1
|
Ramnani B, Devale T, Manivannan P, Haridas A, Malathi K. DHX15 and Rig-I Coordinate Apoptosis and Innate Immune Signaling by Antiviral RNase L. Viruses 2024; 16:1913. [PMID: 39772220 PMCID: PMC11680366 DOI: 10.3390/v16121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis. In RNase L-activated cells, DHX15 interacts with Rig-I and MAVS, and cells lacking MAVS expression were resistant to apoptosis. RL RNAs induced the transcription of genes for IFN and proinflammatory cytokines by interferon regulatory factor 3 (IRF-3) and nuclear factor kB (NF-kB), while cells lacking both DHX15 and Rig-I showed a reduced induction of cytokines. However, apoptotic cell death is independent of both IRF-3 and NF-kB, suggesting that cytokine and cell death induction by RL RNAs are uncoupled. The RNA binding of both DHX15 and Rig-I is required for apoptosis induction, and the expression of both single proteins in cells lacking both DHX15 and Rig-I is insufficient to promote cell death by RL RNAs. Cell death induced by RL RNAs suppressed Coxsackievirus B3 (CVB3) replication, and inhibiting caspase-3 activity or cells lacking IRF-3 showed that the induction of apoptosis directly resulted in the CVB3 antiviral effect, and the effects were independent of the role of IRF-3.
Collapse
Affiliation(s)
- Barkha Ramnani
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trupti Devale
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
| | - Praveen Manivannan
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Aiswarya Haridas
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
| | - Krishnamurthy Malathi
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
| |
Collapse
|
2
|
Liu G, Pan Q, Zhu P, Guo X, Zhang Z, Li Z, Zhang Y, Zhang X, Wang J, Liu W, Hu C, Yu Y, Wang X, Chen W, Li M, Yu W, Liu X, Seim I, Fan G, Zhou X. Comparative Genomics Provides Insights into Adaptive Evolution and Demographics of Bats. Mol Biol Evol 2024; 41:msae208. [PMID: 39530650 DOI: 10.1093/molbev/msae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Bats possess a range of distinctive characteristics, including flight, echolocation, impressive longevity, and the ability to harbor various zoonotic pathogens. Additionally, they account for the second-highest species diversity among mammalian orders, yet their phylogenetic relationships and demographic history remain underexplored. Here, we generated de novo assembled genomes for 17 bat species and 2 of their mammalian relatives (the Amur hedgehog and Chinese mole shrew), with 12 genomes reaching chromosome-level assembly. Comparative genomics and ChIP-seq assays identified newly gained genomic regions in bats potentially linked to the regulation of gene activity and expression. Notably, some antiviral infection-related gene under positive selection exhibited the activity of suppressing cancer, evidencing the linkage between virus tolerance and cancer resistance in bats. By integrating published bat genome assemblies, phylogenetic reconstruction established the proximity of noctilionoid bats to vesper bats. Interestingly, we found 2 distinct patterns of ancient population dynamics in bats and population changes since the last glacial maximum does not reflect species phylogenetic relationships. These findings enriched our understanding of adaptive mechanisms and demographic history of bats.
Collapse
Affiliation(s)
- Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaoxiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Anhui 230026, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiao Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510000, China
| | - Xin Liu
- BGI Research, Beijing 100101, China
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing 210023, China
| | - Guangyi Fan
- BGI Research, Qingdao 266555, China
- BGI Research, Shenzhen 518083, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Zhou Y, Li Y, Chenm J, Mei K, Kang M, Chen P, Li Q. Matrix Protein of Vesicular Stomatitis Virus Targets the Mitochondria, Reprograms Glucose Metabolism, and Sensitizes to 2-Deoxyglucose in Glioblastoma. Hum Gene Ther 2024; 35:838-854. [PMID: 39001830 PMCID: PMC11511779 DOI: 10.1089/hum.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
A potential therapeutic approach for cancer treatment is target oxidative phosphorylation and glycolysis simultaneously. The matrix protein of vesicular stomatitis virus (VSV MP) can target the surface of mitochondria, causing morphological changes that may be associated with mitochondrial dysfunction and oxidative phosphorylation inhibition. Previous research has shown that mitochondrial abnormalities can direct glucose metabolism toward glycolysis. Thus, after treatment with VSV MP, glycolysis inhibition is necessary to completely block glucose metabolism and eradicate cancer. Here, to inhibit glycolysis, the 2-deoxy-D-glucose (2-DG), a synthetic glucose analog was used to combine with VSV MP to treat cancer. This study aims to determine how VSV MP affects the glucose bioenergetic metabolism of cancer cells and to evaluate the synergistic effect of 2-DG when combined with VSV. Our results indicated that in U87 and C6 glioblastoma cell lines, VSV MP caused mitochondrial membrane potential loss, cytochrome c release, and glucose bioenergetics metabolism reprogramming. When combined with 2-DG, VSV MP synergistically aggravated cell viability, apoptosis, and G2/M phase arrest. Meanwhile, the combination therapy exacerbated ATP depletion, activated AMPK, and inhibited mammalian target of rapamycin signaling pathways. In addition, 2-DG treatment alone induced autophagy in glioblastoma cells; however, VSV MP inhibited the autophagy induced by 2-DG in combined treatment and finally contributed to the enhanced cytotoxic effect of the combination strategy in U87 and C6 cancer cells. In the orthotopic U87 glioblastoma model and subcutaneous C6 glioblastoma model, the combined treatment led to significant tumor regression and prolonged survival. A potent therapeutic approach for treating glioblastoma may be found in the combination of VSV MP and glycolytic inhibitors.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Abdominal Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongzhong Li
- Department of Oncology, LuXian People’s Hospital, Luzhou, China
| | - Jing Chenm
- Department of Abdominal Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Mei
- Department of Abdominal Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxiang Kang
- Department of Oncology, LuXian People’s Hospital, Luzhou, China
| | - Ping Chen
- Department of Abdominal Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wang M, Zheng H, Chen J, Tang Y, Feng M, Li L. ZnO nanoparticles impair autophagic flux and cell viability through the TRIM16-NRF2-p62 pathway in inflammatory keratinocytes. Food Chem Toxicol 2023; 182:114177. [PMID: 37977258 DOI: 10.1016/j.fct.2023.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Zinc oxide nanoparticles (ZnO NPs) are widely used in sunscreen, cosmetics, and topical drugs. Most previous studies have confirmed the safety of ZnO NPs applied to normal skin; however, little is known about the safety and potential toxicity of ZnO NPs applied to inflamed skin. This study aimed to evaluate the exposure risk of ZnO NPs in the treatment of inflammatory skin diseases. METHODS Normal human and tumor necrosis factor-α (TNF-α)-induced inflammatory keratinocytes were incubated with ZnO NPs to assess their toxic effects on cell viability and autophagy signaling pathway. Tandem mass tag (TMT)-based proteomics analysis was used to identify differentially expressed proteins following incubation of inflammatory keratinocytes with ZnO NPs. Protein expression was assessed by Western blot, and double fluorescent labeling and siRNA-knockdown further elucidated the role of the TRIM16-NRF2-p62 pathway in mediating the effects of ZnO NP. RESULTS In TNF-α-induced inflammatory keratinocytes, ZnO NPs activated cytoprotective autophagy and mediated p62-related autophagic flux block, thereby reducing the viability of inflammatory keratinocytes. Additionally, TRIM16-NRF2 was essential in ZnO NP-mediated autophagy flux block and cell viability reduction in inflammatory keratinocytes. Inhibition of the TRIM16-NRF2 pathway reduced p62 levels, alleviated autophagy flux blockade, and slightly restored the viability of inflammatory keratinocytes. CONCLUSION ZnO NPs activated protective cell autophagy. Blockade of autophagy flux mediated by the TRIM16-NRF2-p62 pathway led to decreased cell viability. This study provided a deeper understanding of the toxicity mechanism of ZnO NPs in inflammatory keratinocytes.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, China
| | - Jiawen Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, China
| | - Meixin Feng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, China.
| |
Collapse
|
5
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin Regulates HIV-1 Infection by Modulation of the Interferon Stimulated OAS Gene Family. Mol Neurobiol 2023; 60:4966-4982. [PMID: 37209263 PMCID: PMC10199280 DOI: 10.1007/s12035-023-03381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2, and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Kristyna Frydlova
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Allan Kluttz
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| |
Collapse
|
6
|
Xie T, Feng M, Zhang X, Li X, Mo G, Shi M, Zhang X. Chicken CH25H inhibits ALV-J replication by promoting cellular autophagy. Front Immunol 2023; 14:1093289. [PMID: 36875122 PMCID: PMC9975585 DOI: 10.3389/fimmu.2023.1093289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Autophagy plays an important role in host antiviral defense. The avian leukosis virus subgroup J (ALV-J) has been shown to inhibit autophagy while promoting viral replication. The underlying autophagic mechanisms, however, are unknown. Cholesterol 25-hydroxylase (CH25H) is a conserved interferon-stimulated gene, which converts cholesterol to a soluble antiviral factor, 25-hydroxycholesterol (25HC). In this study, we further investigated the autophagic mechanism of CH25H resistance to ALV-J in chicken embryonic fibroblast cell lines (DF1). Our results found that overexpression of CH25H and treatment with 25HC promoted the autophagic markers microtubule-associated protein 1 light chain 3 II (LC3II) and autophagy-related gene 5(ATG5), while decreased autophagy substrate p62/SQSTM1 (p62) expression in ALV-J infection DF-1 cells. Induction of cellular autophagy also reduces the levels of ALV-J gp85 and p27. ALV-J infection, on the other hand, suppresses autophagic marker protein LC3II expression. These findings suggest that CH25H-induced autophagy is a host defense mechanism that aids in ALV-J replication inhibition. In particular, CH25H interacts with CHMP4B and inhibits ALV-J infection in DF-1 cells by promoting autophagy, revealing a novel mechanism by which CH25H inhibits ALV-J infection. Although the underlying mechanisms are not completely understood, CH25H and 25HC are the first to show inhibiting ALV-J infection via autophagy.
Collapse
Affiliation(s)
- Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xi Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoqi Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin regulates HIV-1 infection by modulation of the interferon stimulated OAS gene family. RESEARCH SQUARE 2023:rs.3.rs-2501091. [PMID: 36778388 PMCID: PMC9915789 DOI: 10.21203/rs.3.rs-2501091/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction (TJ) proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2 and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Timea Teglas
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Oandy Naranjo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Kristyna Frydlova
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Rosalba Cabrera
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Olivia M Osborne
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Allan Kluttz
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | |
Collapse
|
8
|
Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, Lizarraga MA, Tibbe TD, Yang OO, Jamieson BD, Kitchen SG, Zhen A. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight 2022; 7:e159136. [PMID: 36509289 PMCID: PMC9746825 DOI: 10.1172/jci.insight.159136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Miguel A. Lizarraga
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tristan D. Tibbe
- Statistic Core, Department of Medicine at UCLA, Los Angeles, California, USA
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Disease and
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, Canton J, Sánchez-Cordón PJ, Fernandez-Delgado R, Enjuanes L, Sola I. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog 2022; 18:e1010834. [PMID: 36129908 PMCID: PMC9491562 DOI: 10.1371/journal.ppat.1010834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
No vaccines or specific antiviral drugs are authorized against Middle East respiratory syndrome coronavirus (MERS-CoV) despite its high mortality rate and prevalence in dromedary camels. Since 2012, MERS-CoV has been causing sporadic zoonotic infections in humans, which poses a risk of genetic evolution to become a pandemic virus. MERS-CoV genome encodes five accessory proteins, 3, 4a, 4b, 5 and 8b for which limited information is available in the context of infection. This work describes 4b as a virulence factor in vivo, since the deletion mutant of a mouse-adapted MERS-CoV-Δ4b (MERS-CoV-MA-Δ4b) was completely attenuated in a humanized DPP4 knock-in mouse model, resulting in no mortality. Attenuation in the absence of 4b was associated with a significant reduction in lung pathology and chemokine expression levels at 4 and 6 days post-infection, suggesting that 4b contributed to the induction of lung inflammatory pathology. The accumulation of 4b in the nucleus in vivo was not relevant to virulence, since deletion of its nuclear localization signal led to 100% mortality. Interestingly, the presence of 4b protein was found to regulate autophagy in the lungs of mice, leading to upregulation of BECN1, ATG3 and LC3A mRNA. Further analysis in MRC-5 cell line showed that, in the context of infection, MERS-CoV-MA 4b inhibited autophagy, as confirmed by the increase of p62 and the decrease of ULK1 protein levels, either by direct or indirect mechanisms. Together, these results correlated autophagy activation in the absence of 4b with downregulation of a pathogenic inflammatory response, thus contributing to attenuation of MERS-CoV-MA-Δ4b.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Javier Canton
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Raúl Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| |
Collapse
|
11
|
Laurent A, Madigou T, Bizot M, Turpin M, Palierne G, Mahé E, Guimard S, Métivier R, Avner S, Le Péron C, Salbert G. TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis. Life Sci Alliance 2022; 5:5/7/e202101283. [PMID: 35351824 PMCID: PMC8963717 DOI: 10.26508/lsa.202101283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
TET2-mediated oxidation of 5-methylcytosine establishes an antiviral state and contributes to MYC-dependent down-regulation of genes involved in lysosome biogenesis and function in breast cancer cells. Methylation and demethylation of cytosines in DNA are believed to act as keystones of cell-specific gene expression by controlling the chromatin structure and accessibility to transcription factors. Cancer cells have their own transcriptional programs, and we sought to alter such a cancer-specific program by enforcing expression of the catalytic domain (CD) of the methylcytosine dioxygenase TET2 in breast cancer cells. The TET2 CD decreased the tumorigenic potential of cancer cells through both activation and repression of a repertoire of genes that, interestingly, differed in part from the one observed upon treatment with the hypomethylating agent decitabine. In addition to promoting the establishment of an antiviral state, TET2 activated 5mC turnover at thousands of MYC-binding motifs and down-regulated a panel of known MYC-repressed genes involved in lysosome biogenesis and function. Thus, an extensive cross-talk between TET2 and the oncogenic transcription factor MYC establishes a lysosomal storage disease–like state that contributes to an exacerbated sensitivity to autophagy inducers.
Collapse
Affiliation(s)
- Audrey Laurent
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Thierry Madigou
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Maud Bizot
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Marion Turpin
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gaëlle Palierne
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Elise Mahé
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Sarah Guimard
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Raphaël Métivier
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Stéphane Avner
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Christine Le Péron
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gilles Salbert
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| |
Collapse
|
12
|
Tang J, Dong B, Liu M, Liu S, Niu X, Gaughan C, Asthana A, Zhou H, Xu Z, Zhang G, Silverman RH, Huang H. Identification of Small Molecule Inhibitors of RNase L by Fragment-Based Drug Discovery. J Med Chem 2022; 65:1445-1457. [PMID: 34841869 PMCID: PMC10620946 DOI: 10.1021/acs.jmedchem.1c01156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The pseudokinase-endoribonuclease RNase L plays important roles in antiviral innate immunity and is also implicated in many other cellular activities. The inhibition of RNase L showed therapeutic potential for Aicardi-Goutières syndrome (AGS). Thus, RNase L is a promising drug target. In this study, using an enzyme assay and NMR screening, we discovered 13 inhibitory fragments against RNase L. Cocrystal structures of RNase L separately complexed with two different fragments were determined in which both fragments bound to the ATP-binding pocket of the pseudokinase domain. Myricetin, vitexin, and hyperoside, three natural products sharing similar scaffolds with the fragment AC40357, demonstrated a potent inhibitory activity in vitro. In addition, myricetin has a promising cellular inhibitory activity. A cocrystal structure of RNase L with myricetin provided a structural basis for inhibitor design by allosterically modulating the ribonuclease activity. Our findings demonstrate that fragment screening can lead to the discovery of natural product inhibitors of RNase L.
Collapse
Affiliation(s)
- Jinle Tang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ming Liu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Huan Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhengshuang Xu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
13
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
14
|
Kang W, Hu J, Zhao Q, Song F. Identification of an Autophagy-Related Risk Signature Correlates With Immunophenotype and Predicts Immune Checkpoint Blockade Efficacy of Neuroblastoma. Front Cell Dev Biol 2021; 9:731380. [PMID: 34746127 PMCID: PMC8567030 DOI: 10.3389/fcell.2021.731380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is one of the malignant solid tumors with the highest mortality in childhood. Targeted immunotherapy still cannot achieve satisfactory results due to heterogeneity and tolerance. Exploring markers related to prognosis and evaluating the immune microenvironment remain the major obstacles. Herein, we constructed an autophagy-related gene (ATG) risk model by multivariate Cox regression and least absolute shrinkage and selection operator regression, and identified four prognostic ATGs (BIRC5, GRID2, HK2, and RNASEL) in the training cohort, then verified the signature in the internal and external validation cohorts. BIRC5 and HK2 showed higher expression in MYCN amplified cell lines and tumor tissues consistently, whereas GRID2 and RNASEL showed the opposite trends. The correlation between the signature and clinicopathological parameters was further analyzed and showing consistency. A prognostic nomogram using risk score, International Neuroblastoma Staging System stage, age, and MYCN status was built subsequently, and the area under curves, net reclassification improvement, and integrated discrimination improvement showed more satisfactory prognostic predicting performance. The ATG prognostic signature itself can significantly divide patients with neuroblastoma into high- and low-risk groups; differentially expressed genes between the two groups were enriched in autophagy-related behaviors and immune cell reactions in gene set enrichment analysis (false discovery rate q -value < 0.05). Furthermore, we evaluated the relationship of the signature risk score with immune cell infiltration and the cancer-immunity cycle. The low-risk group was characterized by more abundant expression of chemokines and higher immune checkpoints (PDL1, PD1, CTLA-4, and IDO1). The risk score was significantly correlated with the proportions of CD8+ T cells, CD4+ memory resting T cells, follicular helper T cells, memory B cells, plasma cells, and M2 macrophages in tumor tissues. In conclusion, we developed and validated an autophagy-related signature that can accurately predict the prognosis, which might be meaningful to understand the immune microenvironment and guide immune checkpoint blockade.
Collapse
Affiliation(s)
- Wenjuan Kang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiajian Hu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
15
|
Abstract
RNase L is generally thought to play a key role in antiviral defenses. Although RNase L protein and mRNA are known to be highly expressed in myocardial tissue, there are few studies of the potential functions of RNase L in myocardial tissue. In this study, we tested the hypothesis that RNase L may be involved in the pathological process of cardiac ischemic injury. RNase L-overexpressing and RNase L knockdown H9c2 cell lines were subjected to the oxygen and glucose deprivation (OGD) model, and RNase L knockout mice were subjected to acute myocardial infarction surgical procedures to investigate the function of RNase L in ischemic heart injury. OGD induced abnormal aggregation of double-stranded RNA in H9c2 cells, activated RNase L within 6 h of OGD initiation, and mediated apoptosis via the c-Jun N-terminal kinase pathway. In addition, RNase L knockout mice were more tolerant of myocardial infarction, and this knockout protected heart function and prevented pathological ventricular remodeling. Notably, both in in vivo and in vitro experiments, RNase L was gradually diminished during prolonged ischemic injury, which we speculate is an adaptive protective response serving to reduce myocardial ischemic damage. These results suggest that RNase L plays a role in the pathological process of cardiac acute ischemic injury. It is first activated by ischemic injury, causing cardiomyocyte death, but gradually diminishes to protect the heart from further damage.
Collapse
|
16
|
Nam RK, Benatar T, Amemiya Y, Seth A. MiR-139 Induces an Interferon-β Response in Prostate Cancer Cells by Binding to RIG-1. Cancer Genomics Proteomics 2021; 18:197-206. [PMID: 33893074 PMCID: PMC8126337 DOI: 10.21873/cgp.20252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We previously identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. Expression of one of the down-regulated miRNAs, miR-139-5p, was significantly associated with a lower incidence of biochemical recurrence and metastasis. Transcriptome profiling of miR-139-expressing prostate cancer cells revealed up-regulation of genes involved in interferon (IFN) stimulation. The association between miR-139 and IFN-β was further explored in this study. MATERIALS AND METHODS We examined miR-139 transfected PC3, Du145 and LNCaP cells and the associated IFN response by transcriptome sequencing, immunoblotting and pulldown assays. RESULTS Treatment of prostate cancer cells by miR-139 resulted in the up-regulation of IFN-related genes. Specifically, miR-139 induced expression of the IFN-β protein. The ability of miR-139 to induce IFN-β was due to its binding to RIG-1 and the induction of IFN-related genes was found to be dependent on RIG-1 expression. CONCLUSION miR-139 acts as an immune agonist of RIG-1 to enhance IFN-β response in prostate cancer cells.
Collapse
Affiliation(s)
- Robert K Nam
- Department of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Tania Benatar
- Platform Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yutaka Amemiya
- Genomics Core Facility, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Arun Seth
- Platform Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada;
- Genomics Core Facility, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Sunitinib inhibits RNase L by destabilizing its active dimer conformation. Biochem J 2021; 477:3387-3399. [PMID: 32830849 DOI: 10.1042/bcj20200260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The pseudokinase (PK) RNase L is a functional ribonuclease and plays important roles in human innate immunity. The ribonuclease activity of RNase L can be regulated by the kinase inhibitor sunitinib. The combined use of oncolytic virus and sunitinib has been shown to exert synergistic effects in anticancer therapy. In this study, we aimed to uncover the mechanism of action through which sunitinib inhibits RNase L. We solved the crystal structures of RNase L in complex with sunitinib and its analogs toceranib and SU11652. Our results showed that sunitinib bound to the ATP-binding pocket of RNase L. Unexpectedly, the αA helix linking the ankyrin repeat-domain and the PK domain affected the binding mode of sunitinib and resulted in an unusual flipped orientation relative to other structures in PDB. Molecular dynamics simulations and dynamic light scattering results support that the binding of sunitinib in the PK domain destabilized the dimer conformation of RNase L and allosterically inhibited its ribonuclease activity. Our study suggested that dimer destabilization could be an effective strategy for the discovery of RNase L inhibitors and that targeting the ATP-binding pocket in the PK domain of RNase L was an efficient approach for modulating its ribonuclease activity.
Collapse
|
18
|
Ramnani B, Manivannan P, Jaggernauth S, Malathi K. ABCE1 Regulates RNase L-Induced Autophagy during Viral Infections. Viruses 2021; 13:v13020315. [PMID: 33670646 PMCID: PMC7922175 DOI: 10.3390/v13020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Host response to a viral infection includes the production of type I interferon (IFN) and the induction of interferon-stimulated genes that have broad antiviral effects. One of the key antiviral effectors is the IFN-inducible oligoadenylate synthetase/ribonuclease L (OAS/RNase L) pathway, which is activated by double-stranded RNA to synthesize unique oligoadenylates, 2-5A, to activate RNase L. RNase L exerts an antiviral effect by cleaving diverse RNA substrates, limiting viral replication; many viruses have evolved mechanisms to counteract the OAS/RNase L pathway. Here, we show that the ATP-binding cassette E1 (ABCE1) transporter, identified as an inhibitor of RNase L, regulates RNase L activity and RNase L-induced autophagy during viral infections. ABCE1 knockdown cells show increased RNase L activity when activated by 2-5A. Compared to parental cells, the autophagy-inducing activity of RNase L in ABCE1-depleted cells is enhanced with early onset. RNase L activation in ABCE1-depleted cells inhibits cellular proliferation and sensitizes cells to apoptosis. Increased activity of caspase-3 causes premature cleavage of autophagy protein, Beclin-1, promoting a switch from autophagy to apoptosis. ABCE1 regulates autophagy during EMCV infection, and enhanced autophagy in ABCE1 knockdown cells promotes EMCV replication. We identify ABCE1 as a host protein that inhibits the OAS/RNase L pathway by regulating RNase L activity, potentially affecting antiviral effects.
Collapse
|
19
|
Yang E, Li MMH. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front Immunol 2020; 11:605024. [PMID: 33362792 PMCID: PMC7756014 DOI: 10.3389/fimmu.2020.605024] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Interferon (IFN) signaling induces the expression of a wide array of genes, collectively referred to as IFN-stimulated genes (ISGs) that generally function to inhibit viral replication. RNA viruses are frequently targeted by ISGs through recognition of viral replicative intermediates and molecular features associated with viral genomes, or the lack of molecular features associated with host mRNAs. The ISGs reviewed here primarily inhibit viral replication in an RNA-centric manner, working to sense, degrade, or repress expression of viral RNA. This review focuses on dissecting how these ISGs exhibit multiple antiviral mechanisms, often through use of varied co-factors, highlighting the complexity of the type I IFN response. Specifically, these ISGs can mediate antiviral effects through viral RNA degradation, viral translation inhibition, or both. While the OAS/RNase L pathway globally degrades RNA and arrests translation, ISG20 and ZAP employ targeted RNA degradation and translation inhibition to block viral replication. Meanwhile, SHFL targets translation by inhibiting -1 ribosomal frameshifting, which is required by many RNA viruses. Finally, a number of E3 ligases inhibit viral transcription, an attractive antiviral target during the lifecycle of negative-sense RNA viruses which must transcribe their genome prior to translation. Through this review, we aim to provide an updated perspective on how these ISGs work together to form a complex network of antiviral arsenals targeting viral RNA processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Limanaqi F, Busceti CL, Biagioni F, Lazzeri G, Forte M, Schiavon S, Sciarretta S, Frati G, Fornai F. Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis. Antioxidants (Basel) 2020; 9:E1105. [PMID: 33182802 PMCID: PMC7697279 DOI: 10.3390/antiox9111105] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated the ongoing coronavirus disease-2019 (COVID-19) pandemic, still with an uncertain outcome. Besides pneumonia and acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), other features became evident in the context of COVID-19. These includes endothelial and coagulation dysfunction with disseminated intravascular coagulation (DIC), and multiple organ dysfunction syndrome (MODS), along with the occurrence of neurological alterations. The multi-system nature of such viral infection is a witness to the exploitation and impairment of ubiquitous subcellular and metabolic pathways for the sake of its life-cycle, ranging from host cell invasion, replication, transmission, up to a cytopathic effect and overt systemic inflammation. In this frame, alterations in cell-clearing systems of the host are emerging as a hallmark in the pathogenesis of various respiratory viruses, including SARS-CoV-2. Indeed, exploitation of the autophagy and proteasome pathways might contribute not only to the replication of the virus at the site of infection but also to the spreading of either mature virions or inflammatory mediators at both cellular and multisystem levels. In this frame, besides a pharmacological therapy, many researchers are wondering if some non-pharmacological substances might counteract or positively modulate the course of the infection. The pharmacological properties of natural compounds have gained increasing attention in the field of alternative and adjunct therapeutic approaches to several diseases. In particular, several naturally-occurring herbal compounds (mostly polyphenols) are reported to produce widespread antiviral, anti-inflammatory, and anti-oxidant effects while acting as autophagy and (immuno)-proteasome modulators. This article attempts to bridge the perturbation of autophagy and proteasome pathways with the potentially beneficial effects of specific phytochemicals and flavonoids in viral infections, with a focus on the multisystem SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
| | - Carla Letizia Busceti
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
| | - Maurizio Forte
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Sebastiano Sciarretta
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Giacomo Frati
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| |
Collapse
|
21
|
Bello-Perez M, Sola I, Novoa B, Klionsky DJ, Falco A. Canonical and Noncanonical Autophagy as Potential Targets for COVID-19. Cells 2020; 9:E1619. [PMID: 32635598 PMCID: PMC7408018 DOI: 10.3390/cells9071619] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic necessitates a review of the molecular mechanisms underlying cellular infection by coronaviruses, in order to identify potential therapeutic targets against the associated new disease (COVID-19). Previous studies on its counterparts prove a complex and concomitant interaction between coronaviruses and autophagy. The precise manipulation of this pathway allows these viruses to exploit the autophagy molecular machinery while avoiding its protective apoptotic drift and cellular innate immune responses. In turn, the maneuverability margins of such hijacking appear to be so narrow that the modulation of the autophagy, regardless of whether using inducers or inhibitors (many of which are FDA-approved for the treatment of other diseases), is usually detrimental to viral replication, including SARS-CoV-2. Recent discoveries indicate that these interactions stretch into the still poorly explored noncanonical autophagy pathway, which might play a substantial role in coronavirus replication. Still, some potential therapeutic targets within this pathway, such as RAB9 and its interacting proteins, look promising considering current knowledge. Thus, the combinatory treatment of COVID-19 with drugs affecting both canonical and noncanonical autophagy pathways may be a turning point in the fight against this and other viral infections, which may also imply beneficial prospects of long-term protection.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (M.B.-P.); (I.S.)
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (M.B.-P.); (I.S.)
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), 36208 Vigo, Spain;
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain
| |
Collapse
|
22
|
RNase L Amplifies Interferon Signaling by Inducing Protein Kinase R-Mediated Antiviral Stress Granules. J Virol 2020; 94:JVI.00205-20. [PMID: 32295917 PMCID: PMC7307175 DOI: 10.1128/jvi.00205-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Double-stranded RNAs produced during viral infections serve as pathogen-associated molecular patterns (PAMPs) and bind pattern recognition receptors to stimulate IFN production. RNase L is an IFN-regulated endoribonuclease that is activated in virus-infected cells and cleaves single-stranded viral and cellular RNAs. The RNase L-cleaved dsRNAs signal to Rig-like helicases to amplify IFN production. This study identifies a novel role of antiviral stress granules induced by RNase L as an antiviral signaling hub to coordinate the RNA ligands with cognate receptors to mount an effective host response during viral infections. Virus infection leads to activation of the interferon (IFN)-induced endoribonuclease RNase L, which results in degradation of viral and cellular RNAs. Both cellular and viral RNA cleavage products of RNase L bind pattern recognition receptors (PRRs), like retinoic acid-inducible I (Rig-I) and melanoma differentiation-associated protein 5 (MDA5), to further amplify IFN production and antiviral response. Although much is known about the mechanics of ligand binding and PRR activation, how cells coordinate RNA sensing with signaling response and interferon production remains unclear. We show that RNA cleavage products of RNase L activity induce the formation of antiviral stress granules (avSGs) by regulating activation of double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) and recruit the antiviral proteins Rig-I, PKR, OAS, and RNase L to avSGs. Biochemical analysis of purified avSGs showed interaction of a key stress granule protein, G3BP1, with only PKR and Rig-I and not with OAS or RNase L. AvSG assembly during RNase L activation is required for IRF3-mediated IFN production, but not IFN signaling or proinflammatory cytokine induction. Consequently, cells lacking avSG formation or RNase L signaling produced less IFN and showed higher susceptibility during Sendai virus infection, demonstrating the importance of avSGs in RNase L-mediated host defense. We propose a role during viral infection for RNase L-cleaved RNAs in inducing avSGs containing antiviral proteins to provide a platform for efficient interaction of RNA ligands with pattern recognition receptors to enhance IFN production to mount an effective antiviral response. IMPORTANCE Double-stranded RNAs produced during viral infections serve as pathogen-associated molecular patterns (PAMPs) and bind pattern recognition receptors to stimulate IFN production. RNase L is an IFN-regulated endoribonuclease that is activated in virus-infected cells and cleaves single-stranded viral and cellular RNAs. The RNase L-cleaved dsRNAs signal to Rig-like helicases to amplify IFN production. This study identifies a novel role of antiviral stress granules induced by RNase L as an antiviral signaling hub to coordinate the RNA ligands with cognate receptors to mount an effective host response during viral infections.
Collapse
|
23
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023]
|
24
|
Jin S. The Cross-Regulation Between Autophagy and Type I Interferon Signaling in Host Defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:125-144. [PMID: 31728868 DOI: 10.1007/978-981-15-0606-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The production of type I interferons (IFNs) is one of the hallmarks of intracellular antimicrobial program. Typical type I IFN response activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, which results in the transcription of plentiful IFN-stimulated genes (ISGs) to establish the comprehensive antiviral states. Type I IFN signaling should initiate timely to provoke innate and adaptive immune responses for effective elimination of the invading pathogens. Meanwhile, a precise control must come on the stage to restrain the persistent activation of type I IFN responses to avoid attendant toxicity. Autophagy, a conserved eukaryotic degradation system, mediated by a number of autophagy-related (ATG) proteins, plays an essential role in the clearance of invading microorganism and manipulation of type I responses. Autophagy modulates type I IFN responses through regulatory integration with innate immune signaling pathways, and by removing endogenous ligands of innate immune sensors. Moreover, selective autophagy governs the choice of innate immune factors as specific cargoes for degradation, thus tightly monitoring the type I IFN responses. This review will focus on the cross-regulation between autophagy and type I IFN signaling in host defense.
Collapse
Affiliation(s)
- Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
25
|
Yin H, Jiang Z, Wang S, Zhang P. Actinomycin D-Activated RNase L Promotes H2A.X/H2B-Mediated DNA Damage and Apoptosis in Lung Cancer Cells. Front Oncol 2019; 9:1086. [PMID: 31750234 PMCID: PMC6842983 DOI: 10.3389/fonc.2019.01086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Chemotherapy is an essential component for comprehensive cancer treatment, while drug resistance usually fails therapy. DNA repair mechanism of cancer cells restrains the efficacy of therapeutics targeting DNA damage. Investigating target-inducing irreversible cell death of cancer cells may be promising. Methods: The present study used lung cancer cell lines, transplanted tumor model of lung cancers derived from patients with lung adenocarcinoma, and molecular experiments to investigate the effects and mechanism of Actinomycin D (Act D)-activated RNase L in lung canceers. Results: We report that RNase L, when activated by Act D, induces Caspase-3/PARP activation. The latter further enables ROCK-1 to initiate subsequent membrane blebbing and, meanwhile, result in DNA cleavage and cell cycle arrest mediated by H2A.X/H2B-p21 axis, leading to irreversible DNA damage, and apoptosis of lung cancer cells. The present study highlighted the crucial role of RNase L in triggering apoptosis mechanism through the Caspase-3/ROCK-1/PARP/H2A.X+H2B/p21 axis during Act D treatment. Moreover, activation of RNase L suppressed the tumor formation and the induction of lung cancer stem cells. Conclusion: This study unveiled the regulatory function and related mechanism of RNase L and implied the promising application of therapeutics targeting RNase L in lung cancer.
Collapse
Affiliation(s)
- Huijing Yin
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China.,Department of Immunology, Tongji University School of Medicine, Shanghai, China
| | - Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuoer Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ping Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
26
|
IFN-γ restores the impaired function of RNase L and induces mitochondria-mediated apoptosis in lung cancer. Cell Death Dis 2019; 10:642. [PMID: 31501431 PMCID: PMC6733796 DOI: 10.1038/s41419-019-1902-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 11/24/2022]
Abstract
RNase L is an essential component in interferon (IFN)-mediated antiviral signaling that showed antitumor effects in cancer. Cancer immunotherapy based on interferon has achieved encouraging results that indicate an applicable potential for cancer therapy. Here we showed that function of RNase L, though highly upregulated, was functionally impaired both in nuclear and cytoplasm in lung cancer cells. In normal lung epithelial cells, RNase L activation induced by 2–5A promoted nuclear condensation, DNA cleavage, and cell apoptosis, while in lung cancer cells, these processes were inhibited and RNase L-mediated downregulation of fibrillarin, Topo I and hnRNP A1 was also impaired in lung cancer cells. Moreover, the impairment of RNase L in lung cancer cells was due to the elevated expression of RLI. Application of IFN-γ to lung cancer cells led to enhanced expression of RNase L that compensated the RLI inhibition and restored the cytoplasmic and nuclear function of RNase L, leading to apoptosis of lung cancer cells. Thus, the present study discovered the impaired function and mechanism of RNase L in lung cancer cells and proved the efficacy of IFN-γ in restoring RNase L function and inducing apoptosis in the lung cancer cell. These results indicated the RNase L as a therapeutic target in lung cancer cells and immunotherapy of IFN-γ may serve as an adjuvant to enhance the efficacy.
Collapse
|
27
|
Lamers MM, van den Hoogen BG, Haagmans BL. ADAR1: "Editor-in-Chief" of Cytoplasmic Innate Immunity. Front Immunol 2019; 10:1763. [PMID: 31404141 PMCID: PMC6669771 DOI: 10.3389/fimmu.2019.01763] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Specialized receptors that recognize molecular patterns such as double stranded RNA duplexes-indicative of viral replication-are potent triggers of the innate immune system. Although their activation is beneficial during viral infection, RNA transcribed from endogenous mobile genetic elements may also act as ligands potentially causing autoimmunity. Recent advances indicate that the adenosine deaminase ADAR1 through RNA editing is involved in dampening the canonical antiviral RIG-I-like receptor-, PKR-, and OAS-RNAse L pathways to prevent autoimmunity. However, this inhibitory effect must be overcome during viral infections. In this review we discuss ADAR1's critical role in balancing immune activation and self-tolerance.
Collapse
|
28
|
Lu L, Arranz-Trullén J, Prats-Ejarque G, Pulido D, Bhakta S, Boix E. Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Front Immunol 2019; 10:1500. [PMID: 31312205 PMCID: PMC6614385 DOI: 10.3389/fimmu.2019.01500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
The development of novel treatment against tuberculosis is a priority global health challenge. Antimicrobial proteins and peptides offer a multifaceted mechanism suitable to fight bacterial resistance. Within the RNaseA superfamily there is a group of highly cationic proteins secreted by innate immune cells with anti-infective and immune-regulatory properties. In this work, we have tested the human canonical members of the RNase family using a spot-culture growth inhibition assay based mycobacteria-infected macrophage model for evaluating their anti-tubercular properties. Out of the seven tested recombinant human RNases, we have identified two members, RNase3 and RNase6, which were highly effective against Mycobacterium aurum extra- and intracellularly and induced an autophagy process. We observed the proteins internalization within macrophages and their capacity to eradicate the intracellular mycobacterial infection at a low micro-molar range. Contribution of the enzymatic activity was discarded by site-directed mutagenesis at the RNase catalytic site. The protein induction of autophagy was analyzed by RT-qPCR, western blot, immunofluorescence, and electron microscopy. Specific blockage of auto-phagosome formation and maturation reduced the protein's ability to eradicate the infection. In addition, we found that the M. aurum infection of human THP1 macrophages modulates the expression of endogenous RNase3 and RNase6, suggesting a function in vivo. Overall, our data anticipate a biological role for human antimicrobial RNases in host response to mycobacterial infections and set the basis for the design of novel anti-tubercular drugs.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
29
|
McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing Picornaviruses for Cancer Therapy. Cancers (Basel) 2019; 11:E685. [PMID: 31100962 PMCID: PMC6562951 DOI: 10.3390/cancers11050685] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
30
|
Tian Y, Wang ML, Zhao J. Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses 2019; 11:v11020132. [PMID: 30717138 PMCID: PMC6409909 DOI: 10.3390/v11020132] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy exhibits dual effects during viral infections, promoting the clearance of viral components and activating the immune system to produce antiviral cytokines. However, some viruses impair immune defenses by collaborating with autophagy. Mounting evidence suggests that the interaction between autophagy and innate immunity is critical to understanding the contradictory roles of autophagy. Type I interferon (IFN-I) is a crucial antiviral factor, and studies have indicated that autophagy affects IFN-I responses by regulating IFN-I and its receptors expression. Similarly, IFN-I and interferon-stimulated gene (ISG) products can harness autophagy to regulate antiviral immunity. Crosstalk between autophagy and IFN-I responses could be a vital aspect of the molecular mechanisms involving autophagy in innate antiviral immunity. This review briefly summarizes the approaches by which autophagy regulates antiviral IFN-I responses and highlights the recent advances on the mechanisms by which IFN-I and ISG products employ autophagy against viruses.
Collapse
Affiliation(s)
- Yu Tian
- Department of Microbiology, Anhui Medical University, Hefei 230032, China.
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei 230032, China.
- Wuhu Interferon Bio-Products Industry Research Institute Co., Ltd., Wuhu 241000, China.
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei 230032, China.
- Wuhu Interferon Bio-Products Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
31
|
Drappier M, Jha BK, Stone S, Elliott R, Zhang R, Vertommen D, Weiss SR, Silverman RH, Michiels T. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathog 2018; 14:e1006989. [PMID: 29652922 PMCID: PMC5927464 DOI: 10.1371/journal.ppat.1006989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2017] [Revised: 04/30/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.
Collapse
Affiliation(s)
- Melissa Drappier
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Babal Kant Jha
- Translational Hematology and Oncology Research, Taussig Cancer Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sasha Stone
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ruth Elliott
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Zhang
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
32
|
Subramanian G, Kuzmanovic T, Zhang Y, Peter CB, Veleeparambil M, Chakravarti R, Sen GC, Chattopadhyay S. A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7. PLoS Pathog 2018; 14:e1006877. [PMID: 29381763 PMCID: PMC5806901 DOI: 10.1371/journal.ppat.1006877] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2017] [Revised: 02/09/2018] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
The interferon (IFN) system represents the first line of defense against a wide range of viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimulated Genes (ISGs), whose protein products act as viral restriction factors by interfering with specific stages of virus life cycle, such as entry, transcription, translation, genome replication, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autophagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG shRNA library for blocking IFN’s protective effect against Sendai virus (SeV) replication. The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory syncytial virus was confirmed by its genetic ablation or ectopic expression in several types of mouse and human cells. TDRD7’s antiviral action was mediated by its ability to inhibit autophagy, a cellular catabolic process which was robustly induced by SeV infection and required for its replication. Mechanistic investigation revealed that TDRD7 interfered with the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autophagy. AMPK activity was required for efficient replication of several paramyxoviruses, as demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibitors. Therefore, our study has identified a new antiviral ISG with a new mode of action. The antiviral functions of interferons (IFNs) are mediated by the IFN-induced proteins, encoded by the IFN Stimulated Genes (ISGs). Because ISGs are virus-specific, we performed a high throughput genetic screen to identify novel antiviral ISGs against Sendai virus (SeV), a respirovirus of the Paramyxoviridae family. Our screen isolated a small subset of anti-SeV ISGs, among which we focused on a novel ISG, Tudor domain containing 7 (TDRD7). The antiviral activity of TDRD7 was confirmed by genetic ablation of the endogenous, and the ectopic expression of the exogenous, TDRD7 in human and mouse cell types. Investigation of the mechanism of antiviral action revealed that TDRD7 inhibited ‘virus-induced autophagy’, which was required for the replication of SeV. Autophagy, a cellular catabolic process, was robustly induced by SeV infection, and was inhibited by TDRD7. TDRD7 interfered with the ‘induction’ step of autophagy by inhibiting the activation of AMP-dependent Kinase (AMPK). AMPK is a multifunctional metabolic kinase, which was activated by SeV infection, and its activity was required for virus replication. Genetic ablation and inhibition of AMPK activity by physiological (TDRD7) or chemical (Compound C) inhibitors strongly attenuated SeV replication. The anti-AMPK activity of TDRD7 was capable of inhibiting other members of Paramyxoviridae family, human parainfluenza virus type 3 and respiratory syncytial virus. Therefore, our study uncovered a new antiviral mechanism of IFN by inhibiting the activation of autophagy-inducing kinase AMPK.
Collapse
Affiliation(s)
- Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Teodora Kuzmanovic
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Ying Zhang
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Cara Beate Peter
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Manoj Veleeparambil
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Ritu Chakravarti
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, United States of America
| | - Ganes C. Sen
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States of America
- Department of Immunology, Lerner Research Institute, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:3-90. [DOI: 10.1016/b978-0-12-805420-8.00001-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
34
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:1-122. [DOI: 10.1016/b978-0-12-812146-7.00001-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
35
|
Loke SY, Wong PTH, Ong WY. Global gene expression changes in the prefrontal cortex of rabbits with hypercholesterolemia and/or hypertension. Neurochem Int 2016; 102:33-56. [PMID: 27890723 DOI: 10.1016/j.neuint.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
Although many studies have identified a link between hypercholesterolemia or hypertension and cognitive deficits, till date, comprehensive gene expression analyses of the brain under these conditions is still lacking. The present study was carried out to elucidate differential gene expression changes in the prefrontal cortex (PFC) of New Zealand white rabbits exposed to hypercholesterolemia and/or hypertension with a view of identifying gene networks at risk. Microarray analyses of the PFC of hypercholesterolemic rabbits showed 850 differentially expressed genes (DEGs) in the cortex of hypercholesterolemic rabbits compared to controls, but only 5 DEGs in hypertensive rabbits compared to controls. Up-regulated genes in the PFC of hypercholesterolemic rabbits included CIDEC, ODF2, RNASEL, FSHR, CES3 and MAB21L3, and down-regulated genes included FAM184B, CUL3, LOC100351029, TMEM109, LOC100357097 and PFDN5. Comparison with our previous study on the middle cerebral artery (MCA) of the same rabbits showed many differentially expressed genes in common between the PFC and MCA, during hypercholesterolemia. Moreover, these genes tended to fall into the same functional networks, as revealed by IPA analyses, with many identical node molecules. These include: proteasome, insulin, Akt, ERK1/2, histone, IL12, interferon alpha and NFκB. Of these, PSMB4, PSMD4, PSMG1 were chosen as representatives of genes related to the proteasome for verification by quantitative RT-PCR. Results indicate significant downregulation of all three proteasome associated genes in the PFC. Immunostaining showed significantly increased number of Aβ labelled cells in layers III and V of the cortex after hypercholesterolemia and hypertension, which may be due to decreased proteasome activity and/or increased β- or γ-secretase activity. Knowledge of altered gene networks during hypercholesterolemia and/or hypertension could inform our understanding of the link between these conditions and cognitive deficits in vascular dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Sau-Yeen Loke
- Department of Anatomy, National University of Singapore, 119260, Singapore
| | - Peter Tsun-Hon Wong
- Department of Pharmacology, National University of Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Program, Life Sciences Institute, National University of Singapore, 119260, Singapore.
| |
Collapse
|
36
|
Abstract
RNase L is a regulated endoribonuclease that functions in the interferon antiviral response. Activation of RNase L by 2', 5'-oligoadenylates has been linked to apoptosis, autophagy and inflammation. Genetic studies have also suggested the possible involvement of the RNase L gene (RNASEL) on chromosome 1q25.3 in several types of cancer. Here we report that ablation of RNase L in human prostate cancer PC3 cells by CRISPR/Cas9 gene editing technology enhanced cell migration as determined both by transwell assays and scratch wound healing assays. In addition, RNase L knockdown by means of RNAi increased migration of PC3 and DU145 cells in response to either fibronectin or serum stimulation, as did homozygous disruption of the RNase L gene in mouse embryonic fibroblasts. Serum or fibronectin stimulation of focal adhesion kinase (FAK) autophosphorylation on tyrosine-397 was increased by either knockdown or ablation of RNase L. In contrast, a missense mutant RNase L (R667A) lacking catalytic activity failed to suppress cell migration in PC3 cells. However, a nuclease-inactive mutant mouse RNase L (W630A) was able to partially inhibit migration of mouse fibroblasts. Consistent with a role for the catalytic activity of RNase L, transfection of PC3 cells with the RNase L activator, 2', 5'-oligoadenylate, suppressed cell migration. RNase L knockdown in PC3 cells enhanced tumor growth and metastasis following implantation in the mouse prostate. Our results suggest that naturally occurring mutations in the RNase L gene might promote enhanced cell migration and metastasis.
Collapse
|
37
|
Gusho E, Baskar D, Banerjee S. New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling. Cytokine 2016; 133:153847. [PMID: 27595182 PMCID: PMC7128181 DOI: 10.1016/j.cyto.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ever since the discovery of the existence of an interferon (IFN)-regulated ribonuclease, significant advances have been made in understanding the mechanism and associated regulatory effects of its action. What had been studied initially as a "unique" endoribonuclease is currently known as ribonuclease L (RNase L where "L" stands for latent). Some of the key developments include discovery of the RNase L signaling pathway, its structural characterization, and its molecular cloning. RNase L has been implicated in antiviral and antibacterial defense, as well as in hereditary prostate cancer. RNase L is activated by 2'-5' linked oligoadenylates (2-5A), which are synthesized by the oligoadenylate synthetases (OASs), a family of IFN-regulated pathogen recognition receptors that sense double-stranded RNAs. Activated RNase L cleaves single stranded RNAs, including viral RNAs and cellular RNAs. The catalytic activity of RNase L has been found to lead into the activation of several cellular signaling pathways, including those involved in autophagy, apoptosis, IFN-β production, NLRP3 inflammasome activation leading to IL-1β secretion, inhibition of cell migration, and cell adhesion. In this review, we will highlight the newest advances in our understanding of the catalytic role of RNase L in the context of different cellular pathways and extend the scope of these findings to discussion of potential therapeutic targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Elona Gusho
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA
| | - Danika Baskar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA; Pediatrics Division Office, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA(1)
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA.
| |
Collapse
|
38
|
Mauthe M, Langereis M, Jung J, Zhou X, Jones A, Omta W, Tooze SA, Stork B, Paludan SR, Ahola T, Egan D, Behrends C, Mokry M, de Haan C, van Kuppeveld F, Reggiori F. An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. J Cell Biol 2016; 214:619-35. [PMID: 27573464 PMCID: PMC5004442 DOI: 10.1083/jcb.201602046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a catabolic process regulated by the orchestrated action of the autophagy-related (ATG) proteins. Recent work indicates that some of the ATG proteins also have autophagy-independent roles. Using an unbiased siRNA screen approach, we explored the extent of these unconventional functions of ATG proteins. We determined the effects of the depletion of each ATG proteome component on the replication of six different viruses. Our screen reveals that up to 36% of the ATG proteins significantly alter the replication of at least one virus in an unconventional fashion. Detailed analysis of two candidates revealed an undocumented role for ATG13 and FIP200 in picornavirus replication that is independent of their function in autophagy as part of the ULK complex. The high numbers of unveiled ATG gene-specific and pathogen-specific functions of the ATG proteins calls for caution in the interpretation of data, which rely solely on the depletion of a single ATG protein to specifically ablate autophagy.
Collapse
Affiliation(s)
- Mario Mauthe
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Martijn Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, 3584 CL Utrecht, Netherlands
| | - Jennifer Jung
- Institute of Biochemistry II, Goethe University School of Medicine, 60590 Frankfurt am Main, Germany
| | - Xingdong Zhou
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Alex Jones
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Wienand Omta
- Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Sharon A Tooze
- Lincoln's Inn Fields Laboratories, The Francis Crick Institute, London WC2A 3LY, England, UK
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Dave Egan
- Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, 60590 Frankfurt am Main, Germany
| | - Michal Mokry
- Regenerative Medicine Center Utrecht, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Cornelis de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, 3584 CL Utrecht, Netherlands
| | - Frank van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, 3584 CL Utrecht, Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| |
Collapse
|
39
|
Valadão ALC, Aguiar RS, de Arruda LB. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses. Front Microbiol 2016; 7:1233. [PMID: 27610098 PMCID: PMC4996823 DOI: 10.3389/fmicb.2016.01233] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response.
Collapse
Affiliation(s)
- Ana L C Valadão
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Renato S Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Luciana B de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Liu KY, Xia YQ, Zhou J, Chen ZW, Lu D, Zhang NZ, Liu XS, Ai H, Zhou LL. MOLECULAR CHARACTERIZATION OF AUTOPHAGY-RELATED GENE 5 FROM Spodoptera exigua AND EXPRESSION ANALYSIS UNDER VARIOUS STRESS CONDITIONS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:225-241. [PMID: 27226059 DOI: 10.1002/arch.21339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/13/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Autophagy is not only involved in development, but also has been proved to attend immune response against invading pathogens. Autophagy protein 5 (ATG5) is an important autophagic protein, which plays a crucial role in autophagosome elongation. Although ATG5 has been well studied in mammal, yeast, and Drosophila, little is known about ATG5 in lepidopteran insects. We cloned putative SeAtg5 gene from Spodoptera exigua larvae by the rapid amplification of cDNA ends method, and its characteristics and the influences of multiple exogenous factors on its expression levels were then investigated. The results showed that the putative S. exigua SeATG5 protein is highly homologous to other insect ATG5 proteins, which has a conserved Pfm domain and multiple phosphorylation sites. Next, fluorescence microscope observation showed that mCherry-SeATG5 was distributed in both nucleus and cytoplasm of Spodoptera litura Sl-HP cells and partially co-localized with BmATG6-GFP, but it almost has no significant co-localization with GFP-HaATG8. Then, the Western blot analysis demonstrated that GFP-SeATG5 conjugated with ATG12. Moreover, real-time PCR revealed that its expression levels significantly increased at the initiation of pupation and the stage of adult. In addition, the expression levels of SeAtg5 can be enhanced by the starvation, UV radiation, and infection of baculovirus and bacterium. However, the expression levels of SeAtg5 decreased at 24 h post treatments in all these treatments except in starvation. These results suggested that SeATG5 might be involved in response of S. exigua under various stress conditions.
Collapse
Affiliation(s)
- Kai-Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu-Qian Xia
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jing Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zu-Wen Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dandan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ning-Zhao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Li-Lin Zhou
- Department of Plant Protection, Wuhan Vegetable Research Institute, Wuhan, China
| |
Collapse
|
41
|
Banerjee S. RNase L and the NLRP3-inflammasome: An old merchant in a new trade. Cytokine Growth Factor Rev 2016; 29:63-70. [PMID: 26987611 DOI: 10.1016/j.cytogfr.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The type I/III interferon (IFN)-inducible 2'-5'- oligoadenylate synthetase (OAS)/endoribonuclease L (RNase L) is a classical innate immune pathway that has been implicated in antiviral and antibacterial defense and also in hereditary prostate cancer. The OAS/RNase L pathway is activated when OAS senses double-stranded RNA and catalyzes the synthesis of 2'-5' linked oligodenylates (2-5A) from ATP. 2-5A then binds and activates RNase L, resulting cleavage of single-stranded RNAs. RNase L cleavage products are capable of activating RIG-like receptors such as RIG-I and MDA5 that leads to IFN-β expression during viral infection. Our recent findings suggest that beside the RLR pathway, RNase L cleavage products can also activate the NLRP3-inflammasome pathway, which requires DHX33 (DExD/H-box helicase) and the mitochondrial adaptor protein MAVS. Here we discuss this newly identified role of OAS-RNase L pathway in regulation of inflammasome signaling as an alternative antimicrobial mechanism that has potential as a target for development of new broad-spectrum antimicrobial and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
43
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:1-71. [DOI: 10.1016/b978-0-12-802937-4.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
44
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:3-84. [DOI: 10.1016/b978-0-12-805421-5.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
45
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:3-73. [DOI: 10.1016/b978-0-12-802936-7.00001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
46
|
RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1. Int J Mol Sci 2015; 16:17611-36. [PMID: 26263979 PMCID: PMC4581211 DOI: 10.3390/ijms160817611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer.
Collapse
|
47
|
Silverman RH, Weiss SR. Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A. J Interferon Cytokine Res 2015; 34:455-63. [PMID: 24905202 DOI: 10.1089/jir.2014.0007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
The host interferon (IFN) antiviral response involves a myriad of diverse biochemical pathways that disrupt virus replication cycles at many different levels. As a result, viruses have acquired and evolved genes that antagonize the host antiviral proteins. IFNs inhibit viral infections in part through the 2',5'-oligoadenylate (2-5A) synthetase (OAS)/RNase L pathway. OAS proteins are pathogen recognition receptors that exist at different basal levels in different cell types and that are IFN inducible. Upon activation by the pathogen-associated molecular pattern viral double-stranded RNA, certain OAS proteins synthesize 2-5A from ATP. 2-5A binds to the antiviral enzyme RNase L causing its dimerization and activation. Recently, disparate RNA viruses, group 2a betacoronaviruses, and group A rotaviruses, have been shown to produce proteins with 2',5'-phosphodiesterase (PDE) activities that eliminate 2-5A thereby evading the antiviral activity of the OAS/RNase L pathway. These viral proteins are members of the eukaryotic-viral LigT-like group of 2H phosphoesterases, so named for the presence of 2 conserved catalytic histidine residues. Here, we will review the biochemistry, biology, and implications of viral and cellular 2',5'-PDEs that degrade 2-5A. In addition, we discuss alternative viral and cellular strategies for limiting the activity of OAS/RNase L.
Collapse
Affiliation(s)
- Robert H Silverman
- 1 Department of Cancer Biology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
48
|
Chakrabarti A, Banerjee S, Franchi L, Loo YM, Gale M, Núñez G, Silverman RH. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe 2015; 17:466-77. [PMID: 25816776 DOI: 10.1016/j.chom.2015.02.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2014] [Revised: 01/14/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
The NLRP3 inflammasome assembles in response to danger signals, triggering self-cleavage of procaspase-1 and production of the proinflammatory cytokine IL-1β. Although virus infection activates the NLRP3 inflammasome, the underlying events remain incompletely understood. We report that virus activation of the NLRP3 inflammasome involves the 2',5'-oligoadenylate (2-5A) synthetase(OAS)/RNase L system, a component of the interferon-induced antiviral response that senses double-stranded RNA and activates endoribonuclease RNase L to cleave viral and cellular RNAs. The absence of RNase L reduces IL-1β production in influenza A virus-infected mice. RNA cleavage products generated by RNase L enhance IL-1β production but require the presence of 2',3'-cyclic phosphorylated termini characteristic of RNase L activity. Additionally, these cleavage products stimulate NLRP3 complex formation with the DExD/H-box helicase, DHX33, and mitochondrial adaptor protein, MAVS, which are each required for effective NLRP3 inflammasome activation. Thus, RNA cleavage events catalyzed by RNase L are required for optimal inflammasome activation during viral infections.
Collapse
Affiliation(s)
- Arindam Chakrabarti
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Luigi Franchi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Lycera Corporation, Ann Arbor, MI 48109, USA
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
49
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2015:1-53. [DOI: 10.1016/b978-0-12-801043-3.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
50
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2015:1-48. [DOI: 10.1016/b978-0-12-801033-4.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|