1
|
Probst J, Springer A, Fingerle V, Strube C. Frequency of Anaplasma phagocytophilum, Borrelia spp., and coinfections in Ixodes ricinus ticks collected from dogs and cats in Germany. Parasit Vectors 2024; 17:87. [PMID: 38395915 PMCID: PMC10893606 DOI: 10.1186/s13071-024-06193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Changing geographical and seasonal activity patterns of ticks may increase the risk of tick infestation and tick-borne pathogen (TBP) transmission for both humans and animals. METHODS To estimate TBP exposure of dogs and cats, 3000 female I. ricinus from these hosts were investigated for Anaplasma phagocytophilum and Borrelia species. RESULTS qPCR inhibition, which was observed for ticks of all engorgement stages but not questing ticks, was eliminated at a template volume of 2 µl. In ticks from dogs, A. phagocytophilum and Borrelia spp. prevalence amounted to 19.0% (285/1500) and 28.5% (427/1500), respectively, while ticks from cats showed significantly higher values of 30.9% (464/1500) and 55.1% (827/1500). Accordingly, the coinfection rate with both A. phagocytophilum and Borrelia spp. was significantly higher in ticks from cats (17.5%, 262/1500) than dogs (6.9%, 104/1500). Borrelia prevalence significantly decreased with increasing engorgement duration in ticks from both host species, whereas A. phagocytophilum prevalence decreased only in ticks from dogs. While A. phagocytophilum copy numbers in positive ticks did not change significantly over the time of engorgement, those of Borrelia decreased initially in dog ticks. In ticks from cats, copy numbers of neither A. phagocytophilum nor Borrelia spp. were affected by engorgement. Borrelia species differentiation was successful in 29.1% (365/1254) of qPCR-positive ticks. The most frequently detected species in ticks from dogs were B. afzelii (39.3% of successfully differentiated infections; 70/178), B. miyamotoi (16.3%; 29/178), and B. valaisiana (15.7%; 28/178), while B. afzelii (40.1%; 91/227), B. spielmanii (21.6%; 49/227), and B. miyamotoi (14.1%; 32/227) occurred most frequently in ticks from cats. CONCLUSIONS The differences in pathogen prevalence and Borrelia species distribution between ticks collected from dogs and cats may result from differences in habitat overlap with TBP reservoir hosts. The declining prevalence of A. phagocytophilum with increasing engorgement duration, without a decrease in copy numbers, could indicate transmission to dogs over the time of attachment. The fact that this was not observed in ticks from cats may indicate less efficient transmission. In conclusion, the high prevalence of A. phagocytophilum and Borrelia spp. in ticks collected from dogs and cats underlines the need for effective acaricide tick control to protect both animals and humans from associated health risks.
Collapse
Affiliation(s)
- Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
2
|
Gordon JL, Oliva Chavez AS, Martinez D, Vachiery N, Meyer DF. Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium by ntrX gene conversion from an inverted segmental duplication. PLoS One 2023; 18:e0266234. [PMID: 36800354 PMCID: PMC9937504 DOI: 10.1371/journal.pone.0266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/16/2022] [Indexed: 02/18/2023] Open
Abstract
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | - Adela S. Oliva Chavez
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | | | | | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
3
|
Read CB, Lind MCH, Chiarelli TJ, Izac JR, Adcox HE, Marconi RT, Carlyon JA. The Obligate Intracellular Bacterial Pathogen Anaplasma phagocytophilum Exploits Host Cell Multivesicular Body Biogenesis for Proliferation and Dissemination. mBio 2022; 13:e0296122. [PMID: 36409075 PMCID: PMC9765717 DOI: 10.1128/mbio.02961-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of the emerging infection, granulocytic anaplasmosis. This obligate intracellular bacterium lives in a host cell-derived vacuole that receives membrane traffic from multiple organelles to fuel its proliferation and from which it must ultimately exit to disseminate infection. Understanding of these essential pathogenic mechanisms has remained poor. Multivesicular bodies (MVBs) are late endosomal compartments that receive biomolecules from other organelles and encapsulate them into intralumenal vesicles (ILVs) using endosomal sorting complexes required for transport (ESCRT) machinery and ESCRT-independent machinery. Association of the ESCRT-independent protein, ALIX, directs MVBs to the plasma membrane where they release ILVs as exosomes. We report that the A. phagocytophilum vacuole (ApV) is acidified and enriched in lysobisphosphatidic acid, a lipid that is abundant in MVBs. ESCRT-0 and ESCRT-III components along with ALIX localize to the ApV membrane. siRNA-mediated inactivation of ESCRT-0 and ALIX together impairs A. phagocytophilum proliferation and infectious progeny production. RNA silencing of ESCRT-III, which regulates ILV scission, pronouncedly reduces ILV formation in ApVs and halts infection by arresting bacterial growth. Rab27a and its effector Munc13-4, which drive MVB trafficking to the plasma membrane and subsequent exosome release, localize to the ApV. Treatment with Nexinhib20, a small molecule inhibitor that specifically targets Rab27a to block MVB exocytosis, abrogates A. phagocytophilum infectious progeny release. Thus, A. phagocytophilum exploits MVB biogenesis and exosome release to benefit each major stage of its intracellular infection cycle: intravacuolar growth, conversion to the infectious form, and exit from the host cell. IMPORTANCE Anaplasma phagocytophilum causes granulocytic anaplasmosis, a globally emerging zoonosis that can be severe, even fatal, and for which antibiotic treatment options are limited. A. phagocytophilum lives in an endosomal-like compartment that interfaces with multiple organelles and from which it must ultimately exit to spread within the host. How the bacterium accomplishes these tasks is poorly understood. Multivesicular bodies (MVBs) are intermediates in the endolysosomal pathway that package biomolecular cargo from other organelles as intralumenal vesicles for release at the plasma membrane as exosomes. We discovered that A. phagocytophilum exploits MVB biogenesis and trafficking to benefit all aspects of its intracellular infection cycle: proliferation, conversion to its infectious form, and release of infectious progeny. The ability of a small molecule inhibitor of MVB exocytosis to impede A. phagocytophilum dissemination indicates the potential of this pathway as a novel host-directed therapeutic target for granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn R. Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Underwood J, Harvey C, Lohstroh E, Pierce B, Chambers C, Guzman Valencia S, Oliva Chávez AS. Anaplasma phagocytophilum Transmission Activates Immune Pathways While Repressing Wound Healing in the Skin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121965. [PMID: 36556330 PMCID: PMC9781593 DOI: 10.3390/life12121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular bacterium transmitted by the bite of black-legged ticks, Ixodes scapularis. The main host cells in vertebrates are neutrophils. However, the first site of entry is in the skin during tick feeding. Given that the initial responses within skin are a crucial determinant of disease outcome in vector-borne diseases, we used a non-biased approach to characterize the transcriptional changes that take place at the bite during I. scapularis feeding and A. phagocytophilum transmission. Experimentally infected ticks were allowed to feed for 3 days on C57BL/6J mice to allow bacterial transmission and establishment. Skin biopsies were taken from the attachment site of uninfected ticks and A. phagocytophilum-infected ticks. Skin without ticks (intact skin) was used as baseline. RNA was isolated and sequenced using next-generation sequencing (NGS). The differentially expressed genes were used to identify over-represented pathways by gene ontology (GO) and pathway enrichment (PE). Anaplasma phagocytophilum transmission resulted in the activation of interferon signaling and neutrophil chemotaxis pathways in the skin. Interestingly, it also led to the downregulation of genes encoding extracellular matrix (ECM) components, and upregulation of metalloproteinases, suggesting that A. phagocytophilum delays wound healing responses and may increase vascular permeability at the bite site.
Collapse
Affiliation(s)
- Jacob Underwood
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Navy Entomology Center of Excellence, United States Navy, Jacksonville, FL 32212, USA
| | - Cristina Harvey
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Elizabeth Lohstroh
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Branden Pierce
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Cross Chambers
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | | | - Adela S. Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Correspondence: ; Tel.: +1-979-845-1946
| |
Collapse
|
5
|
Levin ML, Troughton DR, Loftis AD. Duration of tick attachment necessary for transmission of Anaplasma phagocytophilum by Ixodes scapularis (Acari: Ixodidae) nymphs. Ticks Tick Borne Dis 2021; 12:101819. [PMID: 34520993 DOI: 10.1016/j.ttbdis.2021.101819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
This study assessed the duration of tick attachment necessary for a successful transmission of Anaplasma phagocytophilum by an infected I. scapularis nymph. Individual nymphs were placed upon BALB/c mice and allowed to feed for predetermined time intervals of 4 to 72 h. Ticks removed from mice at predetermined intervals were tested by PCR for verification of infection and evaluation of the bacterial load. The success of pathogen transmission to mice was assessed by blood-PCR at 7, 14 and 21 days postinfestation, and IFA at 21 days postinfestation. Anaplasma phagocytophilum infection was documented in 10-30 % of mice, from which ticks were removed within the first 20 h of feeding. However, transmission success was ≥70% if ticks remained attached for 36 h or longer. Notably, none of the PCR-positive mice that were exposed to infected ticks for 4 to 8 h and only half of PCR-positive mice exposed for 24 h developed antibodies within 3 weeks postinfestation. On the other hand, all mice with detectable bacteremia after being infested for 36 h seroconverted. This suggests that although some of the ticks removed prior to 24 h of attachment succeed in injecting a small amount of A. phagocytophilum, this amount is insufficient for stimulating humoral immunity and perhaps for establishing disseminated infection in BALB/c mice. Although A. phagocytophilum may be present in salivary glands of unfed I. scapularis nymphs, the amount of A. phagocytophilum initially contained in saliva appears insufficient to cause sustainable infection in a host. Replication and, maybe, reactivation of the agent for 12-24 h in a feeding tick is required before a mouse can be consistently infected.
Collapse
Affiliation(s)
- Michael L Levin
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Danielle R Troughton
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amanda D Loftis
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
6
|
O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021; 79:ftab022. [PMID: 33792663 PMCID: PMC8062235 DOI: 10.1093/femspd/ftab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tick-borne illnesses pose a serious concern to human and veterinary health and their prevalence is on the rise. The interactions between ticks and the pathogens they carry are largely undefined. However, the genus Anaplasma, a group of tick-borne bacteria, has been instrumental in uncovering novel paradigms in tick biology. The emergence of sophisticated technologies and the convergence of entomology with microbiology, immunology, metabolism and systems biology has brought tick-Anaplasma interactions to the forefront of vector biology with broader implications for the infectious disease community. Here, we discuss the use of Anaplasma as an instrument for the elucidation of novel principles in arthropod-microbe interactions. We offer an outlook of the primary areas of study, outstanding questions and future research directions.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Cockburn CL, Green RS, Damle SR, Martin RK, Ghahrai NN, Colonne PM, Fullerton MS, Conrad DH, Chalfant CE, Voth DE, Rucks EA, Gilk SD, Carlyon JA. Functional inhibition of acid sphingomyelinase disrupts infection by intracellular bacterial pathogens. Life Sci Alliance 2019; 2:e201800292. [PMID: 30902833 PMCID: PMC6431796 DOI: 10.26508/lsa.201800292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacteria that live in host cell-derived vacuoles are significant causes of human disease. Parasitism of low-density lipoprotein (LDL) cholesterol is essential for many vacuole-adapted bacteria. Acid sphingomyelinase (ASM) influences LDL cholesterol egress from the lysosome. Using functional inhibitors of ASM (FIASMAs), we show that ASM activity is key for infection cycles of vacuole-adapted bacteria that target cholesterol trafficking-Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia trachomatis, and Chlamydia pneumoniae. Vacuole maturation, replication, and infectious progeny generation by A. phagocytophilum, which exclusively hijacks LDL cholesterol, are halted and C. burnetii, for which lysosomal cholesterol accumulation is bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae, which hijack LDL cholesterol and other lipid sources, are suppressed but less so than A. phagocytophilum or C. burnetii A. phagocytophilum fails to productively infect ASM-/- or FIASMA-treated mice. These findings establish the importance of ASM for infection by intracellular bacteria and identify FIASMAs as potential host-directed therapies for diseases caused by pathogens that manipulate LDL cholesterol.
Collapse
Affiliation(s)
- Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Naomi N Ghahrai
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marissa S Fullerton
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elizabeth A Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| |
Collapse
|
8
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Trop Med Infect Dis 2018; 3:tropicalmed3030078. [PMID: 30274474 PMCID: PMC6161277 DOI: 10.3390/tropicalmed3030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum. Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis. Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper, groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a 1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is relevant for studies utilizing the mouse model. This stresses the importance of including SABV and aligns with the observed higher incidence of infection in male versus female patients.
Collapse
|
10
|
Contreras M, Alberdi P, Mateos-Hernández L, Fernández de Mera IG, García-Pérez AL, Vancová M, Villar M, Ayllón N, Cabezas-Cruz A, Valdés JJ, Stuen S, Gortazar C, de la Fuente J. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. Front Cell Infect Microbiol 2017; 7:307. [PMID: 28725639 PMCID: PMC5496961 DOI: 10.3389/fcimb.2017.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Ana L García-Pérez
- Departamento de Sanidad Animal, Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER)Derio, Spain
| | - Marie Vancová
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Alejandro Cabezas-Cruz
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia.,UMR BIPAR, Animal Health Laboratory, INRA, ANSES, ENVAMaisons Alfort, France
| | - James J Valdés
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyČeské Budějovice, Czechia.,Department of Virology, Veterinary Research InstituteBrno, Czechia
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian University of Life SciencesSandnes, Norway
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, United States
| |
Collapse
|
11
|
Villar M, Marina A, de la Fuente J. Applying proteomics to tick vaccine development: where are we? Expert Rev Proteomics 2017; 14:211-221. [PMID: 28099817 DOI: 10.1080/14789450.2017.1284590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ticks are second to mosquitoes as a vector of human diseases and are the first vector of animal diseases with a great impact on livestock farming. Tick vaccines represent a sustainable and effective alternative to chemical acaricides for the control of tick infestations and transmitted pathogens. The application of proteomics to tick vaccine development is a fairly recent area, which has resulted in the characterization of some tick-host-pathogen interactions and the identification of candidate protective antigens. Areas covered: In this article, we review the application and possibilities of various proteomic approaches for the discovery of tick and pathogen derived protective antigens, and the design of effective vaccines for the control of tick infestations and pathogen infection and transmission. Expert commentary: In the near future, the application of reverse proteomics, immunoproteomics, structural proteomics, and interactomics among other proteomics approaches will likely contribute to improve vaccine design to control multiple tick species with the ultimate goal of controlling tick-borne diseases.
Collapse
Affiliation(s)
- Margarita Villar
- a Sabio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| | - Anabel Marina
- b Centro de Biología Molecular Severo Ochoa CBM-SO (CSIC-UAM) , Cantoblanco , Spain
| | - José de la Fuente
- a Sabio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,c Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
12
|
Verhoeve VI, Jirakanwisal K, Utsuki T, Macaluso KR. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts. PLoS One 2016; 11:e0163769. [PMID: 27662479 PMCID: PMC5035074 DOI: 10.1371/journal.pone.0163769] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022] Open
Abstract
Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods.
Collapse
Affiliation(s)
- Victoria I. Verhoeve
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
| | - Krit Jirakanwisal
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
| | - Tadanobu Utsuki
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
| | - Kevin R. Macaluso
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
- * E-mail:
| |
Collapse
|
13
|
Oki AT, Huang B, Beyer AR, May LJ, Truchan HK, Walker NJ, Galloway NL, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum APH0032 Is Exposed on the Cytosolic Face of the Pathogen-Occupied Vacuole and Co-opts Host Cell SUMOylation. Front Cell Infect Microbiol 2016; 6:108. [PMID: 27713867 PMCID: PMC5031783 DOI: 10.3389/fcimb.2016.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae and the obligate intracellular bacterium that causes granulocytic anaplasmosis, resides in a host cell-derived vacuole. Bacterial proteins that localize to the A. phagocytophilum-occupied vacuole membrane (AVM) are critical host-pathogen interfaces. Of the few bacterial AVM proteins that have been identified, the domains responsible for AVM localization and the host cell pathways that they co-opt are poorly defined. APH0032 is an effector that is expressed and localizes to the AVM late during the infection cycle. Herein, the APH0032 domain that is essential for associating with host cell membranes was mapped. Immunofluorescent labeling of infected cells that had been differentially permeabilized confirmed that APH0032 is exposed on the AVM's cytosolic face, signifying its potential to interface with host cell processes. SUMOylation is the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates. Previous work from our laboratory determined that SUMOylation is important for A. phagocytophilum survival and that SUMOylated proteins decorate the AVM. Algorithmic prediction analyses identified APH0032 as a candidate for SUMOylation. Endogenous APH0032 was precipitated from infected cells using a SUMO affinity matrix, confirming that the effector co-opts SUMOylation during infection. APH0032 pronouncedly colocalized with SUMO1, but not SUMO2/3 moieties on the AVM. Ectopic expression of APH0032 in A. phagocytophilum infected host cells significantly boosted the bacterial load. This study delineates the first domain of any Anaplasmataceae protein that is essential for associating with the pathogen-occupied vacuole membrane, demonstrates the importance of APH0032 to infection, and identifies it as the second A. phagocytophilum effector that co-opts SUMOylation, thus underscoring the relevance of this post-translational modification to infection.
Collapse
Affiliation(s)
- Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Levi J May
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Hilary K Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine Davis, CA, USA
| | - Nathan L Galloway
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine Davis, CA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| |
Collapse
|
14
|
Villar M, López V, Ayllón N, Cabezas-Cruz A, López JA, Vázquez J, Alberdi P, de la Fuente J. The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. Parasit Vectors 2016; 9:467. [PMID: 27561965 PMCID: PMC5000436 DOI: 10.1186/s13071-016-1747-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Background The intracellular bacteria Anaplasma phagocytophilum are emerging zoonotic pathogens affecting human and animal health, and a good model for the study of tick-host-pathogen interactions. This tick-borne pathogen is transmitted by Ixodes scapularis in the United States where it causes human granulocytic anaplasmosis. Tick midguts and salivary glands play a major role during tick feeding and development, and in pathogen acquisition, multiplication and transmission. Vertebrate host proteins are found in tick midguts after feeding and have been described in the salivary glands of fed and unfed ticks, suggesting a role for these proteins during tick feeding and development. Furthermore, recent results suggested the hypothesis that pathogen infection affects tick metabolic processes to modify host protein digestion and persistence in the tick with possible implications for tick physiology and pathogen life-cycle. Methods To address this hypothesis, herein we used I. scapularis female ticks fed on uninfected and A. phagocytophilum-infected sheep to characterize host protein content in midguts and salivary glands by proteomic analysis of tick tissues. Results The results evidenced a clear difference in the host protein content between tick midguts and salivary glands in response to infection suggesting that A. phagocytophilum selectively manipulates the levels of vertebrate host proteins in ticks in a tissue-specific manner to facilitate pathogen infection, multiplication and transmission while preserving tick feeding and development. The mechanisms by which A. phagocytophilum manipulates the levels of vertebrate host proteins are not known, but the results obtained here suggested that it might include the modification of proteolytic pathways. Conclusions The results of this study provided evidence to support that A. phagocytophilum affect tick proteolytic pathways to selectively manipulate the levels of vertebrate host proteins in a tissue-specific manner to increase tick vector capacity. Investigating the biological relevance of host proteins in tick biology and pathogen infection and the mechanisms used by A. phagocytophilum to manipulate host protein content is essential to advance our knowledge of tick-host-pathogen molecular interactions. These results have implications for the identification of new targets for the development of vaccines for the control of tick-borne diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1747-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Vladimir López
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Juan A López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain. .,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
15
|
de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol 2016; 38:754-769. [PMID: 27203187 DOI: 10.1111/pim.12339] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission.
Collapse
Affiliation(s)
- J de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - P Kopáček
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - A Lew-Tabor
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Qld, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - C Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Truchan HK, VieBrock L, Cockburn CL, Ojogun N, Griffin BP, Wijesinghe DS, Chalfant CE, Carlyon JA. Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell Microbiol 2016; 18:260-81. [PMID: 26289115 PMCID: PMC4891814 DOI: 10.1111/cmi.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023]
Abstract
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host-pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brian P. Griffin
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dayanjan S. Wijesinghe
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Victoria Johnson Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
17
|
Oliva Chávez AS, Fairman JW, Felsheim RF, Nelson CM, Herron MJ, Higgins L, Burkhardt NY, Oliver JD, Markowski TW, Kurtti TJ, Edwards TE, Munderloh UG. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum. PLoS Pathog 2015; 11:e1005248. [PMID: 26544981 PMCID: PMC4636158 DOI: 10.1371/journal.ppat.1005248] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/03/2015] [Indexed: 12/16/2022] Open
Abstract
Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations. Since its discovery in 1994, Human Granulocytic Anaplasmosis (HGA) has become the second most commonly diagnosed tick-borne disease in the US, and it is gaining importance in several countries in Europe. HGA is caused by Anaplasma phagocytophilum, a bacterium transmitted by black-legged ticks and their relatives. Whereas several of the molecules and processes leading to infection of human cells have been identified, little is known about their counterparts in the tick. We analyzed the effects of a mutation in a gene encoding an o-methyltransferase that is involved in methylation of an outer membrane protein. The mutation of the OMT appears to be important for the ability of A. phagocytophilum to adhere to, invade, and replicate in tick cells. Several tests including binding assays, microscopic analysis of the infection cycle within tick cells, gene expression assays, and biochemical assays using recombinant OMT strongly suggested that the mutation of the o-methyltransferase gene arrested the growth and development of this bacterium within tick cells. Proteomic analyses identified several possible OMT substrates, and in vitro methylation assays using recombinant o-methyltransferase identified an outer membrane protein, Msp4, as a specifically methyl-modified target. Our results indicated that methylation was important for infection of tick cells by A. phagocytophilum, and suggested possible strategies to block transmission of this emerging pathogen. The solved crystal structure of the o-methyltransferase will further stimulate the search for small molecule inhibitors that could break the tick transmission cycle of A. phagocytophilum in nature.
Collapse
Affiliation(s)
- Adela S. Oliva Chávez
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| | - James W. Fairman
- Emerald Bio, Bainbridge Island, Washington, United States of America
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
| | - Roderick F. Felsheim
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Curtis M. Nelson
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael J. Herron
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicole Y. Burkhardt
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jonathan D. Oliver
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Todd W. Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Thomas E. Edwards
- Emerald Bio, Bainbridge Island, Washington, United States of America
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
18
|
Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS One 2015; 10:e0137237. [PMID: 26340562 PMCID: PMC4560377 DOI: 10.1371/journal.pone.0137237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface proteins during A. phagocytophilum infection in ticks. Characterization of Anaplasma proteome contributes information on host-pathogen interactions and provides targets for development of novel control strategies for pathogen infection and transmission.
Collapse
|
19
|
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015; 14:1367-76. [DOI: 10.1586/14760584.2015.1076339] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, Vázquez J, Alberdi P, Cabezas-Cruz A, Kopáček P, de la Fuente J. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet 2015; 11:e1005120. [PMID: 25815810 PMCID: PMC4376793 DOI: 10.1371/journal.pgen.1005120] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. The continuous human exploitation of environmental resources and the increase in human outdoor activities, which have allowed for the contact with arthropod vectors normally present in the field, has promoted the emergence and resurgence of vector-borne pathogens. Among these, Anaplasma phagocytophilum is an emerging bacterial pathogen transmitted to humans and other vertebrate hosts by ticks as they take a blood meal that causes human granulocytic anaplasmosis in the United States, Europe and Asia, with increasing numbers of affected people every year. Tick response to pathogen infection has been only partially characterized. In this study, global tissue-specific response and apoptosis signaling pathways were characterized in tick nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. The results demonstrated dramatic and complex tissue-specific response to A. phagocytophilum in the tick vector Ixodes scapularis, which reflected pathogen developmental cycle and the impact on tick apoptosis pathways. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and contributes information on tick-pathogen interactions and for development of novel control strategies for pathogen infection and transmission.
Collapse
Affiliation(s)
- Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Ruth C. Galindo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, The Czech Republic
| | - Juan A. López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Center for Infection and Immunity of Lille (CIIL), Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, The Czech Republic
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sinclair SHG, Garcia-Garcia JC, Dumler JS. Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol 2015; 6:55. [PMID: 25705208 PMCID: PMC4319465 DOI: 10.3389/fmicb.2015.00055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022] Open
Abstract
Obligate intracellular bacteria have an arsenal of proteins that alter host cells to establish and maintain a hospitable environment for replication. Anaplasma phagocytophilum secrets Ankyrin A (AnkA), via a type IV secretion system, which translocates to the nucleus of its host cell, human neutrophils. A. phagocytophilum-infected neutrophils have dramatically altered phenotypes in part explained by AnkA-induced transcriptional alterations. However, it is unlikely that AnkA is the sole effector to account for infection-induced transcriptional changes. We developed a simple method combining bioinformatics and iTRAQ protein profiling to identify potential bacterial-derived nuclear-translocated proteins that could impact transcriptional programming in host cells. This approach identified 50 A. phagocytophilum candidate genes or proteins. The encoding genes were cloned to create GFP fusion protein-expressing clones that were transfected into HEK-293T cells. We confirmed nuclear translocation of six proteins: APH_0062, RplE, Hup, APH_0382, APH_0385, and APH_0455. Of the six, APH_0455 was identified as a type IV secretion substrate and is now under investigation as a potential nucleomodulin. Additionally, application of this approach to other intracellular bacteria such as Mycobacterium tuberculosis, Chlamydia trachomatis and other intracellular bacteria identified multiple candidate genes to be investigated.
Collapse
Affiliation(s)
- Sara H G Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jose C Garcia-Garcia
- Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Procter and Gamble Co. Cincinnati, OH, USA
| | - J Stephen Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
22
|
Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 2015; 11:e1004669. [PMID: 25658707 PMCID: PMC4450072 DOI: 10.1371/journal.ppat.1004669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilum binding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection. Anaplasma phagocytophilum causes the potentially deadly bacterial disease granulocytic anaplasmosis. The pathogen replicates inside white blood cells and, like all other obligate intracellular organisms, must enter host cells to survive. Multiple A. phagocytophilum surface proteins called invasins cooperatively orchestrate the entry process. Identifying these proteins’ domains that are required for function, and determining the molecular basis of their interaction with host cell receptors would significantly advance understanding of A. phagocytophilum pathogenesis. In this study, the binding domains of two A. phagocytophilum surface proteins, OmpA and Asp14, were identified. The specific OmpA residues that interact with its host cell receptor were also defined. An antibody cocktail generated against the binding domains of OmpA, Asp14, and a third invasin, AipA, blocked the ability of A. phagocytophilum to infect host cells. The data presented within suggest that binding domains of OmpA, Asp14, and AipA could be exploited to develop a vaccine for granulocytic anaplasmosis.
Collapse
|
23
|
Abbà S, Galetto L, Carle P, Carrère S, Delledonne M, Foissac X, Palmano S, Veratti F, Marzachì C. RNA-Seq profile of flavescence dorée phytoplasma in grapevine. BMC Genomics 2014; 15:1088. [PMID: 25495145 PMCID: PMC4299374 DOI: 10.1186/1471-2164-15-1088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytoplasma-borne disease flavescence dorée is still a threat to European viticulture, despite mandatory control measures and prophylaxis against the leafhopper vector. Given the economic importance of grapevine, it is essential to find alternative strategies to contain the spread, in order to possibly reduce the current use of harmful insecticides. Further studies of the pathogen, the vector and the mechanisms of phytoplasma-host interactions could improve our understanding of the disease. In this work, RNA-Seq technology followed by three de novo assembly strategies was used to provide the first comprehensive transcriptomics landscape of flavescence dorée phytoplasma (FD) infecting field-grown Vitis vinifera leaves. RESULTS With an average of 8300 FD-mapped reads per library, we assembled 347 sequences, corresponding to 215 annotated genes, and identified 10 previously unannotated genes, 15 polycistronic transcripts and three genes supposedly localized in the gaps of the FD92 draft genome. Furthermore, we improved the annotation of 44 genes with the addition of 5'/3' untranslated regions. Functional classification revealed that the most expressed genes were either related to translation and protein biosynthesis or hypothetical proteins with unknown function. Some of these hypothetical proteins were predicted to be secreted, so they could be bacterial effectors with a potential role in modulating the interaction with the host plant. Interestingly, qRT-PCR validation of the RNA-Seq expression values confirmed that a group II intron represented the FD genomic region with the highest expression during grapevine infection. This mobile element may contribute to the genomic plasticity that is necessary for the phytoplasma to increase its fitness and endorse host-adaptive strategies. CONCLUSIONS The RNA-Seq technology was successfully applied for the first time to analyse the FD global transcriptome profile during grapevine infection. Our results provided new insights into the transcriptional organization and gene structure of FD. This may represent the starting point for the application of high-throughput sequencing technologies to study differential expression in FD and in other phytoplasmas with an unprecedented resolution.
Collapse
Affiliation(s)
- Simona Abbà
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Luciana Galetto
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Patricia Carle
- />INRA, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
- />Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
| | - Sébastien Carrère
- />INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326 France
- />CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326 France
| | - Massimo Delledonne
- />Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, I-37134 Verona, Italy
| | - Xavier Foissac
- />INRA, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
- />Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
| | - Sabrina Palmano
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Flavio Veratti
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Cristina Marzachì
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| |
Collapse
|
24
|
Dugat T, Loux V, Marthey S, Moroldo M, Lagrée AC, Boulouis HJ, Haddad N, Maillard R. Comparative genomics of first available bovine Anaplasma phagocytophilum genome obtained with targeted sequence capture. BMC Genomics 2014; 15:973. [PMID: 25400116 PMCID: PMC4239370 DOI: 10.1186/1471-2164-15-973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a zoonotic and obligate intracellular bacterium transmitted by ticks. In domestic ruminants, it is the causative agent of tick-borne fever, which causes significant economic losses in Europe. As A. phagocytophilum is difficult to isolate and cultivate, only nine genome sequences have been published to date, none of which originate from a bovine strain.Our goals were to; 1/ develop a sequencing methodology which efficiently circumvents the difficulties associated with A. phagocytophilum isolation and culture; 2/ describe the first genome of a bovine strain; and 3/ compare it with available genomes, in order to both explore key genomic features at the species level, and to identify candidate genes that could be specific to bovine strains. RESULTS DNA was extracted from a bovine blood sample infected by A. phagocytophilum. Following a whole genome capture approach, A. phagocytophilum DNA was enriched 197-fold in the sample and then sequenced using Illumina technology. In total, 58.9% of obtained reads corresponded to the A. phagocytophilum genome, covering 85.3% of the HZ genome. Then by performing comparisons with nine previously-sequenced A. phagocytophilum genomes, we determined the core genome of these ten strains. Following analysis, 1281 coding DNA sequences, including 1001 complete sequences, were detected in the A. phagocytophilum bovine genome, of which four appeared to be unique to the bovine isolate. These four coding DNA sequences coded for "hypothetical proteins of unknown function" and require further analysis. We also identified nine proteins common to both European domestic ruminants tested. CONCLUSION Using a whole genome capture approach, we have sequenced the first A. phagocytophilum genome isolated from a cow. To the best of our knowledge, this is the first time that this method has been used to selectively enrich pathogenic bacterial DNA from samples also containing host DNA. The four proteins unique to the A. phagocytophilum bovine genome could be involved in host tropism, therefore their functions need to be explored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nadia Haddad
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR ENVA Anses UPEC USC INRA, Maisons-Alfort, France.
| | | |
Collapse
|
25
|
Pruneau L, Moumène A, Meyer DF, Marcelino I, Lefrançois T, Vachiéry N. Understanding Anaplasmataceae pathogenesis using "Omics" approaches. Front Cell Infect Microbiol 2014; 4:86. [PMID: 25072029 PMCID: PMC4078744 DOI: 10.3389/fcimb.2014.00086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
This paper examines how "Omics" approaches improve our understanding of Anaplasmataceae pathogenesis, through a global and integrative strategy to identify genes and proteins involved in biochemical pathways key for pathogen-host-vector interactions. The Anaplasmataceae family comprises obligate intracellular bacteria mainly transmitted by arthropods. These bacteria are responsible for major human and animal endemic and emerging infectious diseases with important economic and public health impacts. In order to improve disease control strategies, it is essential to better understand their pathogenesis. Our work focused on four Anaplasmataceae, which cause important animal, human and zoonotic diseases: Anaplasma marginale, A. phagocytophilum, Ehrlichia chaffeensis, and E. ruminantium. Wolbachia spp. an endosymbiont of arthropods was also included in this review as a model of a non-pathogenic Anaplasmataceae. A gap analysis on "Omics" approaches on Anaplasmataceae was performed, which highlighted a lack of studies on the genes and proteins involved in the infection of hosts and vectors. Furthermore, most of the studies have been done on the pathogen itself, mainly on infectious free-living forms and rarely on intracellular forms. In order to perform a transcriptomic analysis of the intracellular stage of development, researchers developed methods to enrich bacterial transcripts from infected cells. These methods are described in this paper. Bacterial genes encoding outer membrane proteins, post-translational modifications, eukaryotic repeated motif proteins, proteins involved in osmotic and oxidative stress and hypothetical proteins have been identified to play a key role in Anaplasmataceae pathogenesis. Further investigations on the function of these outer membrane proteins and hypothetical proteins will be essential to confirm their role in the pathogenesis. Our work underlines the need for further studies in this domain and on host and vector responses to infection.
Collapse
Affiliation(s)
- Ludovic Pruneau
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; Université des Antilles et de la Guyane Pointe-à-Pitre, France
| | - Amal Moumène
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; Université des Antilles et de la Guyane Pointe-à-Pitre, France
| | - Damien F Meyer
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| | - Isabel Marcelino
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; IBET Apartado, Oeiras, Portugal ; ITQB-UNL, Estação Agronómica Nacional Oeiras, Lisboa, Portugal
| | - Thierry Lefrançois
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| | - Nathalie Vachiéry
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| |
Collapse
|
26
|
Grasperge BJ, Morgan TW, Paddock CD, Peterson KE, Macaluso KR. Feeding by Amblyomma maculatum (Acari: Ixodidae) enhances Rickettsia parkeri (Rickettsiales: Rickettsiaceae) infection in the skin. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:855-863. [PMID: 25118419 PMCID: PMC4214552 DOI: 10.1603/me13248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rickettsia parkeri Luckman (Rickettsiales: Rickettsiaceae), a member of the spotted fever group of Rickettsia, is the tick-borne causative agent of a newly recognized, eschar-associated rickettsiosis. Because of its relatively recent designation as a pathogen, few studies have examined the pathogenesis of transmission of R. parkeri to the vertebrate host. To further elucidate the role of tick feeding in rickettsial infection of vertebrates, nymphal Amblyomma maculatum Koch (Acari: Ixodidae) were fed on C3H/HeJ mice intradermally inoculated with R. parkeri (Portsmouth strain). The ticks were allowed to feed to repletion, at which time samples were taken for histopathology, immunohistochemistry (IHC), quantitative polymerase chain reaction (qPCR) for rickettsial quantification, and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of Itgax, Mcp1, and Il1beta. The group of mice that received intradermal inoculation of R. parkeri with tick feeding displayed significant increases in rickettsial load and IHC staining, but not in cytokine expression, when compared with the group of mice that received intradermal inoculation of R. parkeri without tick feeding. Tick feeding alone was associated with histopathologic changes in the skin, but these changes, and particularly vascular pathology, were more pronounced in the skin of mice inoculated previously with R. parkeri and followed by tick feeding. The marked differences in IHC staining and qPCR for the R. parkeri with tick feeding group strongly suggest an important role for tick feeding in the early establishment of rickettsial infection in the skin.
Collapse
Affiliation(s)
- Britton J. Grasperge
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803
| | - Timothy W. Morgan
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Christopher D. Paddock
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30341
| | - Karin E. Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840
| | - Kevin R. Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803
| |
Collapse
|
27
|
Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, Karandashova S, Miller DP, Tegels BK, Marconi RT, Fikrig E, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol 2014; 16:1133-45. [PMID: 24612118 DOI: 10.1111/cmi.12286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
Abstract
Anaplasma phagocytophilum, which causes granulocytic anaplasmosis in humans and animals, is a tick-transmitted obligate intracellular bacterium that mediates its own uptake into neutrophils and non-phagocytic cells. Invasins of obligate intracellular pathogens are attractive targets for protecting against or curing infection because blocking the internalization step prevents survival of these organisms. The complement of A. phagocytophilum invasins is incompletely defined. Here, we report the significance of a novel A. phagocytophilum invasion protein, AipA. A. phagocytophilum induced aipA expression during transmission feeding of infected ticks on mice. The bacterium upregulated aipA transcription when it transitioned from its non-infectious reticulate cell morphotype to its infectious dense-cored morphotype during infection of HL-60 cells. AipA localized to the bacterial surface and was expressed during in vivo infection. Of the AipA regions predicted to be surface-exposed, only residues 1 to 87 (AipA1-87 ) were found to be essential for host cell invasion. Recombinant AipA1-87 protein bound to and competitively inhibited A. phagocytophilum infection of mammalian cells. Antiserum specific for AipA1-87 , but not other AipA regions, antagonized infection. Additional blocking experiments using peptide-specific antisera narrowed down the AipA invasion domain to residues 9 to 21. An antisera combination targeting AipA1-87 together with two other A. phagocytophilum invasins, OmpA and Asp14, nearly abolished infection of host cells. This study identifies AipA as an A. phagocytophilum surface protein that is critical for infection, demarcates its invasion domain, and establishes a rationale for targeting multiple invasins to protect against granulocytic anaplasmosis.
Collapse
Affiliation(s)
- David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cotté V, Sabatier L, Schnell G, Carmi-Leroy A, Rousselle JC, Arsène-Ploetze F, Malandrin L, Sertour N, Namane A, Ferquel E, Choumet V. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J Proteomics 2014; 96:29-43. [DOI: 10.1016/j.jprot.2013.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
|
29
|
Truchan HK, Seidman D, Carlyon JA. Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. Microbes Infect 2013; 15:1017-25. [PMID: 24141091 PMCID: PMC3894830 DOI: 10.1016/j.micinf.2013.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
Abstract
Anaplasma phagocytophilum invades neutrophils to cause the emerging infection, human granulocytic anaplasmosis. Here, we provide a focused review of the A. phagocytophilum invasin-host cell receptor interactions that promote bacterial entry and the degradative and membrane traffic pathways that the organism exploits to route nutrients to the organelle in which it resides. Because its obligatory intracellular nature hinders knock out-complementation approaches, we also discuss the current methods used to study A. phagocytophilum gene function and the potential benefit of applying novel tools that have advanced studies of other obligate intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
30
|
|
31
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
32
|
Pierlé SA, Dark MJ, Dahmen D, Palmer GH, Brayton KA. Comparative genomics and transcriptomics of trait-gene association. BMC Genomics 2012. [PMID: 23181781 PMCID: PMC3542260 DOI: 10.1186/1471-2164-13-669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs). We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sebastián Aguilar Pierlé
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G, Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
33
|
Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, VieBrock L, Thomas RJ, Borjesson DL, Fikrig E, Carlyon JA. Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun 2012; 80:3748-60. [PMID: 22907813 PMCID: PMC3486060 DOI: 10.1128/iai.00654-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/25/2012] [Indexed: 01/14/2023] Open
Abstract
Anaplasma phagocytophilum is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA). A. phagocytophilum binding to sialyl Lewis x (sLe(x)) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance of A. phagocytophilum outer membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding of A. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment of A. phagocytophilum organisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. Glutathione S-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA(19-74)) but not OmpA(75-205) bind to, and competitively inhibit A. phagocytophilum infection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the first A. phagocytophilum adhesin-receptor pair and delineates the region of OmpA that is critical for infection.
Collapse
Affiliation(s)
- Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Amandeep Kahlon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Stephanie A. Ragland
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Matthew J. Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Juliana E. Mastronunzio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naomi J. Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rachael J. Thomas
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
34
|
Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun 2012; 81:65-79. [PMID: 23071137 DOI: 10.1128/iai.00932-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle of A. phagocytophilum is biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed that aph_0248 (designated asp14 [14-kDa A. phagocytophilum surface protein]) expression was upregulated the most during A. phagocytophilum cellular invasion. asp14 transcription was induced during transmission feeding of A. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to the A. phagocytophilum surface and was expressed during in vivo infection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathione S-transferase (GST)-Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, another A. phagocytophilum invasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among other Anaplasma and Ehrlichia species. These results identify Asp14 as an A. phagocytophilum surface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection by A. phagocytophilum and other Anaplasmataceae pathogens.
Collapse
|
35
|
Chen G, Severo MS, Sohail M, Sakhon OS, Wikel SK, Kotsyfakis M, Pedra JHF. Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells. Parasit Vectors 2012; 5:229. [PMID: 23050849 PMCID: PMC3503595 DOI: 10.1186/1756-3305-5-229] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/06/2012] [Indexed: 11/30/2022] Open
Abstract
Background Ixodes scapularis saliva enables the transmission of infectious agents to the mammalian host due to its immunomodulatory, anesthetic and anti-coagulant properties. However, how I. scapularis saliva influences host cytokine secretion in the presence of the obligate intracellular rickettsial pathogen Anaplasma phagocytophilum remains elusive. Methods Bone marrow derived macrophages (BMDMs) were stimulated with pathogen associated molecular patterns (PAMPs) and A. phagocytophilum. Cytokine secretion was measured in the presence and absence of I. scapularis saliva. Human peripheral blood mononuclear cells (PBMCs) were also stimulated with Tumor Necrosis Factor (TNF)-α in the presence and absence of I. scapularis saliva and interleukin (IL)-8 was measured. Results I. scapularis saliva inhibits inflammatory cytokine secretion by macrophages during stimulation of Toll-like (TLR) and Nod-like receptor (NLR) signaling pathways. The effect of I. scapularis saliva on immune cells is not restricted to murine macrophages because decreasing levels of interleukin (IL)-8 were observed after TNF-α stimulation of human peripheral blood mononuclear cells. I. scapularis saliva also mitigates pro-inflammatory cytokine response by murine macrophages during challenge with A. phagocytophilum. Conclusions These findings suggest that I. scapularis may inhibit inflammatory cytokine secretion during rickettsial transmission at the vector-host interface.
Collapse
Affiliation(s)
- Gang Chen
- Center for Disease Vector Research and Department of Entomology, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Severo MS, Stephens KD, Kotsyfakis M, Pedra JH. Anaplasma phagocytophilum: deceptively simple or simply deceptive? Future Microbiol 2012; 7:719-31. [PMID: 22702526 DOI: 10.2217/fmb.12.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular rickettsial pathogen transmitted by ixodid ticks. This bacterium colonizes myeloid and nonmyeloid cells and causes human granulocytic anaplasmosis--an important immunopathological vector-borne disease in the USA, Europe and Asia. Recent studies uncovered novel insights into the mechanisms of A. phagocytophilum pathogenesis and immunity. Here, we provide an overview of the underlying events by which the immune system responds to A. phagocytophilum infection, how this pathogen counteracts host immunity and the contribution of the tick vector for microbial transmission. We also discuss current scientific gaps in the knowledge of A. phagocytophilum biology for the purpose of exchanging research perspectives.
Collapse
Affiliation(s)
- Maiara S Severo
- Department of Entomology & Center for Disease Vector Research, 900 University Avenue, University of California - Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|