1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Zhu Z, Zou Y, Ou L, Chen M, Pang Y, Li H, Hao Y, Su B, Lai Y, Zhang L, Jia J, Wei R, Zhang G, Yao M, Feng Z. Preliminary investigation of the in vitro anti- Helicobacter pylori activity of Triphala. Front Pharmacol 2024; 15:1438193. [PMID: 39629075 PMCID: PMC11611552 DOI: 10.3389/fphar.2024.1438193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Background Triphala, is a composite of three individual botanical drugs: Terminalia chebula, Terminalia bellirica, and Emblica officinalis. It exhibits properties such as heatclearing, anti-inflammatory, anti-fatigue, antioxidant, and antibacterial effects,making it extensively utilized in India and Tibet. It has been found to exhibitinhibitory effects on Helicobacter pylori (H. pylori); however, further comprehensive research is still needed to elucidate its specific antibacterial mechanism. The present study investigates the in vitro antibacterial activity and antibacterial mechanism of Triphala against H. pylori. Methods Ours research investigates the in vitro inhibitory activity of Triphala on multiple standard and clinical strains using microdilution broth method, time-kill curve, time-bactericidal curve and scanning electron microscopy (SEM). Furthermore, the antibacterial mechanism of Triphala is further explored through experiments on urease activity, biofilm formation, anti-adhesion properties, virulence actor assays using RT-qPCR and Western Blotting techniques. Results The research findings indicate that Triphala exhibits a minimum inhibitory concentration of 80-320 μg/mL against both standard and clinical strains of H. pylori. Triphala exerts its anti-H. pylori effect by perturbing the microstructure of H. pylori, downregulating adhesion-associated genes (alpA, alpB, babA), urease-related genes (ureA, ureB, ureE, ureF), and flagellar genes (flaA, flaB); inhibiting bacterial adhesion, biofilm formation, urease activity as well as CagA protein expression. Discussion These findings suggest that Triphala exerts inhibitory effects on H. pylori activity through multiple mechanisms, underscoring its potential as a new drug for the prevention and treatment of H. pylori infection.
Collapse
Affiliation(s)
- Zhixiang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yujiang Pang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liping Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Ruixia Wei
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhong Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D in Shandong Province, Lunan Better Pharmaceutical Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
4
|
Sedarat Z, Taylor-Robinson AW. Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines. Pathogens 2024; 13:392. [PMID: 38787244 PMCID: PMC11124246 DOI: 10.3390/pathogens13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Helicobacter pylori is a gastric oncopathogen that infects over half of the world's human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology, structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases.
Collapse
Affiliation(s)
- Zahra Sedarat
- Cellular & Molecular Research Centre, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran;
| | - Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi 67000, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 1904, USA
| |
Collapse
|
5
|
Sijmons D, Collett S, Soliman C, Guy AJ, Scott AM, Durrant LG, Elbourne A, Walduck AK, Ramsland PA. Probing the expression and adhesion of glycans involved in Helicobacter pylori infection. Sci Rep 2024; 14:8587. [PMID: 38615147 PMCID: PMC11016089 DOI: 10.1038/s41598-024-59234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.
Collapse
Affiliation(s)
- Daniel Sijmons
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Simon Collett
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Caroline Soliman
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Andrew J Guy
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ZiP Diagnostics, Collingwood, VIC, 3066, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health and Faculty of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Anna K Walduck
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - Paul A Ramsland
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
6
|
Dyankov G, Eftimov T, Hikova E, Najdenski H, Kussovski V, Genova-Kalou P, Mankov V, Kisov H, Veselinov P, Ghaffari SS, Kovacheva-Slavova M, Vladimirov B, Malinowski N. SPR and Double Resonance LPG Biosensors for Helicobacter pylori BabA Antigen Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2118. [PMID: 38610328 PMCID: PMC11014364 DOI: 10.3390/s24072118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Given the medical and social significance of Helicobacter pylori infection, timely and reliable diagnosis of the disease is required. The traditional invasive and non-invasive conventional diagnostic techniques have several limitations. Recently, opportunities for new diagnostic methods have appeared based on the recent advance in the study of H. pylori outer membrane proteins and their identified receptors. In the present study we assess the way in which outer membrane protein-cell receptor reactions are applicable in establishing a reliable diagnosis. Herein, as well as in other previous studies of ours, we explore the reliability of the binding reaction between the best characterized H. pylori adhesin BabA and its receptor, the blood antigen Leb. For the purpose we developed surface plasmon resonance (SPR) and double resonance long period grating (DR LPG) biosensors based on the BabA-Leb binding reaction for diagnosing H. pylori infection. In SPR detection, the sensitivity was estimated at 3000 CFU/mL-a much higher sensitivity than that of the RUT test. The DR LPG biosensor proved to be superior in terms of accuracy and sensitivity-concentrations as low as 102 CFU/mL were detected.
Collapse
Affiliation(s)
- Georgi Dyankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (G.D.); (V.M.); (H.K.); (P.V.); (N.M.)
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sankt Petersburg Blvd., 4000 Plovdiv, Bulgaria;
| | - Tinko Eftimov
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sankt Petersburg Blvd., 4000 Plovdiv, Bulgaria;
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada;
| | - Evdokiya Hikova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (G.D.); (V.M.); (H.K.); (P.V.); (N.M.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (H.N.); (V.K.)
| | - Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (H.N.); (V.K.)
| | - Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria;
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (G.D.); (V.M.); (H.K.); (P.V.); (N.M.)
| | - Hristo Kisov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (G.D.); (V.M.); (H.K.); (P.V.); (N.M.)
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sankt Petersburg Blvd., 4000 Plovdiv, Bulgaria;
| | - Petar Veselinov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (G.D.); (V.M.); (H.K.); (P.V.); (N.M.)
| | - Sanaz Shoar Ghaffari
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada;
- Department of Electrical and Computer Engineering, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Mila Kovacheva-Slavova
- Department of Gastroenterology, University Hospital Tsaritsa Ioanna-ISUL, Medical University Sofia, 8 “Byalo More” Str., 1527 Sofia, Bulgaria; (M.K.-S.); (B.V.)
| | - Borislav Vladimirov
- Department of Gastroenterology, University Hospital Tsaritsa Ioanna-ISUL, Medical University Sofia, 8 “Byalo More” Str., 1527 Sofia, Bulgaria; (M.K.-S.); (B.V.)
| | - Nikola Malinowski
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (G.D.); (V.M.); (H.K.); (P.V.); (N.M.)
| |
Collapse
|
7
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
8
|
Lan S, Li Z, Hao H, Liu S, Huang Z, Bai Y, Li Y, Yan X, Gao P, Chen S, Chu Y. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells. FASEB J 2023; 37:e23176. [PMID: 37665592 DOI: 10.1096/fj.202300678r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Mycoplasma spp., the smallest self-replicating and genome-reduced organisms, have raised a great concern in both the medical and veterinary fields due to their pathogenicity. The molecular determinants of these wall-less bacterium efficiently use their limited genes to ensure successful infection of the host remain unclear. In the present study, we used the ruminant pathogen Mycoplasma bovis as a model to identify the key factors for colonization and invasion into host cells. We constructed a nonredundant fluorescent transposon mutant library of M. bovis using a modified transposon plasmid, and identified 34 novel adhesion-related genes based on a high-throughput screening approach. Among them, the ΔLppB mutant exhibited the most apparent decrease in adhesion to embryonic bovine lung (EBL) cells. The surface-localized lipoprotein LppB, which is highly conserved in Mycoplasma species, was then confirmed as a key factor for M. bovis adhesion with great immunogenicity. LppB interacted with various components (fibronectin, vitronectin, collagen IV, and laminin) of host extracellular matrix (ECM) and promoted plasminogen activation through tPA to degrade ECM. The 439-502 amino acid region of LppB is a critical domain, and F465 and Y493 are important residues for the plasminogen activation activity. We further revealed LppB as a key factor facilitating internalization through clathrin- and lipid raft-mediated endocytosis, which helps the Mycoplasma invade the host cells. Our study indicates that LppB plays a key role in Mycoplasma infection and is a potential new therapeutic and vaccine target for Mycoplasma species.
Collapse
Affiliation(s)
- Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhicheng Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yutong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yanzhao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
9
|
Elshenawi Y, Hu S, Hathroubi S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics (Basel) 2023; 12:1260. [PMID: 37627679 PMCID: PMC10451559 DOI: 10.3390/antibiotics12081260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects nearly half of the global population and is recognized as a group 1 carcinogen by the Word Health Organization. The global rise in antibiotic resistance has increased clinical challenges in treating H. pylori infections. Biofilm growth has been proposed to contribute to H. pylori's chronic colonization of the host stomach, treatment failures, and the eventual development of gastric diseases. Several components of H. pylori have been identified to promote biofilm growth, and several of these may also facilitate antibiotic tolerance, including the extracellular matrix, outer membrane proteins, shifted morphology, modulated metabolism, efflux pumps, and virulence factors. Recent developments in therapeutic approaches targeting H. pylori biofilm have shown that synthetic compounds, such as small molecule drugs and plant-derived compounds, are effective at eradicating H. pylori biofilms. These combined topics highlight the necessity for biofilm-based research in H. pylori, to improve current H. pylori-targeted therapeutic approaches and alleviate relative public health burden. In this review we discuss recent discoveries that have decoded the life cycle of H. pylori biofilms and current biofilm-targeted treatment strategies.
Collapse
Affiliation(s)
- Yasmine Elshenawi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Skander Hathroubi
- Spartha Medical, CRBS 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
10
|
Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S. Helicobacter pylori infection. Nat Rev Dis Primers 2023; 9:19. [PMID: 37081005 PMCID: PMC11558793 DOI: 10.1038/s41572-023-00431-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Helicobacter pylori infection causes chronic gastritis, which can progress to severe gastroduodenal pathologies, including peptic ulcer, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori is usually transmitted in childhood and persists for life if untreated. The infection affects around half of the population in the world but prevalence varies according to location and sanitation standards. H. pylori has unique properties to colonize gastric epithelium in an acidic environment. The pathophysiology of H. pylori infection is dependent on complex bacterial virulence mechanisms and their interaction with the host immune system and environmental factors, resulting in distinct gastritis phenotypes that determine possible progression to different gastroduodenal pathologies. The causative role of H. pylori infection in gastric cancer development presents the opportunity for preventive screen-and-treat strategies. Invasive, endoscopy-based and non-invasive methods, including breath, stool and serological tests, are used in the diagnosis of H. pylori infection. Their use depends on the specific individual patient history and local availability. H. pylori treatment consists of a strong acid suppressant in various combinations with antibiotics and/or bismuth. The dramatic increase in resistance to key antibiotics used in H. pylori eradication demands antibiotic susceptibility testing, surveillance of resistance and antibiotic stewardship.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
- Medical Department Klinik of Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Emad El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Schulz
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
| | - Stella I Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Sebastian Suerbaum
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- National Reference Center for Helicobacter pylori, Munich, Germany
| |
Collapse
|
11
|
Wang Y, Zheng L. Protocatechuic acid, the main effective monomer in Wuqi Powder, can inhibit gastric ulcers induced by acetic acid and Helicobacter pylori. Am J Transl Res 2023; 15:151-164. [PMID: 36777827 PMCID: PMC9908460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/05/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE To explore the effective ingredients of Wuqi Powder and their mechanism of action, so as to provide a theoretical basis for clinical application. METHODS Enzyme-linked immunosorbent assay was used to determine interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels. Rapid urease test and Giemsa staining were conducted to detect Helicobacter pylori (H. pylori) in gastric tissue. CCK-8, EdU and wound healing assay were used to measure the proliferation and migration of GES-1 cells. The number of intracellular and extracellular bacteria of GES-1 cells was counted to evaluate infection and adhesion of H. pylori. RT-qPCR was conducted to evaluate the level of alpA, alpB and cagA genes of H. pylori. Bioinformatics methods were used to predict the potential targets and signaling pathways of protocatechuic acid (PCA) in GES-1 cells. Then, RT-qPCR was used to detect the expression of target genes, and Western blot was conducted to detect the interaction of the target pathways. RESULTS PCA is the effective ingredient in Wuqi Powder, which alleviated the symptoms of gastric ulcers, reduced H. pylori in gastric tissue and IL-6, TNF-α in rat serum. In addition, PCA accelerated the proliferation and migration of GES-1 cells and inhibited the infection and adhesion of H. pylori to GES-1 cells. Furthermore, PCA inhibited the TNF and Smad pathways and activated the vascular endothelial growth factor A (VEGFA) pathway of GES-1 cells. CONCLUSION PCA is the key component in treating gastric ulcers induced by acetic acid and H. pylori. It promotes gastric ulcer repair by inhibiting the Smad pathway, TNF pathway and activating the VEGFA pathway.
Collapse
|
12
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
13
|
Ferreira RM, Figueiredo J, Pinto-Ribeiro I, Gullo I, Sgouras DN, Carreto L, Castro P, Santos MA, Carneiro F, Seruca R, Figueiredo C. Activation of Laminin γ2 by Helicobacter pylori Promotes Invasion and Survival of Gastric Cancer Cells With E-Cadherin Defects. J Infect Dis 2022; 226:2226-2237. [PMID: 36173814 DOI: 10.1093/infdis/jiac397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection induces cellular phenotypes relevant for cancer progression, namely cell motility and invasion. We hypothesized that the extracellular matrix (ECM) could be involved in these deleterious effects. METHODS Microarrays were used to uncover ECM interactors in cells infected with H. pylori. LAMC2, encoding laminin γ2, was selected as a candidate gene and its expression was assessed in vitro and in vivo. The role of LAMC2 was investigated by small interference RNA (siRNA) combined with a set of functional assays. Laminin γ2 and E-cadherin expression patterns were evaluated in gastric cancer cases. RESULTS Laminin γ2 was found significantly overexpressed in gastric cancer cells infected with H. pylori. This finding was validated in vitro by infection with clinical isolates and in vivo by using gastric biopsies of infected and noninfected individuals. We showed that laminin γ2 overexpression is dependent on the bacterial type IV secretion system and on the CagA. Functionally, laminin γ2 promotes cell invasion and resistance to apoptosis, through modulation of Src, JNK, and AKT activity. These effects were abrogated in cells with functional E-cadherin. CONCLUSIONS These data highlight laminin γ2 and its downstream effectors as potential therapeutic targets, and the value of H. pylori eradication to delay gastric cancer onset and progression.
Collapse
Affiliation(s)
- Rui M Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Irene Gullo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | | | - Laura Carreto
- Department of Biology, University of Aveiro, Aveiro, Portugal.,Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Patricia Castro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Manuel A Santos
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.,Multidisciplinary Institute of Ageing, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fatima Carneiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Teng KW, Hsieh KS, Hung JS, Wang CJ, Liao EC, Chen PC, Lin YH, Wu DC, Lin CH, Wang WC, Chan HL, Huang SK, Kao MC. Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins. Gut Microbes 2022; 14:2130650. [PMID: 36206406 PMCID: PMC9553153 DOI: 10.1080/19490976.2022.2130650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Collapse
Affiliation(s)
- Kai-Wen Teng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Siang Hsieh
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ji-Shiuan Hung
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Jen Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Chun Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Hsuan Lin
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,CONTACT Mou-Chieh Kao Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
15
|
Atrisco-Morales J, Ramírez M, Castañón-Sánchez CA, Román-Román A, Román-Fernández IV, Martínez-Carrillo DN, García-Arellano S, Muñoz-Valle JF, Rodríguez-Ruiz HA, Fernández-Tilapa G. In Peripheral Blood Mononuclear Cells Helicobacter pylori Induces the Secretion of Soluble and Exosomal Cytokines Related to Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158801. [PMID: 35955936 PMCID: PMC9368997 DOI: 10.3390/ijms23158801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori promotes the secretion of cytokines that regulate inflammation and carcinogenesis. Immune cells secrete cytokines into the extracellular medium or packaged in exosomes. The objective of this study was to analyze the profile of soluble and exosomal cytokines that were secreted by human peripheral blood mononuclear cells (PBMCs) that were infected with H. pylori and to build a network of interaction between cytokines and cellular proteins. PBMCs were obtained by density gradient centrifugation and infected with H. pylori for 24 h. The infection was verified by immunofluorescence and Western blot for CagA. The exosomes were obtained from culture supernatant by ultracentrifugation and characterized by transmission electron microscopy, particle size analysis, and Western blot for CD9 and CD81. Cytokines were quantified using a multiplex immunoassay in the culture supernatant, intact exosomes, and lysed exosomes. H. pylori adheres to lymphocytes and translocates CagA. In PBMCs, H. pylori induces an increase in the soluble and exosomal IL-1β, IL-6, TNF-α, IL-10, IL-17A, IL-21, and IL-22. The protein-protein interaction (PPI) network shows that soluble and exosomal cytokines interact with proteins that participate in signaling pathways such as NF-κB, MAPK, PI3K-Akt, Jak-STAT, FoxO, and mTOR, that are related to carcinogenesis; moreover, TNF-α had the highest number of interactions. Cytokine-loaded exosomes represent another means of intercellular communication that is activated by H. pylori to stimulate inflammation, carcinogenesis, or cancer progression. Cytokine-loaded exosomes are likely to be associated with extragastrointestinal diseases of inflammatory origin.
Collapse
Affiliation(s)
- Josefina Atrisco-Morales
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Mónica Ramírez
- CONACYT-Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Carlos Alberto Castañón-Sánchez
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec 71256, Oaxaca, Mexico
| | - Adolfo Román-Román
- Laboratorio de Investigación en Bacteriología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Gloria Fernández-Tilapa
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Correspondence:
| |
Collapse
|
16
|
Vital JS, Tanoeiro L, Lopes-Oliveira R, Vale FF. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules 2022; 12:691. [PMID: 35625618 PMCID: PMC9138241 DOI: 10.3390/biom12050691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori colonizes c.a. 50% of human stomachs worldwide and is the major risk factor for gastric adenocarcinoma. Its high genetic variability makes it difficult to identify biomarkers of early stages of infection that can reliably predict its outcome. Moreover, the increasing antibiotic resistance found in H. pylori defies therapy, constituting a major human health problem. Here, we review H. pylori virulence factors and genes involved in antibiotic resistance, as well as the technologies currently used for their detection. Furthermore, we show that next generation sequencing may lead to faster characterization of virulence factors and prediction of the antibiotic resistance profile, thus contributing to personalized treatment and management of H. pylori-associated infections. With this new approach, more and permanent data will be generated at a lower cost, opening the future to new applications for H. pylori biomarker identification and antibiotic resistance prediction.
Collapse
Affiliation(s)
- Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Ricardo Lopes-Oliveira
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| |
Collapse
|
17
|
Yang H, Huang X, Zhang X, Zhang X, Xu X, She F, Wen Y. AI-2 Induces Urease Expression Through Downregulation of Orphan Response Regulator HP1021 in Helicobacter pylori. Front Med (Lausanne) 2022; 9:790994. [PMID: 35433748 PMCID: PMC9010608 DOI: 10.3389/fmed.2022.790994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori causes gastric infections in more than half of the world's population. The bacterium's survival in the stomach is mediated by the abundant production of urease to enable acid acclimation. In this study, our transcriptomic analysis demonstrated that the expression of urease structural proteins, UreA and UreB, is induced by the autoinducer AI-2 in H. pylori. We also found that the orphan response regulator HP1021 is downregulated by AI-2, resulting in the induction of urease expression. HP1021 represses the expression of urease by directly binding to the promoter region of ureAB, ranging from −47 to +3 with respect to the transcriptional start site. The study findings suggest that quorum sensing via AI-2 enhances acid acclimation when bacterial density increases, and might enable bacterial dispersal to other sites when entering gastric acid.
Collapse
Affiliation(s)
- Huang Yang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaochuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Feifei She
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Yancheng Wen
| |
Collapse
|
18
|
Chen BR, Li WM, Li TL, Chan YL, Wu CJ. Fucoidan from Sargassum hemiphyllum inhibits infection and inflammation of Helicobacter pylori. Sci Rep 2022; 12:429. [PMID: 35013458 PMCID: PMC8748467 DOI: 10.1038/s41598-021-04151-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/09/2021] [Indexed: 01/15/2023] Open
Abstract
Having infected by Helicobacter pylori, the infection often leads to gastritis, gastric ulcer, or even gastric cancer. The disease is typically treated with antibiotics as they used to effectively inhibit or kill H. pylori, thus reducing the incidence of gastric adenoma and cancer to significant extent. H. pylori, however, has developed drug resistance to many clinically used antibiotics over the years, highlighting the crisis of antibiotic failure during the H. pylori treatment. We report here that the fucoidan from Sargassum hemiphyllum can significantly reduce the infection of H. pylori without developing to drug resistance. Fucoidan appears to be a strong anti-inflammation agent as manifested by the RAW264.7 cell model examination. Fucoidan can prohibit H. pylori adhesion to host cells, thereby reducing the infection rate by 60%, especially in post treatment in the AGS cell model assay. Mechanistically, fucoidan intervenes the adhesion of BabA and AlpA of H. pylori significantly lowering the total count of H. pylori and the level of IL-6 and TNF-α in vivo. These results all converge on the same fact that fucoidan is an effective agent in a position to protect the stomach from the H. pylori infection by reducing both the total count and induced inflammation.
Collapse
Affiliation(s)
- Bo-Rui Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan, ROC
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, Taiwan, ROC
| | - Wei-Ming Li
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, Taiwan, ROC
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, 55, Hwa Kang Road, Taipei, Taiwan, ROC.
| | - Chang-Jer Wu
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan, ROC.
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, Taiwan, ROC.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan, ROC.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
19
|
Cheok YY, Lee CYQ, Cheong HC, Vadivelu J, Looi CY, Abdullah S, Wong WF. An Overview of Helicobacter pylori Survival Tactics in the Hostile Human Stomach Environment. Microorganisms 2021; 9:microorganisms9122502. [PMID: 34946105 PMCID: PMC8705132 DOI: 10.3390/microorganisms9122502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
- Correspondence:
| |
Collapse
|
20
|
Harvey ML, Lin AS, Sun L, Koyama T, Shuman JHB, Loh JT, Algood HMS, Scholz MB, McClain MS, Cover TL. Enhanced Fitness of a Helicobacter pylori babA Mutant in a Murine Model. Infect Immun 2021; 89:e0072520. [PMID: 34310886 PMCID: PMC8445181 DOI: 10.1128/iai.00725-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori genomes encode over 60 predicted outer membrane proteins (OMPs). Several OMPs in the Hop family act as adhesins, but the functions of most Hop proteins are unknown. To identify hop mutant strains exhibiting differential fitness in vivo compared to in vitro, we used a genetic barcoding method that allowed us to track changes in the proportional abundance of H. pylori strains within a mixed population. We generated a library of hop mutant strains, each containing a unique nucleotide barcode, as well as a library of control strains, each containing a nucleotide barcode in an intergenic region predicted to be a neutral locus unrelated to bacterial fitness. We orogastrically inoculated each of the libraries into mice and analyzed compositional changes in the populations over time in vivo compared to changes detected in the populations during library passage in vitro. The control library proliferated as a relatively stable community in vitro, but there was a reduction in the population diversity of this library in vivo and marked variation in the dominant strains recovered from individual animals, consistent with the existence of a nonselective bottleneck in vivo. We did not identify any OMP mutants exhibiting fitness defects exclusively in vivo without corresponding fitness defects in vitro. Conversely, a babA mutant exhibited a strong fitness advantage in vivo but not in vitro. These findings, when taken together with results of other studies, suggest that production of BabA may have differential effects on H. pylori fitness depending on the environmental conditions.
Collapse
Affiliation(s)
- M. Lorena Harvey
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Matthew B. Scholz
- Vanderbilt Technologies for Advanced Genetics (VANTAGE), Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Lee DH, Ha JH, Shin JI, Kim KM, Choi JG, Park S, Park JS, Seo JH, Park JS, Shin MK, Baik SC, Lee WK, Youn HS, Cho MJ, Kang HL, Jung M. Increased Risk of Severe Gastric Symptoms by Virulence Factors vacAs1c, alpA, babA2, and hopZ in Helicobacter pylori Infection. J Microbiol Biotechnol 2021; 31:368-379. [PMID: 33622995 PMCID: PMC9705970 DOI: 10.4014/jmb.2101.01023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Two virulence factors of Helicobacter pylori, cagA and vacA, have been known to play a role in the development of severe gastric symptoms. However, they are not always associated with peptic ulcer or gastric cancer. To predict the disease outcome more accurately, it is necessary to understand the risk of severe symptoms linked to other virulence factors. Several other virulence factors of H. pylori have also been reported to be associated with disease outcomes, although there are many controversial descriptions. H. pylori isolates from Koreans may be useful in evaluating the relevance of other virulence factors to clinical symptoms of gastric diseases because the majority of Koreans are infected by toxigenic strains of H. pylori bearing cagA and vacA. In this study, a total of 116 H. pylori strains from Korean patients with chronic gastritis, peptic ulcers, and gastric cancers were genotyped. The presence of virulence factors vacAs1c, alpA, babA2, hopZ, and the extremely strong vacuolating toxin was found to contribute significantly to the development of severe gastric symptoms. The genotype combination vacAs1c/alpA/babA2 was the most predictable determinant for the development of severe symptoms, and the presence of babA2 was found to be the most critical factor. This study provides important information on the virulence factors that contribute to the development of severe gastric symptoms and will assist in predicting clinical disease outcomes due to H. pylori infection.
Collapse
Affiliation(s)
- Dong-Hae Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong-Hun Ha
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seorin Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Hyeun Seo
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Shook Park
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee-Shang Youn
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Myung-Je Cho
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,H.L. Kang Phone: +82-55-772-8085 Fax: +82-55-772-8089 E-mail:
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors M. Jung Phone: +82-55-772-8082 Fax: +82-55-772-8089 E-mail:
| |
Collapse
|
22
|
Delineation of the pH-Responsive Regulon Controlled by the Helicobacter pylori ArsRS Two-Component System. Infect Immun 2021; 89:IAI.00597-20. [PMID: 33526561 DOI: 10.1128/iai.00597-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Collapse
|
23
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:E27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
24
|
Robinson K, Atherton JC. The Spectrum of Helicobacter-Mediated Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:123-144. [PMID: 33197219 DOI: 10.1146/annurev-pathol-032520-024949] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicobacter pylori is the leading cause of peptic ulcer disease. The infection has been implicated in more than 75% of duodenal ulcer cases and 17% of gastric ulcer cases. H. pylori has been classified as a human carcinogen, since it is the main cause of distal gastric adenocarcinoma and B cell mucosa-associated lymphoid tissue lymphoma. Evidence also links H. pylori with extragastric conditions including iron deficiency anemia, idiopathic thrombocytopenic purpura, and vitamin B12 deficiency. Studies indicate that H. pylori may be protective against other conditions of the gastrointestinal tract (e.g., reflux esophagitis and related pathologies) and elsewhere in the body (e.g., asthma). The infection is asymptomatic in the vast majority of cases; more serious outcomes occur in only 10-15% of infected individuals. Despite extensive research over the past 3 decades, there is no effective vaccine, and the circumstances leading to disease development remain unclear. In addition, there is now a growing prevalence of antimicrobial resistance in H. pylori. This review discusses these important issues.
Collapse
Affiliation(s)
- Karen Robinson
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2RD United Kingdom;
| | - John C Atherton
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2RD United Kingdom;
| |
Collapse
|
25
|
Sukri A, Hanafiah A, Mohamad Zin N, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS 2020; 128:150-161. [PMID: 32352605 DOI: 10.1111/apm.13034] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori is associated with the development of gastric cancer. Although the prevalence of gastric cancer has declined throughout years due to improvement in early screening strategy, mortality due to gastric cancer has not changed. Incidence and mortality due to gastric cancer are higher in developing countries as compared to developed countries. Diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Eradication of H. pylori is pertinent for the prevention of gastric cancer. However, the rise in antimicrobial resistance among H. pylori isolates has complicated the prevention strategy. H. pylori express multiple virulence factors for survival in the hostile acid gastric environment. The expression of oncogenic protein cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and outer inflammatory protein is essential for H. pylori to exert pathogenesis towards the host. Interestingly, <3% of H. pylori-infected subjects develop gastric cancer, suggesting a unique way of interaction between the host's immune response and H. pylori virulence factors. This article is aimed to review the epidemiology and role of H. pylori in gastric carcinogenesis. A better understanding of the interaction between H. pylori virulence factors and host is required for better gastric cancer prevention.
Collapse
Affiliation(s)
- Asif Sukri
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Ilie OD, Ciobica A, McKenna J, Doroftei B, Mavroudis I. Minireview on the Relations between Gut Microflora and Parkinson's Disease: Further Biochemical (Oxidative Stress), Inflammatory, and Neurological Particularities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4518023. [PMID: 32089768 PMCID: PMC7025076 DOI: 10.1155/2020/4518023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
The aetiology of Parkinson's disease (PD) is a highly debated topic. Despite the progressive increase in the number of patients diagnosed with PD over the last couple of decades, the causes remain largely unknown. This report is aimed at highlighting the main features of the microbial communities which have been termed "the second brain" that may be a major participant in the etiopathophysiology of PD. It is possible that dysbiosis could be caused by an overactivity of proinflammatory cytokines which act on the gastrointestinal tract as well as infections. The majority of patients who are diagnosed with PD display gastrointestinal symptoms as one of the earliest features. In addition, an unbalanced cycle of oxidative stress caused by dysbacteriosis may have the effect of gradually promoting PD's specific phenotype. Thus, it seems that bacteria possess the ability to manipulate the brain by initiating specific responses, defining their capability to configure the human body, with oxidative stress playing a pivotal role in preventing infections but also in activating related signalling pathways.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no. 11, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no. 11, 700505 Iasi, Romania
| | - Jack McKenna
- Leeds Teaching Hospitals NHS Trust, Great George St., Leeds LS1 3EX, UK
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no. 16, 700115 Iasi, Romania
- Origyn Fertility Center, Palace Street, no. 3C, 700032 Iasi, Romania
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St., Leeds LS1 3EX, UK
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
27
|
Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2019; 209:277-299. [PMID: 31784893 PMCID: PMC7248048 DOI: 10.1007/s00430-019-00644-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Infection Control, University Hospital, Eberhard Karls-University, Tübingen, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
28
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
29
|
Fagoonee S, Pellicano R. Helicobacter pylori: molecular basis for colonization and survival in gastric environment and resistance to antibiotics. A short review. Infect Dis (Lond) 2019; 51:399-408. [PMID: 30907202 DOI: 10.1080/23744235.2019.1588472] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a human-specific pathogen with a strict tropism for the gastric mucosa. This bacterium infects around half of the world population and is the main responsible for gastritis, peptic ulcer and, in some cases, for the pathogenesis of gastric cancer. Nevertheless, disease development in infected subjects depends not only on the bacterium, but also on the host genetic predisposition and on environmental factors. The fascinating question of how the bacterium can survive in the gastric environment has stimulated research in this field. It is now clear that H. pylori is able to colonize and adhere to the gastric epithelium through several mechanisms, including the breakdown of urea with production of the cell-toxic ammonia. The resulting raise in pH neutralizes acidity of the stomach, thereby allowing the bacterium to safely cross the mucus layer to the epithelial surface. Current challenges regard understanding the mechanisms of antibiotic resistance and how to overcome it. Lately, an increasing H. pylori resistance rate to antibiotics has been reported and several molecular bases for this phenomenon described. In this review, we highlight the current knowledge on mechanisms supporting H. pylori resistance to gastric environment and to therapy.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- a Institute for Biostructure and Bioimaging (CNR) c/o Molecular Biotechnology Center , Turin , Italy
| | - Rinaldo Pellicano
- b Unit of Gastroenterology , Molinette-SGAS Hospital , Turin , Italy
| |
Collapse
|
30
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
31
|
Javed S, Skoog EC, Solnick JV. Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Curr Top Microbiol Immunol 2019; 421:21-52. [PMID: 31123884 DOI: 10.1007/978-3-030-15138-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.
Collapse
Affiliation(s)
- Sundus Javed
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Emma C Skoog
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Jay V Solnick
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA. .,Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
33
|
Chmiela M, Walczak N, Rudnicka K. Helicobacter pylori outer membrane vesicles involvement in the infection development and Helicobacter pylori-related diseases. J Biomed Sci 2018; 25:78. [PMID: 30409143 PMCID: PMC6225681 DOI: 10.1186/s12929-018-0480-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori - (H. pylori) play a role in the pathogenesis of gastritis, gastric and duodenal ulcers as well as gastric cancer. A possible involvement of outer membrane vesicles (OMVs) produced by H. pylori in the distribution of bacterial antigens through the gastric epithelial barrier and their role in the development of local and systemic host inflammatory and immune responses has been suggested. OMVs contain various biologically active compounds, which internalize into host cells affecting signaling pathways and promoting apoptosis of gastric epithelial and immunocompetent cells. OMVs-associated H. pylori virulence factors may strengthen or downregulate the immune responses leading to disease development. This review describes the biological importance of H. pylori OMVs and their role in the course of H. pylori infections, as well as H. pylori related local and systemic effects.
Collapse
Affiliation(s)
- Magdalena Chmiela
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Natalia Walczak
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
34
|
Pozdeev ОК, Pozdeeva АО, Valeeva YV, Gulyaev PE. MECHANISMS OF INTERRACTION OF HELICOBACTER PYLORI WITH EPITHELIUM OF GASTRIC MUCOSA. I. PATHOGENIC FACTORS PROMOTING SUCCESSFUL COLONIZATION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018; 8:273-283. [DOI: 10.15789/2220-7619-2018-3-273-283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
H. pylori is a Gram-negative, crimp and motile bacterium that colonizes the hostile microniche of the human stomach roughly one half of the human population. Then persists for the host’s entire life, but only causes overt gastric disease in a subset of infected hosts. To the reasons contributing to the development of diseases, usually include: concomitant infections of the gastrointestinal tract, improper sterilization of medical instruments, usually endoscopes, nonobservance of personal hygiene rules, prolonged contact with infected or carriers, including family members and a number of other factors. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic and duodenal ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, we are able to conclude that smart strategies are contributing to adaptation of the bacterium in an aggressive environment of a stomach and lifelong permanent circulation in its host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable conditions? Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of different gastric diseases in persons infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases the diseases which are listed above. In this review, we discuss the pathogenesis of this bacterium and the mechanisms it uses to promote persistent colonization of the gastric mucosa, with a focus on recent insights into the role of some virulence factors like urease, LPS, outer membrane proteins, cytotoxins, factors, promoting invasion. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the many unfavorable features of living in the gastric microniche.
Collapse
|
35
|
Helicobacter pylori outer membrane protein Q genotypes and their susceptibility to anti-adhesive phytotherapeutic agents. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:398-406. [PMID: 28844217 DOI: 10.1016/s2095-4964(17)60359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Helicobacter pylori is a Gram-negative organism. Its outer membrane protein Q (HopQ) mediates host-pathogen interactions; HopQ genotypes 1 and 2 are found associating with gastroduodenal pathologies. The authors measured the anti-adhesion effects of the extracts of Abelmoschus esculentus, Zingiber officinale, Trachyspermum ammi, Glycyrrhiza glabra, Curcuma longa and Capsicum annum against HopQ genotypes and H. pylori cytotoxin-associated gene A (CagA). METHODS DNA was extracted by polymerase chain reaction of the HopQ genotypes (i.e., type 1, type 2 and CagA) from 115 H. pylori strains. The effect of the extracts from selected dietary ingredients was determined using a gastric adenocarcinoma cell line and a quantitative DNA fragmentation assay. The anti-adhesive effect of these extracts on H. pylori was tested using an anti-adhesion analysis. RESULTS C. annum, C. longa and A. esculentus showed prominent anti-adhesion effects with resultant values of 17.3% ± 2.9%, 14.6% ± 3.7%, 13.8% ± 3.6%, respectively, against HopQ type 1 and 13.1% ± 1.7%, 12.1% ± 2%, 11.1% ± 1.6%, respectively, against HopQ type 2. C. longa (93%), C. annum (89%) and A. esculentus (75%) had better anti-adhesive activity against H. pylori with HopQ type 1 compared to HopQ type 2 with respective values of 70%, 64% and 51%. Extracts of C. annum (14.7% ± 4.1%), A. esculentus (12.3% ± 4.1%) and Z. officinale (8.4% ± 2.8%) had an anti-adhesion effect against CagA-positive H. pylori strains compared to CagA-negative strains. CONCLUSION The anti-adhesion properties of the tested phytotherapeutic dietary ingredients were varied with HopQ genotypes. HopQ type 1 was found to be more sensitive to extracts of C. annum, C. longa and A. esculentus compared to the HopQ type 2 genotype.
Collapse
|
36
|
Padra M, Adamczyk B, Benktander J, Flahou B, Skoog EC, Padra JT, Smet A, Jin C, Ducatelle R, Samuelsson T, Haesebrouck F, Karlsson NG, Teneberg S, Lindén SK. Helicobacter suis binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes. Virulence 2018; 9:898-918. [PMID: 29638186 PMCID: PMC5955484 DOI: 10.1080/21505594.2018.1460979] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter suis colonizes the stomach of most pigs and is the most prevalent non-Helicobacter pylori Helicobacter species found in the human stomach. In the human host, H. suis contributes to the development of chronic gastritis, peptic ulcer disease and MALT lymphoma, whereas in pigs it is associated with gastritis, decreased growth and ulcers. Here, we demonstrate that the level of H. pylori and H. suis binding to human and pig gastric mucins varies between individuals with species dependent specificity. The binding optimum of H. pylori is at neutral pH whereas that of H. suis has an acidic pH optimum, and the mucins that H. pylori bind to are different than those that H. suis bind to. Mass spectrometric analysis of mucin O-glycans from the porcine mucin showed that individual variation in binding is reflected by a difference in glycosylation; of 109 oligosaccharide structures identified, only 14 were present in all examined samples. H. suis binding to mucins correlated with glycans containing sulfate, sialic acid and terminal galactose. Among the glycolipids present in pig stomach, binding to lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer) was identified, and adhesion to Galβ3GlcNAcβ3Galβ4Glc at both acidic and neutral pH was confirmed using other glycoconjugates. Together with that H. suis bound to DNA (used as a proxy for acidic charge), we conclude that H. suis has two binding modes: one to glycans terminating with Galβ3GlcNAc, and one to negatively charged structures. Identification of the glycan structures H. suis interacts with can contribute to development of therapeutic strategies alternative to antibiotics.
Collapse
Affiliation(s)
- Médea Padra
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Barbara Adamczyk
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - John Benktander
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Bram Flahou
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Emma C Skoog
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - János Tamás Padra
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annemieke Smet
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium.,c Laboratorium of Experimental Medicine and Pediatrics , Faculty of Medicine and Health Sciences, University of Antwerp , Antwerp
| | - Chunsheng Jin
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Richard Ducatelle
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Tore Samuelsson
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Freddy Haesebrouck
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Niclas G Karlsson
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Susann Teneberg
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Sara K Lindén
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
37
|
Coppens F, Castaldo G, Debraekeleer A, Subedi S, Moonens K, Lo A, Remaut H. Hop‐familyHelicobacterouter membrane adhesins form a novel class of Type 5‐like secretion proteins with an interrupted β‐barrel domain. Mol Microbiol 2018; 110:33-46. [DOI: 10.1111/mmi.14075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Fanny Coppens
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| | - Gaetano Castaldo
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| | - Ayla Debraekeleer
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| | - Suresh Subedi
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| | - Kristof Moonens
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| | - Alvin Lo
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| | - Han Remaut
- Structural and Molecular Microbiology VIB‐VUB Center for Structural Biology, VIB Brussels Belgium
- Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
38
|
Kabamba ET, Tuan VP, Yamaoka Y. Genetic populations and virulence factors of Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2018; 60:109-116. [PMID: 29471116 DOI: 10.1016/j.meegid.2018.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is a bacterium that has infected more than half of the human population worldwide. This bacterium is closely associated with serious human diseases, such as gastric cancer, and identifying and understanding factors that predict bacterial virulence is a priority. In addition, this pathogen shows high genetic diversity and co-evolution with human hosts. H. pylori population genetics, therefore, has emerged as a tool to track human demographic history. As the number of genome sequences available is increasing, studies on the evolution and virulence of H. pylori are gaining momentum. This review article summarizes the most recent findings on H. pylori virulence factors and population genetics.
Collapse
Affiliation(s)
- Evariste Tshibangu Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Internal Medicine, University of Mbujimayi Faculty of Medicine, Mbujimayi, The Democratic Republic of Congo
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Viet Nam
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. Debakey Veterans Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
39
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
40
|
In Vivo Analysis of the Viable Microbiota and Helicobacter pylori Transcriptome in Gastric Infection and Early Stages of Carcinogenesis. Infect Immun 2017; 85:IAI.00031-17. [PMID: 28694295 DOI: 10.1128/iai.00031-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows that the human microbiota plays a larger role in disease progression and health than previously anticipated. Helicobacter pylori, the causative agent of gastric cancer and duodenal and gastric ulcers, was early associated with gastric disease, but it has also been proposed that the accompanying microbiota in Helicobacter pylori-infected individuals might affect disease progression and gastric cancer development. In this study, the composition of the transcriptionally active microbial community and H. pylori gene expression were determined using metatranscriptomic RNA sequencing of stomach biopsy specimens from individuals with different H. pylori infection statuses and premalignant tissue changes. The results show that H. pylori completely dominates the microbiota not only in infected individuals but also in most individuals classified as H. pylori uninfected using conventional methods. Furthermore, H. pylori abundance is positively correlated with the presence of Campylobacter, Deinococcus, and Sulfurospirillum Finally, we quantified the expression of a large number of Helicobacter pylori genes and found high expression of genes involved in pH regulation and nickel transport. Our study is the first to dissect the viable microbiota of the human stomach by metatranscriptomic analysis, and it shows that metatranscriptomic analysis of the gastric microbiota is feasible and can provide new insights into how bacteria respond in vivo to variations in the stomach microenvironment and at different stages of disease progression.
Collapse
|
41
|
Bigot S, Salcedo SP. The influence of two-partner secretion systems on the virulence of Acinetobacter baumannii. Virulence 2017; 8:653-654. [PMID: 28118093 DOI: 10.1080/21505594.2017.1283465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sarah Bigot
- a Molecular Microbiology and Structural Biochemistry , University of Lyon and CNRS , Lyon , France
| | - Suzana P Salcedo
- a Molecular Microbiology and Structural Biochemistry , University of Lyon and CNRS , Lyon , France
| |
Collapse
|
42
|
Xu YF, Lian DW, Chen YQ, Cai YF, Zheng YF, Fan PL, Ren WK, Fu LJ, Li YC, Xie JH, Cao HY, Tan B, Su ZR, Huang P. In Vitro and In Vivo Antibacterial Activities of Patchouli Alcohol, a Naturally Occurring Tricyclic Sesquiterpene, against Helicobacter pylori Infection. Antimicrob Agents Chemother 2017; 61:e00122-17. [PMID: 28320722 PMCID: PMC5444145 DOI: 10.1128/aac.00122-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022] Open
Abstract
This study further evaluated the in vitro and in vivo anti-Helicobacter pylori activities and potential underlying mechanism of patchouli alcohol (PA), a tricyclic sesquiterpene. In the in vitro assay, the capacities of PA to inhibit and kill H. pylori were tested on three standard strains at different pH values and on 12 clinical isolates. The effects of PA on H. pylori adhesion (and its alpA, alpB, and babA genes), motility (and its flaA and flaB genes), ultrastructure, and flagellation were investigated. Moreover, the H. pylori resistance to and postantibiotic effect (PAE) of PA were determined. Furthermore, the in vivo effects of PA on H. pylori eradication and gastritis were examined. Results showed that MICs of PA against three standard strains (pH 5.3 to 9) and 12 clinical isolates were 25 to 75 and 12.5 to 50 μg/ml, respectively. The killing kinetics of PA were time and concentration dependent, and its minimal bactericidal concentrations (MBCs) were 25 to 75 μg/ml. In addition, H. pylori adhesion, motility, ultrastructure, and flagellation were significantly suppressed. PA also remarkably inhibited the expression of adhesion genes (alpA and alpB) and motility genes (flaA and flaB). Furthermore, PA treatment caused a longer PAE and less bacterial resistance than clarithromycin and metronidazole. The in vivo study showed that PA can effectively eradicate H. pylori, inhibit gastritis, and suppress the expression of inflammatory mediators (COX-2, interleukin 1β, tumor necrosis factor alpha, and inducible nitric oxide synthase [iNOS]). In conclusion, PA can efficiently kill H. pylori, interfere with its infection process, and attenuate gastritis with less bacterial resistance, making it a potential candidate for new drug development.
Collapse
Affiliation(s)
- Y F Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - D W Lian
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y Q Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y F Cai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y F Zheng
- Department of Mammary Disease, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - P L Fan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - W K Ren
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - L J Fu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y C Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - J H Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - H Y Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - B Tan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Z R Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, People's Republic of China
| | - P Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Parashar A, Udayabanu M. Gut microbiota: Implications in Parkinson's disease. Parkinsonism Relat Disord 2017; 38:1-7. [PMID: 28202372 PMCID: PMC7108450 DOI: 10.1016/j.parkreldis.2017.02.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/24/2016] [Accepted: 02/04/2017] [Indexed: 12/22/2022]
Abstract
Gut microbiota (GM) can influence various neurological outcomes, like cognition, learning, and memory. Commensal GM modulates brain development and behavior and has been implicated in several neurological disorders like Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, anxiety, stress and much more. A recent study has shown that Parkinson's disease patients suffer from GM dysbiosis, but whether it is a cause or an effect is yet to be understood. In this review, we try to connect the dots between GM and PD pathology using direct and indirect evidence.
Collapse
Affiliation(s)
- Arun Parashar
- Jaypee University of Information Technology, Waknaghat, District- Solan, Himachal Pradesh, PIN-173234, India
| | - Malairaman Udayabanu
- Jaypee University of Information Technology, Waknaghat, District- Solan, Himachal Pradesh, PIN-173234, India.
| |
Collapse
|
44
|
Yang C, Cui MH. Virulence factors and pathogenic mechanism of Helicobacter pylori. Shijie Huaren Xiaohua Zazhi 2017; 25:857-864. [DOI: 10.11569/wcjd.v25.i10.857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is closely related with some diseases such as chronic gastritis, peptic ulcer, gastric mucosa associated lymphoid tissue lymphoma, and gastric cancer. The pathogenicity of H. pylori mainly relies on its flagellum, spiral structure, lipopolysaccharide, cytotoxin associated protein A, and vacuolating cytotoxin A. Through complex pathogenic mechanisms, H. pylori causes various kinds of diseases. In this paper, we discuss the latest research progress in the understanding of the virulence factors and pathogenic mechanism of H. pylori.
Collapse
|
45
|
Singh S, Jha HC. Status of Epstein-Barr Virus Coinfection with Helicobacter pylori in Gastric Cancer. JOURNAL OF ONCOLOGY 2017; 2017:3456264. [PMID: 28421114 PMCID: PMC5379099 DOI: 10.1155/2017/3456264] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett's lymphoma, nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph and epithelial cells. Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori and EBV. Approximately 180 per hundred thousand population is developing GC along with many gastric abnormalities. This makes GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV and H. pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of this review is to present status on coinfection of both pathogens and their association with GC.
Collapse
Affiliation(s)
- Shyam Singh
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
46
|
Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori Outer Membrane Protein-Related Pathogenesis. Toxins (Basel) 2017; 9:toxins9030101. [PMID: 28287480 PMCID: PMC5371856 DOI: 10.3390/toxins9030101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori colonizes the human stomach and induces inflammation, and in some cases persistent infection can result in gastric cancer. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and outer membrane proteins (OMPs) play a pivotal role in binding to human cells. Some OMP interaction molecules are known in H. pylori, and their associated host cell responses have been gradually clarified. Many studies have demonstrated that OMPs are essential to CagA translocation into gastric cells via the Type IV secretion system of H. pylori. This review summarizes the mechanisms through which H. pylori utilizes OMPs to colonize the human stomach and how OMPs cooperate with the Type IV secretion system.
Collapse
Affiliation(s)
- Yuichi Matsuo
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Chmiela M, Karwowska Z, Gonciarz W, Allushi B, Stączek P. Host pathogen interactions in Helicobacter pylori related gastric cancer. World J Gastroenterol 2017; 23:1521-1540. [PMID: 28321154 PMCID: PMC5340805 DOI: 10.3748/wjg.v23.i9.1521] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/26/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor.
Collapse
|
48
|
Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion. J Bacteriol 2017; 199:JB.00729-16. [PMID: 28031283 PMCID: PMC5331671 DOI: 10.1128/jb.00729-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pylori. IMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property depends upon the specific sequence of alpB. This in turn was shown to be important in the ability to adhere to gastric cells. We anticipate that these results will provide new insight into the molecular mechanisms of H. pylori colonization.
Collapse
|
49
|
Thorell K, Yahara K, Berthenet E, Lawson DJ, Mikhail J, Kato I, Mendez A, Rizzato C, Bravo MM, Suzuki R, Yamaoka Y, Torres J, Sheppard SK, Falush D. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genet 2017; 13:e1006546. [PMID: 28231283 PMCID: PMC5322909 DOI: 10.1371/journal.pgen.1006546] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations. Helicobacter pylori is one of the best studied examples of an intimate association between bacteria and humans, due to its ability to colonize the stomach for decades and to transmit from generation to generation. A number of studies have sought to link diversity in H. pylori to human migrations but there are some discordant signals such as an “out of Africa” dispersal within the last few thousand years that has left a much stronger signal in bacterial genomes than in human ones. In order to understand how such discrepancies arise, we have investigated the evolution of H. pylori during the recent colonization of the Americas. We find that bacterial populations evolve quickly and can spread rapidly to people of different ethnicities. Distinct new bacterial subpopulations have formed in Colombia from a European source and in Nicaragua and the US from African sources. Genetic exchange between bacterial populations is rampant within Central and South America but is uncommon within North America, which may reflect differences in prevalence. Our results also suggest that adaptation of bacteria to particular human ethnic groups may be confined to a handful of genes involved in interaction with the immune system.
Collapse
Affiliation(s)
- Kaisa Thorell
- Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Koji Yahara
- Dept. of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Elvire Berthenet
- Medical Microbiology and Infectious Disease group, Swansea University, Swansea, Wales, United Kingdom
| | - Daniel J. Lawson
- Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Jane Mikhail
- Medical Microbiology and Infectious Disease group, Swansea University, Swansea, Wales, United Kingdom
| | - Ikuko Kato
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Alfonso Mendez
- Instituto Politecnico Nacional, ENCB, Mexico City, Mexico
| | - Cosmeri Rizzato
- Dipartimento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia, Universitá di Pisa, Pisa, Italy
| | - María Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogota, Colombia
| | - Rumiko Suzuki
- Dept. of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Yoshio Yamaoka
- Dept. of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico City, Mexico
| | - Samuel K. Sheppard
- Milner Center for Evolution, Dept. of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- Milner Center for Evolution, Dept. of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
The Helicobacter pylori Autotransporter ImaA Tempers the Bacterium's Interaction with α5β1 Integrin. Infect Immun 2016; 85:IAI.00450-16. [PMID: 27795352 DOI: 10.1128/iai.00450-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
The human pathogen Helicobacter pylori uses the host receptor α5β1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5β1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5β1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell β1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.
Collapse
|