1
|
Haydar D, Gonzalez R, Garvy BA, Garneau-Tsodikova S, Thamban Chandrika N, Bocklage TJ, Feola DJ. Myeloid arginase-1 controls excessive inflammation and modulates T cell responses in Pseudomonas aeruginosa pneumonia. Immunobiology 2020; 226:152034. [PMID: 33278710 DOI: 10.1016/j.imbio.2020.152034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Regulatory properties of macrophages associated with alternative activation serve to limit the exaggerated inflammatory response during pneumonia caused by Pseudomonas aeruginosa infection. Arginase-1 is an important effector of these macrophages believed to play an essential role in decreasing injury and promoting repair. We investigated the role of arginase-1 in the control of inflammatory immune responses to P. aeruginosa pneumonia in mice that exhibit different immunologic phenotypes. C57BL/6 mice with conditional knockout of the arginase-1 (Arg1) gene from myeloid cells (Arg1ΔM) or BALB/c mice treated with small molecule inhibitors of arginase were infected intratracheally with P. aeruginosa. Weight loss, mortality, bacterial clearance, and lung injury were assessed and compared, as were the characterization of immune cell populations over time post-infection. Myeloid arginase-1 deletion resulted in greater morbidity along with more severe inflammatory responses compared to littermate control mice. Arg1ΔM mice had greater numbers of neutrophils, macrophages, and lymphocytes in their airways and lymph nodes compared to littermate controls. Additionally, Arg1ΔM mice recovered from inflammatory lung injury at a significantly slower rate. Conversely, treatment of BALB/c mice with the arginase inhibitor S-(2-boronoethyl)-l-cysteine hydrochloride (BEC) did not change morbidity as defined by weight loss, but mice at day 10 post-infection treated with BEC had gained significantly more weight back than controls. Neutrophil and macrophage infiltration were similar between groups in the lung parenchyma, and neutrophil migration into the airways was reduced by BEC treatment. Differences seem to lie in the impact on T cell subset disposition. Arg1ΔM mice had increased total CD4+ T cell expansion in the lymph nodes, and increased T cell activation, IFNγ production, and IL-17 production in the lymph nodes, lung interstitium, and airways, while treatment with BEC had no impact on T cell activation or IL-17 production, but reduced the number of T cells producing IFNγ in the lungs. Lung injury scores were increased in the Arg1ΔM mice, but no differences were observed in the mice treated with pharmacologic arginase inhibitors. Overall, myeloid arginase production was demonstrated to be essential for control of damaging inflammatory responses associated with P. aeruginosa pneumonia in C57BL/6 mice, in contrast to a protective effect in the Th2-dominant BALB/c mice when arginase activity is globally inhibited.
Collapse
Affiliation(s)
- Dalia Haydar
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Rene Gonzalez
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Beth A Garvy
- University of Kentucky, College of Medicine, Department of Microbiology, Immunology and Molecular Genetics, 800 Rose Street, Lexington, KY 40536, USA.
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Nishad Thamban Chandrika
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Therese J Bocklage
- University of Kentucky Healthcare, Pathology and Laboratory Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| | - David J Feola
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Kim S, Joe Y, Park SU, Jeong SO, Kim JK, Park SH, Pae HO, Surh YJ, Shin J, Chung HT. Induction of endoplasmic reticulum stress under endotoxin tolerance increases inflammatory responses and decreases Pseudomonas aeruginosa pneumonia. J Leukoc Biol 2018; 104:1003-1012. [PMID: 29924419 DOI: 10.1002/jlb.3a0317-106rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 12/19/2022] Open
Abstract
Endotoxin tolerance develops in the late phase of sepsis to protect cells from an early hyperinflammatory response. Nonetheless, because it induces an immunosuppressive environment, patients with sepsis in its late phase are affected by secondary infections, particularly bacterial pneumonia. Here, we showed that induction of endoplasmic reticulum (ER) stress leads to activation of glycogen synthase kinase 3β (GSK-3β) and X-box-binding protein 1 (XBP-1) in an inositol-requiring enzyme 1α (IRE1α)-mediated manner, which in turn restores the inflammatory response in endotoxin-tolerant macrophages. Animal and in vitro models of endotoxin tolerance were studied along with a model of LPS-induced endotoxin tolerance and a model of cecal ligation and puncture (CLP)-induced endotoxin tolerance. To detect the suppressed inflammatory response during endotoxin tolerance, inflammatory-cytokine expression levels were measured by quantitative real-time PCR and an ELISA. Our research revealed that induction of ER stress alleviated lung injury in a septic host infected with Pseudomonas aeruginosa via the activation of GSK-3β and XBP-1 in an IRE1α-mediated manner. Consequently, in the lungs of the septic host infected with P. aeruginosa, symptoms of pneumonia improved and the infecting bacteria were cleared. Thus, for septic patients, determination of immune status may guide the selection of appropriate immunomodulation, and ER stress can be a novel therapeutic strategy restoring the immune response in patients with endotoxin tolerance.
Collapse
Affiliation(s)
- Sena Kim
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Se-Ung Park
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Sun Oh Jeong
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin-Kyung Kim
- Department of Cosmetics, Wonkwang Health Science University, Iksan, South Korea
| | - Seong Hoon Park
- Department of Radiology, Wonkwang University School of Medicine, Institute for Metabolic Disease, Iksan, South Korea
| | - Hyun-Ock Pae
- Department of Microbiology and immunology, Wonkwang University School of Medicine, Iksan, South Korea
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jaekyoon Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
4
|
Adriaanse MPM, van der Sande LJTM, van den Neucker AM, Menheere PPCA, Dompeling E, Buurman WA, Vreugdenhil ACE. Evidence for a Cystic Fibrosis Enteropathy. PLoS One 2015; 10:e0138062. [PMID: 26484665 PMCID: PMC4617711 DOI: 10.1371/journal.pone.0138062] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 08/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background Previous studies have suggested the existence of enteropathy in cystic fibrosis (CF), which may contribute to intestinal function impairment, a poor nutritional status and decline in lung function. This study evaluated enterocyte damage and intestinal inflammation in CF and studied its associations with nutritional status, CF-related morbidities such as impaired lung function and diabetes, and medication use. Methods Sixty-eight CF patients and 107 controls were studied. Levels of serum intestinal-fatty acid binding protein (I-FABP), a specific marker for enterocyte damage, were retrospectively determined. The faecal intestinal inflammation marker calprotectin was prospectively studied. Nutritional status, lung function (FEV1), exocrine pancreatic insufficiency (EPI), CF-related diabetes (CFRD) and use of proton pump inhibitors (PPI) were obtained from the medical charts. Results Serum I-FABP levels were elevated in CF patients as compared with controls (p<0.001), and correlated negatively with FEV1 predicted value in children (r-.734, p<0.05). Faecal calprotectin level was elevated in 93% of CF patients, and correlated negatively with FEV1 predicted value in adults (r-.484, p<0.05). No correlation was found between calprotectin levels in faeces and sputum. Faecal calprotectin level was significantly associated with the presence of CFRD, EPI, and PPI use. Conclusion This study demonstrated enterocyte damage and intestinal inflammation in CF patients, and provides evidence for an inverse correlation between enteropathy and lung function. The presented associations of enteropathy with important CF-related morbidities further emphasize the clinical relevance.
Collapse
Affiliation(s)
- Marlou P. M. Adriaanse
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Linda J. T. M. van der Sande
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anita M. van den Neucker
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Paul P. C. A. Menheere
- Department of Immunodiagnostics, Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Edward Dompeling
- Department of Paediatric Pulmonology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Wim A. Buurman
- Department of General Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anita C. E. Vreugdenhil
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
5
|
Dennis EA, Coats MT, Griffin SE, Hale JY, Novak L, Briles DE, Crain MJ. The Effects of CFTR and Mucoid Phenotype on Susceptibility and Innate Immune Responses in a Mouse Model of Pneumococcal Lung Disease. PLoS One 2015; 10:e0140335. [PMID: 26469863 PMCID: PMC4607445 DOI: 10.1371/journal.pone.0140335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported the isolation of highly mucoid serotype 3 Streptococcus pneumoniae (Sp) from the respiratory tracts of children with cystic fibrosis (CF). Whether these highly mucoid Sp contribute to, or are associated with, respiratory failure among patients with CF remains unknown. Other mucoid bacteria, predominately Pseudomonas aeruginosa, are associated with CF respiratory decline. We used a mouse model of CF to study pneumococcal pneumonia with highly mucoid serotype 3 and non-mucoid serotype 19A Sp isolates. We investigated susceptibility to infection, survival, and bacterial counts from bronchoaviolar lavage samples and lung homogenates, as well as associated inflammatory cytokines at the site of infection, and lung pathology. Congenic CFTR-/- mice and wild-type (WT)-mice were infected intranasally with CHB756, CHB1126, and WU2 (highly mucoid capsular serotype 3, intermediately mucoid serotype 3, and less mucoid serotype 3, respectively), or CHB1058 (non-mucoid serotype 19A). BAL, lung homogenates, and blood were collected from mice 5 days post-infection. Higher CFU recovery and shorter survival were observed following infection of CFTR-/- mice with CHB756 compared to infection with CHB1126, WU2, or CHB1058 (P≤0.001). Additionally, CFTR-/- mice infected with CHB756 and CHB1126 were more susceptible to infection than WT-mice (P≤0.05). Between CFTR-/- mice and WT-mice, no significant differences in TNF-α, CXCL1/KC concentrations, or lung histopathology were observed. Our results indicate that highly mucoid type 3 Sp causes more severe lung disease than non-mucoid Sp, and does so more readily in the lungs of CFTR-/- than WT-mice.
Collapse
Affiliation(s)
- Evida A. Dennis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mamie T. Coats
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama, United States of America
| | - Sarah E. Griffin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joanetha Y. Hale
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lea Novak
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marilyn J. Crain
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
6
|
Effect of arginase inhibition on pulmonary L-arginine metabolism in murine Pseudomonas pneumonia. PLoS One 2014; 9:e90232. [PMID: 24595185 PMCID: PMC3940779 DOI: 10.1371/journal.pone.0090232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/27/2014] [Indexed: 11/20/2022] Open
Abstract
Rationale Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS) and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO) production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse. Methods Mice (C57BL/6, 8–10 weeks old, female) underwent direct tracheal instillation of Pseudomonas (PAO-1)-coated agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA. Results NO metabolite concentrations (48.5±2.9 vs. 10.9±2.3 µM, p<0.0001), as well as L-ornithine (29.6±1.7 vs 2.3±0.4 µM, p<0.0001), the product of arginase activity, were increased in Pseudomonas infected lungs compared to naïve controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA) were also increased (0.44±0.02 vs. 0.16±0.01 µM, p<0.0001). Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine (14.6±1.6 µM, p<0.0001) but increase in L-arginine concentration (p<0.001), L-arginine/ADMA ratio (p<0.001), L-arginine availability for NOS (p<0.001), and NO metabolite concentrations (67.3±5.7 µM, p<0.05). Arginase inhibitor treatment also resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015). Arginase inhibition was not associated with an increase in inflammatory markers (IFN-γ, IL-1β, IL-6, MIP-2, KC or TNF-α) in lung. Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased in Pseudomonas infected lungs (p<0.001, respectively) but were unaffected by ABH treatment. Conclusions Systemic arginase inhibition with ABH during Pseudomonas pneumonia in mice results in an increase in pulmonary NO formation but no pro-inflammatory effect.
Collapse
|
7
|
Munck A. Cystic fibrosis: evidence for gut inflammation. Int J Biochem Cell Biol 2014; 52:180-3. [PMID: 24548777 DOI: 10.1016/j.biocel.2014.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/21/2014] [Accepted: 02/07/2014] [Indexed: 01/12/2023]
Abstract
Cystic fibrosis (CF) gut manifestations are predominantly secondary to cystic fibrosis transmembrane regulator protein (CFTR) dysfunction. The CFTR gene is expressed throughout the intestinal tract. Because the intestine is difficult to assess in humans, there exists a lack of data on the underlying mechanisms of intestinal dysfunction. A more tractable approach involves the use of mouse models of CF, created by gene targeting techniques, to describe the consequences of CFTR dysfunction in the intestinal tissues, including mucus accumulation, disturbed motility, small bowel bacterial overgrowth and inflammation with altered innate immune responses, that are likely to be interrelated. We will focus on the latter. Recently, in people with CF, even in the absence of overt gastrointestinal symptoms, chronic intestinal inflammation and abnormal balance of the microbiota have been evidenced. Because chronic gut inflammation may be a driver for systemic inflammation, the prevention and control of intestinal inflammation represents a promising research strategy.
Collapse
Affiliation(s)
- Anne Munck
- Assistance publique-Hôpitaux de Paris, Hôpital Robert Debré, Paediatric Gastroenterology and Respiratory Department, CF Center, Université Paris 7, 75019 Paris, France.
| |
Collapse
|
8
|
Domingo-Gonzalez R, Moore BB. Defective pulmonary innate immune responses post-stem cell transplantation; review and results from one model system. Front Immunol 2013; 4:126. [PMID: 23745124 PMCID: PMC3662877 DOI: 10.3389/fimmu.2013.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/13/2013] [Indexed: 01/14/2023] Open
Abstract
Infectious pulmonary complications limit the success of hematopoietic stem cell transplantation (HSCT) as a therapy for malignant and non-malignant disorders. Susceptibility to pathogens in both autologous and allogeneic HSCT recipients persists despite successful immune reconstitution. As studying the causal effects of these immune defects in the human population can be limiting, a bone marrow transplant (BMT) mouse model can be used to understand the defect in mounting a productive innate immune response post-transplantation. When syngeneic BMT is performed, this system allows the study of BMT-induced alterations in innate immune cell function that are independent of the confounding effects of immunosuppressive therapy and graft-versus-host disease. Studies from several laboratories, including our own show that pulmonary susceptibility to bacterial infections post-BMT are largely due to alterations in the lung alveolar macrophages. Changes in these cells post-BMT include cytokine and eicosanoid dysregulations, scavenger receptor alterations, changes in micro RNA profiles, and alterations in intracellular signaling molecules that limit bacterial phagocytosis and killing. The changes that occur highlight mechanisms that promote susceptibility to infections commonly afflicting HSCT recipients and provide insight into therapeutic targets that may improve patient outcomes post-HSCT.
Collapse
|
9
|
A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity. PLoS Pathog 2012; 8:e1002854. [PMID: 22927813 PMCID: PMC3426542 DOI: 10.1371/journal.ppat.1002854] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/26/2012] [Indexed: 12/22/2022] Open
Abstract
The opportunistic human pathogen, Pseudomonas aeruginosa, is a major cause of infections in chronic wounds, burns and the lungs of cystic fibrosis patients. The P. aeruginosa genome encodes at least three proteins exhibiting the characteristic three domain structure of autotransporters, but much remains to be understood about the functions of these three proteins and their role in pathogenicity. Autotransporters are the largest family of secreted proteins in Gram-negative bacteria, and those characterised are virulence factors. Here, we demonstrate that the PA0328 autotransporter is a cell-surface tethered, arginine-specific aminopeptidase, and have defined its active site by site directed mutagenesis. Hence, we have assigned PA0328 with the name AaaA, for arginine-specific autotransporter of P. aeruginosa. We show that AaaA provides a fitness advantage in environments where the sole source of nitrogen is peptides with an aminoterminal arginine, and that this could be important for establishing an infection, as the lack of AaaA led to attenuation in a mouse chronic wound infection which correlated with lower levels of the cytokines TNFα, IL-1α, KC and COX-2. Consequently AaaA is an important virulence factor playing a significant role in the successful establishment of P. aeruginosa infections. We present a new Pseudomonas aeruginosa virulence factor that promotes chronic skin wound infections. We propose the name AaaA for this cell-surface tethered autotransporter. This arginine-specific aminopeptidase confers a growth advantage upon P. aeruginosa, providing a fitness advantage by creating a supply of arginine in chronic wounds where oxygen availability is limited and biofilm formation is involved. To our knowledge, this is the first mechanistic evidence linking the upregulation of genes involved in arginine metabolism with pathogenicity of P. aeruginosa, and we propose potential underlying mechanisms. The superbug P. aeruginosa is the leading cause of morbidity in cystic fibrosis patients. The ineffective host immune response to bacterial colonization is likely to play a critical role in the demise of these patients, making the possibility that AaaA could interface with the innate immune system, influencing the activity of iNOS and consequently the host's defence against invading pathogens. The surface localisation of AaaA makes it accessible to inhibitors that could reduce growth of P. aeruginosa during colonisation and alter biofilm formation, potentially improving the efficacy of current antimicrobials. Indeed, structurally related aminopeptidases play a central role in several disease states (stroke, diabetes, cancer, HIV and neuropsychiatric disorders), and inhibitors alleviate symptoms.
Collapse
|
10
|
Jones-Carson J, Laughlin JR, Stewart AL, Voskuil MI, Vázquez-Torres A. Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei. Nitric Oxide 2012; 27:25-31. [PMID: 22521523 DOI: 10.1016/j.niox.2012.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/23/2012] [Accepted: 04/04/2012] [Indexed: 11/16/2022]
Abstract
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis.
Collapse
Affiliation(s)
- Jessica Jones-Carson
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | | | | | | | | |
Collapse
|
11
|
Parker D, Prince A. Type I interferon response to extracellular bacteria in the airway epithelium. Trends Immunol 2011; 32:582-8. [PMID: 21996313 DOI: 10.1016/j.it.2011.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/22/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022]
Abstract
The airway epithelium possesses many mechanisms to prevent bacterial infection. Not only does it provide a physical barrier, but it also acts as an extension of the immune system through the expression of innate immune receptors and corresponding effectors. One outcome of innate signaling by the epithelium is the production of type I interferons (IFNs), which have traditionally been associated with activation via viral and intracellular organisms. We discuss how three extracellular bacterial pathogens of the airway activate this intracellular signaling cascade through both surface components as well as via secretion systems, and the differing effects of type I IFN signaling on host defense of the respiratory tract.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | |
Collapse
|
12
|
Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections. Nat Med 2011; 17:341-6. [DOI: 10.1038/nm.2296] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 12/22/2010] [Indexed: 12/27/2022]
|
13
|
Role of excessive inflammatory response to Stenotrophomonas maltophilia lung infection in DBA/2 mice and implications for cystic fibrosis. Infect Immun 2010; 78:2466-76. [PMID: 20308302 DOI: 10.1128/iai.01391-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a pathogen that causes infections mainly in immunocompromised patients. Despite increased S. maltophilia isolation from respiratory specimens of patients with cystic fibrosis (CF), the real contribution of the microorganism to CF pathogenesis still needs to be clarified. The aim of the present study was to evaluate the pathogenic role of S. maltophilia in CF patients by using a model of acute respiratory infection in DBA/2 mice following a single exposure to aerosolized bacteria. The pulmonary bacterial load was stable until day 3 and then decreased significantly from day 3 through day 14, when the bacterial load became undetectable in all infected mice. Infection disseminated in most mice, although at a very low level. Severe effects (swollen lungs, large atelectasis, pleural adhesion, and hemorrhages) of lung pathology were observed on days 3, 7, and 14. The clearance of S. maltophilia observed in DBA/2 mouse lungs was clearly associated with an early and intense bronchial and alveolar inflammatory response, which is mediated primarily by neutrophils. Significantly higher levels of interleukin-1beta (IL-1beta), IL-6, IL-12, gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), GROalpha/KC, MCP-1/JE, MCP-5, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-2, and TARC were observed in infected mice on day 1 with respect to controls. Excessive pulmonary infection and inflammation caused systemic effects, manifested by weight loss, and finally caused a high mortality rate. Taken together, our results show that S. maltophilia is not just a bystander in CF patients but has the potential to contribute to the inflammatory process that compromises respiratory function.
Collapse
|
14
|
Borot F, Vieu DL, Faure G, Fritsch J, Colas J, Moriceau S, Baudouin-Legros M, Brouillard F, Ayala-Sanmartin J, Touqui L, Chanson M, Edelman A, Ollero M. Eicosanoid release is increased by membrane destabilization and CFTR inhibition in Calu-3 cells. PLoS One 2009; 4:e7116. [PMID: 19847291 PMCID: PMC2760709 DOI: 10.1371/journal.pone.0007116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022] Open
Abstract
The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2α) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2α. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-α. This was concomitant with increased IL-8 synthesis and cPLA2α activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-β-cyclodextrin induced further cPLA2α activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-α-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2α and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-α-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of inflammation mediator synthesis.
Collapse
Affiliation(s)
- Florence Borot
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Diane-Lore Vieu
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité d'Immunologie Structurale, CNRS, URA 2185, Paris, France
| | - Janine Fritsch
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Julien Colas
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Sandra Moriceau
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | | | - Franck Brouillard
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | | | - Lhousseine Touqui
- Institut Pasteur, Unité de Défense Innée et Inflammation, INSERM, U874, Paris, France
| | - Marc Chanson
- Laboratoire d'Investigation Clinique III, Hôpitaux Universitaires et Faculté de Médecine, Genève, Switzerland
| | - Aleksander Edelman
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Mario Ollero
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 2008; 42:389-412. [PMID: 18782827 DOI: 10.1258/la.2007.06014e] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cystic fibrosis (CF) is caused by a defect in the transmembrane conductance regulator (CFTR) protein that functions as a chloride channel. Dysfunction of the CFTR protein results in salty sweat, pancreatic insufficiency, intestinal obstruction, male infertility and severe pulmonary disease. In most patients with CF life expectancy is limited due to a progressive loss of functional lung tissue. Early in life a persistent neutrophylic inflammation can be demonstrated in the airways. The cause of this inflammation, the role of CFTR and the cause of lung morbidity by different CF-specific bacteria, mostly Pseudomonas aeruginosa, are not well understood. The lack of an appropriate animal model with multi-organ pathology having the characteristics of the human form of CF has hampered our understanding of the pathobiology and chronic lung infections of the disease for many years. This review summarizes the main characteristics of CF and focuses on several available animal models that have been frequently used in CF research. A better understanding of the chronic lung infection caused particularly by P. aeruginosa, the pathophysiology of lung inflammation and the pathogenesis of lung disease necessitates animal models to understand CF, and to develop and improve treatment.
Collapse
Affiliation(s)
- I Kukavica-Ibrulj
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Pavillon Charles-Eugène Marchand, Biologie Médicale, Faculté de Médecine, Université Laval, Québec G1K 7P4, Canada
| | | |
Collapse
|
16
|
O'Sullivan R, Carrigan SO, Marshall JS, Lin TJ. Signal transducer and activator of transcription 4 (STAT4), but not IL-12 contributes to Pseudomonas aeruginosa-induced lung inflammation in mice. Immunobiology 2008; 213:469-79. [PMID: 18514749 DOI: 10.1016/j.imbio.2007.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 11/07/2007] [Accepted: 11/19/2007] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen in immune-compromised individuals and cystic fibrosis patients. This organism stimulates a complex inflammatory response in the lung, including production of various cytokines and chemokines. The specific contribution of these mediators in the host defense against this bacterium has yet to be fully characterized. Interleukin-12 (IL-12) is commonly known as a master regulator of innate and adaptive immunity. IL-12 induces its biological effects through its associated intracellular signaling molecule, the signal transducer and activator of transcription 4 (STAT4). To examine a specific role of IL-12 and STAT4 in P. aeruginosa lung infection in mice, STAT4-deficient (STAT4-/-) and IL-12 p40-deficient (IL-12 p40-/-) mice were infected with P. aeruginosa intranasally. Interestingly, STAT4-/- mice, but not IL-12 p40-/- mice after 24h infection showed impaired production of the pro-inflammatory cytokines tumor necrosis factor, interleukin-1beta, and macrophage-inflammatory protein-2. However, neither STAT4 nor IL-12 p40 deficiency significantly affected INFgamma production or bacterial clearance compared to wild-type mice. Similarly, neutrophil recruitment was not affected in the STAT4-/- and IL-12 p40-/- mice. These results suggest that STAT4 contributes to P. aeruginosa-induced inflammation, but it is not essential for bacterial clearance. Although IL-12 is essential for the host defense against various pathogens, this cytokine is likely not a major player in the host response to P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Rory O'Sullivan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3K 6R8
| | | | | | | |
Collapse
|
17
|
Poschet JF, Timmins GS, Taylor-Cousar JL, Ornatowski W, Fazio J, Perkett E, Wilson KR, Yu HD, de Jonge HR, Deretic V. Pharmacological modulation of cGMP levels by phosphodiesterase 5 inhibitors as a therapeutic strategy for treatment of respiratory pathology in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293:L712-9. [PMID: 17586695 DOI: 10.1152/ajplung.00314.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CFTR gene encodes a chloride channel with pleiotropic effects on cell physiology and metabolism. Here, we show that increasing cGMP levels to inhibit epithelial Na(+) channel in cystic fibrosis (CF) respiratory epithelial cells corrects several aspects of the downstream pathology in CF. Cell culture models, using a range of CF cell lines and primary cells, showed that complementary pharmacological approaches to increasing intracellular cGMP, by elevating guanyl cyclase activity though reduced nitric oxide, addition of cell-permeable cGMP analogs, or inhibition of phosphodiesterase 5 corrected multiple aspects of the CF pathological cascade. These included correction of defective protein glycosylation, bacterial adherence, and proinflammatory responses. Furthermore, pharmacological inhibition of phosphodiesterase 5 in tissues ex vivo or in animal models improved transepithelial currents across nasal mucosae from transgenic F508del Cftr(tm1Eur) mice and reduced neutrophil infiltration on bacterial aerosol challenge in Pseudomonas aeruginosa-susceptible DBA/2 mice. Our findings define phosphodiesterase 5 as a specific target for correcting a number of previously disconnected defects in the CF respiratory tract, now linked through this study. Our study suggests that phosphodiesterase 5 inhibition provides an opportunity for simultaneous and concerted correction of seemingly disparate complications in CF.
Collapse
Affiliation(s)
- Jens F Poschet
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tetaert D, Pierre M, Demeyer D, Husson MO, Béghin L, Galabert C, Gottrand F, Beermann C, Guery B, Desseyn JL. Dietary n-3 fatty acids have suppressive effects on mucin upregulation in mice infected with Pseudomonas aeruginosa. Respir Res 2007; 8:39. [PMID: 17550583 PMCID: PMC1899493 DOI: 10.1186/1465-9921-8-39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 06/05/2007] [Indexed: 12/02/2022] Open
Abstract
Background Mucin hypersecretion and mucus plugging in the airways are characteristic features of chronic respiratory diseases like cystic fibrosis (CF) and contribute to morbidity and mortality. In CF, Pseudomonas aeruginosa superinfections in the lung exacerbate inflammation and alter mucus properties. There is increasing evidence that n-3 polyunsaturated fatty acids (PUFAs) exhibit anti-inflammatory properties in many inflammatory diseases while n-6 PUFA arachidonic acid (AA) favors inflammatory mediators such as eicosanoids prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) that may enhance inflammatory reactions. This suggests that n-3 PUFAs may have a protective effect against mucus over-production in airway diseases. Therefore, we hypothesized that n-3 PUFAs may downregulate mucins expression. Methods We designed an absolute real-time PCR assay to assess the effect of a 5-week diet enriched either with n-3 or n-6 PUFAs on the expression of large mucins in the lungs of mice infected by P. aeruginosa. Results Dietary fatty acids did not influence mucin gene expression in healthy mice. Lung infection induced an increase of the secreted gel-forming mucin Muc5b and a decrease of the membrane bound mucin Muc4. These deregulations are modulated by dietary fatty acids with a suppressive effect of n-3 PUFAs on mucin (increase of Muc5b from 19-fold up to 3.6 × 105-fold for the n-3 PUFAs treated group and the control groups, respectively, 4 days post-infection and decrease of Muc4 from 15-fold up to 3.2 × 104-fold for the control and the n-3 PUFAs treated groups, respectively, 4 days post-infection). Conclusion Our data suggest that n-3 PUFAs enriched diet represents an inexpensive strategy to prevent or treat mucin overproduction in pulmonary bacterial colonization.
Collapse
Affiliation(s)
- Daniel Tetaert
- INSERM, U837, JPARC Research Centre, IMPRT, place de Verdun, Lille, France
| | - Maud Pierre
- EA 3925, IMPRT, University of Lille 2 and CHRU of Lille, France
| | - Dominique Demeyer
- INSERM, U837, JPARC Research Centre, IMPRT, place de Verdun, Lille, France
| | | | - Laurent Béghin
- EA 3925, IMPRT, University of Lille 2 and CHRU of Lille, France
| | | | | | | | - Benoit Guery
- EA 2689, IMPRT, University of Lille 2 and CHRU of Lille, France
| | - Jean-Luc Desseyn
- INSERM, U837, JPARC Research Centre, IMPRT, place de Verdun, Lille, France
| |
Collapse
|
19
|
Hatziagorou E, Tsanakas J. Assessment of airway inflammation with exhaled NO measurement. Hippokratia 2007; 11:51-62. [PMID: 19582178 PMCID: PMC2464270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Assessing airway inflammation is important for investigating the underlying mechanisms of many lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, primary ciliary dyskinesia (PCD) and cystic fibrosis. A growing interest has recently directed toward non-invasive methods for the assessment of airway inflammation. Measurement of exhaled nitric oxide in exhaled air is an exciting innovative technique that gives new insights into the pathophysiology of lung disease and asthma in particular, with many potential clinical applications. Careful standardisation of measurement techniques has facilitated the use of this new measurement in paediatric respiratory medicine. Non-invasiveness and instantaneous results potentially make it a suitable instrument for use in children starting from the age of 4, with useful applications both in asthma diagnosis and monitoring.
Collapse
Affiliation(s)
- E Hatziagorou
- 3rd Paediatric Department, Aristotle University of Thessaloniki, Paediatric Pulmonology Unit, Hippokration Hospital, Thessaloniki, Greece.
| | | |
Collapse
|
20
|
Wilson KR, Napper JM, Denvir J, Sollars VE, Yu HD. Defect in early lung defence against Pseudomonas aeruginosa in DBA/2 mice is associated with acute inflammatory lung injury and reduced bactericidal activity in naive macrophages. MICROBIOLOGY (READING, ENGLAND) 2007; 153:968-979. [PMID: 17379707 PMCID: PMC2074882 DOI: 10.1099/mic.0.2006/002261-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious respiratory disease in the immune-compromised host. Using an aerosol infection model, 11 inbred mouse strains (129/Sv, A/J, BALB/c, C3H/HeN, C57BL/6, DBA/2, FVB, B10.D2/oSnJ, B10.D2/nSnJ, AKR/J and SWR/J) were tested for increased susceptibility to P. aeruginosa lung colonization. DBA/2 was the only mouse strain that had increased bacterial counts in the lung within 6 h post-infection. This deficiency incited a marked inflammatory response with reduced bacterial lung clearance and a mortality rate of 96.7 %. DBA/2 mice displayed progressive deterioration of lung pathology with extensive alveolar exudate and oedema formation at 48-72 h post-infection. The neutrophil-specific myeloperoxidase activity remained elevated throughout infection, suggesting that the increased leukocyte infiltration into alveoli caused acute inflammatory lung injury. DBA/2 mice lack the haemolytic complement; however, three additional mouse strains (AKR/J, SWR/J and A/J) with the same defect effectively cleared the infection, indicating that other host factors are involved in defence. Bone marrow-derived macrophages of DBA/2 showed an initial increase in phagocytosis, while their bactericidal activity was reduced compared to that of C57BL/6 macrophages. Comparison of pulmonary cytokine profiles of DBA/2 versus C57BL/6 or C3H/HeN indicated that DBA/2 had similar increases in tumour necrosis factor (TNF)-alpha, KC and interleukin (IL)-1a as C3H/HeN, but showed specific induction of IL-17, monocyte chemotactic protein (MCP)-1 and vascular endothelial growth factor (VEGF). Together, DBA/2 mice have a defect in the initial lung defence against P. aeruginosa colonization, which causes the host to produce a greater, but damaging, inflammatory response. Such a response may originate from the reduced antimicrobial activity of DBA/2 macrophages.
Collapse
Affiliation(s)
- Kari R. Wilson
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25704-9330
| | - Jennifer M. Napper
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25704-9330
| | - James Denvir
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25704-9330
| | - Vincent E. Sollars
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25704-9330
| | - Hongwei D. Yu
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25704-9330
- Department of Pediatrics, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25704-9330
| |
Collapse
|
21
|
Abstract
Animal models of cystic fibrosis (CF) are powerful tools that enable the study of the mechanisms and complexities of human disease. Murine models have several intrinsic advantages compared with other animal models, including lower cost, maintenance, and rapid reproduction rate. Mice can be easily genetically manipulated by making transgenic or knockout mice, or by backcrossing to well-defined inbred strains in a reasonably short period of time. However, anatomic and immunologic differences between mice and humans mean that murine models have inherent limitations that must be considered when interpreting the results obtained from experimental models and applying these to the pathogenesis of CF disease in humans. This review will focus on the different CF mouse models available that represent diverse phenotypes observed in humans with CF and that can help researchers elucidate the diverse functions of the CFTR protein.
Collapse
Affiliation(s)
- Claudine Guilbault
- McGill Centre for the Study of Host Resistance, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
22
|
Legssyer R, Huaux F, Lebacq J, Delos M, Marbaix E, Lebecque P, Lison D, Scholte BJ, Wallemacq P, Leal T. Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir Res 2006; 7:134. [PMID: 17064416 PMCID: PMC1637104 DOI: 10.1186/1465-9921-7-134] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 10/25/2006] [Indexed: 12/05/2022] Open
Abstract
Background Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin modulates lung inflammation in cystic fibrosis mice. Methods We monitored cellular and molecular inflammatory markers in lungs of cystic fibrosis mutant mice homozygous for the ΔF508 mutation and their littermate controls, either in baseline conditions or after induction of acute inflammation by intratracheal instillation of lipopolysaccharide from Pseudomonas aeruginosa, which would be independent of interactions of bacteria with epithelial cells. The effect of azithromycin pretreatment (10 mg/kg/day) given by oral administration for 4 weeks was evaluated. Results In naive cystic fibrosis mice, a spontaneous lung inflammation was observed, characterized by macrophage and neutrophil infiltration, and increased intra-luminal content of the pro-inflammatory cytokine macrophage inflammatory protein-2. After induced inflammation, cystic fibrosis mice combined exaggerated cellular infiltration and lower anti-inflammatory interleukin-10 production. In cystic fibrosis mice, azithromycin attenuated cellular infiltration in both baseline and induced inflammatory condition, and inhibited cytokine (tumor necrosis factor-α and macrophage inflammatory protein-2) release in lipopolysaccharide-induced inflammation. Conclusion Our findings further support the concept that inflammatory responses are upregulated in cystic fibrosis. Azithromycin reduces some lung inflammation outcome measures in cystic fibrosis mice. We postulate that some of the benefits of azithromycin treatment in cystic fibrosis patients are due to modulation of lung inflammation.
Collapse
Affiliation(s)
- Rachida Legssyer
- Clinical Chemistry, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - François Huaux
- Industrial Toxicology and Occupational Medicine, Université Catholique de Louvain, Clos Chapelle aux Champs 30.54, Brussels, Belgium
| | - Jean Lebacq
- Cell Physiology, Université Catholique de Louvain, Ave Hippocrate 55, Brussels, Belgium
| | - Monique Delos
- Pathology, Louvain University Hospital at Mont-Godinne, Yvoir, Belgium
| | - Etienne Marbaix
- Pathology, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - Patrick Lebecque
- Pneumology, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - Dominique Lison
- Industrial Toxicology and Occupational Medicine, Université Catholique de Louvain, Clos Chapelle aux Champs 30.54, Brussels, Belgium
| | - Bob J Scholte
- Erasmus University Medical Center, Cell Biology, Rotterdam, The Netherlands
| | - Pierre Wallemacq
- Clinical Chemistry, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - Teresinha Leal
- Clinical Chemistry, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| |
Collapse
|
23
|
Dodd JD, Barry SC, Gallagher CG. Respiratory factors do not limit maximal symptom-limited exercise in patients with mild cystic fibrosis lung disease. Respir Physiol Neurobiol 2006; 152:176-85. [PMID: 16169290 DOI: 10.1016/j.resp.2005.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 08/06/2005] [Accepted: 08/08/2005] [Indexed: 11/29/2022]
Abstract
To evaluate whether respiratory factors limit exercise capacity in patients with mild cystic fibrosis (CF) lung disease (mean FEV(1) = 76 +/- 7.7% predicted) we stressed the respiratory system of seven patients using added dead space (V(D)). Primary outcomes were exercise duration (Ex(dur)) and maximal oxygen uptake (VO(2max)). Dyspnoea/leg-discomfort were assessed at end-exercise. Ex(dur) was identical between control and V(D) studies (520 +/- 152 versus 511 +/ -166 s, p = NS) as was VO(2max)(1.6 +/- 0.5 versus 1.6 +/- 0.6 L/min, p = NS). Significant resting, sub-maximal and maximal workload increases in minute ventilation (V(E)) were detected (70.8 +/- 13.7 versus 79.5 +/- 16.9 L/min, p < 0.05). Analysis of breathing pattern revealed increases in V(E) were attributable to increases in tidal volume (2.0 +/- 0.5 versus 2.2 +/- 0.6 L, p < 0.05) with no change in respiratory frequency. There was no difference in dyspnoea/leg discomfort between tests. The increase in V(E) in response to V(D), with no change in [Exdur/VO(2max) suggests maximal symptom-limited exercise limitation is not primarily limited by respiratory factors in mild CF lung disease. Focused investigation and treatment of non-respiratory factors contributing to exercise limitation may improve exercise rehabilitation in this patient group.
Collapse
Affiliation(s)
- Jonathan D Dodd
- Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
24
|
Moeller A, Horak F, Lane C, Knight D, Kicic A, Brennan S, Franklin P, Terpolilli J, Wildhaber JH, Stick SM. Inducible NO synthase expression is low in airway epithelium from young children with cystic fibrosis. Thorax 2006; 61:514-20. [PMID: 16517573 PMCID: PMC2111217 DOI: 10.1136/thx.2005.054643] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND This is the first study to measure inducible nitric oxide synthase (iNOS) gene and protein expression quantitatively in primary epithelial cells from very young children with cystic fibrosis (CF). Low levels of exhaled nitric oxide (NO) in CF suggest dysregulation of NO production in the airway. Due to the importance of NO in cell homeostasis and innate immunity, any defect in the pathway associated with CF would be a potential target for treatment. METHODS Cells were obtained by tracheobronchial brushing from 40 children with CF of mean (SD) age 2.1 (1.5) years and from 12 healthy non-atopic children aged 3.4 (1.2) years. Expression of iNOS mRNA was measured using quantitative PCR and iNOS protein by immunofluorescence and Western blot analysis. RESULTS Inducible NOS mRNA expression was significantly lower in CF patients with and without bacterial infection than in healthy children (0.22 and 0.23 v 0.76; p=0.002 and p=0.01, respectively). Low levels of iNOS gene expression were accompanied by low levels of iNOS protein expression as detected by Western blot analysis. CONCLUSIONS These results support the findings of previous studies in adult patients with advanced disease, cell lines, and animal models. Our findings reflect the situation in children with mild lung disease. They indicate that low iNOS expression may be an innate defect in CF with potential consequences for local antimicrobial defence and epithelial cell function and provide evidence for an approach to treatment based on increasing epithelial NO production or the sensitivity of NO dependent cellular processes.
Collapse
Affiliation(s)
- A Moeller
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, and Division of Respiratory Medicine, University Children's Hospital Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yarden J, Radojkovic D, De Boeck K, Macek M, Zemkova D, Vavrova V, Vlietinck R, Cassiman JJ, Cuppens H. Association of tumour necrosis factor alpha variants with the CF pulmonary phenotype. Thorax 2005; 60:320-5. [PMID: 15790988 PMCID: PMC1747362 DOI: 10.1136/thx.2004.025262] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pulmonary phenotype in patients with cystic fibrosis (CF), even in those with the same CF transmembrane conductance regulator (CFTR) genotype, is variable and must therefore be influenced by secondary genetic factors as well as environmental factors. Possible candidate genes that modulate the CF lung phenotype may include proinflammatory cytokines. One such protein is tumour necrosis factor alpha (TNFalpha), a member of the immune system. METHODS Three polymorphic loci in the promoter (-851c/t, -308g/a, -238g/a) and one polymorphic locus in intron 1 (+691g ins/del) of the TNFalpha gene were typed by a single nucleotide primer extension assay in CF patients and healthy controls. Spirometric data and first age of infection with Pseudomonas aeruginosa were collected retrospectively from patients' medical records. RESULTS An association was found between the TNFalpha +691g ins/del polymorphic locus and severity of CF lung disease. Patients heterozygous for +691g ins and +691g del were more likely to have better pulmonary function (mean (SD) forced expiratory volume in 1 second (FEV1) 79.7 (12.8)% predicted) than patients homozygous for +691g ins (mean (SD) FEV1 67.5 (23.0)% predicted; p = 0.008, mean difference 12.2%, 95% CI 3.5 to 21.0). Also, patients heterozygous for +691g ins and +691g del were more likely to have an older first age of infection with P aeruginosa (mean (SD) 11.4 (6.0) years) than patients homozygous for +691g ins (mean (SD) 8.3 (4.6) years; p = 0.018, mean difference 3.1 years, 95% CI 0.5 to 5.6). An association was also found with the -851c/t polymorphic locus. In the group of patients with more severe FEV1% predicted, a higher proportion of patients were homozygous for the -851c allele than in the other group of patients (p = 0.04, likelihood ratio chi2, odds ratio = 2.4). CONCLUSION TNFalpha polymorphisms are associated with the severity of CF lung disease in Czech and Belgian patients with CF.
Collapse
Affiliation(s)
- J Yarden
- Department for Human Genetics, KULeuven, Herestraat 49, O&N6, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Werner A, Bongers MEJ, Bijvelds MJ, de Jonge HR, Verkade HJ. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis. J Lipid Res 2004; 45:2277-86. [PMID: 15466369 DOI: 10.1194/jlr.m400238-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A deficiency of essential fatty acids (EFA) is frequently described in cystic fibrosis (CF), but whether this is a primary consequence of altered EFA metabolism or a secondary phenomenon is unclear. It was suggested that defective long-chain polyunsaturated fatty acid (LCPUFA) synthesis contributes to the CF phenotype. To establish whether cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction affects LCPUFA synthesis, we quantified EFA metabolism in cftr-/-CAM and cftr+/+CAM mice. Effects of intestinal phenotype, diet, age, and genetic background on EFA status were evaluated in cftr-/-CAM mice, DeltaF508/DeltaF508 mice, and littermate controls. EFA metabolism was measured by 13C stable isotope methodology in vivo. EFA status was determined by gas chromatography in tissues of cftr-/-CAM mice, DeltaF508/DeltaF508 mice, littermate controls, and C57Bl/6 wild types fed chow or liquid diet. After enteral administration of [13C]EFA, arachidonic acid (AA) and docosahexaenoic acid (DHA) were equally 13C-enriched in cftr-/-CAM and cftr+/+CAM mice, indicating similar EFA elongation/desaturation rates. LA, ALA, AA, and DHA concentrations were equal in pancreas, lung, and jejunum of chow-fed cftr-/-CAM and DeltaF508/DeltaF508 mice and controls. LCPUFA levels were also equal in liquid diet-weaned cftr-/-CAM mice and littermate controls, but consistently higher than in age- and diet-matched C57Bl/6 wild types. We conclude that cftr-/-CAM mice adequately absorb and metabolize EFA, indicating that CFTR dysfunction does not impair LCPUFA synthesis. A membrane EFA imbalance is not inextricably linked to the CF genotype. EFA status in murine CF models is strongly determined by genetic background.
Collapse
Affiliation(s)
- Anniek Werner
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, Academic Hospital Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Mueller-Ortiz SL, Drouin SM, Wetsel RA. The alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 2004; 72:2899-906. [PMID: 15102802 PMCID: PMC387850 DOI: 10.1128/iai.72.5.2899-2906.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia, and approximately 80% of patients with cystic fibrosis are infected with this bacterium. To investigate the overall role of complement and the complement activation pathways in the host defense against P. aeruginosa pulmonary infection, we challenged C3-, C4-, and factor B-deficient mice with P. aeruginosa via intranasal inoculation. In these studies, C3(-/-) mice had a higher mortality rate than C3(+/+) mice. Factor B(-/-) mice, but not C4(-/-) mice, infected with P. aeruginosa had a mortality rate similar to that of C3(-/-) mice, indicating that in this model the alternative pathway of complement activation is required for the host defense against Pseudomonas infection. C3(-/-) mice had 6- to 7-fold more bacteria in the lungs and 48-fold more bacteria in the blood than did C3(+/+) mice at 24 h postinfection. In vitro, phagocytic cells from C3(+/+) or C3(-/-) mice exhibited a decreased ability to bind and/or ingest P. aeruginosa in the presence of C3-deficient serum compared to phagocytic cells in the presence of serum with sufficient C3. C3(-/-) mice displayed a significant increase in neutrophils in the lungs and had higher levels of interleukin-1beta (IL-1beta), IL-6, IL-10, KC, and MIP-2 in the lungs at 24 h postinfection than did C3(+/+) mice. Collectively, these results indicate that complement activation by the alternative pathway is critical for the survival of mice infected with P. aeruginosa and that the protection provided by complement is at least in part due to C3-mediated opsonization and phagocytosis of P. aeruginosa.
Collapse
Affiliation(s)
- Stacey L Mueller-Ortiz
- Research Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston 77030, USA
| | | | | |
Collapse
|
28
|
Norkina O, Kaur S, Ziemer D, De Lisle RC. Inflammation of the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2004; 286:G1032-41. [PMID: 14739145 DOI: 10.1152/ajpgi.00473.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The CFTR null mouse [cystic fibrosis (CF) mouse] has a severe intestinal phenotype that serves as a model for CF-related growth deficiency, meconium ileus, and distal intestinal obstructive syndrome. DNA microarray analysis was used to investigate gene expression in the CF mouse small intestine. Sixty-one genes exhibited a statistically significant twofold or greater increase in expression, and 98 genes were downregulated twofold or greater. Of the upregulated genes, most were associated with inflammation and included markers for cells of the innate immune system (mast cells and neutrophils) and for acute-phase genes (serum amyloid A and complement factors). The downregulated genes include 10 cytochrome P-450 genes; several are involved in lipid metabolism, and several are involved in various transport processes. Confirmation by quantitative RT-PCR showed gene expression was significantly increased for mast cell protease 2 (27-fold), hematopoietic cell transcript 1 (17-fold), serum amyloid A3 (2.9-fold), suppressor of cytokine signaling 3 (2.0-fold), leucine-rich alpha(2)-glycoprotein (21-fold), resistin-like molecule-beta (49-fold), and Muclin (2.5-fold) and was significantly decreased for cytochrome P-450 4a10 (28-fold) and cubilin (114-fold). Immune cell infiltration was confirmed histologically by staining for mast cells and neutrophils. These data demonstrate that the CF intestine exhibits an inflammatory state with upregulation of components of the innate immune system.
Collapse
Affiliation(s)
- Oxana Norkina
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
29
|
Hubeau C, Le Naour R, Abély M, Hinnrasky J, Guenounou M, Gaillard D, Puchelle E. Dysregulation of IL-2 and IL-8 production in circulating T lymphocytes from young cystic fibrosis patients. Clin Exp Immunol 2004; 135:528-34. [PMID: 15008989 PMCID: PMC1808972 DOI: 10.1111/j.1365-2249.2003.02385.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It is well documented that patients with cystic fibrosis (CF) are unable to clear persistent airway infections in spite of strong local inflammation, suggesting a dysregulation of immunity in CF. We and others have reported previously that T lymphocytes may play a prominent role in this immune imbalance. In the present work, we compared the reactivity of CD3+ T cells obtained from young CF patients in stable clinical conditions (n = 10, aged 9-16.5 years) to age-matched healthy subjects (n = 6, aged 9-13.5 years). Intracellular levels of interferon (IFN)-gamma, interleukin (IL)-2, IL-8 and IL-10 were determined by flow cytometry after whole blood culture. The data identified T lymphocyte subsets producing either low levels (M1) or high levels (M2) of cytokine under steady-state conditions. We found that the production of IFN-gamma and IL-10 by T lymphocytes was similar between young CF patients and healthy subjects. In contrast, after 4 h of activation with PMA and ionomycin, the percentage of T cells producing high levels of IL-2 (M2) was greater in CF patients (P = 0.02). Moreover, T cells from CF patients produced lower levels of IL-8, before and after activation (P = 0.007). We conclude that a systemic immune imbalance is present in young CF patients, even when clinically stable. This disorder is characterized by the capability of circulating T lymphocytes to produce low levels of IL-8 and by the emergence of more numerous T cells producing high levels of IL-2. This imbalance may contribute to immune dysregulation in CF.
Collapse
Affiliation(s)
- C Hubeau
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 514, Institut Fédératif de Recherche (IFR) 53, Reims, France
| | | | | | | | | | | | | |
Collapse
|
30
|
van Heeckeren AM, Schluchter M, Xue L, Alvarez J, Freedman S, St George J, Davis PB. Nutritional effects on host response to lung infections with mucoid Pseudomonas aeruginosa in mice. Infect Immun 2004; 72:1479-86. [PMID: 14977953 PMCID: PMC356061 DOI: 10.1128/iai.72.3.1479-1486.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cystic fibrosis, a recessive genetic disease caused by defects in the cystic fibrosis conductance regulator (CFTR), the main cause of death is lung infection and inflammation. Nutritional deficits have been proposed to contribute to the excessive host inflammatory response in both humans and Cftr-knockout mice. Cftr-knockout mice and gut-corrected Cftr-knockout mice expressing human CFTR primarily in the gut were challenged with Pseudomonas aeruginosa-laden agarose beads; they responded similarly with respect to bronchoalveolar lavage cell counts and levels of the acute-phase cytokines tumor necrosis factor alpha, interleukin-1beta (IL-1beta), and IL-6. Wild-type mice fed the liquid diet used to prevent intestinal obstruction in Cftr-knockout mice had inflammatory responses to P. aeruginosa-laden agarose beads similar to those of wild-type mice fed an enriched solid diet, so dietary effects are unlikely to account for differences between wild-type mice and mice with cystic fibrosis. Finally, since cystic fibrosis patients and Cftr-knockout mice have an imbalance in fatty acids (significantly lower-than-normal levels of docosahexaenoic acid), the effects of specific supplementation with docosahexaenoic acid of wild-type and Cftr-knockout mice on their inflammatory responses to P. aeruginosa-laden agarose beads were tested. There were no significant differences (P = 0.35) in cumulative survival rates between Cftr-knockout mice and wild-type mice provided with either the liquid diet Peptamen or Peptamen containing docosahexaenoic acid. In conclusion, diet and docosahexaenoic acid imbalances alone are unlikely to explain the differences in the host response to lung infections with mucoid P. aeruginosa between mice with cystic fibrosis and their wild-type counterparts.
Collapse
Affiliation(s)
- Anna M van Heeckeren
- Case Western Reserve University School of Medicine, Cleveland, Ohio. Hospital San Rafael, La Coruña, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
Van Heeckeren AM, Scaria A, Schluchter MD, Ferkol TW, Wadsworth S, Davis PB. Delivery of CFTR by adenoviral vector to cystic fibrosis mouse lung in a model of chronicPseudomonas aeruginosalung infection. Am J Physiol Lung Cell Mol Physiol 2004; 286:L717-26. [PMID: 14514520 DOI: 10.1152/ajplung.00227.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cystic fibrosis (CF) there is an excessive inflammatory response to lung infections with Pseudomonas aeruginosa, which causes significant morbidity and mortality. Mice deficient in the cystic fibrosis conductance transmembrane regulator homolog ( Cftr) have exaggerated production of proinflammatory cytokines in epithelial lining fluid and increased mortality in response to chronic bronchopulmonary infection with mucoid P. aeruginosa, compared with infected wild-type littermates. Whether delivery of CFTR to CF airways by an adenoviral vector (Ad2/CFTR-16) decreases cytokine production and mortality in response to chronic bronchopulmonary infection with mucoid P. aeruginosa was tested. CF mice [stock Cftrtm1Unc-TgN(FABPCFTR)#Jaw] were anesthetized with isoflurane and inoculated intranasally with either Ad2/CFTR-16, diluent (sucrose), or empty vector (Ad2/EV). Two weeks later, mice were anesthetized with 2.5% Avertin and inoculated transtracheally with P. aeruginosa-laden agarose beads (PA M57–15). The cumulative 10-day survival of mice pretreated with Ad2/CFTR-16 was significantly higher compared with mice pretreated with sucrose but not significantly higher than mice pretreated with Ad2/EV. After adjusting for differences in experiment, we found weight loss at 3 days for mice treated with Ad2/CFTR-16 to be significantly less than for the sucrose- or Ad2/EV-treated groups. However, cytokine responses were similar in all groups 3 days after infection. In conclusion, the observed survival advantage of adenoviral delivery of CFTR to the CF lung may be due either to CFTR expression or possibly to proinflammatory effects of the adenoviral vector, or both.
Collapse
Affiliation(s)
- Anna M Van Heeckeren
- Case Western Reserve Univ. School of Medicine, Biomedical Research Bldg. 827, 2109 Adelbert Road, Cleveland, OH 44106-4948, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Mouterde O. Question 1 Quelle influence de l'état nutritionnel sur l'evolution de la mucoviscidose? Influence de 1' état nutritionnel sur 1' evolution de la mucoviscidose: aspects cliniques et epidemiologiques. Arch Pediatr 2003; 10 Suppl 3:421s-430s. [PMID: 14671954 DOI: 10.1016/s0929-693x(03)90005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- O Mouterde
- Faculté de médecine de Sherbrooke, 3001, 12e avenue nord, Fleurimont, Québec, J1H5N4, Canada
| |
Collapse
|
33
|
Carpagnano GE, Barnes PJ, Geddes DM, Hodson ME, Kharitonov SA. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. Am J Respir Crit Care Med 2003; 167:1109-12. [PMID: 12684249 DOI: 10.1164/rccm.200203-179oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic neutrophilic airway inflammation is an important feature of cystic fibrosis (CF). Noninvasive inflammatory markers may be useful in monitoring CF. Leukotriene B4 (LTB4) and interleukin (IL)-6 are inflammatory mediators that are increased in chronic neutrophilic inflammation. The aim of this study was to assess whether LTB4 and IL-6 were increased in exhaled breath condensate of CF patients and whether they could be used to monitor inflammation. Twenty patients with CF (13 males, age of 28 +/- 9 years) were recruited together with 15 age-matched healthy subjects (8 males, age 35 +/- 7 years). LTB4 and IL-6 levels were markedly elevated in patients with acute exacerbations (28.8 +/- 4.3 and 8.7 +/- 0.4 pg/ml) compared with control subjects (6.8 +/- 0.7 and 2.6 +/- 0.1 pg/ml, p < 0.0001). We also observed a decrease of exhaled LTB4 and IL-6 concentrations after antibiotic treatment in six patients who were followed until clinically stable (31.1 +/- 4.4 and 9.5 +/- 0.4 pg/ml vs. 18.8 +/- 0.8 and 6.4 +/- 0.2 pg/ml, respectively) and an increase in 15 CF patients infected with Pseudomonas aeruginosa (34.3 +/- 5.0 and 9.3 +/- 0.3 pg/m) compared with those infected with other bacteria (18.3 +/- 0.7 and 6.9 +/- 0.5 pg/ml). These findings suggest that LTB4 and IL-6 levels are increased in exhaled breath condensate of patients with CF during exacerbation and could be used to monitor airway inflammation in these patients.
Collapse
Affiliation(s)
- Giovanna E Carpagnano
- Department of Thoracic Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Arkwright PD, Pravica V, Geraghty PJ, Super M, Webb AK, Schwarz M, Hutchinson IV. End-organ dysfunction in cystic fibrosis: association with angiotensin I converting enzyme and cytokine gene polymorphisms. Am J Respir Crit Care Med 2003; 167:384-9. [PMID: 12554626 DOI: 10.1164/rccm.200204-364oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The clinical course of patients with cystic fibrosis (CF) with functionally similar mutations in the CF transmembrane conductance regulator gene is variable and must therefore relate to secondary genetic and environmental factors. We examined the hypothesis that polymorphisms of certain inflammatory mediator and regulatory genes affect clinical outcome by influencing the degree of end-organ damage. By studying the possible association between clinical outcome and angiotensin I-converting enzyme (ACE) and cytokine genotypes by amplification refractory mutation system-polymerase chain reaction, using stored DNA from 261 white patients with CF, we found that ultrasound features of cirrhosis occurred more frequently in patients with the high-producer (DD) rather than the low-producer (II) ACE genotype (odds ratio [95% confidence interval], 3.7 [1.2 to 12]). Moreover, significant pulmonary dysfunction (age at which FEV1 < 50%) was associated with the high-producer ACE genotype (2.3 [1.2 to 4.5]) and transforming growth factor-beta1 genotype (2.6 [1.0 to 6.8]) as well as with age at first colonization with Pseudomonas aeruginosa (9.1 [1.1 to 72]). We conclude that the high-producer ACE genotype predicts patients with CF who have an increased chance of developing portal hypertension; and high-producer ACE and TGF-beta1 genotypes are secondary genetic factors contributing to pulmonary dysfunction in these patients.
Collapse
Affiliation(s)
- Peter D Arkwright
- Academic Unit of Child Health, Booth Hall Children's Hospital, and School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
35
|
Poschet J, Perkett E, Deretic V. Hyperacidification in cystic fibrosis: links with lung disease and new prospects for treatment. Trends Mol Med 2002; 8:512-9. [PMID: 12421684 DOI: 10.1016/s1471-4914(02)02414-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new link between the genetic defect and lung pathology in cystic fibrosis (CF) has been established by the recent discovery of an abnormally acidic pH in the organelles of CF respiratory epithelial cells, along with an increased acidity of the CF airway surface liquid. The defect in cystic fibrosis transmembrane resistance regulator (CFTR) results in hyperacidification of the trans-Golgi network, an organelle responsible for glycosylation, and protein- and membrane-sorting in mammalian cells. Hyperacidification and altered surface glycoconjugates might contribute to mucus thickening, bacterial adhesion and colonization, inflammation, and irreversible tissue damage. The increased acidity of the intracellular organelles and of the lung lining in CF could be linked, and both represent potential therapeutic targets.
Collapse
Affiliation(s)
- Jens Poschet
- Dept of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
36
|
Steinkamp G, Wiedemann B. Relationship between nutritional status and lung function in cystic fibrosis: cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax 2002; 57:596-601. [PMID: 12096202 PMCID: PMC1746376 DOI: 10.1136/thorax.57.7.596] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The German cystic fibrosis (CF) quality assurance (CFQA) project is a patient registry for CF which was founded in 1995. Relevant clinical and laboratory data, respiratory function test results, complications, and CF treatments are entered into the database once a year for each patient. Using the database, a study was undertaken to elucidate the relationship between nutrition and lung function in a large patient cohort by cross sectional and longitudinal analysis. METHODS A cohort of 3298 patients above 2 years of age was analysed. Patients were grouped according to the presence or absence of malnutrition (wasting and/or stunting). Cross sectional and longitudinal analyses over 2 and 3 years including mixed model analyses were performed. RESULTS The prevalence of abnormal weight for height (<90% predicted) increased with age from 19% in children aged <6 years to 38% in adults with CF. Patients with malnutrition had significantly lower mean values of vital capacity, arterial oxygen tension (PO(2)), and forced expiratory volume in 1 second (FEV(1)) and higher serum IgG (p<0.05). Pseudomonas aeruginosa infection was also associated with decreased pulmonary function. Malnourished adolescents aged 12-18 years experienced a serious decline in FEV(1) of about 20% predicted, whereas mean FEV(1) values remained stable at above 80% predicted in adolescents of normal weight. Longitudinal follow up showed that malnourished patients of all ages and those with P aeruginosa infection had significantly worse lung function than their normally nourished counterparts and a greater yearly loss of FEV(1) % predicted. During 1 year of observation adolescents who experienced a >5% predicted decrease in weight for height had a concomitant mean loss of FEV(1) of 16.5% predicted during that year, whereas patients who gained relative weight had a parallel increase in FEV(1) of 2.1% predicted. CONCLUSIONS These data emphasise the close relationship between nutrition, lung function, and clinical course in CF. Normal body weight and absence of P aeruginosa infection was associated with better preservation of lung function.
Collapse
Affiliation(s)
- G Steinkamp
- Clinical Research, Hannover, and CF Centre Hamburg-Altona, Germany.
| | | |
Collapse
|
37
|
|
38
|
Abstract
There have been enormous improvements in life expectancy of patients with cystic fibrosis, especially with improved nutrition and better understanding of the basic cellular defects. However, infection in particular with Pseudomonas aeruginosa and Burkholderia cepacia, has the greatest effect in decreasing life expectancy. Although infections can be prevented by rigorous infection control procedures, early aggressive antimicrobial chemotherapy and established infection managed by antibiotics, they are not completely effective. A greater understanding of how the bacteria evade the host defences and produce infection is needed.
Collapse
Affiliation(s)
- C Anthony Hart
- Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
39
|
Poschet JF, Boucher JC, Tatterson L, Skidmore J, Van Dyke RW, Deretic V. Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proc Natl Acad Sci U S A 2001; 98:13972-7. [PMID: 11717455 PMCID: PMC61151 DOI: 10.1073/pnas.241182598] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The CFTR gene encodes a transmembrane conductance regulator, which is dysfunctional in patients with cystic fibrosis (CF). The mechanism by which defective CFTR (CF transmembrane conductance regulator) leads to undersialylation of plasma membrane glycoconjugates, which in turn promote lung pathology and colonization with Pseudomonas aeruginosa causing lethal bacterial infections in CF, is not known. Here we show by ratiometric imaging with lumenally exposed pH-sensitive green fluorescent protein that dysfunctional CFTR leads to hyperacidification of the trans-Golgi network (TGN) in CF lung epithelial cells. The hyperacidification of TGN, glycosylation defect of plasma membrane glycoconjugates, and increased P. aeruginosa adherence were corrected by incubating CF respiratory epithelial cells with weak bases. Studies with pharmacological agents indicated a role for sodium conductance, modulated by CFTR regulatory function, in determining the pH of TGN. These studies demonstrate the molecular basis for defective glycosylation of lung epithelial cells and bacterial pathogenesis in CF, and suggest a cure by normalizing the pH of intracellular compartments.
Collapse
Affiliation(s)
- J F Poschet
- Department of Microbiology and Immunology University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
40
|
Satoh S, Oishi K, Iwagaki A, Senba M, Akaike T, Akiyama M, Mukaida N, Atsushima KM, Nagatake T. Dexamethasone impairs pulmonary defence against Pseudomonas aeruginosa through suppressing iNOS gene expression and peroxynitrite production in mice. Clin Exp Immunol 2001; 126:266-73. [PMID: 11703370 PMCID: PMC1906189 DOI: 10.1046/j.1365-2249.2001.01656.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the in vivo mechanisms involved in the impairment in pulmonary defence as the result of treatment with glucocorticoids, we established fatal pneumonia with bacteraemia in dexamethasone (DEX)-treated mice by means of an intratracheal challenge of Pseudomonas aeruginosa. An increased neutrophil influx was observed in bronchoalveolar lavage (BAL) fluids from both untreated and DEX-treated mice. The complete suppression of an inducible isoform of nitric oxide synthase (iNOS) mRNA expression and tumour necrosis factor alpha (TNF-alpha) production during the early phase of pneumonia, but not CXC chemokine production, were found in the case of the DEX-treated mice. An immunohistochemical study with a specific antibody also revealed negative staining for nitrotyrosine in the lung tissue of DEX-treated mice, while the formation of nitrotyrosine, which indirectly indicates the generation of peroxynitrite with a potent bactericidal activity, was detected clearly in the bronchial epithelium as well as alveolar phagocytic cells of lung tissue from untreated mice. Furthermore, an intraperitoneal administration of S-methyl-isothiourea (SMT), a potent inhibitor of NOS, significantly decreased the survival and increased bacterial density in the case of untreated mice. In contrast, no significant effects on the survival and bacterial density in the lung and blood were found as the result of treatment with SMT in DEX-treated mice. Collectively, a complete repression of iNOS gene expression and a lack of the generation of peroxynitrite as well as an inhibition of TNF-alpha production in the lung appeared to be responsible for the progression of the fatal pneumonia due to P. aeruginosa in DEX-treated mice.
Collapse
Affiliation(s)
- S Satoh
- Department of Internal Medicine, Institute of Tropical Medicine, Nagasaki University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The development of mouse models for cystic fibrosis has provided the opportunity to dissect disease pathogenesis, correlate genotype and phenotype, study disease-modifying genes and develop novel therapeutics. This review discusses the successes and the challenges encountered in characterizing and optimizing these models.
Collapse
Affiliation(s)
- D J Davidson
- University of British Columbia, BC Research Institute for Child and Family Health, Room 381, 950 West 28th Avenue, British Columbia, V5Z 4H4., Vancouver, Canada.
| | | |
Collapse
|
42
|
Poschet JF, Boucher JC, Firoved AM, Deretic V. Conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Methods Enzymol 2001; 336:65-76. [PMID: 11398420 DOI: 10.1016/s0076-6879(01)36579-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J F Poschet
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- S A Kharitonov
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | |
Collapse
|
44
|
Shmarina GV, Pukhalsky AL, Kokarovtseva SN, Pukhalskaya DA, Kalashnikova EA, Kapranov NI, Kashirskaja NJ. Improvement of nutrient absorption may enhance systemic oxidative stress in cystic fibrosis patients. Mediators Inflamm 2001; 10:61-7. [PMID: 11405551 PMCID: PMC1781694 DOI: 10.1080/09629350120054527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The life expectancy of patients with cystic fibrosis (CF) is largely dependent on the pulmonary disease severity and progress. Malnutrition may be an important complicating factor in active and chronic lung disease. AIMS The focus of this study was to investigate several inflammatory markers in pancreatic-insufficient CF patients with different enzyme treatment regimens. METHODS CF patients with pancreatic insufficiency were examined at a time of symptomatic exacerbation of their lung disease. Group A (n = 11) regularly received microspheric enzymes. Group B (n = 8) were treated with enzymes during the hospitalization period only and demonstrated the presence of malnutrition. Inflammatory markers in the sputa (neutrophil elastase activity, interleukin-8 and tumour necrosis factor-alpha levels) and in the peripheral blood (plasma malondialdehyde (MDA), lymphocyte response to PHA, and the cell sensitivity to steroid suppression) have been investigated. RESULTS During acute lung exacerbation, group B demonstrated reduced levels of lymphocyte proliferation. This parameter was normalized after combined antibiotic and pancreatic enzyme therapy. Simultaneously, plasma MDA in group B markedly increased following treatment. For this group, a significant positive linear association between values of plasma MDA and lymphocyte proliferation has been observed. For group A, neither the same correlation nor changes in MDA levels and lymphocyte proliferation have been found. CONCLUSIONS Our data indicate that acute lung exacerbation in malnourished CF patients may be associated with alteration in T-lymphocyte activity. Adequate therapy normalizes lymphocyte function but results in systemic oxidative stress.
Collapse
Affiliation(s)
- G V Shmarina
- Laboratory of Immunogenetics, Research Centre for Medical Genetics, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Travis SM, Singh PK, Welsh MJ. Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr Opin Immunol 2001; 13:89-95. [PMID: 11154923 DOI: 10.1016/s0952-7915(00)00187-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have advanced our understanding of innate immune mechanisms that protect the airways and maintain a sterile lung. Multiple antimicrobial peptides and proteins have been identified in airway secretions and their roles are beginning to be established in animal models. Moreover, evidence for coupling between the innate and adaptive immune systems is beginning to emerge. The understanding of the innate airway defense system offers the opportunity for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- S M Travis
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, 500 Eckstein Medical Research Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
46
|
Goldberg JB, Pier GB. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends Microbiol 2000; 8:514-20. [PMID: 11121762 DOI: 10.1016/s0966-842x(00)01872-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent molecular and cellular studies have shed new light on the basis for the susceptibility of cystic fibrosis (CF) patients to Pseudomonas aeruginosa infection. Changes in airway liquid composition and/or viscosity, enhanced bacterial binding to mucin and epithelial cell receptors, increased innate inflammation owing to disruptions in lipid metabolism and a role for the CFTR protein in bacterial ingestion and clearance have all been postulated. The high P. aeruginosa infection rate in CF patients can potentially be explained by the specificity of the interaction between the CFTR and P. aeruginosa.
Collapse
Affiliation(s)
- J B Goldberg
- Dept of Microbiology, University of Virginia Health Science Center, Charlottesville 22908, USA
| | | |
Collapse
|