strategy for inhibiting their growth and ensuring water quality. In addition, the monitoring on their abundance variation could help to determine the frequency and methods of pipeline maintenance.
Collapse
Affiliation(s)
- Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Daogan Chen
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Chenghao Shang
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Liang Xiao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yue Wang
- Fuzhou Water Supply Company, Fuzhou, Fujian, 350001, People's Republic of China
| | - Wuqiang Zeng
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xianliang Zheng
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Ziyi Chen
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xupu Du
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
4
|
Chen X, Xiao L, Niu J, Wang Y, Zhang X, Gong L, Yao F, Xu K. Early succession of biofilm bacterial communities in newly built drinking water pipelines via multi-area analysis. Appl Microbiol Biotechnol 2023; 107:3817-3828. [PMID: 37074383 DOI: 10.1007/s00253-023-12517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Biofilms inhabiting pipeline walls are critical to drinking water quality and safety. With massive pipeline replacement underway, however, biofilm formation process in newly built pipes and its effects on water quality are unclear. Moreover, differences and connections between biofilms in newly built and old pipes are unknown. In this study, early succession (≤ 120 days) of biofilm bacterial communities (abundance and diversity) in upper, middle and bottom areas of a newly built cement-lined ductile iron pipeline were evaluated using improved Propella™ biofilm reactor and multi-area analysis. A comparison with old pipelines (grey cast iron, 10 years) was performed. In the newly built pipeline, the abundance of biofilm bacteria did not change significantly between 40 and 80 days, but increased significantly between 80 and 120 days. The biofilm bacterial abundance (per unit area) in the bottom area was always higher than that in the upper and middle areas. Based on alpha diversity index and PCoA results, biofilm bacterial community richness, diversity and composition did not change significantly during the 120-day operation. Besides, biofilm shedding from the walls of newly built pipeline significantly increased bacterial abundance in the outlet water. Opportunistic pathogen-containing genera, such as Burkholderia, Acinetobacter and Legionella, were identified in both water and biofilm samples from newly built pipelines. The comparison between new and old pipelines suggested a higher bacterial abundance per unit area at the middle and bottom areas in old pipelines. Moreover, the bacterial community composition of biofilms in old pipelines was similar to that of newly built pipelines. These results contribute to accurate prediction and management of biofilm microbial communities in drinking water pipelines, ensuring the biosafety of drinking water. KEY POINTS: • Biofilm bacterial communities in different areas of pipe wall were revealed. • The abundance of biofilm bacteria increased significantly between 80 and 120 days. • Biofilm bacterial community compositions of newly built and old pipes were similar.
Collapse
Affiliation(s)
- Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Liang Xiao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-Saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, No.33 Xuefunan Road, Fuzhou, 350118, China.
| | - Yue Wang
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
- Fuzhou Water Quality Monitoring Co., Ltd, No.104 Dongjie, Fuzhou, 350001, China
| | - Xiaomin Zhang
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
- Fuzhou Water Quality Monitoring Co., Ltd, No.104 Dongjie, Fuzhou, 350001, China
| | - Longcong Gong
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
| | - Fengbing Yao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Kaiqin Xu
- College of Civil Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-8506, Japan
| |
Collapse
|
5
|
Mapili K, Rhoads WJ, Coughter M, Pieper KJ, Edwards MA, Pruden A. Occurrence of opportunistic pathogens in private wells after major flooding events: A four state molecular survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153901. [PMID: 35182640 DOI: 10.1016/j.scitotenv.2022.153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Private wells can become contaminated with waterborne pathogens during flooding events; however, testing efforts focus almost exclusively on fecal indicator bacteria. Opportunistic pathogens (OPs), which are the leading cause of identified waterborne disease in the United States, are understudied in private wells. We conducted a quantitative polymerase chain reaction survey of Legionella spp., L. pneumophila, Mycobacterium spp., M. avium, Naegleria fowleri, and shiga toxin-producing Escherichia coli gene markers and total coliform and E. coli in drinking water supplied by private wells following the Louisiana Floods (2016), Hurricane Harvey (2017), Hurricane Irma (2017), and Hurricane Florence (2018). Self-reported well characteristics and recovery status were collected via questionnaires. Of the 211 water samples collected, 40.3% and 5.2% were positive for total coliform and E. coli, which were slightly elevated positivity rates compared to prior work in coastal aquifers. DNA markers for Legionella and Mycobacterium were detected in 54.5% and 36.5% of samples, with L. pneumophila and M. avium detected in 15.6% and 17.1%, which was a similar positivity rate relative to municipal system surveys. Total bacterial 16S rRNA gene copies were positively associated with Legionella and Mycobacterium, indicating that conditions that favor occurrence of general bacteria can also favor OPs. N. fowleri DNA was detected in 6.6% of samples and was the only OP that was more prevalent in submerged wells compared to non-submerged wells. Self-reported well characteristics were not associated with OP occurrence. This study exposes the value of routine baseline monitoring and timely sampling after flooding events in order to effectively assess well water contamination risks.
Collapse
Affiliation(s)
- Kris Mapili
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| | - William J Rhoads
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America; Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - Mary Coughter
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| | - Kelsey J Pieper
- Northeastern University, Civil and Environmental Engineering, 360 Huntington Ave., Boston, MA 02115, United States of America.
| | - Marc A Edwards
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| | - Amy Pruden
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| |
Collapse
|
6
|
Farhat N, Kim L, Mineta K, Alarawi M, Gojobori T, Saikaly P, Vrouwenvelder J. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine. WATER RESEARCH 2022; 210:117975. [PMID: 34952456 DOI: 10.1016/j.watres.2021.117975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Monitoring the changes that occur to water during distribution is vital to ensure water safety. In this study, the biological stability of reverse osmosis (RO) produced drinking water, characterized by low cell concentration and low assimilable organic carbon, in combination with chlorine disinfection was investigated. Water quality at several locations throughout the existing distribution network was monitored to investigate whether microbial water quality changes can be identified. Results revealed that the water leaving the plant had an average bacterial cell concentration of 103 cells/mL. A 0.5-1.5 log increase in bacterial cell concentration was observed at locations in the network. The residual disinfectant was largely dissipated in the network from 0.5 mg/L at the treatment plant to less than 0.1 mg/L in the network locations. The simulative study involving miniature distribution networks, mimicking the dynamics of a distribution network, fed with the RO produced chlorinated and non-chlorinated drinking water revealed that distributing RO produced water without residual disinfection, especially at high water temperatures (25-30 °C), poses a higher chance for water quality change. Within six months of operation of the miniature network fed with unchlorinated RO produced water, the adenosine triphosphate (ATP) and total cell concentration (TCC) in the pipe biofilm were 4 × 102 pg ATP/cm2 and 1 × 107 cells/ cm2. The low bacterial cell concentration and organic carbon concentration in the RO-produced water did not prevent biofilm development inside the network with and without residual chlorine. The bacterial community analysis using 16S ribosomal RNA (rRNA) gene sequencing revealed that mesophilic bacteria with higher temperature tolerance and bacteria associated with oligotrophic, nutrient-poor conditions dominated the biofilm, with no indication of the existence of opportunistic pathogenic species. However, chlorination selected against most bacterial groups and the bacterial community that remained was mainly the bacteria capable of surviving disinfection regimes. Biofilms that developed in the presence of chlorine contained species classified as opportunistic pathogens. These biofilms have an impact on shaping the water quality received at the consumer tap. The presence of these bacteria on its own is not a health risk indicator; viability assessment and qPCRs targeting genes specific to the opportunistic pathogens as well as quantitative microbiological risk assessment (QMRA) should be included to assess the risk. The results from this study highlight the importance of implementing multiple barriers to ensure water safety. Changes in water quality detected even when high-quality disinfected RO-produced water is distributed highlight microbiological challenges that chlorinated systems endure, especially at high water temperatures.
Collapse
Affiliation(s)
- Nadia Farhat
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Lanhee Kim
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pascal Saikaly
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Johannes Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| |
Collapse
|
7
|
Tiwari A, Gomez-Alvarez V, Siponen S, Sarekoski A, Hokajärvi AM, Kauppinen A, Torvinen E, Miettinen IT, Pitkänen T. Bacterial Genes Encoding Resistance Against Antibiotics and Metals in Well-Maintained Drinking Water Distribution Systems in Finland. Front Microbiol 2022; 12:803094. [PMID: 35197945 PMCID: PMC8859300 DOI: 10.3389/fmicb.2021.803094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Information on the co-occurrence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) among bacterial communities in drinking water distribution systems (DWDSs) is scarce. This study characterized ARGs and MRGs in five well-maintained DWDSs in Finland. The studied DWDSs had different raw water sources and treatment methods. Two of the waterworks employed artificially recharged groundwater (ARGW) and used no disinfection in the treatment process. The other three waterworks (two surface and one groundwater source) used UV light and chlorine during the treatment process. Ten bulk water samples (two from each DWDS) were collected, and environmental DNA was extracted and then sequenced using the Illumina HiSeq platform for high-throughput shotgun metagenome sequencing. A total of 430 ARGs were characterized among all samples with the highest diversity of ARGs identified from samples collected from non-disinfected DWDSs. Furthermore, non-disinfected DWDSs contained the highest diversity of bacterial communities. However, samples from DWDSs using disinfectants contained over double the ratio of ARG reads to 16S rRNA gene reads and most of the MRG (namely mercury and arsenic resistance genes). The total reads and types of ARGs conferring genes associated with antibiotic groups namely multidrug resistance, and bacitracin, beta-lactam, and aminoglycoside and mercury resistance genes increased in waterworks treating surface water with disinfection. The findings of this study contribute toward a comprehensive understanding of ARGs and MRGs in DWDSs. The occurrence of bacteria carrying antibiotic or metal resistance genes in drinking water causes direct exposure to people, and thus, more systematic investigation is needed to decipher the potential effect of these resistomes on human health.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Ananda Tiwari,
| | - Vicente Gomez-Alvarez
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Sallamaari Siponen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anniina Sarekoski
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ari Kauppinen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka T. Miettinen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Lee D, Calendo G, Kopec K, Henry R, Coutts S, McCarthy D, Murphy HM. The Impact of Pipe Material on the Diversity of Microbial Communities in Drinking Water Distribution Systems. Front Microbiol 2021; 12:779016. [PMID: 34992587 PMCID: PMC8724538 DOI: 10.3389/fmicb.2021.779016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023] Open
Abstract
As many cities around the world face the prospect of replacing aging drinking water distribution systems (DWDS), water utilities must make careful decisions on new pipe material (e.g., cement-lined or PVC) for these systems. These decisions are informed by cost, physical integrity, and impact on microbiological and physicochemical water quality. Indeed, pipe material can impact the development of biofilm in DWDS that can harbor pathogens and impact drinking water quality. Annular reactors (ARs) with cast iron and cement coupons fed with chloraminated water from a municipal DWDS were used to investigate the impact of pipe material on biofilm development and composition over 16 months. The ARs were plumbed as closely as possible to the water main in the basement of an academic building to simulate distribution system conditions. Biofilm communities on coupons were characterized using 16S rRNA sequencing. In the cast iron reactors, β-proteobacteria, Actinobacteria, and α-proteobacteria were similarly relatively abundant (24.1, 22.5, and 22.4%, respectively) while in the cement reactors, α-proteobacteria and Actinobacteria were more relatively abundant (36.3 and 35.2%, respectively) compared to β-proteobacteria (12.8%). Mean alpha diversity (estimated with Shannon H and Faith's Phylogenetic Difference indices) was greater in cast iron reactors (Shannon: 5.00 ± 0.41; Faith's PD: 15.40 ± 2.88) than in cement reactors (Shannon: 4.16 ± 0.78; Faith's PD: 13.00 ± 2.01). PCoA of Bray-Curtis dissimilarities indicated that communities in cast iron ARs, cement ARs, bulk distribution system water, and distribution system pipe biofilm were distinct. The mean relative abundance of Mycobacterium spp. was greater in the cement reactors (34.8 ± 18.6%) than in the cast iron reactors (21.7 ± 11.9%). In contrast, the mean relative abundance of Legionella spp. trended higher in biofilm from cast iron reactors (0.5 ± 0.7%) than biofilm in cement reactors (0.01 ± 0.01%). These results suggest that pipe material is associated with differences in the diversity, bacterial composition, and opportunistic pathogen prevalence in biofilm of DWDS.
Collapse
Affiliation(s)
- Debbie Lee
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Gennaro Calendo
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Kristin Kopec
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Scott Coutts
- Micromon, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Heather M. Murphy
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
10
|
Ghosh S, Zhu NJ, Milligan E, Falkinham JO, Pruden A, Edwards MA. Mapping the Terrain for Pathogen Persistence and Proliferation in Non-potable Reuse Distribution Systems: Interactive Effects of Biofiltration, Disinfection, and Water Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12561-12573. [PMID: 34448580 DOI: 10.1021/acs.est.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diverse pathogens can potentially persist and proliferate in reclaimed water distribution systems (RWDSs). The goal of this study was to evaluate interactive effects of reclaimed water treatments and water age on persistence and proliferation of multiple fecal (e.g., Klebsiella, Enterobacter) and non-fecal (e.g., Legionella, mycobacteria) gene markers in RWDSs. Six laboratory-scale RWDSs were operated in parallel receiving the influent with or without biologically active carbon (BAC) filtration + chlorination, chloramination, or no disinfectant residual. After 3 years of operation, the RWDSs were subject to sacrificial sampling and shotgun metagenomic sequencing. We developed an in-house metagenome-derived pathogen quantification pipeline, validated by quantitative polymerase chain reaction and mock community analysis, to estimate changes in abundance of ∼30 genera containing waterborne pathogens. Microbial community composition in the RWDS bulk water, biofilm, and sediments was clearly shaped by BAC filtration, disinfectant conditions, and water age. Key commonalities were noted in the ecological niches occupied by fecal pathogen markers in the RWDSs, while non-fecal pathogen markers were more varied in their distribution. BAC-filtration + chlorine was found to most effectively control the widest range of target genera. However, filtration alone or chlorine secondary disinfection alone resulted in proliferation of some of these genera containing waterborne pathogens.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ni Joyce Zhu
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Erin Milligan
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marc A Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
11
|
Wang Z, Gao J, Zhao Y, Dai H, Jia J, Zhang D. Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144663. [PMID: 33454495 DOI: 10.1016/j.scitotenv.2020.144663] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingxin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Li N, Li X, Shi ZY, Fan XY, Zhou ZW. Response of high-, mid- and low-abundant taxa and potential pathogens to eight disinfection methods and their interactions in domestic hot water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141440. [PMID: 32829270 DOI: 10.1016/j.scitotenv.2020.141440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Eight disinfection methods were applied to control biofilm contamination in domestic hot water system. The inactivation efficiency, responses of high- (≥1%), mid- (0.1% ~ 1%) and low-abundant taxa (≤0.1%) to disinfection, and interactions within and across three sub-communities were investigated. Ultraviolet was the most effective disinfection method for total bacteria and Escherichia coli, and chlorine dioxide had the highest inactivation efficiency on heterotrophic bacteria, while silver ions exhibited poor performance on all of them. At the phylum level, the responses of microorganisms to eight disinfection methods were different, but Proteobacteria and Firmicutes dominated in most samples. Eight disinfection methods had a greater impact on the proportion of high- and mid-abundant taxa than that of low-abundant taxa, and led to dissimilar transformations of genera among high-, mid- and low-abundant taxa in each sample. High-, mid- and low-abundant taxa of different samples showed similar structures and were roughly clustered into three Groups. Moreover, high-abundant taxa had more complex internal interactions than mid- and low-abundant taxa, and mainly presented co-occurrence patterns. The associations between high- and low-abundant taxa were close, and some low-abundant genera were identified as hub bacteria, such as Paracoccus, Thioalkalispira and Flavitalea. Furthermore, a total of 23 potential pathogens were detected in this study, and they mainly showed positive interactions, with Mycobacteria and Streptococcus as keystone genera. These results highlight the dissimilar responses of high-, mid- and low-abundant taxa to disinfection, and the critical role of some low-abundant genera in the microbial network, as well as the co-occurrence patterns among potential pathogens.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhi-Yuan Shi
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200335, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhi-Wei Zhou
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
13
|
Huang C, Sun PP, Won J, Wang Y, Boppart SA, Nguyen TH. Effect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14716-14724. [PMID: 33124800 PMCID: PMC7949192 DOI: 10.1021/acs.est.0c04645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Understanding the effects of biofilm structural and mechanical properties, which can influence biofilm cohesiveness and detachment under physical stress, is critical for biofilm and biofilm-associated pathogen control. In this study, we used optical coherence tomography (OCT) and nanoindentation to determine the role of silicate and tin (two experimental nonphosphate corrosion inhibitors) on the porous structure and stiffness of three types of multispecies biofilms. These biofilms were grown from groundwater (a drinking water source), and this groundwater was amended with either tin or silicate corrosion inhibitor (0.5 mg/L as Sn and 20 mg/L as SiO2). Based on the elastic moduli of these biofilms, tin biofilms and groundwater biofilms were the stiffest, followed by silicate biofilms. The thickness normalized by the growth time for silicate biofilms was highest at 38 ± 7.1 μm/month, compared to 21 ± 3.2 and 11 ± 2.4 μm/month for tin biofilms and groundwater biofilms, respectively. The silicate biofilms had the greatest overall porosities and were thickest among the three biofilms. Based on the pore network modeling (PNM) of OCT images, larger pores and connections were found in the silicate biofilms compared to those in tin and groundwater biofilms. Our analysis showed that the thicker and more porous biofilms (silicate biofilms) were potentially less resistant to deformation than the thinner and denser biofilms (tin and groundwater biofilms).
Collapse
Affiliation(s)
- Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Peter P Sun
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jungeun Won
- Departments of Electrical and Computer Engineering and Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Stephen A Boppart
- Departments of Electrical and Computer Engineering and Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Zhao L, Liu YW, Li N, Fan XY, Li X. Response of bacterial regrowth, abundant and rare bacteria and potential pathogens to secondary chlorination in secondary water supply system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137499. [PMID: 32120107 DOI: 10.1016/j.scitotenv.2020.137499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of secondary chlorination on bacterial regrowth, microbial communities (abundant and rare taxa) and bacterial functions of pipe wall biofilm and bulk water in simulated secondary water supply system (SWSS). Continuous secondary chlorination was more effective than short-term secondary chlorination to control the bacterial regrowth in both biofilm and water samples. Bacterial diversity slightly reduced after continuous secondary chlorination, and 19.27% of the total operational taxonomic units (OTUs) were shared by biofilm and water samples, with Bacillus as the dominant genus. Abundant and rare taxa exhibited different community structures. Proteobacteria and candidate division WPS-1 predominated in abundant and rare phyla were sensitive to chlorine, while Firmicutes, Acidobacteria and Bacteroidetes, exhibited relative strong chlorine resistance. The abundant genera in control sample (e.g., Bosea, Sphingobium and Gemmata) exhibited poor tolerance to chlorine, while Bacillus in biofilm and Defluviimonas in water were the main chlorine-resistant genera. Moreover, the composition of rare genera in each sample was obviously different. Furthermore, a total of 18 potential pathogens were detected with Pseudomonas as the dominant genus, most of which were significantly reduced after disinfection. There were mainly positive interactions among potential pathogenic bacteria, with Enterococcus, Legionella and Vibrio as the hub genera as revealed by network analysis. Similar bacterial functions in both biofilm and water were observed with metabolism as the predominant bacterial function, while, human disease function only accounted for 1.07% of bacterial functions. These results highlighted the importance of continuous secondary chlorination for controlling biosafety of SWSS and identified the dissimilar responses of abundant and rare bacteria to the disinfection, as well as the co-occurrence patterns among potential pathogens, improving our understanding of bacterial communities in SWSS.
Collapse
Affiliation(s)
- Li Zhao
- China Architecture Design and Research Group, Beijing 100044, PR China
| | - Yong-Wang Liu
- China Architecture Design and Research Group, Beijing 100044, PR China; College of Architecture and Civil engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Na Li
- College of Architecture and Civil engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
15
|
Ripolles‐Avila C, Ríos‐Castillo AG, Fontecha‐Umaña F, Rodríguez‐Jerez JJ. Removal of
Salmonella enterica
serovar Typhimurium and
Cronobacter sakazakii
biofilms from food contact surfaces through enzymatic catalysis. J Food Saf 2020. [DOI: 10.1111/jfs.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carolina Ripolles‐Avila
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Abel G. Ríos‐Castillo
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Fabio Fontecha‐Umaña
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - José J. Rodríguez‐Jerez
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| |
Collapse
|
16
|
Singh R, Bhadouria R, Singh P, Kumar A, Pandey S, Singh VK. Nanofiltration technology for removal of pathogens present in drinking water. WATERBORNE PATHOGENS 2020. [PMCID: PMC7173494 DOI: 10.1016/b978-0-12-818783-8.00021-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Two Drinking Water Outbreaks Caused by Wastewater Intrusion Including Sapovirus in Finland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224376. [PMID: 31717479 PMCID: PMC6888097 DOI: 10.3390/ijerph16224376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Drinking water outbreaks occur worldwide and may be caused by several factors, including raw water contamination, treatment deficiencies, and distribution network failure. This study describes two drinking water outbreaks in Finland in 2016 (outbreak I) and 2018 (outbreak II). Both outbreaks caused approximately 450 illness cases and were due to drinking water pipe breakage and subsequent wastewater intrusion into the distribution system. In both outbreaks, the sapovirus was found in patient samples as the main causative agent. In addition, adenoviruses and Dientamoeba fragilis (outbreak I), and noroviruses, astroviruses, enterotoxigenic and enterohemorragic Escherichia coli (ETEC and EHEC, respectively) and Plesiomonas shigelloides (outbreak II) were detected in patient samples. Water samples were analyzed for the selected pathogens largely based on the results of patient samples. In addition, traditional fecal indicator bacteria and host-specific microbial source tracking (MST) markers (GenBac3 and HF183) were analyzed from water. In drinking water, sapovirus and enteropathogenic E. coli (EPEC) were found in outbreak II. The MST markers proved useful in the detection of contamination and to ensure the success of contaminant removal from the water distribution system. As mitigation actions, boil water advisory, alternative drinking water sources and chlorination were organized to restrict the outbreaks and to clean the contaminated distribution network. This study highlights the emerging role of sapoviruses as a waterborne pathogen and warrants the need for testing of multiple viruses during outbreak investigation.
Collapse
|
18
|
Chlorine and Monochloramine Disinfection of Legionella pneumophila Colonizing Copper and Polyvinyl Chloride Drinking Water Biofilms. Appl Environ Microbiol 2019; 85:AEM.02956-18. [PMID: 30683743 DOI: 10.1128/aem.02956-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Building water systems promote the regrowth and survival of opportunistic pathogens, such as Legionella pneumophila, especially within biofilms, where most drinking water microbes reside. However, compared to their planktonic form, disinfection efficacy for the biofilm-associated forms of water-based pathogens is unclear. The aim of this study was to determine the effectiveness of free chlorine and monochloramine in the inactivation of biofilm-associated L. pneumophila strain Philadelphia-1 serogroup 1 (LpP1s1). Mature (1.5- to 2-year-old) drinking water biofilms were developed on copper (Cu) and polyvinyl chloride (PVC) slides within biofilm annular reactors, then colonized with LpP1s1 at approximately 4 log10 CFU cm-2 and exposed to 2 mg liter-1 of free chlorine or monochloramine. Ct (disinfectant concentration × time, expressed as mg min liter-1) inactivation values for 2-, 3-, and 4-log10 reductions of planktonic and biofilm LpP1s1 were determined. For planktonic LpP1s1, free chlorine was more effective at inactivation than was monochloramine treatment, and for biofilm-associated LpP1s1, monochloramine was more effective on Cu biofilms while free chlorine was more effective on PVC biofilms. In contrast to monochloramine, free chlorine treatment of Cu and PVC biofilms, negatively impacted LpP1s1 16S rRNA gene transcript levels and may act synergistically with Cu surfaces to further reduce transcript levels. Moreover, LpP1s1 cells shed from biofilms into the bulk water were more resistant to disinfection than were prepared planktonic LpP1s1 cells. Results from this study indicate that biofilm association, disinfectant type, and substratum play an important role in the survival of Legionella pneumophila in building water systems.IMPORTANCE Microbial regrowth within building water systems are promoted by water stagnation, low disinfectant residual, high surface-to-volume ratio, amenable growth temperatures, and colonization of drinking water biofilms. Moreover, biofilms provide protection from environmental stresses, access to higher levels of nutrients, and opportunities for symbiotic interactions with other microbes. Disinfectant efficacy information is historically based on inactivation of pathogens in their planktonic, free-floating forms. However, due to the ecological importance of drinking water biofilms for pathogen survival, this study evaluated the efficacy of two common disinfectants, free chlorine and monochloramine, on Legionella pneumophila colonizing mature, drinking water biofilms established on copper and PVC surfaces. Results showed that inactivation was dependent on the disinfectant type and biofilm substratum. Overall, this, and other related research, will provide a better understanding of Legionella ecological stability and survival and aid policy makers in the management of exposure risks to water-based pathogens within building water systems.
Collapse
|
19
|
Liu L, Xing X, Hu C, Wang H. One-year survey of opportunistic premise plumbing pathogens and free-living amoebae in the tap-water of one northern city of China. J Environ Sci (China) 2019; 77:20-31. [PMID: 30573084 DOI: 10.1016/j.jes.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 05/21/2023]
Abstract
In this study, qPCR was used to quantify opportunistic premise plumbing pathogens (OPPPs) and free-living amoebae in 11 tap water samples collected over four seasons from a city in northern China. Results demonstrated that the average numbers of gene copies of Legionella spp. and Mycobacterium spp. were significantly higher than those of Aeromonas spp. (p < 0.05). Legionella spp. and Mycobacterium spp. were 100% (44/44) positively detected while P. aeruginosa and Aeromonas spp. were 79.54% (35/44) and 77.27% (34/44) positively detected. Legionella pneumophila was only detected in 4 samples (4/44), demonstrating its occasional occurrence. No Mycobacterium avium or Naegleria fowleri was detected in any of the samples. The average gene copy numbers of target OPPPs were the highest in summer, suggesting seasonal prevalence of OPPPs. Average gene copy numbers of OPPPs in the taps of low-use-frequency were higher than in taps of high-use-frequency, but the difference was not significant for some OPPPs (p > 0.05). Moderate negative correlations between the chlorine concentration and the gene copy numbers of OPPPs were observed by Spearman analysis (rs ranged from -0.311 to -0.710, p < 0.05). However, no significant correlations existed between OPPPs and AOC, BDOC, or turbidity. Moderate positive correlations were observed between the target microorganisms, especially for Acanthamoeba spp., through Spearman analysis (p < 0.05). Based on our studies, it is proposed that disinfectant concentration, season, taps with different-use frequency, OPPP species, and potential microbial correlations should be considered for control of OPPPs in tap water.
Collapse
Affiliation(s)
- Lizhong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Lequette K, Ait-Mouheb N, Wéry N. Drip irrigation biofouling with treated wastewater: bacterial selection revealed by high-throughput sequencing. BIOFOULING 2019; 35:217-229. [PMID: 30935236 DOI: 10.1080/08927014.2019.1591377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Clogging of drippers due to the development of biofilms weakens the advantages and impedes the implementation of drip irrigation technology. The objective of this study was to characterise the bacterial community of biofilms that develop in a drip irrigation system supplied with treated wastewater. High-throughput sequencing of 16S rRNA gene amplicons indicated that the bacterial community composition differed between drippers and pipes, mainly due to changes in the abundance of the genus Aquabacterium. Cyanobacteria were found to be involved in the biological fouling of drippers. Moreover, bacterial genera including opportunistic pathogenic bacteria such as Legionella and Pseudomonas were more abundant in dripper and pipe biofilms than in the incoming water. Some genera such as Pseudomonas were mostly recovered from drippers, while others (ie Bacillus, Brevundimonas) mainly occurred in pipes. Variations in the hydraulic conditions and properties of the materials likely explain the shift in bacterial communities observed between pipes and drippers.
Collapse
Affiliation(s)
- Kévin Lequette
- a LBE, Univ Montpellier, INRA , Narbonne , France
- b IRSTEA, UMR G-EAU, University of Montpellier , Montpellier , France
| | - Nassim Ait-Mouheb
- b IRSTEA, UMR G-EAU, University of Montpellier , Montpellier , France
| | | |
Collapse
|
21
|
Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13077-13088. [PMID: 30351033 DOI: 10.1021/acs.est.8b02607] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vast majority of bacteria in drinking water distribution systems (DWDSs) reside in biofilms on the interior walls of water mains. Little is known about how water quality conditions affect water-main biofilms because of the inherent limitations in experimenting with drinking water supplies and accessing the water mains for sampling. Bench-scale reactors permit experimentation and ease of biofilm sampling, yet questions remain as to how well biofilms in laboratory reactors represent those on water mains. In this study, the effects of DWDS pipe materials and chloramine residual on biofilms were investigated by cultivating biofilms on cement, polyvinyl chloride, and high density polyethylene coupons in CDC reactors for up to 28 months in the presence of chloraminated or dechlorinated tap water. The bench-scale biofilm microbiomes were then compared with the microbiome on a water main from the full-scale system that supplied the water to the reactors. The presence of a chloramine residual (1.74 ± 0.21 mg/L) suppressed biofilm accumulation and selected for Mycobacterium-like and Sphingopyxis-like operational taxonomic units (OTUs) while the destruction of the chloramine residual resulted in a significant increase in biomass quantity and a shift toward a more diverse community dominated by Nitrospira-like OTUs, which, our results suggest, may be complete ammonia oxidizers (comammox). Coupon material, however, had a relatively minor effect on the abundance and community composition of the biofilm bacteria. Although biofilm communities from the chloraminated water reactor and the water mains shared some dominant populations (namely, Mycobacterium- and Nitrosomonas-like OTUs), the communities were significantly different. This manuscript provides novel insights into the effects of dechlorination and pipe material on biofilm community composition. Furthermore, to our knowledge, it is the first study to compare biofilm in a tap water-fed, bench-scale simulated distribution system to biofilm on water mains from the full-scale system supplying the tap water.
Collapse
Affiliation(s)
- Srijan Aggarwal
- Department of Civil and Environmental Engineering , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - C Kimloi Gomez-Smith
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Youchul Jeon
- Department of Civil and Environmental Engineering , University of Toledo , Toledo , Ohio 43606-339 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael B Waak
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
22
|
Richards CL, Broadaway SC, Eggers MJ, Doyle J, Pyle BH, Camper AK, Ford TE. Detection of Pathogenic and Non-pathogenic Bacteria in Drinking Water and Associated Biofilms on the Crow Reservation, Montana, USA. MICROBIAL ECOLOGY 2018; 76:52-63. [PMID: 25796498 PMCID: PMC9291231 DOI: 10.1007/s00248-015-0595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/06/2015] [Indexed: 05/14/2023]
Abstract
Private residences in rural areas with water systems that are not adequately regulated, monitored, and updated could have drinking water that poses a health risk. To investigate water quality on the Crow Reservation in Montana, water and biofilm samples were collected from 57 public buildings and private residences served by either treated municipal or individual groundwater well systems. Bacteriological quality was assessed including detection of fecal coliform bacteria and heterotrophic plate count (HPC) as well as three potentially pathogenic bacterial genera, Mycobacterium, Legionella, and Helicobacter. All three target genera were detected in drinking water systems on the Crow Reservation. Species detected included the opportunistic and frank pathogens Mycobacterium avium, Mycobacterium gordonae, Mycobacterium flavescens, Legionella pneumophila, and Helicobacter pylori. Additionally, there was an association between HPC bacteria and the presence of Mycobacterium and Legionella but not the presence of Helicobacter. This research has shown that groundwater and municipal drinking water systems on the Crow Reservation can harbor potential bacterial pathogens.
Collapse
Affiliation(s)
- Crystal L Richards
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Susan C Broadaway
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Margaret J Eggers
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - John Doyle
- Little Big Horn College, Crow Agency, MT, 59022, USA
- Apsaalooke Water and Wastewater Authority, Hardin, MT, 59034, USA
- Crow Tribal Member, Crow Agency, MT, 59022, USA
| | - Barry H Pyle
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Anne K Camper
- Department of Civil Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Timothy E Ford
- School of Health Professions, Shenandoah University, Winchester, VA, 22601, USA.
| |
Collapse
|
23
|
Abstract
Viruses represent the most abundant and diverse of the biological entities in environmental waters, including the seas and probably also freshwater systems. They are important players in ecological networks in waters and influence global biochemical cycling and community composition dynamics. Among the many diverse viruses from terrestrial environments found in environmental waters, some are plant, animal, and/or human pathogens. The majority of pathogenic viral species found in waters are very stable and can survive outside host cells for long periods. The occurrence of such viruses in environmental waters has raised concerns because of the confirmation of the infectivity of waterborne viruses even at very low concentrations. This chapter focuses mainly on the survival of human, animal, and plant pathogenic viruses in aqueous environments, the possibility of their water-mediated transmission, the ecological implications of viruses in water, the methods adapted for detecting such viruses, and how to minimize the risk of viruses spreading through water.
Collapse
|
24
|
Kauppinen A, Pitkänen T, Miettinen IT. Persistent Norovirus Contamination of Groundwater Supplies in Two Waterborne Outbreaks. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:39-50. [PMID: 29022247 DOI: 10.1007/s12560-017-9320-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/03/2017] [Indexed: 05/27/2023]
Abstract
Microbiological contamination of groundwater supplies causes waterborne outbreaks worldwide. In this study, two waterborne outbreaks related to microbiological contamination of groundwater supplies are described. Analyses of pathogenic human enteric viruses (noroviruses and adenoviruses), fecal bacteria (Campylobacter spp. and Salmonella spp.), and indicator microbes (E. coli, coliform bacteria, intestinal enterococci, Clostridium perfringens, heterotrophic plate count, somatic and F-specific coliphages) were conducted in order to reveal the cause of the outbreaks and to examine the effectiveness of the implemented management measures. Moreover, the long-term persistence of noro- and adenovirus genomes was investigated. Noroviruses were detected in water samples from both outbreaks after the intrusion of wastewater into the drinking water sources. In the outbreak I, the removal efficiency of norovirus genome (3.0 log10 removal) in the sand filter of onsite wastewater treatment system (OWTS) and during the transport through the soil into the groundwater well was lower than the removal efficiencies of E. coli, coliform bacteria, intestinal enterococci, and spores of C. perfringens (6.2, 6.0, > 5.9, and > 4.8 log10 removals, respectively). In the outbreak II, cleaning of massively contaminated groundwater well and drinking water distribution network proved challenging, and noro- and adenovirus genomes were detected up to 3 months (108 days). The long-term persistence study showed that noro- and adenovirus genomes can remain detectable in the contaminated water samples up to 1277 and 1343 days, respectively. This study highlights the transport and survival properties of enteric viruses in the environment explaining their potency to cause waterborne outbreaks.
Collapse
Affiliation(s)
- Ari Kauppinen
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland.
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Ilkka T Miettinen
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
25
|
Eckert EM, Di Cesare A, Kettner MT, Arias-Andres M, Fontaneto D, Grossart HP, Corno G. Microplastics increase impact of treated wastewater on freshwater microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:495-502. [PMID: 29216487 DOI: 10.1016/j.envpol.2017.11.070] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (int1), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of int1 increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised.
Collapse
Affiliation(s)
- Ester M Eckert
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922 Verbania, Italy.
| | - Andrea Di Cesare
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922 Verbania, Italy; Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Marie Therese Kettner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Dept. Experimental Limnology, Alte Fischerhuette 2, D-16775 Stechlin, Germany; Potsdam University, Inst. of Biochemistry and Biology, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Maria Arias-Andres
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Dept. Experimental Limnology, Alte Fischerhuette 2, D-16775 Stechlin, Germany; Potsdam University, Inst. of Biochemistry and Biology, Maulbeerallee 2, D-14469 Potsdam, Germany; Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Campus Omar Dengo, P.O. Box 86-3000, Heredia, Costa Rica
| | - Diego Fontaneto
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922 Verbania, Italy
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Dept. Experimental Limnology, Alte Fischerhuette 2, D-16775 Stechlin, Germany; Potsdam University, Inst. of Biochemistry and Biology, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Gianluca Corno
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922 Verbania, Italy
| |
Collapse
|
26
|
Abu Khweek A, Amer AO. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front Cell Infect Microbiol 2018. [PMID: 29535972 PMCID: PMC5835138 DOI: 10.3389/fcimb.2018.00038] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is an opportunistic waterborne pathogen and the causative agent for Legionnaires' disease, which is transmitted to humans via inhalation of contaminated water droplets. The bacterium is able to colonize a variety of man-made water systems such as cooling towers, spas, and dental lines and is widely distributed in multiple niches, including several species of protozoa In addition to survival in planktonic phase, L. pneumophila is able to survive and persist within multi-species biofilms that cover surfaces within water systems. Biofilm formation by L. pneumophila is advantageous for the pathogen as it leads to persistence, spread, resistance to treatments and an increase in virulence of this bacterium. Furthermore, Legionellosis outbreaks have been associated with the presence of L. pneumophila in biofilms, even after the extensive chemical and physical treatments. In the microbial consortium-containing L. pneumophila among other organisms, several factors either positively or negatively regulate the presence and persistence of L. pneumophila in this bacterial community. Biofilm-forming L. pneumophila is of a major importance to public health and have impact on the medical and industrial sectors. Indeed, prevention and removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients infected with this bacteria cost governments billions of dollars. Therefore, understanding the biological and environmental factors that contribute to persistence and physiological adaptation in biofilms can be detrimental to eradicate and prevent the transmission of L. pneumophila. In this review, we focus on various factors that contribute to persistence of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain from surviving in biofilms, genes and gene regulation during biofilm formation and finally challenges related to biofilm resistance to biocides and anti-Legionella treatments.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Vignola M, Werner D, Wade MJ, Meynet P, Davenport RJ. Medium shapes the microbial community of water filters with implications for effluent quality. WATER RESEARCH 2018; 129:499-508. [PMID: 29195186 DOI: 10.1016/j.watres.2017.09.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/06/2017] [Accepted: 09/22/2017] [Indexed: 05/15/2023]
Abstract
Little is known about the forces that determine the assembly of diverse bacterial communities inhabiting drinking water treatment filters and how this affects drinking water quality. Two contrasting ecological theories can help to understand how natural microbial communities assemble; niche theory and neutral theory, where environmental deterministic factors or stochastic factors predominate respectively. This study investigates the development of the microbial community on two common contrasting filter materials (quartz sand and granular activated carbon-GAC), to elucidate the main factors governing their assembly, through the evaluation of environmental (i.e. filter medium type) and stochastic forces (random deaths, births and immigration). Laboratory-scale filter columns were used to mimic a rapid gravity filter; the microbiome of the filter materials, and of the filter influent and effluent, was characterised using next generation 16S rRNA gene amplicon sequencing and flow-cytometry. Chemical parameters (i.e. dissolved organic carbon, trihalomethanes formation) were also monitored to assess the final effluent quality. The filter communities seemed to be strongly assembled by selection rather than neutral processes, with only 28% of those OTUs shared with the source water detected on the filter medium following predictions using a neutral community model. GAC hosted a phylogenetically more diverse community than sand. The two filter media communities seeded the effluent water, triggering differences in both water quality and community composition of the effluents. Overall, GAC proved to be better than sand in controlling microbial growth, by promoting higher bacterial decay rates and hosting less bacterial cells, and showed better performance for putative pathogen control by leaking less Legionella cells into the effluent water.
Collapse
Affiliation(s)
- Marta Vignola
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; College of Science and Engineering, Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Matthew J Wade
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Paola Meynet
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, Dübendorf, CH-8600, Switzerland
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
28
|
Comparison of biofilm cell quantification methods for drinking water distribution systems. J Microbiol Methods 2017; 144:8-21. [PMID: 29111400 DOI: 10.1016/j.mimet.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023]
Abstract
Drinking water quality typically degrades after treatment during conveyance through the distribution system. Potential causes include biofilm growth in distribution pipes which may result in pathogen retention, inhibited disinfectant diffusion, and proliferation of bad tastes and odors. However, there is no standard method for direct measurement of biofilms or quantification of biofilm cells in drinking water distribution systems. Three methods are compared here for quantification of biofilm cells grown in pipe loops samplers: biofilm heterotrophic plate count (HPC), biofilm biovolume by confocal laser scanning microscopy (CLSM) and biofilm total cell count by flow cytometry (FCM) paired with Syto 9. Both biofilm biovolume by CLSM and biofilm total cell count by FCM were evaluated for quantification of the whole biofilms (including non-viable cells and viable but not culturable cells). Signal-to-background ratios and overall performance of biofilm biovolume by CLSM and biofilm total cell count by FCM were found to vary with the pipe material. Biofilm total cell count by FCM had a low signal-to-background ratio on all materials, indicating that further development is recommended before application in drinking water environments. Biofilm biovolume by CLSM showed the highest signal-to-background ratio for cement and cast iron, which suggests promise for wider application in full-scale systems. Biofilm biovolume by CLSM and Syto 9 staining allowed in-situ biofilm cell quantification thus elimination variable associated with cell detachment for quantification but had limitations associated with non-specific staining of cement and, to a lesser degree, auto-fluorescence of both cement and polyvinyl chloride materials. Due to variability in results obtained from each method, multiple methods are recommended to assess biofilm growth in drinking water distribution systems. Of the methods investigated here, HPC and CLSM and recommended for further development towards application in full-scale systems. HPC is a sample and widely applied method that quantifies viable culturable cells. CLSM analysis allows the elimination of experimental variables associated with cell detachment and affords the opportunity to evaluate biofilm components such as extracellular polymeric substances through the addition of specific probes. These two methods can be applied together to assess biofilms known to degrade treated water quality during conveyance in full-scale drinking water treatment systems. The significance of improved biofilm assessment methods for drinking water distribution systems lies in advancing understanding of biofilm growth and control mechanisms that may lead to improved water quality during conveyance and at the tap for greater public health protection.
Collapse
|
29
|
Buse HY, Ji P, Gomez-Alvarez V, Pruden A, Edwards MA, Ashbolt NJ. Effect of temperature and colonization of Legionella pneumophila and Vermamoeba vermiformis on bacterial community composition of copper drinking water biofilms. Microb Biotechnol 2017; 10:773-788. [PMID: 28097816 PMCID: PMC5481522 DOI: 10.1111/1751-7915.12457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 11/28/2022] Open
Abstract
It is unclear how the water-based pathogen, Legionella pneumophila (Lp), and associated free-living amoeba (FLA) hosts change or are changed by the microbial composition of drinking water (DW) biofilm communities. Thus, this study characterized the bacterial community structure over a 7-month period within mature (> 600-day-old) copper DW biofilms in reactors simulating premise plumbing and assessed the impact of temperature and introduction of Lp and its FLA host, Vermamoeba vermiformis (Vv), co-cultures (LpVv). Sequence and quantitative PCR (qPCR) analyses indicated a correlation between LpVv introduction and increases in Legionella spp. levels at room temperature (RT), while at 37°C, Lp became the dominant Legionella spp. qPCR analysis suggested Vv presence may not be directly associated with Lp biofilm growth at RT and 37°C, but may contribute to or be associated with non-Lp legionellae persistence at RT. Two-way PERMANOVA and PCoA revealed that temperature was a major driver of microbiome diversity. Biofilm community composition also changed over the seven-month period and could be associated with significant shifts in dissolved oxygen, alkalinity and various metals in the influent DW. Hence, temperature, biofilm age, DW quality and transient intrusions/amplification of pathogens and FLA hosts may significantly impact biofilm microbiomes and modulate pathogen levels over extended periods.
Collapse
Affiliation(s)
- Helen Y Buse
- Pegasus Technical Services, Inc c/o US EPA, 26 W Martin Luther King Drive NG-16, Cincinnati, OH, 45268, USA
| | - Pan Ji
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Vicente Gomez-Alvarez
- Pegasus Technical Services, Inc c/o US EPA, 26 W Martin Luther King Drive NG-16, Cincinnati, OH, 45268, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Marc A Edwards
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
30
|
Wang H, Bédard E, Prévost M, Camper AK, Hill VR, Pruden A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. WATER RESEARCH 2017; 117:68-86. [PMID: 28390237 PMCID: PMC5693313 DOI: 10.1016/j.watres.2017.03.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Anne K Camper
- Center for Biofilm Engineering and Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Vincent R Hill
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
31
|
Hull NM, Holinger EP, Ross KA, Robertson CE, Harris JK, Stevens MJ, Pace NR. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4220-4229. [PMID: 28296394 DOI: 10.1021/acs.est.6b06064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.
Collapse
Affiliation(s)
- Natalie M Hull
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Eric P Holinger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Kimberly A Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Charles E Robertson
- Division of Infectious Disease, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Norman R Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Nishiuchi Y, Iwamoto T, Maruyama F. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex. Front Med (Lausanne) 2017; 4:27. [PMID: 28326308 PMCID: PMC5339636 DOI: 10.3389/fmed.2017.00027] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have revealed a continuous increase in the worldwide incidence and prevalence of non-tuberculous mycobacteria (NTM) diseases, especially pulmonary Mycobacterium avium complex (MAC) diseases. Although it is not clear why NTM diseases have been increasing, one possibility is an increase of mycobacterial infection sources in the environment. Thus, in this review, we focused on the infection sources of pathogenic NTM, especially MAC. The environmental niches for MAC include water, soil, and dust. The formation of aerosols containing NTM arising from shower water, soil, and pool water implies that these niches can be infection sources. Furthermore, genotyping has shown that clinical isolates are identical to environmental ones from household tap water, bathrooms, potting soil, and garden soil. Therefore, to prevent and treat MAC diseases, it is essential to identify the infection sources for these organisms, because patients with these diseases often suffer from reinfections and recurrent infections with them. In the environmental sources, MAC and other NTM organisms can form biofilms, survive within amoebae, and exist in a free-living state. Mycobacterial communities are also likely to occur in these infection sources in households. Water distribution systems are a transmission route from natural water reservoirs to household tap water. Other infection sources include areas with frequent human contact, such as soil and bathrooms, indicating that individuals may carry NTM organisms that concomitantly attach to their household belongings. To explore the mechanisms associated with the global spread of infection and MAC transmission routes, an epidemiological population-wide genotyping survey would be very useful. A good example of the power of genotyping comes from M. avium subsp. hominissuis, where close genetic relatedness was found between isolates of it from European patients and pigs in Japan and Europe, implying global transmission of this bacterium. It is anticipated that whole genome sequencing technologies will improve NTM surveys so that the mechanisms for the global spread of MAC disease will become clearer in the near future. Better understanding of the niches exploited by MAC and its ecology is essential for preventing MAC infections and developing new methods for its effective treatment and elimination.
Collapse
Affiliation(s)
- Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School , Toyonaka , Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health , Kobe , Japan
| | - Fumito Maruyama
- Section of Microbiology, Graduate School of Medicine and Faculty of Medicine, Kyoto University , Kyoto , Japan
| |
Collapse
|
33
|
Perry N, Nelson EM, Timp G. Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit. ACS Synth Biol 2016; 5:1421-1432. [PMID: 27346524 DOI: 10.1021/acssynbio.6b00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of adapting biology to information processing will not be realized until engineered gene circuits, operating in different cell populations, can be wired together to express a predictable function. Here, elementary biological integrated circuits (BICs), consisting of two sets of transmitter and receiver gene circuit modules with embedded memory placed in separate cell populations, were meticulously assembled using live cell lithography and wired together by the mass transport of quorum-sensing (QS) signal molecules to form two isolated communication links (comlinks). The comlink dynamics were tested by broadcasting "clock" pulses of inducers into the networks and measuring the responses of functionally linked fluorescent reporters, and then modeled through simulations that realistically captured the protein production and molecular transport. These results show that the comlinks were isolated and each mimicked aspects of the synchronous, sequential networks used in digital computing. The observations about the flow conditions, derived from numerical simulations, and the biofilm architectures that foster or silence cell-to-cell communications have implications for everything from decontamination of drinking water to bacterial virulence.
Collapse
Affiliation(s)
- Nicolas Perry
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward M. Nelson
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gregory Timp
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
34
|
Hamilton KA, Ahmed W, Palmer A, Sidhu JPS, Hodgers L, Toze S, Haas CN. Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks. ENVIRONMENTAL RESEARCH 2016; 150:320-327. [PMID: 27336236 DOI: 10.1016/j.envres.2016.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data.
Collapse
Affiliation(s)
- K A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - A Palmer
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - L Hodgers
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - C N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Pelleieux S, Mathieu L, Block JC, Gantzer C, Bertrand I. The effect of chlorination and hydrodynamic shear stress on the persistence of bacteriophages associated with drinking water biofilms. J Appl Microbiol 2016; 121:1189-97. [PMID: 27452787 DOI: 10.1111/jam.13243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/30/2022]
Abstract
AIMS This work aimed to assess at pilot scale the effect of chlorination and water flushing on 2-month-old drinking water biofilms and, above all, on biofilm-associated F-specific RNA bacteriophages MS2, GA and Qβ. METHODS AND RESULTS Chlorination (4 mg l(-1) ) was applied first with a hydrodynamic shear stress of 1 Pa and second with an increase in hydrodynamic shear stress to 10 Pa. Despite a rapid decrease in the number of biofilm bacteria and associated phages, infectious phages were still detected on surfaces after completion of the 150 min cleaning procedure. The resulting sequence of phage removal was: GA > Qβ ≫ MS2. CONCLUSIONS The effect of chlorine on biofilm bacteria and biofilm-associated phages was limited to the upper layers of the biofilm and was not enhanced by an increase in hydrodynamic shear stress. A smaller decrease was observed for MS2 than for GA or Qβ after completion of the cleaning procedure. SIGNIFICANCE AND IMPACT OF THE STUDY The differences observed between the three phages suggest that the location of the viral particles in the biofilm, which is related to their surface properties, affects the efficiency of chlorine disinfection.
Collapse
Affiliation(s)
- S Pelleieux
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol, Nancy, France.,LCPME, UMR 7564, Université de Lorraine, Nancy, France
| | - L Mathieu
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol, Nancy, France.,EPHE, UL, CNRS, UMR 7564 LCPME, PSL Research University, Nancy, France
| | - J-C Block
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol, Nancy, France.,LCPME, UMR 7564, Université de Lorraine, Nancy, France
| | - C Gantzer
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol, Nancy, France.,LCPME, UMR 7564, Université de Lorraine, Nancy, France
| | - I Bertrand
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol, Nancy, France. .,LCPME, UMR 7564, Université de Lorraine, Nancy, France.
| |
Collapse
|
36
|
Bosmans L, Van Calenberge B, Paeleman A, Moerkens R, Wittemans L, Van Kerckhove S, De Mot R, Lievens B, Rediers H. Efficacy of hydrogen peroxide treatment for control of hairy root disease caused by rhizogenic agrobacteria. J Appl Microbiol 2016; 121:519-27. [DOI: 10.1111/jam.13187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- L. Bosmans
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM); Department of Microbial and Molecular Systems (M S); KU Leuven; Sint-Katelijne-Waver Belgium
| | - B. Van Calenberge
- Research Station for Vegetable Production vzw; Sint-Katelijne-Waver Belgium
| | - A. Paeleman
- Scientia Terrae vzw; Sint-Katelijne-Waver Belgium
| | - R. Moerkens
- Research Centre Hoogstraten vzw; Meerle Belgium
| | - L. Wittemans
- Research Station for Vegetable Production vzw; Sint-Katelijne-Waver Belgium
| | | | - R. De Mot
- Centre of Microbial and Plant Genetics, M S; KU Leuven; Leuven Belgium
| | - B. Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM); Department of Microbial and Molecular Systems (M S); KU Leuven; Sint-Katelijne-Waver Belgium
| | - H. Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM); Department of Microbial and Molecular Systems (M S); KU Leuven; Sint-Katelijne-Waver Belgium
| |
Collapse
|
37
|
Inkinen J, Jayaprakash B, Santo Domingo J, Keinänen-Toivola M, Ryu H, Pitkänen T. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system. J Appl Microbiol 2016; 120:1723-38. [DOI: 10.1111/jam.13144] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- J. Inkinen
- Faculty of Technology; WANDER Nordic Water and Materials Institute; Satakunta University of Applied Sciences; Rauma Finland
| | - B. Jayaprakash
- Water and Health Unit; National Institute for Health and Welfare (THL); Kuopio Finland
| | - J.W. Santo Domingo
- U.S. Environmental Protection Agency, Office of Research and Development; Cincinnati OH USA
| | - M.M. Keinänen-Toivola
- Faculty of Technology; WANDER Nordic Water and Materials Institute; Satakunta University of Applied Sciences; Rauma Finland
| | - H. Ryu
- U.S. Environmental Protection Agency, Office of Research and Development; Cincinnati OH USA
| | - T. Pitkänen
- Water and Health Unit; National Institute for Health and Welfare (THL); Kuopio Finland
- U.S. Environmental Protection Agency, Office of Research and Development; Cincinnati OH USA
| |
Collapse
|
38
|
Li H, Xin H, Li SFY. Multiplex PMA-qPCR Assay with Internal Amplification Control for Simultaneous Detection of Viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in Environmental Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14249-56. [PMID: 26512952 DOI: 10.1021/acs.est.5b03583] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic microorganisms are responsible for many infectious diseases, and pathogen monitoring is important and necessary for water quality control. This study for the first time explored a multiplex quantitative real-time PCR (qPCR) technique combined with propidium monoazide (PMA) to simultaneously detect viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in one reaction from water samples. Sodium lauroyl sarcosinate (sarkosyl) was applied to enhance the dead bacterial permeability of PMA. The sensitivity of the multiplex PMA-qPCR assay achieved two colony-forming units (CFU) per reaction for L. pneumophila and three CFU per reaction for S. typhimurium and S. aureus. No PCR products were amplified from all nontarget control samples. Significantly, with comparable specificity and sensitivity, this newly invented multiplex PMA-qPCR assay took a much shorter time than did conventional culture assays when testing water samples with spiked bacteria and simulated environmental water treatment. The viable multiplex PMA-qPCR assay was further successfully applied to pathogen detection from rivers, canals, and tap water samples after simple water pretreatment.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Faculty of Science, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | - Hongyi Xin
- Bioinformatics Institute, Agency for Science, Technology and Research , 30 Biopolis Street, Singapore 138671
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore , 3 Science Drive 3, Singapore 117543
- NUS Environmental Research Institute, National University of Singapore , 5A Engineering Drive 1, Singapore 117411
| |
Collapse
|
39
|
Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality. Appl Microbiol Biotechnol 2015; 100:3301-11. [PMID: 26637423 PMCID: PMC4786615 DOI: 10.1007/s00253-015-7155-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 11/06/2015] [Indexed: 11/15/2022]
Abstract
Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.
Collapse
|
40
|
Contamination of Hospital Water Supplies in Gilan, Iran, with Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2015; 2015:809842. [PMID: 26448745 PMCID: PMC4576014 DOI: 10.1155/2015/809842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
This study is designed to determine the contamination degree of hospital water supplies with Pseudomonas aeruginosa, Legionella pneumophila, and E. coli in Gilan, Iran. Samples were collected directly into sterile containers and concentrated by centrifuge. Half part of any sample transferred to yeast extract broth and the second part transferred to Trypticase Soy Broth and incubated for 3 days. DNA was extracted by using commercial kit. Four rounds of PCR were performed as follows: multiplex PCR for detecting Pseudomonas aeruginosa, Integron 1, and Metallo-β-lactamases gene; PCR for detecting Legionella pneumophila and mip gene separately; PCR for detecting E. coli; and another PCR for detecting whole bacterial presence. Contamination rates of cold, warm, and incubator water samples with P. aeruginosa, were 16.6%, 37.5%, and 6.8% consequently. Degrees of contamination with L. pneumophila were 3.3%, 9.3%, and 10.9% and with E. coli were zero, 6.2%, and zero. Total bacterial contamination of cold, warm, and incubator water samples was 93.3%, 84.4%, and 89.0% consequently. Metallo-β-lactamases gene was found in 20.0% of all samples. Contamination degree with P. aeruginosa was considerable and with L. pneumophila was moderate. Metallo-β-lactamases gene was found frequently indicating widespread multiple drug resistance bacteria. We suggest using new decontamination method based on nanotechnology.
Collapse
|
41
|
Campylobacter jejuni biofilm cells become viable but non-culturable (VBNC) in low nutrient conditions at 4 °C more quickly than their planktonic counterparts. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Sánchez-Busó L, Olmos MP, Camaró ML, Adrián F, Calafat JM, González-Candelas F. Phylogenetic analysis of environmental Legionella pneumophila isolates from an endemic area (Alcoy, Spain). INFECTION GENETICS AND EVOLUTION 2015; 30:45-54. [DOI: 10.1016/j.meegid.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
|
43
|
Ng TW, Li B, Chow AT, Wong PK. Formation of Disinfection By-Products from Bacterial Disinfection. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1190.ch013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T. W. Ng
- The School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
- The Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Clemson, South Carolina 29631, U.S.A
| | - B. Li
- The School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
- The Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Clemson, South Carolina 29631, U.S.A
| | - A. T. Chow
- The School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
- The Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Clemson, South Carolina 29631, U.S.A
| | - P. K. Wong
- The School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
- The Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Clemson, South Carolina 29631, U.S.A
| |
Collapse
|
44
|
Song A, Liu X, Zhang Y, Liu Y. Effect of sodium alginate on UVC inactivation of coliphage MS2. RSC Adv 2015. [DOI: 10.1039/c5ra22304k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enhancement of UVC inactivation of coliphage MS2 by sodium alginate and its mechanisms through reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Anan Song
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai
- China
| | - Xiang Liu
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai
- China
| | - Yi Zhang
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai
- China
| | - Yan Liu
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai
- China
| |
Collapse
|
45
|
Douterelo I, Boxall JB, Deines P, Sekar R, Fish KE, Biggs CA. Methodological approaches for studying the microbial ecology of drinking water distribution systems. WATER RESEARCH 2014; 65:134-156. [PMID: 25105587 DOI: 10.1016/j.watres.2014.07.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/08/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.
Collapse
Affiliation(s)
- Isabel Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK.
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Peter Deines
- Institute of Natural and Mathematical Sciences, Massey University, New Zealand
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, China
| | - Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Catherine A Biggs
- Department of Chemical and Biological Engineering, The University of Sheffield, UK
| |
Collapse
|
46
|
Szabo J, Minamyer S. Decontamination of biological agents from drinking water infrastructure: a literature review and summary. ENVIRONMENT INTERNATIONAL 2014; 72:124-128. [PMID: 24548733 DOI: 10.1016/j.envint.2014.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies.
Collapse
Affiliation(s)
- Jeff Szabo
- United States Environmental Protection Agency, National Homeland Security Research Center (NG-16), 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Scott Minamyer
- United States Environmental Protection Agency, National Homeland Security Research Center (NG-16), 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| |
Collapse
|
47
|
Gomes IB, Simões M, Simões LC. An overview on the reactors to study drinking water biofilms. WATER RESEARCH 2014; 62:63-87. [PMID: 24937357 DOI: 10.1016/j.watres.2014.05.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community - type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations.
Collapse
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - L C Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
48
|
Culotti A, Packman AI. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium. PLoS One 2014; 9:e107186. [PMID: 25198725 PMCID: PMC4157881 DOI: 10.1371/journal.pone.0107186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.
Collapse
Affiliation(s)
- Alessandro Culotti
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Detection of Legionella, L. pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7393-405. [PMID: 25046636 PMCID: PMC4113883 DOI: 10.3390/ijerph110707393] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.
Collapse
|
50
|
Douterelo I, Husband S, Boxall JB. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system. WATER RESEARCH 2014; 54:100-114. [PMID: 24565801 DOI: 10.1016/j.watres.2014.01.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the influence of pipe characteristics on the bacteriological composition of material mobilised from a drinking water distribution system (DWDS) and the impact of biofilm removal on water quality. Hydrants in a single UK Distribution Management Area (DMA) with both polyethylene and cast iron pipe sections were subjected to incremental increases in flow to mobilise material from the pipe walls. Turbidity was monitored during these operations and water samples were collected for physico-chemical and bacteriological analysis. DNA was extracted from the material mobilised into the bulk water before and during flushing. Bacterial tag-encoded 454 pyrosequencing was then used to characterize the bacterial communities present in this material. Turbidity values were high in the samples from cast iron pipes. Iron, aluminium, manganese and phosphate concentrations were found to correlate to observed turbidity. The bacterial community composition of the material mobilised from the pipes was significantly different between plastic and cast iron pipe sections (p < 0.5). High relative abundances of Alphaproteobacteria (23.3%), Clostridia (10.3%) and Actinobacteria (10.3%) were detected in the material removed from plastic pipes. Sequences related to Alphaproteobacteria (22.8%), Bacilli (16.6%), and Gammaproteobacteria (1.4%) were predominant in the samples obtained from cast iron pipes. The highest species richness and diversity were found in the samples from material mobilised from plastic pipes. Spirochaeta spp., Methylobacterium spp. Clostridium spp. and Desulfobacterium spp., were the most represented genera in the material obtained prior to and during the flushing of the plastic pipes. In cast iron pipes a high relative abundance of bacteria able to utilise different iron and manganese compounds were found such as Lysinibacillus spp., Geobacillus spp. and Magnetobacterium spp.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield S1 3JD, UK.
| | - S Husband
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield S1 3JD, UK
| | - J B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|