1
|
Suban S, Yemini S, Shor A, Waldman Ben-Asher H, Yaron O, Karako-Lampert S, Sendersky E, Golden SS, Schwarz R. A cyanobacterial sigma factor F controls biofilm-promoting genes through intra- and intercellular pathways. Biofilm 2024; 8:100217. [PMID: 39188729 PMCID: PMC11345509 DOI: 10.1016/j.bioflm.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Cyanobacteria frequently constitute integral components of microbial communities known as phototrophic biofilms, which are widespread in various environments. Moreover, assemblages of these organisms, which serve as an expression platform, simplify harvesting the biomass, thereby holding significant industrial relevance. Previous studies of the model cyanobacterium Synechococcus elongatus PCC 7942 revealed that its planktonic growth habit results from a biofilm-suppression mechanism that depends on an extracellular inhibitor, an observation that opens the door to investigating cyanobacterial intercellular communication. Here, we demonstrate that the RNA polymerase sigma factor SigF1, is required for this biofilm-suppression mechanism whereas the S. elongatus paralog SigF2 is not involved in biofilm regulation. Comprehensive transcriptome analyses identified distinct regulons under the control of each of these sigma factors. sigF1 inactivation substantially lowers transcription of genes that code for the primary pilus subunit and consequently prevents pilus assembly. Moreover, additional data demonstrate absence of the biofilm inhibitor from conditioned medium of the sigF1 mutant, further validating involvement of the pilus assembly complex in secretion of the biofilm inhibitor. Consequently, expression is significantly upregulated for the ebfG-operon that encodes matrix components and the genes that encode the corresponding secretion system, which are repressed by the biofilm inhibitor in the wild type. Thus, this study uncovers a basic regulatory component of cyanobacterial intercellular communication, a field that is in its infancy. Elevated expression of biofilm-promoting genes in a sigF1 mutant supports an additional layer of regulation by SigF1 that operates via an intracellular mechanism.
Collapse
Affiliation(s)
- Shiran Suban
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sapir Yemini
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Anna Shor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orly Yaron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sarit Karako-Lampert
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Susan S. Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
2
|
Dewan D, Basu A, Dolai D, Pal S. Biological and Biophysical Methods for Evaluation of Inhibitors of Sortase A in Staphylococcus aureus: An Overview. Cell Biochem Funct 2024; 42:e70002. [PMID: 39470102 DOI: 10.1002/cbf.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus, one of the most notorious pathogens, develops antibiotic resistance by the formation of a thick layer of exopolysaccharides known as biofilms. Sortase A, a transpeptidase responsible for biofilm formation and attachment to the host surface, has emerged as an important drug target for development of anti-virulence agents. A number of sortase A inhibitors, both peptide and non-peptides are reported which involved the use of several experiments which may provide insights regarding binding affinity, specificity, safety, and efficacy of ligands. In this review, we focus on the principles, pros and cons, and the type of information obtained from biophysical (FRET assay, Microscale Thermophoresis, Surface Plasmon Resonance, CD spectroscopy etc.) and biological (cell viability assay, biofilm formation assay, CLSM, western blot analysis, in vivo characterization on mice etc.) methods for estimation of probable sortase A inhibitors, which might be helpful to the researchers who might be interested to delve into the development of sortase A inhibitors as a drug, to address the burning question of antimicrobial resistance (AMR).
Collapse
|
3
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
4
|
Guo M, Tan S, Wu Y, Zheng C, Du P, Zhu J, Sun A, Liu X. BrfA functions as a bacterial enhancer-binding protein to regulate functional amyloid Fap-dependent biofilm formation in Pseudomonas fluorescens by sensing cyclic diguanosine monophosphate. Microbiol Res 2024; 287:127864. [PMID: 39116779 DOI: 10.1016/j.micres.2024.127864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The functional amyloid of Pseudomonas (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of Pseudomonas fluorescens PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of fap genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our in vivo data showed that the REC domain deletion of BrfA promoted fap gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of fapA in a BrfA-dependent manner. In in vitro experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of fapA, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the fapA promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. In vivo experiments using a lacZ fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of fapA transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in P. fluorescens. Fap functional amyloids and BrfA-type transcription factors are widespread in Pseudomonas species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of fap provided by this work will contribute to the development of antibiofilm strategies.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; Zouping Center for Disease Control and Prevention, Zouping, Shandong, 256200, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Yinying Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Chongni Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
5
|
Demontier E, Ster C, Chamberland S, Ramanathan S, Dufour S, Malouin F. Biofilm Dairy Foods Review: Effect of biofilm production on antimicrobial susceptibility of Staphylococcus aureus bovine mastitis strains from the most prevalent Canadian spa types. J Dairy Sci 2024:S0022-0302(24)01061-0. [PMID: 39122151 DOI: 10.3168/jds.2024-25238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Staphylococcus aureus intramammary infections often leads to clinical and subclinical mastitis in dairy cattle. Prediction of disease evolution and treatment efficacy based on the characteristics of disease-causing strains of S. aureus would significantly improve management of dairy herds. To study the impact of biofilm production and the influence of genetic lineage, we selected S. aureus isolates from the most prevalent Canadian spa types associated with bovine mastitis. Antimicrobial susceptibility in planktonic growth and for bacteria embedded in biofilm was compared. PCR was used to detect the bap gene responsible for atypical biofilm formation. All Canadian spa types from dairy cattle were susceptible to the 8 antimicrobial agents tested. Only strain sa3493 from spa type t267 showed a resistance to pirlimycin. However, bacteria producing larger amounts of biofilms better survived the bactericidal action of antimicrobial agents even when exposed to concentrations 64 folds higher than the minimal inhibitory concentration determined for planktonic cultures. Pirlimycin was more effective on bacteria producing low to moderate levels of biofilm compared with vancomycin or ceftiofur. Antimicrobial agents did not affect the viability of spa types t13401 and t605 that were high biofilm producers. While both these spa types produced high amounts of biofilm, only t605 possessed the bap gene. We also found a close relationship between DIM at sampling and the presence of spa type t605 isolates. These results suggest that detection of S. aureus spa type may help predict the effectiveness of antimicrobial therapy and that some spa types are more likely to be retrieved toward the end of the lactation.
Collapse
Affiliation(s)
- E Demontier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - C Ster
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; New address: Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - S Chamberland
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - S Ramanathan
- Département d'immunologie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - S Dufour
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada, J2S 2M2; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - F Malouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2.
| |
Collapse
|
6
|
Kalitnik A, Szefczyk M, Wojciechowska AW, Wojciechowski JW, Gąsior-Głogowska M, Olesiak-Bańska J, Kotulska M. Cytotoxic Staphylococcus aureus PSMα3 inhibits the aggregation of human insulin in vitro. Phys Chem Chem Phys 2024; 26:15587-15599. [PMID: 38757742 DOI: 10.1039/d4cp00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-β fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Alicja W Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
7
|
Fernández-Calvet A, Matilla-Cuenca L, Izco M, Navarro S, Serrano M, Ventura S, Blesa J, Herráiz M, Alkorta-Aranburu G, Galera S, Ruiz de Los Mozos I, Mansego ML, Toledo-Arana A, Alvarez-Erviti L, Valle J. Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration. Nat Commun 2024; 15:4150. [PMID: 38755164 PMCID: PMC11099085 DOI: 10.1038/s41467-024-48309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.
Collapse
Affiliation(s)
- Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Miriam Serrano
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria, HM Hospitales, Madrid, Spain
| | - Maite Herráiz
- Department of Gastroenterology, Clínica Universitaria and Medical School, University of Navarra, Navarra, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Alkorta-Aranburu
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Sergio Galera
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
| | | | - María Luisa Mansego
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain.
| |
Collapse
|
8
|
Szulc N, Gąsior-Głogowska M, Żyłka P, Szefczyk M, Wojciechowski JW, Żak AM, Dyrka W, Kaczorowska A, Burdukiewicz M, Tarek M, Kotulska M. Structural effects of charge destabilization and amino acid substitutions in amyloid fragments of CsgA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124094. [PMID: 38503257 DOI: 10.1016/j.saa.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.
Collapse
Affiliation(s)
- Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; CNRS, University of Lorraine, F-5400 Nancy, France; Department of Physics and Biophysics, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paweł Żyłka
- Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej M Żak
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Witold Dyrka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Michał Burdukiewicz
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Campus Universitat Autònoma de Barcelona Plaça Cívica Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Clinical Research Centre, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Mounir Tarek
- CNRS, University of Lorraine, F-5400 Nancy, France.
| | - Malgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
9
|
Iscen A, Kaygisiz K, Synatschke CV, Weil T, Kremer K. Multiscale Simulations of Self-Assembling Peptides: Surface and Core Hydrophobicity Determine Fibril Stability and Amyloid Aggregation. Biomacromolecules 2024; 25:3063-3075. [PMID: 38652055 PMCID: PMC11094720 DOI: 10.1021/acs.biomac.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable β-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive β-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysenur Iscen
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kübra Kaygisiz
- Department
of Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christopher V. Synatschke
- Department
of Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Department
of Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Slobodianyk-Kolomoiets M, Khlebas S, Mazur I, Rudnieva K, Potochilova V, Iungin O, Kamyshnyi O, Kamyshna I, Potters G, Spiers AJ, Moshynets O. Extracellular host DNA contributes to pathogenic biofilm formation during periodontitis. Front Cell Infect Microbiol 2024; 14:1374817. [PMID: 38779563 PMCID: PMC11109387 DOI: 10.3389/fcimb.2024.1374817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.
Collapse
Affiliation(s)
| | - Svitlana Khlebas
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Iryna Mazur
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Kateryna Rudnieva
- Central Clinical Diagnostic Laboratory, Kyiv Regional Clinical Hospital, Kyiv, Ukraine
- Department of Microbiology, Virology and Immunology, Bogomolets National Medical Academy, Kyiv, Ukraine
| | | | - Olga Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Olexandr Kamyshnyi
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
11
|
Zhu R, Stone T, Wang Y. The role of shear rates on amyloid formation from biofilm peptide phenol-soluble modulins. Biophys J 2024; 123:1106-1115. [PMID: 38549371 PMCID: PMC11079943 DOI: 10.1016/j.bpj.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Biofilms, microbial communities enclosed in the self-produced extracellular matrix, have a significant impact on human health, environment, and industry. The pathogen Staphylococcus aureus (S. aureus) is recognized as one of the most frequent causes of biofilm-related infections. Phenol-soluble modulins (PSMs) serve as a crucial component, fortifying S. aureus biofilm matrix through self-assembly into amyloid fibrils, which enhances S. aureus colonization and resistance to antibiotics. However, the role of shear rate, one of the critical physiological factors within blood vessels, on the formation of PSM amyloids remains poorly understood. In this work, using a combination of thioflavin T fluorescence kinetic studies, circular dichroism spectrometry, and electron microscopy, we demonstrated that shear rates ranging from 150 to 300 s-1 accelerate fibrillation of PSMα1, α3, and α4 into amyloids, resulting in elongated amyloid structures. Furthermore, PSMα1, α3, and α4 predominantly self-assembled into amyloid fibers with a cross-α structure under shear conditions, deviating from the typical β-sheet configuration of PSM amyloids. These findings imply the role of shear rates within the bloodstream on enhancing PSM self-assembly that is associated with S. aureus biofilm formation.
Collapse
Affiliation(s)
- Runyao Zhu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Trevor Stone
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana; Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Yichun Wang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
12
|
Kumari S, Das S. Functional amyloid fibrils of biofilm-forming marine bacterium Pseudomonas aeruginosa PFL-P1 interact spontaneously with pyrene and augment the biodegradation. Int J Biol Macromol 2024; 266:131266. [PMID: 38556224 DOI: 10.1016/j.ijbiomac.2024.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Bacteria thrive in biofilms embedding in the three-dimensional extracellular polymeric substances (EPS). Functional Amyloid in Pseudomonas (Fap), a protein in EPS, efficiently sequesters polycyclic aromatic hydrocarbons (PAHs). Present study reports the characterization of Fap fibrils from Pseudomonas aeruginosa PFL-P1 and describes the interaction with pyrene to assess the impact on pyrene degradation. Overexpression of fap in E. coli BL21(DE3) cells significantly enhances biofilm formation (p < 0.0001) and amyloid production (p = 0.0002), particularly with pyrene. Defibrillated Fap analysis reveals FapC monomers and increased fibrillation with pyrene. Circular Dichroism (CD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) unveil characteristic amyloid peaks and structural changes in Fap fibrils upon pyrene exposure. 3D-EEM analysis identifies a protein-like fluorophore in Fap fibrils, exhibiting pyrene-induced fluorescence quenching. Binding constants range from 5.23 to 7.78 M-1, with ΔG of -5.10 kJ mol-1 at 298 K, indicating spontaneous and exothermic interaction driven by hydrophobic forces. Exogenous Fap fibrils substantially increased the biofilm growth and pyrene degradation by P. aeruginosa PFL-P1 from 46 % to 64 % within 7 days (p = 0.0236). GC-MS identifies diverse metabolites, implying phthalic acid pathway in pyrene degradation. This study deepens insights into structural dynamics of Fap fibrils when exposed to pyrene, offering potential application in environmental bioremediation.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
13
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
15
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
16
|
Chowdhury S, Sarkar N. Exploring the potential of amyloids in biomedical applications: A review. Biotechnol Bioeng 2024; 121:26-38. [PMID: 37822225 DOI: 10.1002/bit.28569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Amyloid is defined as a fibrous quaternary structure formed by assembling protein or peptide monomers into intermolecularly hydrogen linked β-sheets. There is a prevalent issue with protein aggregation and the buildup of amyloid molecules, which results in human neurological illnesses including Alzheimer's and Parkinson's. But it is now evident that many organisms, like bacteria, fungi as well as humans, use the same fibrillar structure to carry out a variety of biological functions, such as structure and protection supporting interface transitions and cell-cell recognition, protein control and storage, epigenetic inheritance, and memory. Recent discoveries of self-assembling amyloidogenic peptides and proteins, based on the amyloid core structure, give rise to interesting biomaterials with potential uses in numerous industries. These functions dramatically diverge from the initial conception of amyloid fibrils as intrinsically diseased entities. Apart from the natural ability of amyloids to spontaneously arrange themselves and their exceptional material characteristics, this aspect has prompted extensive research into engineering artificial amyloids for generating various nanostructures, molecular substances, and combined materials. Here, we discuss significant developments in the artificial design of useful amyloids as well as how amyloid materials serve as examples of how function emerges from protein self-assembly at various length scales.
Collapse
Affiliation(s)
- Srijita Chowdhury
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
17
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
18
|
Rahman S, Das AK. Staphylococcal superantigen-like protein 10 enhances the amyloidogenic biofilm formation in Staphylococcus aureus. BMC Microbiol 2023; 23:390. [PMID: 38062361 PMCID: PMC10701973 DOI: 10.1186/s12866-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a highly infectious pathogen that represents a significant burden on the current healthcare system. Bacterial attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in chronic diseases such as endocarditis, osteomyelitis and wound infections. These biofilms decrease bacterial susceptibility to antibiotics and immune defences, making the infections challenging to treatment. S. aureus produces numerous exotoxins that contribute to the pathogenesis of the bacteria. In this study, we have identified a novel function of staphylococcal superantigen-like protein 10 (SSL10) in enhancing the formation of staphylococcal biofilms. Biofilm biomass is significantly increased when SSL10 is added exogenously to bacterial cultures, whereas SSL2 and SSL12 are found to be less active. Exogenously added SSL10 mask the surface charge of the bacterial cells and lowers their zeta potential, leading to the aggregation of the cells. Moreover, the biofilm formation by SSL10 is governed by amyloid aggregation, as evident from spectroscopic and microscopic studies. These findings thereby give the first overview of the SSL-mediated amyloid-based biofilm formation and further drive the future research in identifying potential molecules for developing new antibacterial therapies against Staphylococcus aureus.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
19
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Katsipis G, Avgoulas DI, Geromichalos GD, Petala M, Pantazaki AA. In vitro and in silico evaluation of the serrapeptase effect on biofilm and amyloids of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2023; 107:7269-7285. [PMID: 37741938 PMCID: PMC10638192 DOI: 10.1007/s00253-023-12772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/25/2023]
Abstract
Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
| | - Dimitrios I Avgoulas
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
- Laboratory of Chemical and Environmental Technology, Deparment of Chemistry, Aristotle University of Thessaloniki, 54 124, 54124, Thessaloniki, Greece
| | - George D Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Petala
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece.
| |
Collapse
|
21
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
22
|
Gnilitskyi I, Rymar S, Iungin O, Vyshnevskyy O, Parisse P, Potters G, Zayats AV, Moshynets O. Femtosecond laser modified metal surfaces alter biofilm architecture and reduce bacterial biofilm formation. NANOSCALE ADVANCES 2023; 5:6659-6669. [PMID: 38024323 PMCID: PMC10662203 DOI: 10.1039/d3na00599b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Biofilm formation, or microfouling, is a basic strategy of bacteria to colonise a surface and may happen on surfaces of any nature whenever bacteria are present. Biofilms are hard to eradicate due to the matrix in which the bacteria reside, consisting of strong, adhesive and adaptive self-produced polymers such as eDNA and functional amyloids. Targeting a biofilm matrix may be a promising strategy to prevent biofilm formation. Here, femtosecond laser irradiation was used to modify the stainless steel surface in order to introduce either conical spike or conical groove textures. The resulting topography consists of hierarchical nano-microstructures which substantially increase roughness. The biofilms of two model bacterial strains, P. aeruginosa PA01 and S. aureus ATCC29423, formed on such nanotextured metal surfaces, were considerably modified due to a substantial reduction in amyloid production and due to changes in eDNA surface adhesion, leading to significant reduction in biofilm biomass. Altering the topography of the metal surface, therefore, radically diminishes biofilm development solely by altering biofilm architecture. At the same time, growth and colonisation of the surface by eukaryotic adipose tissue-derived stem cells were apparently enhanced, leading to possible further advantages in controlling eukaryotic growth while suppressing prokaryotic contamination. The obtained results are important for developing anti-bacterial surfaces for numerous applications.
Collapse
Affiliation(s)
- Iaroslav Gnilitskyi
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
- NoviNano Lab LLC Lviv Ukraine
- Lviv Polytechnic National University Ukraine
| | - Svitlana Rymar
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Olga Iungin
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine Kyiv Ukraine
- Kyiv National University of Technologies and Design Kyiv Ukraine
| | - Olexiy Vyshnevskyy
- M. P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Pietro Parisse
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC I-34149 Trieste Italy
| | - Geert Potters
- Antwerp Maritime Academy Antwerp Belgium
- Department of Bioscience Engineering, University of Antwerp Antwerp Belgium
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Olena Moshynets
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine Kyiv Ukraine
| |
Collapse
|
23
|
Kim JS, Lim MC, Kim SM, Lee JY. Extracellular matrix-degrading enzymes as a biofilm control strategy for food-related microorganisms. Food Sci Biotechnol 2023; 32:1745-1761. [PMID: 37780595 PMCID: PMC10533455 DOI: 10.1007/s10068-023-01373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm is one of the major problems in food industries and is difficult to be removed or prevented by conventional sanitizers. In this review, we discussed the extracellular matrix-degrading enzymes as a strategy to control biofilms of foodborne pathogenic and food-contaminating bacteria. The biofilms can be degraded by using the enzymes targeting proteins, polysaccharides, extracellular DNA, or lipids which mainly constitute the extracellular polymeric substances of biofilms. However, the efficacy of enzymes varies by the growth medium, bacterial species, strains, or counterpart microorganisms due to a high variation in the composition of extracellular polymeric substances. Several studies demonstrated that the combined treatment using conventional sanitizers or multiple enzymes can synergistically enhance the biofilm removal efficacies. In this review, the application of the immobilized enzymes on solid substrates is also discussed as a potential strategy to prevent biofilm formation on food contact surfaces.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Se-Min Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Joo-Young Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
24
|
Nowakowska AW, Wojciechowski JW, Szulc N, Kotulska M. The role of tandem repeats in bacterial functional amyloids. J Struct Biol 2023; 215:108002. [PMID: 37482232 DOI: 10.1016/j.jsb.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Repetitivity and modularity of proteins are two related notions incorporated into multiple evolutionary concepts. We discuss whether they may also be essential for functional amyloids. Amyloids are proteins that create very regular and usually highly insoluble fibrils, which are often associated with neurodegeneration. However, recent discoveries showed that amyloid structure of a protein could also be beneficial and desired, e.g., to promote cell adhesion. Functional amyloids are proteins which differ in their characteristics from pathological amyloids, so that the fibril formation could be more under control of an organism. We propose that repeats in the sequence could regulate the aggregation propensity of these proteins. The inclusion of multiple symmetric interactions, due to the presence of the repeats, could be supporting and strengthening the desirable structural properties of functional amyloids. Our results show that tandem repeats in bacterial functional amyloids have a distinct characteristic. The pattern of repeats supports the appropriate level of fibril formation and better controllability of fibril stability. The repeats tend to be more imperfect, which attenuates excessive aggregation propensity. Their desired structure and function are also reinforced by their amino acid profile. Although in the study we focused on bacterial functional amyloids, due to their importance in biofilm formation, we propose that similar mechanisms could be employed in other functional amyloids which are designed by evolution to aggregate in a desirable manner, but not necessarily in pathological amyloids.
Collapse
Affiliation(s)
- Alicja W Nowakowska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| | - Jakub W Wojciechowski
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland
| | - Natalia Szulc
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland; Wrocław University of Environmental and Life Sciences, Department of Physics and Biophysics, Poland; LPCT, CNRS, Universite de Lorraine, F-54000 Nancy, France
| | - Malgorzata Kotulska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| |
Collapse
|
25
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
26
|
Horváth D, Dürvanger Z, K Menyhárd D, Sulyok-Eiler M, Bencs F, Gyulai G, Horváth P, Taricska N, Perczel A. Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation. Nat Commun 2023; 14:4621. [PMID: 37528104 PMCID: PMC10394066 DOI: 10.1038/s41467-023-40294-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
A large group of hormones are stored as amyloid fibrils in acidic secretion vesicles before they are released into the bloodstream and readopt their functional state. Here, we identify an evolutionarily conserved hexapeptide sequence as the major aggregation-prone region (APR) of gastrointestinal peptides of the glucagon family: xFxxWL. We determine nine polymorphic crystal structures of the APR segments of glucagon-like peptides 1 and 2, and exendin and its derivatives. We follow amyloid formation by CD, FTIR, ThT assays, and AFM. We propose that the pH-dependent changes of the protonation states of glutamate/aspartate residues of APRs initiate switching between the amyloid and the folded, monomeric forms of the hormones. We find that pH sensitivity diminishes in the absence of acidic gatekeepers and amyloid formation progresses over a broad pH range. Our results highlight the dual role of short aggregation core motifs in reversible amyloid formation and receptor binding.
Collapse
Affiliation(s)
- Dániel Horváth
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Zsolt Dürvanger
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Dóra K Menyhárd
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Máté Sulyok-Eiler
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Fruzsina Bencs
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, Budapest, 1092, Hungary
| | - Nóra Taricska
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary.
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary.
| |
Collapse
|
27
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
28
|
Frenkel A, Zecharia E, Gómez-Pérez D, Sendersky E, Yegorov Y, Jacob A, Benichou JIC, Stierhof YD, Parnasa R, Golden SS, Kemen E, Schwarz R. Cell specialization in cyanobacterial biofilm development revealed by expression of a cell-surface and extracellular matrix protein. NPJ Biofilms Microbiomes 2023; 9:10. [PMID: 36864092 PMCID: PMC9981879 DOI: 10.1038/s41522-023-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Cyanobacterial biofilms are ubiquitous and play important roles in diverse environments, yet, understanding of the processes underlying the development of these aggregates is just emerging. Here we report cell specialization in formation of Synechococcus elongatus PCC 7942 biofilms-a hitherto unknown characteristic of cyanobacterial social behavior. We show that only a quarter of the cell population expresses at high levels the four-gene ebfG-operon that is required for biofilm formation. Almost all cells, however, are assembled in the biofilm. Detailed characterization of EbfG4 encoded by this operon revealed cell-surface localization as well as its presence in the biofilm matrix. Moreover, EbfG1-3 were shown to form amyloid structures such as fibrils and are thus likely to contribute to the matrix structure. These data suggest a beneficial 'division of labor' during biofilm formation where only some of the cells allocate resources to produce matrix proteins-'public goods' that support robust biofilm development by the majority of the cells. In addition, previous studies revealed the operation of a self-suppression mechanism that depends on an extracellular inhibitor, which supresses transcription of the ebfG-operon. Here we revealed inhibitor activity at an early growth stage and its gradual accumulation along the exponential growth phase in correlation with cell density. Data, however, do not support a threshold-like phenomenon known for quorum-sensing in heterotrophs. Together, data presented here demonstrate cell specialization and imply density-dependent regulation thereby providing deep insights into cyanobacterial communal behavior.
Collapse
Affiliation(s)
- Alona Frenkel
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Eli Zecharia
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Daniel Gómez-Pérez
- grid.10392.390000 0001 2190 1447Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Eleonora Sendersky
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Yevgeni Yegorov
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Avi Jacob
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Jennifer I. C. Benichou
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - York-Dieter Stierhof
- grid.10392.390000 0001 2190 1447Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Rami Parnasa
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Susan S. Golden
- grid.266100.30000 0001 2107 4242Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Eric Kemen
- grid.10392.390000 0001 2190 1447Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
29
|
Kaygisiz K, Ender AM, Gačanin J, Kaczmarek LA, Koutsouras DA, Nalakath AN, Winterwerber P, Mayer FJ, Räder HJ, Marszalek T, Blom PWM, Synatschke CV, Weil T. Photoinduced Amyloid Fibril Degradation for Controlled Cell Patterning. Macromol Biosci 2023; 23:e2200294. [PMID: 36281903 DOI: 10.1002/mabi.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Indexed: 11/12/2022]
Abstract
Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adriana M Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmina Gačanin
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Alix Kaczmarek
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dimitrios A Koutsouras
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Abin N Nalakath
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pia Winterwerber
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Paul W M Blom
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
30
|
Rasmussen HØ, Kumar A, Shin B, Stylianou F, Sewell L, Xu Y, Otzen DE, Pedersen JS, Matthews SJ. FapA is an Intrinsically Disordered Chaperone for Pseudomonas Functional Amyloid FapC. J Mol Biol 2023; 435:167878. [PMID: 36368411 DOI: 10.1016/j.jmb.2022.167878] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Bacterial functional amyloids contribute to biofilm development by bacteria and provide protection from the immune system and prevent antibiotic treatment. Strategies to target amyloid formation and interrupt biofilm formation have attracted recent interest due to their antimicrobial potential. Functional amyloid in Pseudomonas (Fap) includes FapC as the major component of the fibril while FapB is a minor component suggested to function as a nucleator of FapC. The system also includes the small periplasmic protein FapA, which has been shown to regulate fibril composition and morphology. The interplay between these three components is central in Fap fibril biogenesis. Here we present a comprehensive biophysical and spectroscopy analysis of FapA, FapB and FapC and provide insight into their molecular interactions. We show that all three proteins are primarily disordered with some regions with structural propensities for α-helix and β-sheet. FapA inhibits FapC fibrillation by targeting the nucleation step, whereas for FapB the elongation step is modulated. Furthermore, FapA alters the morphology of FapC (more than FapB) fibrils. Complex formation is observed between FapA and FapC, but not between FapA and FapB, and likely involves the N-terminus of FapA. We conclude that FapA is an intrinsically disordered chaperone for FapC that guards against fibrillation within the periplasm. This new understanding of a natural protective mechanism of Pseudomonas against amyloid formations can serve as inspiration for strategies blocking biofilm formation in infections.
Collapse
Affiliation(s)
- Helena Ø Rasmussen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Amit Kumar
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Ben Shin
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Lee Sewell
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Steve J Matthews
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, United Kingdom.
| |
Collapse
|
31
|
Pönisch W, Michaels TCT, Weber CA. Aggregation controlled by condensate rheology. Biophys J 2023; 122:197-214. [PMID: 36369755 PMCID: PMC9822804 DOI: 10.1016/j.bpj.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Biomolecular condensates in living cells can exhibit a complex rheology, including viscoelastic and glassy behavior. This rheological behavior of condensates was suggested to regulate polymerization of cytoskeletal filaments and aggregation of amyloid fibrils. Here, we theoretically investigate how the rheological properties of condensates can control the formation of linear aggregates. To this end, we propose a kinetic theory for linear aggregation in coexisting phases, which accounts for the aggregate size distribution and the exchange of aggregates between inside and outside of condensates. The rheology of condensates is accounted in our model via aggregate mobilities that depend on aggregate size. We show that condensate rheology determines whether aggregates of all sizes or dominantly small aggregates are exchanged between condensate inside and outside on the timescale of aggregation. As a result, the ratio of aggregate numbers inside to outside of condensates differs significantly. Strikingly, we also find that weak variations in the rheological properties of condensates can lead to a switch-like change of the number of aggregates. These results suggest a possible physical mechanism for how living cells could control linear aggregation in a switch-like fashion through variations in condensate rheology.
Collapse
Affiliation(s)
- Wolfram Pönisch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Thomas C T Michaels
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom; Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom; Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | - Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Faculty of Mathematics, Natural Sciences, and Materials Engineering, Institute of Physics, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
32
|
Wen J, Wang Z, Du X, Liu R, Wang J. Antibioflm effects of extracellular matrix degradative agents on the biofilm of different strains of multi-drug resistant Corynebacterium striatum. Ann Clin Microbiol Antimicrob 2022; 21:53. [PMID: 36434697 PMCID: PMC9700914 DOI: 10.1186/s12941-022-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Corynebacterium striatum is a microorganism with an excellent capacity for biofilm production and thus has been correlated with nosocomial transmission and invasive infections. However, little is known about the mechanism of biofilm formation of this commensal pathogen. In this study, we aimed to investigate the biofilm formation abilities of multidrug-resistant Corynebacterium striatum clinical isolates and the roles of extracellular proteins, exopolysaccharides and extracellular DNA in mediating more robust biofilm formation by the isolates of C. striatum. METHODS C. striatum isolates were identified using VITEK-2 ANC card, matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S rRNA sequencing. The antibiotic susceptibility test was performed using the broth microdilution method. The distribution of spaDEF genes among C. striatum isolates was detected by polymerase chain reaction, and pulsed-field gel electrophoresis typing was employed to analyze the genotypes of the isolates. Crystal violet staining and scanning electron microscopy techniques were used to detect biofilm production by C. striatum isolates. Biofilm degradation assay was performed to observe the effects of extracellular matrix degradative agents (proteinase K, dispersin B, and DNase I) on C. striatum biofilms. RESULTS Twenty-seven C. striatum isolates were enrolled in the study, and the resistance rates were the highest (100%, 27/27) against penicillin and ceftriaxone. Approximately 96.3% (26/27) C. striatum isolates were resistant to at least three different types of antimicrobial agents tested. All isolates were confirmed to be biofilm producers, and 74.07% (20/27) isolates presented moderate to strong biofilm production abilities. P7 genotype (44.4%, 12/27) was identified to as the predominant genotype, and all of isolates belonging to this genotype were multidrug-resistant and had stronger biofilm-forming abilities. Most C. striatum isolates (74.07%, 20/27) carry spaD, spaE, and spaF genes, which encode spa-type pili. However, the correlation between the expression of spa-type genes and the biofilm production abilities of the C. striatum isolates was not found. The biofilms of 80% (8/10), 90% (9/10), and 100% (10/10) C. striatum isolates with moderate to strong biofilm production abilities were significantly eliminated upon the treatment of dispersin B (20 μg/mL), DNase I (20 μg/mL), and proteinase K (20 μg/mL) (p < 0.05), respectively. For the combination groups with two kinds of biofilm-degradative agents, the combination of 20 μg/mL proteinase K/dispersin B showed the strongest biofilm-eliminating effects, when the biofilms of 90% (9/10) C. striatum isolates degraded more than 50%. CONCLUSIONS The C. striatum isolates that belonged to the predominant genotype showed a multidrug resistance (MDR) phenotype and strong biofilm formation abilities. Extracellular matrix seems to be an essential determinant in mediating biofilm formation of MDR C. striatum, since extracellular matrix degradative agents (proteinase K, dispersin B and DNase I) showed strong biofilm-eliminating effects toward multidrug-resistant C. striatum isolates. The findings of this study highlight new ideas/directions to explore the whole nature of biofilm formation of C. striatum and the function of extracellular matrix in this process.
Collapse
Affiliation(s)
- Juan Wen
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050 People’s Republic of China
| | - Zhaohui Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolian Medical University, 010050 Hohhot, People’s Republic of China
| | - Xiaoli Du
- grid.508381.70000 0004 0647 272XNational Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 People’s Republic of China
| | - Roushan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050 People’s Republic of China
| | - Junrui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050 People’s Republic of China
| |
Collapse
|
33
|
Rath S, Palit K, Das S. Variable pH and subsequent change in pCO 2 modulates the biofilm formation, synthesis of extracellular polymeric substances, and survivability of a marine bacterium Bacillus stercoris GST-03. ENVIRONMENTAL RESEARCH 2022; 214:114128. [PMID: 36007573 DOI: 10.1016/j.envres.2022.114128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Biofilm-forming bacteria adhere to the substrates and engage in the nutrient cycling process. However, environmental conditions may interrupt the biofilm formation ability, which ultimately may affect various biogeochemical cycles. The present study reports the effect of varying pH and subsequent change in pCO2 on the survivability, biofilm formation, and synthesis of extracellular polymeric substances (EPS) of a biofilm-forming marine bacterium Bacillus stercoris GST-03 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India. Understanding the pH-dependent alteration in EPS constituents, and associated functional groups of a marine bacterium will provide better insight into the adaptability of the bacteria in future ocean acidification scenarios. The strain was found to tolerate and form biofilm up to pH 4, with the maximum biofilm formation at pH 6. EPS yield and the synthesis of the key components of the EPS, including carbohydrate, protein, and lipid, were found maximum at pH 6. Changes in biofilm formation patterns and various topological parameters at varying pH/pCO2 conditions were observed. A cellular chaining pattern was observed at pH 4, and maximum biofilm formation was obtained at pH 6 with biomass of 5.28582 ± 0.5372 μm3/μm2 and thickness of 9.982 ± 1.5288 μm. Structural characterization of EPS showed changes in various functional groups of constituent macromolecules with varying pH. The amorphous nature of the EPS and the changes in linkages and associated functional groups (-R2CHOR, -CH3, and -CH2) with pH variation was confirmed. EPS showed a two-step degradation with a maximum weight loss of 59.147% and thermal stability up to 480 °C at pH 6. The present work efficiently demonstrates the role of EPS in providing structural and functional stability to the biofilm in varying pH conditions. The findings will provide a better understanding of the adaptability of marine bacteria in the future effect of ocean acidification.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
34
|
Ábrahám Á, Massignan F, Gyulai G, Katona M, Taricska N, Kiss É. Comparative Study of the Solid-Liquid Interfacial Adsorption of Proteins in Their Native and Amyloid Forms. Int J Mol Sci 2022; 23:13219. [PMID: 36362007 PMCID: PMC9656260 DOI: 10.3390/ijms232113219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/14/2023] Open
Abstract
The adhesive properties of amyloid fibers are thought to play a crucial role in various negative and positive aggregation processes, the study of which might help in their understanding and control. Amyloids have been prepared from two proteins, lysozyme and β-lactoglobulin, as well as an Exendin-4 derivative miniprotein (E5). Thermal treatment was applied to form amyloids and their structure was verified by thioflavin T (ThT), 8-Anilino-1-naphthalenesulfonic acid (ANS) dye tests and electronic circular dichroism spectroscopy (ECD). Adsorption properties of the native and amyloid forms of the three proteins were investigated and compared using the mass-sensitive quartz crystal microbalance (QCM) technique. Due to the possible electrostatic and hydrophobic interactions, similar adsorbed amounts were found for the native or amyloid forms, while the structures of the adsorbed layers differed significantly. Native proteins formed smooth and dense adsorption layers. On the contrary, a viscoelastic, highly loose layer was formed in the presence of the amyloid forms, shown by increased motional resistance values determined by the QCM technique and also indicated by atomic force microscopy (AFM) and wettability measurements. The elongated structure and increased hydrophobicity of amyloids might contribute to this kind of aggregation.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Lendület “Momentum” Peptide-Based Vaccines Research Group, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Flavio Massignan
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Miklós Katona
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Nóra Taricska
- ELKH-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
35
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Yarawsky AE, Hopkins JB, Chatzimagas L, Hub JS, Herr AB. Solution Structural Studies of Pre-amyloid Oligomer States of the Biofilm Protein Aap. J Mol Biol 2022; 434:167708. [PMID: 35777467 PMCID: PMC9615840 DOI: 10.1016/j.jmb.2022.167708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus epidermidis is a commensal bacterium on human skin that is also the leading cause of medical device-related infections. The accumulation-associated protein (Aap) from S. epidermidis is a critical factor for infection via its ability to mediate biofilm formation. The B-repeat superdomain of Aap is composed of 5 to 17 Zn2+-binding B-repeats, which undergo rapid, reversible assembly to form dimer and tetramer species. The tetramer can then undergo a conformational change and nucleate highly stable functional amyloid fibrils. In this study, multiple techniques including analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) are used to probe a panel of B-repeat mutant constructs that assemble to distinct oligomeric states to define the structural characteristics of B-repeat dimer and tetramer species. The B-repeat region from Aap forms an extremely elongated conformation that presents several challenges for standard SAXS analyses. Specialized approaches, such as cross-sectional analyses, allowed for in-depth interpretation of data, while explicit-solvent calculations via WAXSiS allowed for accurate evaluation of atomistic models. The resulting models suggest mechanisms by which Aap functional amyloid fibrils form, illuminating an important contributing factor to recurrent staphylococcal infections.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Nanocoating of CsgA protein for enhanced cell adhesion and proliferation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Matilla-Cuenca L, Taglialegna A, Gil C, Toledo-Arana A, Lasa I, Valle J. Bacterial biofilm functionalization through Bap amyloid engineering. NPJ Biofilms Microbiomes 2022; 8:62. [PMID: 35909185 PMCID: PMC9339546 DOI: 10.1038/s41522-022-00324-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap.
Collapse
Affiliation(s)
| | - Agustina Taglialegna
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.,The Campus 4 Crinan Street London N1, London, UK
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.
| |
Collapse
|
39
|
Fan HX, Sheng S, Zhang F. New hope for Parkinson's disease treatment: Targeting gut microbiota. CNS Neurosci Ther 2022; 28:1675-1688. [PMID: 35822696 PMCID: PMC9532916 DOI: 10.1111/cns.13916] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
There might be more than 10 million confirmed cases of Parkinson's disease (PD) worldwide by 2040. However, the pathogenesis of PD is still unclear. Host health is closely related to gut microbiota, which are affected by factors such as age, diet, and exercise. Recent studies have found that gut microbiota may play key roles in the progression of a wide range of diseases, including PD. Changes in the abundance of gut bacteria, such as Helicobacter pylori, Enterococcus faecalis, and Desulfovibrio, might be involved in PD pathogenesis or interfere with PD therapy. Gut microbiota and the distal brain achieve action on each other through a gut‐brain axis composed of the nervous system, endocrine system, and immune system. Here, this review focused on the current understanding of the connection between Parkinson's disease and gut microbiota, to provide potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Hong-Xia Fan
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuo Sheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
40
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
41
|
Tarsitano J, Ramis LY, Alonso LG, Russo DM, Zorreguieta A. RapD Is a Multimeric Calcium-Binding Protein That Interacts With the Rhizobium leguminosarum Biofilm Exopolysaccharide, Influencing the Polymer Lengths. Front Microbiol 2022; 13:895526. [PMID: 35875570 PMCID: PMC9298526 DOI: 10.3389/fmicb.2022.895526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Rhizobium leguminosarum synthesizes an acidic polysaccharide mostly secreted to the extracellular medium, known as exopolysaccharide (EPS) and partially retained on the bacterial surface as a capsular polysaccharide (CPS). Rap proteins, extracellular protein substrates of the PrsDE type I secretion system (TISS), share at least one Ra/CHDL (cadherin-like) domain and are involved in biofilm matrix development either through cleaving the polysaccharide by Ply glycanases or by altering the bacterial adhesive properties. It was shown that the absence or excess of extracellular RapA2 (a monomeric CPS calcium-binding lectin) alters the biofilm matrix’s properties. Here, we show evidence of the role of a new Rap protein, RapD, which comprises an N-terminal Ra/CHDL domain and a C-terminal region of unknown function. RapD was completely released to the extracellular medium and co-secreted with the other Rap proteins in a PrsDE-dependent manner. Furthermore, high levels of RapD secretion were found in biofilms under conditions that favor EPS production. Interestingly, size exclusion chromatography of the EPS produced by the ΔrapA2ΔrapD double mutant showed a profile of EPS molecules of smaller sizes than those of the single mutants and the wild type strain, suggesting that both RapA2 and RapD proteins influence EPS processing on the cell surface. Biophysical studies showed that calcium triggers proper folding and multimerization of recombinant RapD. Besides, further conformational changes were observed in the presence of EPS. Enzyme-Linked ImmunoSorbent Assay (ELISA) and Binding Inhibition Assays (BIA) indicated that RapD specifically binds the EPS and that galactose residues would be involved in this interaction. Taken together, these observations indicate that RapD is a biofilm matrix-associated multimeric protein that influences the properties of the EPS, the main structural component of the rhizobial biofilm.
Collapse
Affiliation(s)
- Julián Tarsitano
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lila Y. Ramis
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Leonardo G. Alonso
- Instituto de Nanobiotecnología (NANOBIOTEC), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela M. Russo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- *Correspondence: Daniela M. Russo,
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Angeles Zorreguieta,
| |
Collapse
|
42
|
Probing the growth and mechanical properties of Bacillus subtilis biofilms through genetic mutation strategies. Synth Syst Biotechnol 2022; 7:965-971. [PMID: 35756965 PMCID: PMC9194759 DOI: 10.1016/j.synbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial communities form biofilms on various surfaces by synthesizing a cohesive and protective extracellular matrix, and these biofilms protect microorganisms against harsh environmental conditions. Bacillus subtilis is a widely used experimental species, and its biofilms are used as representative models of beneficial biofilms. Specifically, B. subtilis biofilms are known to be rich in extracellular polymeric substances (EPS) and other biopolymers such as DNA and proteins like the amyloid protein TasA and the hydrophobic protein BslA. These materials, which form an interconnected, cohesive, three-dimensional polymer network, provide the mechanical stability of biofilms and mediate their adherence to surfaces among other functional contributions. Here, we explored how genetically-encoded components specifically contribute to regulate the growth status, mechanical properties, and antibiotic resistance of B. subtilis biofilms, thereby establishing a solid empirical basis for understanding how various genetic engineering efforts are likely to affect the structure and function of biofilms. We noted discrete contributions to biofilm morphology, mechanical properties, and survival from major biofilm components such as EPS, TasA and BslA. For example, EPS plays an important role in maintaining the stability of the mechanical properties and the antibiotic resistance of biofilms, whereas BslA has a significant impact on the resolution that can be obtained for printing applications. This work provides a deeper understanding of the internal interactions of biofilm components through systematic genetic manipulations. It thus not only broadens the application prospects of beneficial biofilms, but also serves as the basis of future strategies for targeting and effectively removing harmful biofilms.
Collapse
|
43
|
Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084788. [PMID: 35457654 PMCID: PMC9024719 DOI: 10.3390/ijerph19084788] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/16/2023]
Abstract
In light of the limited therapeutic options with Carbapenem-Resistant Enterobacterales (CRE) infections, understanding the bacterial risk factors, such as biofilm formation and related gene expression of CRE, is vital. This study investigates the biofilm formation and biofilm-related gene expression of two enteric Enterobacterales with major CR determinants Escherichia coli IMP and Klebsiella pneumoniae NDM-1, which were seen in high prevalence in most common bacterial infections over the past few years. To our knowledge, this is the first study that demonstrated the relationship between biofilm formation and the related gene expression, to understand the potential molecular mechanisms during the biofilm formation in CRE. Biofilms were quantified by tissue culture plate assay at the stages of the biofilm development: initial attachment (6 h), microcolony formation (12 h), maturation (24 h), and dispersion (48 h). In a dispersion, event bacteria detach without any mechanical means and colonise another area. To investigate the influence of different growth conditions on biofilm formation, biofilms were quantified under different growth conditions. In parallel, quantitative real-time PCR (qPCR) assessed the biofilm-related gene expression of a cluster of genes, including biofilm maturation, quorum sensing, stress survival, and antibiotic resistance. Structural changes during biofilm development were assessed via confocal laser scanning microscopy (CLSM). We observed that the biofilm formation of CRE is correlated with the biofilm development stages, with maximum biofilm observed at 24 h at the maturation stage. Our data also showed that biofilm growth, under the condition tested, is the major factor influencing the variability of biofilm gene expression quantification assays. qPCR analyses have demonstrated that the expression of biofilm-related genes is highly correlated with phenotypic biofilm development, and these findings can be further expanded to understand the variation in regulation of such genes in these significant CRE pathogens. Our study demonstrated that both CRE strains, E. coli IMP and K. pneumoniae NDM-1, are high biofilm formers, and genes involved in biofilm development are upregulated during biofilm growth. The characteristic of the increased biofilm formation with the upregulation of antibiotic-resistant and biofilm-related genes indicates the successful pathogenic role of biofilms of these selected CRE and is attributed to their multi-drug resistance ability and successful dissemination of CRE in common bacterial infections.
Collapse
|
44
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
45
|
陈 冬, 林 焕. [Research Updates: Cariogenic Mechanism of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:208-213. [PMID: 35332719 PMCID: PMC10409355 DOI: 10.12182/20220360508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The prevalence of dental caries remains high, posing a major burden on the public health of the global society. Microorganisms are the main cause of dental caries, among which Streptococcus mutans ( S. mutans) is one of the most widely recognized cariogenic bacteria. In recent years, the progress in research technology enabled the academic circle to conduct more in-depth research into caries-inducing S. mutans at the DNA, RNA and protein levels, and to gain thereby a new understanding of the surface structure and extracellular matrix composition of S. mutans. In this paper, we summarized recent findings on the cariogenic mechanism of S. mutans in order to help reveal more targets and potential approaches for the future development of caries prevention agents that target S. mutans, and to promote the development of dental caries prevention campaign.
Collapse
Affiliation(s)
- 冬茹 陈
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - 焕彩 林
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
46
|
Corsini PM, Wang S, Rehman S, Fenn K, Sagar A, Sirovica S, Cleaver L, Edwards-Gayle CJC, Mastroianni G, Dorgan B, Sewell LM, Lynham S, Iuga D, Franks WT, Jarvis J, Carpenter GH, Curtis MA, Bernadó P, Darbari VC, Garnett JA. Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. NPJ Biofilms Microbiomes 2022; 8:9. [PMID: 35217675 PMCID: PMC8881592 DOI: 10.1038/s41522-022-00272-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.
Collapse
Affiliation(s)
- Paula M Corsini
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Katherine Fenn
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Slobodan Sirovica
- Centre for Oral Bioengineering, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lee M Sewell
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, UK
| | - James Jarvis
- Randall Division of Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Vidya C Darbari
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
47
|
Pagliaccia B, Carretti E, Severi M, Berti D, Lubello C, Lotti T. Heavy metal biosorption by Extracellular Polymeric Substances (EPS) recovered from anammox granular sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126661. [PMID: 34315635 DOI: 10.1016/j.jhazmat.2021.126661] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The recovery and conversion of Extracellular Polymeric Substances (EPS) from sewage sludge into bio-based commodities might improve the economics and environmental sustainability of wastewater treatment. This contribution explores the application of EPS from anammox granular waste sludge as biosorbent for the removal of heavy metals, specifically lead, copper, nickel, and zinc. Adsorption capacities equivalent or higher than well-established adsorbent media emerged from single-metal biosorption studies (up to 84.9, 52.8, 21.7 and 7.4 mg/gTSEPS for Pb2+, Cu2+, Ni2+ and Zn2+, respectively). Combining spectroscopic techniques, a mechanistic hypothesis for metal biosorption, based on a combination of electrostatic interaction, ion exchange, complexation, and precipitation, was proposed. The adsorption mechanisms of extracted EPS and non-extracted EPS in the native biomass were indirectly compared by means of single-metal biosorption studies performed with pristine granules (adsorbing up to 103.7, 36.1, 48.2 and 49.8 mg/gTSgranules of Pb2+, Cu2+, Ni2+, and Zn2+, respectively). In comparison with pristine anammox granules, EPS showed lower adsorption capacities except for copper and different adsorption pathways as postulated based on the adsorption data interpretation via theoretical models. The multi-metal biosorption tests excluded significant competitions among different heavy metals for the EPS binding sites, thus opening further scenarios for the treatment of complex wastewaters.
Collapse
Affiliation(s)
- Benedetta Pagliaccia
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze (FI), Italy.
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto, Fiorentino (FI), Italy.
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto, Fiorentino (FI), Italy.
| | - Claudio Lubello
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze (FI), Italy.
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze (FI), Italy.
| |
Collapse
|
48
|
Ramírez-Larrota JS, Eckhard U. An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules 2022; 12:306. [PMID: 35204806 PMCID: PMC8869686 DOI: 10.3390/biom12020306] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial biofilms represent multicellular communities embedded in a matrix of extracellular polymeric substances, conveying increased resistance against environmental stress factors but also antibiotics. They are shaped by secreted enzymes such as proteases, which can aid pathogenicity by degrading host proteins of the connective tissue or the immune system. Importantly, both secreted proteases and the capability of biofilm formation are considered key virulence factors. In this review, we focus on the basic aspects of proteolysis and protein secretion, and highlight various secreted bacterial proteases involved in biofilm establishment and dispersal, and how they aid bacteria in immune evasion by degrading immunoglobulins and components of the complement system. Thus, secreted proteases represent not only prominent antimicrobial targets but also enzymes that can be used for dedicated applications in biotechnology and biomedicine, including their use as laundry detergents, in mass spectrometry for the glycoprofiling of antibodies, and the desensitization of donor organs intended for positive crossmatch patients.
Collapse
Affiliation(s)
| | - Ulrich Eckhard
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15-21, 08028 Barcelona, Spain;
| |
Collapse
|
49
|
Wollanke B, Gerhards H, Ackermann K. Infectious Uveitis in Horses and New Insights in Its Leptospiral Biofilm-Related Pathogenesis. Microorganisms 2022; 10:387. [PMID: 35208842 PMCID: PMC8875353 DOI: 10.3390/microorganisms10020387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Uveitis is a sight-threatening eye disease in equids known worldwide that leads to considerable pain and suffering. By far the most common type of uveitis in Germany and neighboring countries is classical equine recurrent uveitis (ERU), which is caused by chronic intraocular leptospiral infection and is the main cause of infectious uveitis in horses. Other infectious causes are extremely rare and are usually clinically distinguishable from ERU. ERU can be treated very effectively by vitreous cavity lavage (vitrectomy). For proper indications of this demanding surgery, it is necessary to differentiate ERU from other types of uveitis in which vitrectomy is not helpful. This can be conducted on the basis of anamnesis in combination with ophthalmologic findings and by aqueous humor examination. During vitrectomy, vitreous material is obtained. These vitreous samples have historically been used for numerous etiologic studies. In this way, a chronic intraocular leptospiral infection has been shown to be the cause of typical ERU and, among other findings, ERU has also been recognized as a biofilm infection, providing new insights into the pathogenesis of ERU and explaining some thus far unexplainable phenomena of ERU. ERU may not only have transmissible aspects to some types of uveitis in humans but may also serve as a model for a spontaneously occurring biofilm infection. Vitreous material obtained during therapeutically indicated vitrectomy can be used for further studies on in vivo biofilm formation, biofilm composition and possible therapeutic approaches.
Collapse
Affiliation(s)
- Bettina Wollanke
- Equine Clinic, Ludwig-Maximilians-University, 80539 Munich, Germany; (H.G.); (K.A.)
| | | | | |
Collapse
|
50
|
Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, Zhou Y, Si D, Zhang R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci 2022; 23:ijms23031241. [PMID: 35163165 PMCID: PMC8835882 DOI: 10.3390/ijms23031241] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.
Collapse
|