1
|
Chandran S, Gibson KE. Improving the Detection and Understanding of Infectious Human Norovirus in Food and Water Matrices: A Review of Methods and Emerging Models. Viruses 2024; 16:776. [PMID: 38793656 PMCID: PMC11125872 DOI: 10.3390/v16050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human norovirus (HuNoV) is a leading global cause of viral gastroenteritis, contributing to numerous outbreaks and illnesses annually. However, conventional cell culture systems cannot support the cultivation of infectious HuNoV, making its detection and study in food and water matrices particularly challenging. Recent advancements in HuNoV research, including the emergence of models such as human intestinal enteroids (HIEs) and zebrafish larvae/embryo, have significantly enhanced our understanding of HuNoV pathogenesis. This review provides an overview of current methods employed for HuNoV detection in food and water, along with their associated limitations. Furthermore, it explores the potential applications of the HIE and zebrafish larvae/embryo models in detecting infectious HuNoV within food and water matrices. Finally, this review also highlights the need for further optimization and exploration of these models and detection methods to improve our understanding of HuNoV and its presence in different matrices, ultimately contributing to improved intervention strategies and public health outcomes.
Collapse
Affiliation(s)
| | - Kristen E. Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| |
Collapse
|
2
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Auger A, Yu SY, Guu SY, Quéméner A, Euller-Nicolas G, Ando H, Desdouits M, Le Guyader FS, Khoo KH, Le Pendu J, Chirat F, Guerardel Y. Species-Specific N-Glycomes and Methylation Patterns of Oysters Crassostrea gigas and Ostrea edulis and Their Possible Consequences for the Norovirus-HBGA Interaction. Mar Drugs 2023; 21:342. [PMID: 37367667 DOI: 10.3390/md21060342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Noroviruses, the major cause of acute viral gastroenteritis, are known to bind to histo-blood group antigens (HBGAs), including ABH groups and Lewis-type epitopes, which decorate the surface of erythrocytes and epithelial cells of their host tissues. The biosynthesis of these antigens is controlled by several glycosyltransferases, the distribution and expression of which varies between tissues and individuals. The use of HBGAs as ligands by viruses is not limited to humans, as many animal species, including oysters, which synthesize similar glycan epitopes that act as a gateway for viruses, become vectors for viral infection in humans. Here, we show that different oyster species synthesize a wide range of N-glycans that share histo-blood A-antigens but differ in the expression of other terminal antigens and in their modification by O-methyl groups. In particular, we show that the N-glycans isolated from Crassostrea gigas and Ostrea edulis exhibit exquisite methylation patterns in their terminal N-acetylgalactosamine and fucose residues in terms of position and number, adding another layer of complexity to the post-translational glycosylation modifications of glycoproteins. Furthermore, modeling of the interactions between norovirus capsid proteins and carbohydrate ligands strongly suggests that methylation has the potential to fine-tune the recognition events of oysters by virus particles.
Collapse
Affiliation(s)
- Audrey Auger
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Shin-Yi Yu
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Agnès Quéméner
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Gabriel Euller-Nicolas
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, BP 21105, 44311 Nantes, France
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Marion Desdouits
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, BP 21105, 44311 Nantes, France
| | - Françoise S Le Guyader
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, BP 21105, 44311 Nantes, France
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Jacques Le Pendu
- Immunology and New Concepts in ImmunoTherapy, Nantes Université, Inserm, CNRS, UMR 1302/EMR6001, 44200 Nantes, France
| | - Frederic Chirat
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
5
|
Sahar Abd AD. Overview of Foodborne viruses: Important viruses, outbreaks, health concerns, food Handling and fresh produce. JOURNAL OF FOOD SCIENCE AND NUTRITION THERAPY 2022; 8:038-045. [DOI: 10.17352/jfsnt.000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Foodborne viruses can transmit through food in lots of ways including consuming items of animal origin containing zoonotic viruses, consuming contaminated food handled by infected food workers, and consuming contaminated food produced by humans. Viral foodborne illnesses are now a major contributor to all foodborne illness reports in recent years and are seen as a rising issue to the public health of humans and animals. Noroviruses and hepatitis A viruses were shown to be predominantly linked to the food-handler transmission and sewage-contaminated foods, according to microbiological research. In order to facilitate source attribution and identify risk preventive measures, routine, standard surveillance of viral outbreaks, and surveillance of virus occurrence in food products, combined with systematic strain typing, food and clinical microbiologists, would be advocated.
Collapse
|
6
|
Abstract
Contamination of oysters with a variety of viruses is one key pathway to trigger outbreaks of massive oyster mortality as well as human illnesses, including gastroenteritis and hepatitis. Much effort has gone into examining the fate of viruses in contaminated oysters, yet the current state of knowledge of nonlinear virus-oyster interactions is not comprehensive because most studies have focused on a limited number of processes under a narrow range of experimental conditions. A framework is needed for describing the complex nonlinear virus-oyster interactions. Here, we introduce a mathematical model that includes key processes for viral dynamics in oysters, such as oyster filtration, viral replication, the antiviral immune response, apoptosis, autophagy, and selective accumulation. We evaluate the model performance for two groups of viruses, those that replicate in oysters (e.g., ostreid herpesvirus) and those that do not (e.g., norovirus), and show that this model simulates well the viral dynamics in oysters for both groups. The model analytically explains experimental findings and predicts how changes in different physiological processes and environmental conditions nonlinearly affect in-host viral dynamics, for example, that oysters at higher temperatures may be more resistant to infection by ostreid herpesvirus. It also provides new insight into food treatment for controlling outbreaks, for example, that depuration for reducing norovirus levels is more effective in environments where oyster filtration rates are higher. This study provides the foundation of a modeling framework to guide future experiments and numerical modeling for better prediction and management of outbreaks. IMPORTANCE The fate of viruses in contaminated oysters has received a significant amount of attention in the fields of oyster aquaculture, food quality control, and public health. However, intensive studies through laboratory experiments and in situ observations are often conducted under a narrow range of experimental conditions and for a specific purpose in their respective fields. Given the complex interactions of various processes and nonlinear viral responses to changes in physiological and environmental conditions, a theoretical framework fully describing the viral dynamics in oysters is warranted to guide future studies from a top-down design. Here, we developed a process-based, in-host modeling framework that builds a bridge for better communications between different disciplines studying virus-oyster interactions.
Collapse
|
7
|
Surveillance of Adenovirus and Norovirus Contaminants in the Water and Shellfish of Major Oyster Breeding Farms and Fishing Ports in Taiwan. Pathogens 2022; 11:pathogens11030316. [PMID: 35335640 PMCID: PMC8954279 DOI: 10.3390/pathogens11030316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
The enteric viruses, including adenovirus (AdVs) and norovirus (NoVs), in shellfish is a significant food safety risk. This study investigated the prevalence, seasonal occurrence, genetic diversity, and quantification of AdVs and NoVs in the water and cultured shellfish samples at the four major coastal oyster breeding farms (COBF), five major fishing ports (FP), and their markets in Taiwan. The AdVs/NoVs in the water and shellfish samples were isolated by the membrane filtration and direct elution methods. The RNA of NoVs was reverse-transcribed into complementary DNA through reverse transcription reaction. Further NoVs and AdVs were detected using nested PCR. A higher detection rate was recorded in the low-temperature period than high-temperature. Detection difference was noted between nested PCR and qPCR outcomes for AdVs. The total detection rate of AdVs was higher in the water samples (COBF-40.6%, FP 20%) than the shellfish samples (COBF-11.7% and FP 6.3%). The AdVs load in the water and shellfish samples ranged from 1.23 × 103 to 1.00 × 106 copies/L and 3.57 × 103 to 4.27 × 104 copies/100g, respectively. The total detection of NoVs was highest in the water samples of the FP and their market shellfish samples (11.1% and 3.2%, respectively). Genotyping and phylogenetic analysis were identified as the prevalent AdVs and NoVs genotypes in the water and shellfish samples: A species HAdVs serotype 12; F species HAdVs serotype 41; and C species PAdVs serotype 5 (NoVs GI.2, GI.3 and GII.2). No significant differences were observed between the presence of AdVs, and all of the water quality parameters evaluated (heterotrophic plate count, water temperature, turbidity, pH, salinity, and dissolved oxygen). The virus contamination occurs mainly due to the direct discharge of domestic sewage, livestock farm, and fishing market wastewater into the coastal environment. Thus, this study suggested framing better estuarine management to prevent AdVs/NoVs transmission in water and cultured/distributed shellfish.
Collapse
|
8
|
Pouillot R, Smith M, Van Doren JM, Catford A, Holtzman J, Calci KR, Edwards R, Goblick G, Roberts C, Stobo J, White J, Woods J, DePaola A, Buenaventura E, Burkhardt W. Risk Assessment of Norovirus Illness from Consumption of Raw Oysters in the United States and in Canada. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:344-369. [PMID: 34121216 PMCID: PMC9291475 DOI: 10.1111/risa.13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/30/2023]
Abstract
Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Bivalve molluscan shellfish is one commodity commonly identified as being a vector of NoV. Bivalve molluscan shellfish are grown in waters that may be affected by contamination events, tend to bioaccumulate viruses, and are frequently eaten raw. In an effort to better assess the elements that contribute to potential risk of NoV infection and illness from consumption of bivalve molluscan shellfish, the U.S. Department of Health and Human Services/Food and Drug Administration (FDA), Health Canada (HC), the Canadian Food Inspection Agency (CFIA), and Environment and Climate Change Canada (ECCC) collaborated to conduct a quantitative risk assessment for NoV in bivalve molluscan shellfish, notably oysters. This study describes the model and scenarios developed and results obtained to assess the risk of NoV infection and illness from consumption of raw oysters harvested from a quasi-steady-state situation. Among the many factors that influence the risk of NoV illness for raw oyster consumers, the concentrations of NoV in the influent (raw, untreated) and effluent (treated) of wastewater treatment plants (WWTP) were identified to be the most important. Thus, mitigation and control strategies that limit the influence from human waste (WWTP outfalls) in oyster growing areas have a major influence on the risk of illness from consumption of those oysters.
Collapse
Affiliation(s)
- Régis Pouillot
- U.S. Food and Drug Administration5001 Campus DriveCollege ParkMD20740USA
| | - Mark Smith
- Health Canada251 Sir Frederick Banting Driveway Tunney's Pasture, Mail Stop 2204EOttawaONK1A 0K9Canada
| | - Jane M. Van Doren
- U.S. Food and Drug Administration5001 Campus DriveCollege ParkMD20740USA
| | - Angela Catford
- Health Canada251 Sir Frederick Banting Driveway Tunney's Pasture, Mail Stop 2204EOttawaONK1A 0K9Canada
| | - Jennifer Holtzman
- Health Canada251 Sir Frederick Banting Driveway Tunney's Pasture, Mail Stop 2204EOttawaONK1A 0K9Canada
| | - Kevin R. Calci
- U.S. Food and Drug AdministrationGulf Coast Seafood LaboratoryDauphin IslandAL36528USA
| | - Robyn Edwards
- Canadian Food Inspection Agency1400 Merivale RoadOttawaONK1A 0Y9Canada
| | - Gregory Goblick
- U.S. Food and Drug AdministrationGulf Coast Seafood LaboratoryDauphin IslandAL36528USA
| | - Christopher Roberts
- Environment and Climate Change Canada45 Alderney Dr, 7th FloorDartmouthNSB2Y 2N6Canada
| | - Jeffrey Stobo
- Environment and Climate Change Canada45 Alderney Dr, 7th FloorDartmouthNSB2Y 2N6Canada
| | - John White
- Canadian Food Inspection Agency57 Central St., Suite 204SummersidePEC1N 3K9Canada
| | - Jacquelina Woods
- U.S. Food and Drug AdministrationGulf Coast Seafood LaboratoryDauphin IslandAL36528USA
| | - Angelo DePaola
- U.S. Food and Drug AdministrationGulf Coast Seafood LaboratoryDauphin IslandAL36528USA
| | - Enrico Buenaventura
- Health Canada251 Sir Frederick Banting Driveway Tunney's Pasture, Mail Stop 2204EOttawaONK1A 0K9Canada
| | - William Burkhardt
- U.S. Food and Drug AdministrationGulf Coast Seafood LaboratoryDauphin IslandAL36528USA
| |
Collapse
|
9
|
Desdouits M, Piquet JC, Wacrenier C, Le Mennec C, Parnaudeau S, Jousse S, Rocq S, Bigault L, Contrant M, Garry P, Chavanon F, Gabellec R, Lamort L, Lebrun L, Le Gall P, Meteigner C, Schmitt A, Seugnet JL, Serais O, Peltier C, Bressolette-Bodin C, Blanchard Y, Le Guyader FS. Can shellfish be used to monitor SARS-CoV-2 in the coastal environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146270. [PMID: 33714825 PMCID: PMC7938784 DOI: 10.1016/j.scitotenv.2021.146270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 05/21/2023]
Abstract
The emergence and worldwide spread of SARS-CoV-2 raises new concerns and challenges regarding possible environmental contamination by this virus through spillover of human sewage, where it has been detected. The coastal environment, under increasing anthropogenic pressure, is subjected to contamination by a large number of human viruses from sewage, most of them being non-enveloped viruses like norovirus. When reaching coastal waters, they can be bio-accumulated by filter-feeding shellfish species such as oysters. Methods to detect this viral contamination were set up for the detection of non-enveloped enteric viruses, and may need optimization to accommodate enveloped viruses like coronaviruses (CoV). Here, we aimed at assessing methods for the detection of CoV, including SARS-CoV-2, in the coastal environment and testing the possibility that SARS-CoV-2 can contaminate oysters, to monitor the contamination of French shores by SARS-CoV-2 using both seawater and shellfish. Using the porcine epidemic diarrhea virus (PEDV), a CoV, as surrogate for SARS-CoV-2, and Tulane virus, as surrogate for non-enveloped viruses such as norovirus, we assessed and selected methods to detect CoV in seawater and shellfish. Seawater-based methods showed variable and low yields for PEDV. In shellfish, the current norm for norovirus detection was applicable to CoV detection. Both PEDV and heat-inactivated SARS-CoV-2 could contaminate oysters in laboratory settings, with a lower efficiency than a calicivirus used as control. Finally, we applied our methods to seawater and shellfish samples collected from April to August 2020 in France, where we could detect the presence of human norovirus, a marker of human fecal contamination, but not SARS-CoV-2. Together, our results validate methods for the detection of CoV in the coastal environment, including the use of shellfish as sentinels of the microbial quality of their environment, and suggest that SARS-CoV-2 did not contaminate the French shores during the summer season.
Collapse
Affiliation(s)
- Marion Desdouits
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Jean-Côme Piquet
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Candice Wacrenier
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Cécile Le Mennec
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Sylvain Parnaudeau
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Sarah Jousse
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Sophie Rocq
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Lionel Bigault
- ANSES, Génétique Virale et Biosécurité, Ploufragan, France
| | - Maud Contrant
- ANSES, Génétique Virale et Biosécurité, Ploufragan, France
| | - Pascal Garry
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Fabienne Chavanon
- Ifremer, Laboratoire Environnement Ressource Provence-Azur-Corse, la Seyne sur Mer, France
| | - Raoul Gabellec
- Ifremer, Laboratoire Environnement Ressource Morbihan Pays de la Loire, Lorient, France
| | - Laure Lamort
- Ifremer, Laboratoire Environnement Ressource Normandie, Port en Bessin, France
| | - Luc Lebrun
- Ifremer, Laboratoire Environnement Ressource Bretagne Occidentale, Concarneau, France
| | - Patrik Le Gall
- Ifremer, Laboratoire Environnement Ressource Bretagne Nord, Dinard, France
| | - Claire Meteigner
- Ifremer, Laboratoire Environnement Ressource Arcachon, Arcachon, France
| | - Anne Schmitt
- Ifremer, Laboratoire Environnement Ressource Morbihan Pays de la Loire, Lorient, France
| | - Jean Luc Seugnet
- Ifremer, Laboratoire Environnement Ressource Pertuis-Charentais, la Tremblade, France
| | - Ophélie Serais
- Ifremer, Laboratoire Environnement Ressource Languedoc Roussillon, Sète, France
| | - Cécile Peltier
- Nantes Université, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Céline Bressolette-Bodin
- Nantes Université, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | | |
Collapse
|
10
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Rupnik A, Doré W, Devilly L, Fahy J, Fitzpatrick A, Schmidt W, Hunt K, Butler F, Keaveney S. Evaluation of Norovirus Reduction in Environmentally Contaminated Pacific Oysters During Laboratory Controlled and Commercial Depuration. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:229-240. [PMID: 33649884 PMCID: PMC8116253 DOI: 10.1007/s12560-021-09464-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Norovirus contamination of oysters is the lead cause of non-bacterial gastroenteritis and a significant food safety concern for the oyster industry. Here, norovirus reduction from Pacific oysters (Crassostrea gigas), contaminated in the marine environment, was studied in laboratory depuration trials and in two commercial settings. Norovirus concentrations were measured in oyster digestive tissue before, during and post-depuration using the ISO 15216-1 quantitative real-time RT-PCR method. Results of the laboratory-based studies demonstrate that statistically significant reductions of up to 74% of the initial norovirus GII concentration was achieved after 3 days at 17-21 °C and after 4 days at 11-15 °C, compared to 44% reduction at 7-9 °C. In many trials norovirus GII concentrations were reduced to levels below 100 genome copies per gram (gcg-1; limit of quantitation; LOQ). Virus reduction was also assessed in commercial depuration systems, routinely used by two Irish oyster producers. Up to 68% reduction was recorded for norovirus GI and up to 90% for norovirus GII reducing the geometric mean virus concentration close to or below the LOQ. In both commercial settings there was a significant difference between the levels of reduction of norovirus GI compared to GII (p < 0.05). Additionally, the ability to reduce the norovirus concentration in oysters to < LOQ differed when contaminated with concentrations below and above 1000 gcg-1. These results indicate that depuration, carried out at elevated (> 11 °C) water temperatures for at least 3 days, can reduce the concentration of norovirus in oysters and therefore consumer exposure providing a practical risk management tool for the shellfish industry.
Collapse
Affiliation(s)
| | | | | | - James Fahy
- Marine Institute, Rinville, Oranmore, Ireland
| | | | | | - Kevin Hunt
- Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Francis Butler
- Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
12
|
Yang M, Han F, Yu Y, Wang Y. Complete genome sequence of the Pseudomonas oleovorans strain ODT-83 isolated from oyster. Arch Microbiol 2021; 203:3117-3124. [PMID: 33797591 DOI: 10.1007/s00203-021-02303-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
A bacterial strain ODT-83 is isolated from oysters, which is capable of adsorbing norovirus (NoV) via histo-blood group antigen-like (HBGA-like) substances. To better understand its genetic background associated with the production of HBGA-like substances, the genome of the ODT-83 was completely sequenced and analyzed. The ODT-83 only contains one circular chromosome, with a length of 5,384,159 bp. Both the 16S rRNA gene phylogeny and the average nucleotide identity (ANI) analyses confirm that the ODT-83 is a new Pseudomonas oleovorans strain. The whole genome encodes a total of 5037 predicted open reading frames (ORFs), 66 tRNA genes and 12 rRNA genes. Two gene clusters are detected on the genome, which are involved in the synthesis of polysaccharides of alginate and Pel, respectively. These results lay the foundation for further research on the interaction between the P. oleovorans strain ODT-83 and NoV.
Collapse
Affiliation(s)
- Mingshu Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Feng Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products On Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Laboratory of Quality and Safety Risk Assessment for Aquatic Products On Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
13
|
|
14
|
Lekshmi M, Kumar SH, Rajendran KV, Nayak BB. Development of a reverse transcription (RT) polymerase chain reaction (PCR) method for the detection of human norovirus in bivalve molluscs. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1103-1107. [PMID: 33724939 DOI: 10.2166/wst.2021.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noroviruses are significant seafood-borne pathogens, commonly associated with the consumption of filter feeding bivalve molluscs. Here, we report the development of a reverse transcription polymerase chain reaction (RT-PCR) method using primers based on the RNA-dependent RNA polymerase gene of norovirus genogroup II (NoV GII). Samples of bivalves were processed for the concentration of virus and extraction of RNA, followed by reverse transcription PCR. A total of 50 molluscan shellfish samples were analyzed, of which 16 samples yielded positive amplifications of norovirus nucleic acid. The PCR method described here, involving a single set of primers, is useful for rapid screening of shellfish for NoV GII.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Post Harvest Technology, ICAR- Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India E-mail:
| | - Sanath H Kumar
- QC Laboratory, Post Harvest Technology, ICAR- Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India E-mail:
| | - Kooloth Valappil Rajendran
- Aquatic Environment & Health Management Division, ICAR- Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Binaya Bhusan Nayak
- QC Laboratory, Post Harvest Technology, ICAR- Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India E-mail:
| |
Collapse
|
15
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
16
|
Choi MS, Jeon EB, Kim JY, Choi EH, Lim JS, Choi J, Ha KS, Kwon JY, Jeong SH, Park SY. Virucidal Effects of Dielectric Barrier Discharge Plasma on Human Norovirus Infectivity in Fresh Oysters ( Crassostrea gigas). Foods 2020; 9:E1731. [PMID: 33255577 PMCID: PMC7760321 DOI: 10.3390/foods9121731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
This study investigates the effects of dielectric barrier discharge (DBD) plasma treatment (1.1 kV, 43 kHz, N2 1.5 L/min, 10~60 min) on human norovirus (HuNoV) GII.4 infectivity in fresh oysters. HuNoV viability in oysters was assessed by using propidium monoazide (PMA) as a nucleic acid intercalating dye before performing a real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, the impact of the DBD plasma treatment on pH and Hunter colors was assessed. When DBD plasma was treated for 60 min, the HuNoV genomic titer reduction without PMA pretreatment was negligible (<1 log copy number/µL), whereas when PMA treatment was used, HuNoV titer was reduced to >1 log copy number/µL in just 30 min. D1 and D2-value of HuNoV infectivity were calculated as 36.5 and 73.0 min of the DBD plasma treatment, respectively, using the first-order kinetics model (R2 = 0.98). The pH and Hunter colors were not significantly different (p > 0.05) between the untreated and DBD-plasma-treated oysters. The results suggest that PMA/RT-qPCR could help distinguish HuNoV infectivity without negatively affecting oyster quality following >30 min treatment with DBD plasma. Moreover, the inactivation kinetics of nonthermal DBD plasma against HuNoV in fresh oysters might provide basic information for oyster processing and distribution.
Collapse
Affiliation(s)
- Man-Seok Choi
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| | - Ji Yoon Kim
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Korea; (E.H.C.); (J.S.L.); (J.C.)
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Korea; (E.H.C.); (J.S.L.); (J.C.)
| | - Jinsung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Korea; (E.H.C.); (J.S.L.); (J.C.)
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Korea; (K.S.H.); (J.Y.K.); (S.H.J.)
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Korea; (K.S.H.); (J.Y.K.); (S.H.J.)
| | - Sang Hyeon Jeong
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Korea; (K.S.H.); (J.Y.K.); (S.H.J.)
| | - Shin Young Park
- Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (M.-S.C.); (E.B.J.); (J.Y.K.)
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Korea
| |
Collapse
|
17
|
Hunt K, Doré B, Keaveney S, Rupnik A, Butler F. Estimating the distribution of norovirus in individual oysters. Int J Food Microbiol 2020; 333:108785. [DOI: 10.1016/j.ijfoodmicro.2020.108785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
|
18
|
Younger AD, Neish A, Walker DI, Jenkins KL, Lowther JA, Stapleton TA, Alves MT. Strategies to reduce norovirus (NoV) contamination from oysters under depuration conditions. Food Chem Toxicol 2020; 143:111509. [DOI: 10.1016/j.fct.2020.111509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023]
|
19
|
Interaction between norovirus and Histo-Blood Group Antigens: A key to understanding virus transmission and inactivation through treatments? Food Microbiol 2020; 92:103594. [PMID: 32950136 DOI: 10.1016/j.fm.2020.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a main cause of acute gastroenteritis worldwide. They are frequently involved in foodborne and waterborne outbreaks. Environmental transmission of the virus depends on two main factors: the ability of viral particles to remain infectious and their adhesion capacity onto different surfaces. Until recently, adhesion of viral particles to food matrices was mainly investigated by considering non-specific interactions (e.g. electrostatic, hydrophobic) and there was only limited information about infectious HuNoVs because of the absence of a reliable in vitro HuNoV cultivation system. Many HuNoV strains have now been described as having specific binding interactions with human Histo-Blood Group Antigens (HBGAs) and non-HBGA ligands found in food and the environment. Relevant approaches to the in vitro replication of HuNoVs were also proposed recently. On the basis of the available literature data, this review discusses the opportunities to use this new knowledge to obtain a better understanding of HuNoV transmission to human populations and better evaluate the hazard posed by HuNoVs in foodstuffs and the environment.
Collapse
|
20
|
Leduc A, Leclerc M, Challant J, Loutreul J, Robin M, Maul A, Majou D, Boudaud N, Gantzer C. F-Specific RNA Bacteriophages Model the Behavior of Human Noroviruses during Purification of Oysters: the Main Mechanism Is Probably Inactivation Rather than Release. Appl Environ Microbiol 2020; 86:e00526-20. [PMID: 32303551 PMCID: PMC7267196 DOI: 10.1128/aem.00526-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Noroviruses (NoV) are responsible for many shellfish outbreaks. Purification processes may be applied to oysters before marketing to decrease potential fecal pollution. This step is rapidly highly effective in reducing Escherichia coli; nevertheless, the elimination of virus genomes has been described to be much slower. It is therefore important to identify (i) the purification conditions that optimize virus removal and (ii) the mechanism involved. To this end, the effects of oyster stress, nutrients, and the presence of a potential competitor to NoV adhesion during purification were investigated using naturally contaminated oysters. Concentrations of NoV (genomes) and of the viral indicator F-specific RNA bacteriophage (FRNAPH; genomes and infectious particles) were regularly monitored. No significant differences were observed under the test conditions. The decrease kinetics of both virus genomes were similar, again showing the potential of FRNAPH as an indicator of NoV behavior during purification. The T90 (time to reduce 90% of the initial titer) values were 47.8 days for the genogroup I NoV genome, 26.7 days for the genogroup II NoV genome, and 43.9 days for the FRNAPH-II genome. Conversely, monitoring of the viral genomes could not be used to determine the behavior of infectious viruses because the T90 values were more than two times lower for infectious FRNAPH (20.6 days) compared to their genomes (43.9 days). Finally, this study highlighted that viruses are primarily inactivated in oysters rather than released in the water during purification processes.IMPORTANCE This study provides new data about the behavior of viruses in oysters under purification processes and about their elimination mechanism. First, a high correlation has been observed between F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and norovirus (NoV) in oysters impacted by fecal contamination when both are detected using molecular approaches. Second, when using reverse transcription-quantitative PCR and culture to detect FRNAPH-II genomes and infectious FRNAPH in oysters, respectively, it appears that genome detection provides limited information about the presence of infectious particles. The comparison of both genomes and infectious particles highlights that the main mechanism of virus elimination in oysters is inactivation. Finally, this study shows that none of the conditions tested modify virus removal.
Collapse
Affiliation(s)
- Alice Leduc
- Université de Lorraine, CNRS, LCPME, Nancy, France
- ACTALIA, Food Safety Department, Saint-Lô, France
| | | | | | | | - Maëlle Robin
- ACTALIA, Food Safety Department, Saint-Lô, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | | | | |
Collapse
|
21
|
Liu D, Zhang Z, Liao N, Zou S, Tang H, Tian P, Young GM, Wu Q, Wang D. Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses. Int J Food Microbiol 2020; 317:108492. [PMID: 31896043 DOI: 10.1016/j.ijfoodmicro.2019.108492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023]
Abstract
Human noroviruses (HuNoVs) are the primary non-bacterial pathogens causing acute gastroenteritis worldwide. Attachment and invasion of HuNoVs are thought to involve histo-blood group antigens (HBGAs). Romaine lettuce, which is usually consumed raw, is a common food-related vehicle for HuNoVs transmission. This study investigated the possibility that bacteria resident on the surface of lettuce leaves contribute to norovirus adherence to this food. To test this hypothesis, bacteria were isolated from romaine lettuce and screened to evaluate whether they produced any polysaccharides with structures resembling HBGAs. Twenty-seven bacterial isolates were screened and 18, belonging to 13 different genera, were found to produce HBGAs-like polysaccharides that were recognized by monoclonal antibodies specific to type A, B, H and Lewis a, b, x and y. One bacterial isolate, belonging to the genus Pseudomonas was further investigated because it produced polysaccharides with the widest range of HBGA types, including type B, H and Lewis a, b and x. The Pseudomonas HBGAs-like polysaccharides were found to be extracellular and their production was enhanced when the bacteria were cultured in oligotrophic medium. HuNoVs capture assays revealed that GI.1, GI.8, and GII.2, GII.3, GII.4, GII.6, GII.12, GII.17 genotypes can be bind to Pseudomonas HBGAs-like polysaccharides. The direct evidence of bacterial production HBGAs-like polysaccharides demonstrates one possible mechanism driving accumulation of HuNoVs on lettuce.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Zilei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Ningbo Liao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Songyan Zou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Haoxuan Tang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA 94706, USA
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Qingping Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Pilotto MR, Souza DSM, Barardi CRM. Viral uptake and stability in Crassostrea gigas oysters during depuration, storage and steaming. MARINE POLLUTION BULLETIN 2019; 149:110524. [PMID: 31543476 DOI: 10.1016/j.marpolbul.2019.110524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
More stable than bacteria in environmental samples, enteric viruses are generally related to outbreaks of gastroenteritis caused by the consumption of contaminated oysters. This study evaluated: i) the dynamic processes of enteric viral models bioaccumulation by Crassostrea gigas oysters artificially contaminated; ii) the stability of these viruses in oysters in controlled temperature conditions and iii) the effect of UV light in inactivating these viruses in depurated oysters. Plaque assay (PA) was used to assess the infectivity of both viral models. Cell culture coupled with RT-qPCR (ICC-RT-qPCR) was used to measure infectious adenovirus type 2 (HAdV-2) genomes and qPCR to measure genome copies of murine norovirus (MNV-1). The virus uptake through bioaccumulation behave differently: HAdV-2 reached its peak of uptake faster than MNV-1. Both viruses showed high stability in oysters when maintained under 4 °C, but were completely inactivated in steamed oysters. The HAdV-2 was completely inactivated after 12 h of depuration with UV light and after 24 h without UV light. After 72 h of depuration, MNV-1 was still detected in both tanks, probably due to the stronger interaction of this virus with the oyster's tissues. This study demonstrated the importance of a secure depuration time in ensuring a clean and safe product, and that the steaming process is the safest way to prepare oysters for consumption.
Collapse
Affiliation(s)
- Mariana Rangel Pilotto
- Federal University of Santa Catarina, Centre of Biological Sciences, Department of Microbiology, Immunology and Parasitology, Laboratory of Applied Virology, Florianópolis, Santa Catarina CEP 88040-970, Brazil
| | - Doris Sobral Marques Souza
- Federal University of Santa Catarina, Centre of Biological Sciences, Department of Microbiology, Immunology and Parasitology, Laboratory of Applied Virology, Florianópolis, Santa Catarina CEP 88040-970, Brazil
| | - Célia Regina Monte Barardi
- Federal University of Santa Catarina, Centre of Biological Sciences, Department of Microbiology, Immunology and Parasitology, Laboratory of Applied Virology, Florianópolis, Santa Catarina CEP 88040-970, Brazil..
| |
Collapse
|
23
|
Robin M, Chassaing M, Loutreul J, de Rougemont A, Belliot G, Majou D, Gantzer C, Boudaud N. Effect of natural ageing and heat treatments on GII.4 norovirus binding to Histo-Blood Group Antigens. Sci Rep 2019; 9:15312. [PMID: 31653918 PMCID: PMC6814753 DOI: 10.1038/s41598-019-51750-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of viral foodborne outbreaks worldwide. To date, no available methods can be routinely used to detect infectious HuNoVs in foodstuffs. HuNoVs recognize Histo-Blood Group Antigens (HBGAs) through the binding pocket (BP) of capsid protein VP1, which promotes infection in the host cell. In this context, the suitability of human HBGA-binding assays to evaluate the BP integrity of HuNoVs was studied on GII.4 virus-like particles (VLPs) and GII.4 HuNoVs during natural ageing at 20 °C and heat treatments. Our results demonstrate that this approach may reduce the over-estimation of potential infectious HuNoVs resulting from solely using the genome detection, even though some limitations have been identified. The specificity of HBGA-binding to the BP is clearly dependent on the HGBA type (as previously evidenced) and the ionic strength of the media without disturbing such interactions. This study also provides new arguments regarding the ability of VLPs to mimic HuNoV behavior during inactivation treatments. The BP stability of VLPs was at least 4.3 fold lower than that of HuNoVs at 20 °C, whereas capsids of both particles were disrupted at 72 °C. Thus, VLPs are relevant surrogates of HuNoVs for inactivation treatments inducing significant changes in the capsid structure.
Collapse
Affiliation(s)
- Maëlle Robin
- Actalia, Food Safety Department, F-50000, Saint-Lô, France
| | - Manon Chassaing
- Actalia, Food Safety Department, F-50000, Saint-Lô, France
- LCPME, UMR 7564 CNRS, University of Lorraine, F-54601, Villers-lès-Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000, Saint-Lô, France
| | - Alexis de Rougemont
- National Reference Center for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, F-21000, France
- UMR PAM A 02.102 Food and Microbiological Processes, University of Bourgogne Franche-Comté/AgroSup Dijon, Dijon, F-21000, France
| | - Gaël Belliot
- National Reference Center for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, F-21000, France
- UMR PAM A 02.102 Food and Microbiological Processes, University of Bourgogne Franche-Comté/AgroSup Dijon, Dijon, F-21000, France
| | | | - Christophe Gantzer
- LCPME, UMR 7564 CNRS, University of Lorraine, F-54601, Villers-lès-Nancy, France
| | | |
Collapse
|
24
|
Strubbia S, Schaeffer J, Oude Munnink BB, Besnard A, Phan MVT, Nieuwenhuijse DF, de Graaf M, Schapendonk CME, Wacrenier C, Cotten M, Koopmans MPG, Le Guyader FS. Metavirome Sequencing to Evaluate Norovirus Diversity in Sewage and Related Bioaccumulated Oysters. Front Microbiol 2019; 10:2394. [PMID: 31681246 PMCID: PMC6811496 DOI: 10.3389/fmicb.2019.02394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Metagenomic sequencing is a promising method to determine the virus diversity in environmental samples such as sewage or shellfish. However, to identify the short RNA genomes of human enteric viruses among the large diversity of nucleic acids present in such complex matrices, method optimization is still needed. This work presents methodological developments focused on norovirus, a small ssRNA non-enveloped virus known as the major cause of human gastroenteritis worldwide and frequently present in human excreta and sewage. Different elution protocols were applied and Illumina MiSeq technology were used to study norovirus diversity. A double approach, agnostic deep sequencing and a capture-based approach (VirCapSeq-VERT) was used to identify norovirus in environmental samples. Family-specific viral contigs were classified and sorted by SLIM and final norovirus contigs were genotyped using the online Norovirus genotyping tool v2.0. From sewage samples, 14 norovirus genogroup I sequences were identified of which six were complete genomes. For norovirus genogroup II, nine sequences were identified and three of them comprised more than half of the genome. In oyster samples bioaccumulated with these sewage samples, only the use of an enrichment step during library preparation allowed successful identification of nine different sequences of norovirus genogroup I and four for genogroup II (>500 bp). This study demonstrates the importance of method development to increase virus recovery, and the interest of a capture-based approach to be able to identify viruses present at low concentrations.
Collapse
Affiliation(s)
- Sofia Strubbia
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alban Besnard
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - My V T Phan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Candice Wacrenier
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - Matthew Cotten
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
25
|
El Moqri N, El Mellouli F, Hassou N, Benhafid M, Abouchoaib N, Etahiri S. Norovirus Detection at Oualidia Lagoon, a Moroccan Shellfish Harvesting Area, by Reverse Transcription PCR Analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:268-273. [PMID: 30982112 DOI: 10.1007/s12560-019-09386-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/10/2019] [Indexed: 05/18/2023]
Abstract
Norovirus (NoV) is the leading cause of acute viral gastroenteritis outbreaks in the world. These outbreaks are frequently associated with bivalve shellfish consumption, particularly because these products are often eaten raw or only slightly cooked. In Morocco, regulations concerning the acceptable levels of enteric bacteria indicator organisms in these products have been put in place. However, these regulations do not take into account the risk of viral contamination, and many gastroenteritis outbreaks have been linked to the ingestion of bivalve shellfish from areas that comply with the current food safety criteria. The aim of this study was to investigate NoV presence in shellfish samples (n = 104) collected at four sites owcff Oualidia lagoon (Moroccan Atlantic coast) from November 2015 to February 2017. Samples were analysed using real-time RT-PCR in accordance with the ISO 15216-2 method. NoVs of the genogroup II were detected in 7% of samples that were all collected during the winter months. Moreover, 71% of NoV-positive samples were harvested at sites upstream of the lagoon. These results highlight the need of regularly monitoring viral contamination in bivalve shellfish to limit the risk of viral gastroenteritis outbreaks.
Collapse
Affiliation(s)
- N El Moqri
- Marine Biotechnology and Environment Laboratory, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco.
| | - F El Mellouli
- Casablanca Regional Research and Analysis Laboratory of National Office of Sanitary Safety and Food Products (ONSSA), Casablanca, Nouaceur, Morocco
| | - N Hassou
- Marine Biotechnology and Environment Laboratory, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - M Benhafid
- Virology Laboratory, National Institute of Hygiene, Rabat, Morocco
| | - N Abouchoaib
- Casablanca Regional Research and Analysis Laboratory of National Office of Sanitary Safety and Food Products (ONSSA), Casablanca, Nouaceur, Morocco
| | - S Etahiri
- Marine Biotechnology and Environment Laboratory, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| |
Collapse
|
26
|
|
27
|
Kaas L, Ogorzaly L, Lecellier G, Berteaux-Lecellier V, Cauchie HM, Langlet J. Detection of Human Enteric Viruses in French Polynesian Wastewaters, Environmental Waters and Giant Clams. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:52-64. [PMID: 30426392 DOI: 10.1007/s12560-018-9358-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/02/2018] [Indexed: 05/27/2023]
Abstract
Lack of wastewater treatment efficiency causes receiving seawaters and bivalve molluscan shellfish to become contaminated, which can lead to public health issues. Six wastewater samples, five seawater samples and three batches of giant clams from Tahiti (French Polynesia) were investigated for the presence of enteric viruses, but also if present, for the diversity, infectivity and integrity of human adenoviruses (HAdV). Enteroviruses (EV), sapoviruses (SaV) and human polyomaviruses (HPyV) were detected in all wastewater samples. In decreasing frequency, noroviruses (NoV) GII and HAdV, rotaviruses (RoV), astroviruses (AsV), NoV GI and finally hepatitis E viruses (HEV) were also observed. Nine types of infectious HAdV were identified. HPyV and EV were found in 80% of seawater samples, NoV GII in 60%, HAdV and SaV in 40% and AsV and RoV in 20%. NoV GI and HEV were not detected in seawater. Intact and infectious HAdV-41 were detected in one of the two seawater samples that gave a positive qPCR result. Hepatitis A viruses were never detected in any water types. Analysis of transcriptomic data from giant clams revealed homologues of fucosyltransferases (FUT genes) involved in ligand biosynthesis that strongly bind to certain NoV strains, supporting the giant clams ability to bioaccumulate NoV. This was confirmed by the presence of NoV GII in one of the three batches of giant clams placed in a contaminated marine area. Overall, all sample types were positive for at least one type of virus, some of which were infectious and therefore likely to cause public health concerns.
Collapse
Affiliation(s)
- Laetitia Kaas
- Enteric, Environmental and Food Virology Laboratory, Institute of Environmental Science and Research (ESR), Kenepuru Science Centre, PO BOX 50-348, Porirua, 5240, New Zealand
| | - Leslie Ogorzaly
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Gaël Lecellier
- PSL CRIOBE USR3278 CNRS-EPHE-UPVD, Labex CORAIL, Papetoai, Moorea, French Polynesia
- Département de Biologie, Université de Paris Saclay UVSQ, 45 Ave des Etats-Unis, 78000, Versailles, France
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Labex CORAIL, Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
| | - Véronique Berteaux-Lecellier
- PSL CRIOBE USR3278 CNRS-EPHE-UPVD, Labex CORAIL, Papetoai, Moorea, French Polynesia
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Labex CORAIL, Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
| | - Henry-Michel Cauchie
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Jérémie Langlet
- Enteric, Environmental and Food Virology Laboratory, Institute of Environmental Science and Research (ESR), Kenepuru Science Centre, PO BOX 50-348, Porirua, 5240, New Zealand.
| |
Collapse
|
28
|
Morozov V, Hanisch FG, Wegner KM, Schroten H. Pandemic GII.4 Sydney and Epidemic GII.17 Kawasaki308 Noroviruses Display Distinct Specificities for Histo-Blood Group Antigens Leading to Different Transmission Vector Dynamics in Pacific Oysters. Front Microbiol 2018; 9:2826. [PMID: 30542329 PMCID: PMC6278567 DOI: 10.3389/fmicb.2018.02826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023] Open
Abstract
Noroviruses are the major cause of foodborne outbreaks of acute gastroenteritis, which are often linked to raw oyster consumption. Previous studies have suggested histo-blood group antigens (HBGA)-like structures in the oyster tissues as ligands for norovirus binding and persistence. To better understand how oysters function as vectors for the most common human noroviruses, we first tested the ability of the norovirus strains GI.1 West Chester, the pandemic GII.4 Sydney, and the epidemic GII.17 Kawasaki308 strains to interact with oyster tissues. Secondly, we explored how the HBGA preferences of these strains can affect their persistence in oyster tissues. We found limited HBGA expression in oyster tissues. HBGAs of A and H type 1 were present in the digestive tissues and palps of the Pacific oyster Crassostrea gigas, while the gills and mantle lacked any HBGA structures. By using Virus-like particles (VLPs), which are antigenically and morphologically similar to native virions, we were able to demonstrate that VLPs of GI.1 West Chester norovirus reacted with the digestive tissues and palps. Despite of the lack of HBGA expression in mantle, dominant GII.4 Sydney strain readily bound to all the oyster tissues, including the digestive tissues, gills, palps, and mantle. In contrast, no binding of the epidemic GII.17 Kawasaki308 VLPs to any of the investigated oyster tissues was observed. In synthetic HBGA and saliva-binding assays, GI.1 reacted with A type, H type, and Leb (Lewis b) HBGAs. GII.4 Sydney VLPs showed a broad binding pattern and interacted with various HBGA types. Compared to GI.1 and GII.4 VLPs, the GII.17 Kawasaki308 VLPs only weakly associated with long-chain saccharides containing A type, B type, H type, and Leb blood group epitopes. Our findings indicate that GI.1 and GII.4 noroviruses are likely to be concentrated in oysters, by binding to HBGA-like glycans, and therefore potentially leading to increased long term transmission. In regards to the GII.17 Kawasaki308 strain, we suggest that oysters can only function as short term transmission vector in periods of high environmental virus concentrations.
Collapse
Affiliation(s)
- Vasily Morozov
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - K Mathias Wegner
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, List auf Sylt, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
Su L, Ma L, Liu H, Zhao F, Su Z, Zhou D. Presence and Distribution of Histo-Blood Group Antigens in Pacific Oysters and the Effects of Exposure to Noroviruses GI.3 and GII.4 on Their Expression. J Food Prot 2018; 81:1783-1790. [PMID: 30284922 DOI: 10.4315/0362-028x.jfp-18-074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noroviruses (NoVs) are one of the most important foodborne viral pathogens worldwide. Oysters are common carriers of NoVs and are responsible for their transmission. NoVs recognize human histo-blood group antigens (HBGAs) as receptors. Recent studies indicate that HBGA-like molecules also exist in oyster tissues and that they may play a key role in the binding of NoVs. However, the mechanism by which different genotypes of NoV accumulate in different oyster tissues is unknown. In this study, the presence and distribution of different types of HBGA-like molecules were evaluated in 240 oysters collected from the Shandong Peninsula of People's Republic of China for 1 year. The HBGA-like molecules were detected at various rates and expressed at different levels in different tissues. Immunohistochemistry confirmed the diversity of HBGA-like molecules in four oyster tissues. Eight types of HBGA-like molecules (types A, B, H1, Lewis x, Lewis y, Lewis a, Lewis b, and precursor) were assessed in different tissues. Of these, the type A HBGA-like molecule was consistently expressed in the gills, digestive tissue, and mantle, while types H1 and Lewis b HBGA-like molecules were expressed in the digestive tissues. The expression of HBGA-like molecules in response to the NoV challenge was investigated. The levels of types A, H1, and Lewis x increased significantly in specific oyster tissues after exposure to genogroup II, genotype 4 (GII.4) or genogroup I, genotype 3 (GI.3) NoV. The real-time reverse transcription PCR assays indicated that GI.3 NoV mainly accumulated in the digestive tissues of oysters, whereas GII.4 NoV accumulated in the gills, mantle, and digestive tissues. These results provide new insights into the mechanism of NoV bioaccumulation in oysters and suggest that NoV accumulation in oysters may be related to the expression of HBGA-like molecules.
Collapse
Affiliation(s)
- Laijin Su
- 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China.,2 College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China.,3 Institute of Food Sciences, Wenzhou Academy of Agricultural Science, Wenzhou 325006, People's Republic of China
| | - Liping Ma
- 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Hui Liu
- 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China.,2 College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Feng Zhao
- 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Zhiwei Su
- 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Deqing Zhou
- 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
30
|
Yeargin T, Gibson KE. Key characteristics of foods with an elevated risk for viral enteropathogen contamination. J Appl Microbiol 2018; 126:996-1010. [PMID: 30244501 DOI: 10.1111/jam.14113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
Viral enteropathogens are one of the leading causative agents of foodborne illnesses in both the United States and the European Union. While human noroviruses and hepatitis A virus cause the vast majority of outbreaks and illnesses, there are handful of human enteric viruses that contribute to sporadic outbreaks worldwide including astrovirus, sapovirus, rotavirus, enterovirus and Aichi virus. In addition, hepatitis E virus is increasingly being recognized as an emerging zoonotic threat within the food supply. This review aims to briefly describe the primary human enteric viruses of concern with respect to foodborne transmission. Next, we focus on the contamination and persistence of these viruses within three high-risk food commodities-leafy greens, soft red fruits and bivalve mollusks. As opposed to detailing the specific routes by which these foods can be contaminated with enteric viruses, we have chosen to focus on their persistence and specific interactions within the food itself. Therefore, the processes of attachment and internalization of the viruses in foods have been emphasized. Looking forward, the implications of these specific interactions of human enteric viruses with leafy greens, soft red fruits and bivalve mollusks are briefly considered within the context of future prevention and control strategies.
Collapse
Affiliation(s)
- T Yeargin
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - K E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
31
|
Noda M. Current Status of Norovirus Food Poisoning Related to Bivalve Mollusk and Its Control Measures. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2018; 58:12-25. [PMID: 28260728 DOI: 10.3358/shokueishi.58.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Weekly variations in norovirus genogroup II genotypes in Japanese oysters. Int J Food Microbiol 2018; 284:48-55. [PMID: 29990639 DOI: 10.1016/j.ijfoodmicro.2018.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/01/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
Abstract
Increased levels of norovirus contamination in oysters were reportedly associated with a gastroenteritis epidemic occurring upstream of an oyster farming area. In this study, we monitored the norovirus concentration in oysters weekly between November 2014 and March 2015 and investigated the statistical relationship between norovirus genogroup II (GII) concentrations in oyster and sewage samples and the number of gastroenteritis cases in the area using cross-correlation analysis. A peak correlation coefficient (R = 0.76) at a time lag of +1 week was observed between the number of gastroenteritis cases and norovirus GII concentrations in oysters, indicating that oyster contamination is correlated with the number of gastroenteritis cases with a 1-week delay. Moreover, weekly variations in norovirus GII genotypes in oysters were evaluated using pyrosequencing. Only GII.3 was detected in November and December 2014, whereas GII.17 and GII.4 were present from January to March 2015. GII.17 Kawasaki 2014 strains were detected more frequently than GII.4 Sydney 2012 strains in oyster samples, as previously observed in stool and sewage samples collected during the same study period in Miyagi, Japan. Our observations indicate that there is a time lag between the circulation of norovirus genotypes in the human population and the detection of those genotypes in oysters.
Collapse
|
33
|
Polo D, Schaeffer J, Teunis P, Buchet V, Le Guyader FS. Infectivity and RNA Persistence of a Norovirus Surrogate, the Tulane Virus, in Oysters. Front Microbiol 2018; 9:716. [PMID: 29706939 PMCID: PMC5906594 DOI: 10.3389/fmicb.2018.00716] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 01/16/2023] Open
Abstract
Oysters, being filter feeders, can accumulate some human pathogens such as norovirus, a highly infectious calicivirus, most common cause of acute gastroenteritis worldwide. Accumulated virus decays over a period of days to weeks, possibly rendering contaminated oysters safe again. Sensitive molecular methods have been set up for shellfish analysis but without answering the question of infectious virus detection. Using the Tulane virus (TV), a norovirus surrogate that recognizes the same ligand as human norovirus in oyster tissues, the genome and infectious virus decay rates were estimated using inverse linear regression in a Bayesian framework for genome copies. Infectivity decreased faster than genome copies but infectious viruses were detected for several days. Quantifying the decrease in viral infectivity and genome detection in oysters over such a long period may help local authorities to manage production areas implicated in shellfish-borne outbreaks, and thus protect consumers.
Collapse
Affiliation(s)
- David Polo
- Laboratoire de Microbiologie, Laboratoire Santé, Environnement et Microbiologie-Santé, Génétique et Microbiologie des Mollusques, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie, Laboratoire Santé, Environnement et Microbiologie-Santé, Génétique et Microbiologie des Mollusques, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Nantes, France
| | - Peter Teunis
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Vincent Buchet
- Laboratoire Sécurisation des Productions en Conchyliculture/Santé, Génétique et Microbiologie des Mollusques, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Bouin, France
| | - Françoise S Le Guyader
- Laboratoire de Microbiologie, Laboratoire Santé, Environnement et Microbiologie-Santé, Génétique et Microbiologie des Mollusques, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Nantes, France
| |
Collapse
|
34
|
Tao J, Chunhui H, Fanning S, Nan L, Jiahui W, Hongyuan Z, Jing Z, Fengqin L. Norovirus contamination in retail oysters from Beijing and Qingdao, China. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Amarasiri M, Kitajima M, Miyamura A, Santos R, Monteiro S, Miura T, Kazama S, Okabe S, Sano D. Reverse transcription-quantitative PCR assays for genotype-specific detection of human noroviruses in clinical and environmental samples. Int J Hyg Environ Health 2018; 221:578-585. [DOI: 10.1016/j.ijheh.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
36
|
Schilling KB, DeGrasse J, Woods JW. The influence of food matrices on aptamer selection by SELEX (systematic evolution of ligands by exponential enrichment) targeting the norovirus P-Domain. Food Chem 2018; 258:129-136. [PMID: 29655714 DOI: 10.1016/j.foodchem.2018.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
This study investigates the enrichment of aptamers targeting the norovirus protruding domain in the presence of foods often associated with norovirus outbreaks. The goal is to explore if and how the presence of food alters in vitro selection of aptamers and target binding of the enriched oligonucleotides. Our study demonstrates that the introduction of food to SELEX (systematic evolution of ligands by exponential enrichment) is either detrimental to enrichment of oligonucleotides with target-specific binding, or facilitates enrichment of non-target-specific oligonucleotides. Moreover, a relationship between target binding of enriched oligonucleotides in presence of food and their selection condition was not observed. Our findings also suggest that a pathogen specific aptamer with application in food does not need to be selected in presence of the particular food, but may require properties beyond high affinity and selectivity to be applied for pathogen extraction and detection in undiluted food matrices.
Collapse
Affiliation(s)
- Katja B Schilling
- FDA, Gulf Coast Seafood Laboratory, Dauphin Island, AL 36528, USA; MIN Faculty, Chemistry Department, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany.
| | | | | |
Collapse
|
37
|
Brake F, Kiermeier A, Ross T, Holds G, Landinez L, McLeod C. Spatial and Temporal Distribution of Norovirus and E. coli in Sydney Rock Oysters Following a Sewage Overflow into an Estuary. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:7-15. [PMID: 28685229 DOI: 10.1007/s12560-017-9313-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
This paper reports a study of norovirus (NoV) GII distribution and persistence in Sydney rock oysters (SRO) (Saccostrea glomerata) located in an estuary after a pump station sewage overflow. SRO were strategically placed at six sites spanning the length of the estuary from the pump station to the sea. The spatial and temporal distribution of NoV, hepatitis A virus (HAV) and Escherichia coli (E. coli) in oysters was mapped after the contamination event. NoV GI and GII, HAV and E. coli were quantified for up to 48 days in oysters placed at six sites ranging from 0.05 to 8.20 km from the sewage overflow. NoV GII was detected up to 5.29 km downstream and persisted in oysters for 42 days at the site closest to the overflow. NoV GII concentrations decreased significantly over time; a reduction rate of 8.5% per day was observed in oysters (p < 0.001). NoV GII concentrations decreased significantly as a function of distance at a rate of 5.8% per km (p < 0.001) and the decline in E. coli concentration with distance was 20.1% per km (p < 0.001). HAV and NoV GI were not detected. A comparison of NoV GII reduction rates from oysters over time, as observed in this study and other published research, collectively suggest that GII reduction rates from oysters may be broadly similar, regardless of environmental conditions, oyster species and genotype.
Collapse
Affiliation(s)
- Felicity Brake
- Tasmanian Institute of Agriculture - School of Land and Food, University of Tasmania, Hobart, TAS, Australia
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Andreas Kiermeier
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Tom Ross
- Tasmanian Institute of Agriculture - School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Geoffrey Holds
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Lina Landinez
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Catherine McLeod
- South Australian Research and Development Institute, Adelaide, SA, Australia.
- Seafood Safety Assessment Ltd, Scotland, UK.
| |
Collapse
|
38
|
Almand EA, Moore MD, Jaykus LA. Norovirus Binding to Ligands Beyond Histo-Blood Group Antigens. Front Microbiol 2017; 8:2549. [PMID: 29312233 PMCID: PMC5742575 DOI: 10.3389/fmicb.2017.02549] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/08/2017] [Indexed: 12/02/2022] Open
Abstract
Histo-blood group antigens (HBGAs) are commonly accepted as the cellular receptors for human norovirus. However, some human noroviruses have been found not to bind any HBGA ligand, suggesting potential additional co-factors. Some ligands have been found to bind noroviruses and have the potential to be additional cellular receptors/attachment factors for human norovirus or inhibitors of the HBGA interaction. The studies identifying these mostly characterize different chemical, human, food, or bacterial components and their effect on norovirus binding and infection, although the mechanism of interaction is unknown in many cases. This review seeks to supplement the already well-covered HBGA-norovirus literature by covering non-HBGA human norovirus ligands and inhibitors to provide investigators with a more comprehensive view of norovirus ligands.
Collapse
Affiliation(s)
- Erin A Almand
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
39
|
Romalde JL, Rivadulla E, Varela MF, Barja JL. An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. J Appl Microbiol 2017; 124:943-957. [PMID: 29094428 DOI: 10.1111/jam.13614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Galicia (NW Spain) has 1490 km of coastline, and its particular topography, characterized by the presence of fiord-like inlets, called rías, with an important primary production, makes this region very favourable for shellfish growth and culture. In fact, Galicia is one of the most important mussel producers in the world. Due to its proximity to cities and villages and the anthropogenic activities in these estuaries, and despite the routine official controls on the bivalve harvesting areas, contamination with material of faecal origin is sometimes possible but, current regulation based on Escherichia coli as an indicator micro-organism has been revealed as useful for bacterial contaminants, this is not the case for enteric viruses. The aim of this review is to offer a picture on the situation of different harvesting areas in Galicia, from a virological standpoint. A recompilation of results obtained in the last 20 years is presented, including not only the data for the well-known agents norovirus (NoV) and hepatitis A virus (HAV) but also data on emerging viral hazards, including sapovirus (SaV), hepatitis E virus (HEV) and aichivirus (AiV). Epidemiological differences related to diverse characteristics of the harvesting areas, viral genotype distribution or epidemiological links between environmental and clinical strains will also be presented and discussed. The presentation of these historical data all together could be useful for future decisions by competent authorities for a better management of shellfish growing areas.
Collapse
Affiliation(s)
- J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
40
|
Lowmoung T, Pombubpa K, Duangdee T, Tipayamongkholgul M, Kittigul L. Distribution of Naturally Occurring Norovirus Genogroups I, II, and IV in Oyster Tissues. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:415-422. [PMID: 28550646 DOI: 10.1007/s12560-017-9305-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated different tissues of naturally contaminated oysters (Crassostrea belcheri) for the presence of noroviruses. RNA from digestive tissues, gills, and mantle of the oysters was extracted and tested for norovirus genogroup (G) I, GII, and GIV using RT-nested PCR. In spiking experiments with a known norovirus, GII.4, the detection limits were 2.97 × 102 RNA copies/g of digestive tissues, 2.62 × 102 RNA copies/g of gills, and 1.61 × 103 RNA copies/g of mantle. A total of 85 oyster samples were collected from a fresh market in Bangkok, Thailand. Noroviruses were found in the oyster samples (40/85, 47%): GI (29/85, 34.1%), GII (9/85, 10.5%), mixed GI and GII (1/85, 1.2%), and GIV (1/85, 1.2%). All three genogroups were found in the digestive tissues of oysters. Norovirus GI was present in all three tissues with the highest frequency in the mantle, and was additionally detected in multiple tissues in some oysters. GII was also detected in all three tissues, but was not detected in multiple tissues in the same oyster. For genogroup I, only GI.2 could be identified and it was found in all tissues. For genogroup II, three different genotypes were identified, namely GII.4 which was detected in the gills and the mantle, GII.17 which was detected in the digestive tissues, and GII.21 which was detected in the mantle. GIV.1 was identified in the digestive tissues of one oyster. This is the first report on the presence of human GIV.1 in oyster in Thailand, and the results indicate oyster as a possible vehicle for transmission of all norovirus genogroups in Thailand.
Collapse
Affiliation(s)
- Taruta Lowmoung
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Teerapong Duangdee
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
41
|
Imamura S, Kanezashi H, Goshima T, Haruna M, Okada T, Inagaki N, Uema M, Noda M, Akimoto K. Next-Generation Sequencing Analysis of the Diversity of Human Noroviruses in Japanese Oysters. Foodborne Pathog Dis 2017; 14:465-471. [DOI: 10.1089/fpd.2017.2289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Saiki Imamura
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Hiromi Kanezashi
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Tomoko Goshima
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Mika Haruna
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | | | - Nobuya Inagaki
- Food Analysis Technology Center SUNATEC, Yokkaichi, Japan
| | - Masashi Uema
- National Institute of Health Sciences, Tokyo, Japan
| | - Mamoru Noda
- National Institute of Health Sciences, Tokyo, Japan
| | - Keiko Akimoto
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| |
Collapse
|
42
|
Imamura S, Kanezashi H, Goshima T, Suto A, Ueki Y, Sugawara N, Ito H, Zou B, Uema M, Noda M, Akimoto K. Effect of High-Pressure Processing on Human Noroviruses in Laboratory-Contaminated Oysters by Bio-Accumulation. Foodborne Pathog Dis 2017; 14:518-523. [PMID: 28594572 DOI: 10.1089/fpd.2017.2294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contamination of oysters with human noroviruses poses a human health risk, since oysters are often consumed raw. In this study, human norovirus genogroup II was allowed to bio-accumulate in oysters, and then the effect of high-pressure processing (HPP) on human noroviruses in oysters was determined through a polymerase chain reaction (PCR)-based method with enzymatic pretreatment to distinguish infectious noroviruses. As a result, oysters could be artificially contaminated to a detectable level of norovirus genome by the reverse transcription-PCR. Concentrations of norovirus genome in laboratory-contaminated oysters were log normally distributed, as determined by the real-time PCR, suggesting that artificial contamination by bio-accumulation was successful. In two independent HPP trials, a 1.87 log10 and 1.99 log10 reduction of norovirus GII.17 genome concentration was observed after HPP at 400 MPa for 5 min at 25°C. These data suggest that HPP is a promising process of inactivation of infectious human noroviruses in oysters. To our knowledge, this is the first report to investigate the effect of HPP on laboratory-contaminated noroviruses in oysters.
Collapse
Affiliation(s)
- Saiki Imamura
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| | - Hiromi Kanezashi
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| | - Tomoko Goshima
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| | | | - You Ueki
- 3 Miyagi Prefectural Institute of Public Health and Environment , Miyaginoku, Sendai-shi, Miyagi, Japan
| | - Naoko Sugawara
- 3 Miyagi Prefectural Institute of Public Health and Environment , Miyaginoku, Sendai-shi, Miyagi, Japan
| | - Hiroshi Ito
- 4 Miyagi Prefecture Fisheries Technology Institute , Watanoha, Ishinomaki, Miyagi, Japan
| | - Bizhen Zou
- 5 Incorporated Foundation Tokyo Kenbikyo-in , Tokyo, Japan
| | - Masashi Uema
- 6 National Institute of Health Sciences , Kamiyoga, Setagaya, Tokyo, Japan
| | - Mamoru Noda
- 6 National Institute of Health Sciences , Kamiyoga, Setagaya, Tokyo, Japan
| | - Keiko Akimoto
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| |
Collapse
|
43
|
McLeod C, Polo D, Le Saux JC, Le Guyader FS. Depuration and Relaying: A Review on Potential Removal of Norovirus from Oysters. Compr Rev Food Sci Food Saf 2017; 16:692-706. [DOI: 10.1111/1541-4337.12271] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine McLeod
- Seafood Safety Assessment Ltd.; Hillcrest Isle of Skye IV44 8RG Scotland
| | - David Polo
- Ifremer, Laboratoire de Microbiologie; LSEM/SG2M; 44300 Nantes France
| | | | | |
Collapse
|
44
|
Zhou Z, Tian Z, Li Q, Tian P, Wu Q, Wang D, Shi X. In Situ Capture RT-qPCR: A New Simple and Sensitive Method to Detect Human Norovirus in Oysters. Front Microbiol 2017; 8:554. [PMID: 28421051 PMCID: PMC5376551 DOI: 10.3389/fmicb.2017.00554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses (HuNoVs) are the major cause worldwide for non-bacterial acute gastroenteritis. In this study, we applied a novel viral receptor mediated in situ capture RT-qPCR (ISC-RT-qPCR) to detect HuNoVs in oysters and compared with the traditional RT-qPCR method. Ten HuNoVs RT-PCR positive and 5 negative clinical samples from gastroenteritis patients were used to compare specificity and sensitivity of ISC-RT-qPCR against that of the RT-qPCR assay. ISC-RT-qPCR had at a one-log and a two-log increase in sensitivity over that of the RT-qPCR assay for genotype I (GI) and GII, respectively. Distributions of HuNoVs in oyster tissues were investigated in artificially inoculated oysters. GI HuNoVs could be detected in all tissues in inoculated oysters by both ISC-RT-qPCR and RT-qPCR. GII HuNoVs could only be detected in gills and digestive glands by both methods. The number of viral genomic copies (vgc) measured by ISC-RT-qPCR was comparable with RT-qPCR in the detection of GI and GII HuNoVs in inoculated oysters. Thirty-six oyster samples from local market were assayed for HuNoVs by both assays. More HuNoVs could be detected by ISC-RT-qPCR in retail oysters. The detection rates of GI HuNoVs in gills, digestive glands, and residual tissues were 33.3, 25.0, and 19.4% by ISC-RT-qPCR; and 5.6, 11.1, and 11.1% by RT-qPCR, respectively. The detection rates of GII HuNoVs in gills were 2.8% by ISC-RT-qPCR; no GII HuNoV was detected in these oysters by RT-qPCR. Overall, all results demonstrated that ISC-RT-qPCR is a promising method for detecting HuNoVs in oyster samples.
Collapse
Affiliation(s)
- Zhenhuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Zhengan Tian
- Shanghai Entry-Exit Inspection and Quarantine Bureau of P.R.CShanghai, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of TechnologyShanghai, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
45
|
Le Mennec C, Parnaudeau S, Rumebe M, Le Saux JC, Piquet JC, Le Guyader SF. Follow-Up of Norovirus Contamination in an Oyster Production Area Linked to Repeated Outbreaks. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:54-61. [PMID: 27613529 DOI: 10.1007/s12560-016-9260-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
A production area repeatedly implicated in oyster-related gastroenteritis in France was studied for several months over 2 years. Outbreaks and field samples were analyzed by undertaking triplicate extractions, followed by norovirus (NoV) detection using triplicate wells for genomic amplification. This approach allowed us to demonstrate that some variabilities can be observed for samples with a low level of contamination, but most samples analyzed gave reproducible results. At the first outbreak, implicated oysters were collected at the beginning of the contamination event, which was reflected by the higher NoV levels during the first month of the study. During the second year, NoV concentrations in samples implicated in outbreaks and collected from the production area were similar, confirming the failure of the shellfish depuration process. Contamination was detected mainly during winter-spring months, and a high prevalence of NoV GI contamination was observed. A half-life of 18 days was calculated from NoV concentrations detected in oysters during this study, showing a very slow decrease of the contamination in the production area. Preventing the contamination of coastal waters should be a priority.
Collapse
Affiliation(s)
- Cécile Le Mennec
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, BP 21105, 44311, Nantes Cedex 03, France
| | - Sylvain Parnaudeau
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, BP 21105, 44311, Nantes Cedex 03, France
| | - Myriam Rumebe
- Laboratoire Environnement Ressources, ODE, Ifremer, Arcachon, France
| | - Jean-Claude Le Saux
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, BP 21105, 44311, Nantes Cedex 03, France
| | - Jean-Côme Piquet
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, BP 21105, 44311, Nantes Cedex 03, France
| | - S Françoise Le Guyader
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, BP 21105, 44311, Nantes Cedex 03, France.
| |
Collapse
|
46
|
Ottaviani D, Mosca F, Chierichetti S, Tiscar PG, Leoni F. Genetic diversity of Arcobacter isolated from bivalves of Adriatic and their interactions with Mytilus galloprovincialis hemocytes. Microbiologyopen 2017; 6:e00400. [PMID: 27650799 PMCID: PMC5300876 DOI: 10.1002/mbo3.400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 02/03/2023] Open
Abstract
The human food-borne pathogens Arcobacter butzleri and A. cryaerophilus have been frequently isolated from the intestinal tracts and fecal samples of different farm animals and, after excretion, these microorganisms can contaminate the environment, including the aquatic one. In this regard, A. butzleri and A. cryaerophilus have been detected in seawater and bivalves of coastal areas which are affected by fecal contamination. The capability of bivalve hemocytes to interact with bacteria has been proposed as the main factor inversely conditioning their persistence in the bivalve. In this study, 12 strains of Arcobacter spp. were isolated between January and May 2013 from bivalves of Central Adriatic Sea of Italy in order to examine their genetic diversity as well as in vitro interactions with bivalve components of the immune response, such as hemocytes. Of these, seven isolates were A. butzleri and five A. cryaerophilus, and were genetically different. All strains showed ability to induce spreading and respiratory burst of Mytilus galloprovincialis hemocytes. Overall, our data demonstrate the high genetic diversity of these microorganisms circulating in the marine study area. Moreover, the Arcobacter-bivalve interaction suggests that they do not have a potential to persist in the tissues of M. galloprovincialis.
Collapse
Affiliation(s)
- Donatella Ottaviani
- Sezione di AnconaLaboratorio Nazionale di Riferimento (LNR) Contaminazioni Batteriologiche Molluschi Bivalvi ViviIstituto Zooprofilattico Sperimentale dell'Umbria e delle MarcheAnconaItaly
| | | | - Serena Chierichetti
- Sezione di AnconaLaboratorio Nazionale di Riferimento (LNR) Contaminazioni Batteriologiche Molluschi Bivalvi ViviIstituto Zooprofilattico Sperimentale dell'Umbria e delle MarcheAnconaItaly
| | | | - Francesca Leoni
- Sezione di AnconaLaboratorio Nazionale di Riferimento (LNR) Contaminazioni Batteriologiche Molluschi Bivalvi ViviIstituto Zooprofilattico Sperimentale dell'Umbria e delle MarcheAnconaItaly
| |
Collapse
|
47
|
de Graaf M, Bodewes R, van Elk CE, van de Bildt M, Getu S, Aron GI, Verjans GMGM, Osterhaus ADME, van den Brand JMA, Kuiken T, Koopmans MPG. Norovirus Infection in Harbor Porpoises. Emerg Infect Dis 2017; 23:87-91. [PMID: 27983498 PMCID: PMC5176230 DOI: 10.3201/eid2301.161081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A norovirus was detected in harbor porpoises, a previously unknown host for norovirus. This norovirus had low similarity to any known norovirus. Viral RNA was detected primarily in intestinal tissue, and specific serum antibodies were detected in 8 (24%) of 34 harbor porpoises from the North Sea.
Collapse
|
48
|
Winterbourn JB, Clements K, Lowther JA, Malham SK, McDonald JE, Jones DL. Use of Mytilus edulis biosentinels to investigate spatial patterns of norovirus and faecal indicator organism contamination around coastal sewage discharges. WATER RESEARCH 2016; 105:241-250. [PMID: 27619500 DOI: 10.1016/j.watres.2016.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 05/20/2023]
Abstract
Bivalve shellfish have the capacity to accumulate norovirus (NoV) from waters contaminated with human sewage. Consequently, shellfish represent a major vector for NoV entry into the human food chain, leading to gastrointestinal illness. Identification of areas suitable for the safe cultivation of shellfish requires an understanding of NoV behaviour upon discharge of municipal-derived sewage into coastal waters. This study exploited the potential of edible mussels (Mytilus edulis) to accumulate NoV and employed the ISO method for quantification of NoV within mussel digestive tissues. To evaluate the spatial spread of NoV from an offshore sewage discharge pipe, mesh cages of mussels were suspended from moorings deployed in a 9 km2 grid array around the outfall. Caged mussels were retrieved after 30 days and NoV (GI and GII), total coliforms and E. coli enumerated. The experimentally-derived levels of NoV GI and GII in mussels were similar with total NoV levels ranging from 7 × 101 to 1.6 × 104 genome copies g-1 shellfish digestive gland (ΣGI + GII). NoV spread from the outfall showed a distinct plume which matched very closely to predictions from the tidally-driven effluent dispersal model MIKE21. A contrasting spatial pattern was observed for coliforms (range 1.7 × 102 to 2.1 × 104 CFU 100 g-1 shellfish tissue) and E. coli (range 0-1.2 × 103 CFU 100 g-1 shellfish tissue). These data demonstrate that hydrodynamic models may help inform effective exclusion zones for bivalve harvesting, whilst coliform/E. coli concentrations do not accurately reflect viral dispersal in marine waters and contamination of shellfish by sewage-derived viral pathogens.
Collapse
Affiliation(s)
- James B Winterbourn
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Katie Clements
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, LL59 5AB, UK
| | - James A Lowther
- CEFAS, The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, LL59 5AB, UK
| | - James E McDonald
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
49
|
Imamura S, Haruna M, Goshima T, Kanezashi H, Okada T, Akimoto K. Application of Next-Generation Sequencing to Evaluate the Profile of Noroviruses in Pre- and Post-Depurated Oysters. Foodborne Pathog Dis 2016; 13:559-565. [DOI: 10.1089/fpd.2016.2150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Saiki Imamura
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Mika Haruna
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Tomoko Goshima
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Hiromi Kanezashi
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | | | - Keiko Akimoto
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| |
Collapse
|
50
|
Burge CA, Closek CJ, Friedman CS, Groner ML, Jenkins CM, Shore-Maggio A, Welsh JE. The Use of Filter-feeders to Manage Disease in a Changing World. Integr Comp Biol 2016; 56:573-87. [DOI: 10.1093/icb/icw048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|