1
|
Behari J, Yadav K, Khare P, Kumar B, Kushwaha AK. Recent insights on pattern recognition receptors and the interplay of innate immune responses against West Nile Virus infection. Virology 2024; 600:110267. [PMID: 39437534 DOI: 10.1016/j.virol.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The recent outbreaks of neurotropic West Nile Virus (WNV) in humans are of grave public health concern, requiring a thorough understanding of the host immune response to develop effective therapeutic interventions. Innate immunity contributes to the primary immune response against WNV infection aimed at controlling and eliminating the virus from the body. As soon as WNV infects the body, pattern recognition receptors (PRRs) recognize viral pathogen-associated molecular patterns, particularly viral RNA, and initiate innate immune responses. This review explores the diverse PRRs in sensing WNV infection and orchestrating immune defenses. Specifically, this paper reviews the role of PRRs in WNV infection, encompassing both findings from mouse models and current clinical studies. Activation of PRRs triggers signaling pathways that induce the expression of antiviral proteins to inhibit viral replication. Understanding the intricacies of the immune response is crucial for developing effective vaccines and therapeutic interventions against WNV infection.
Collapse
Affiliation(s)
- Jatin Behari
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kajal Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prashant Khare
- Xenesis Institute, Absolute, 5th Floor, Plot 68, Sector 44, Gurugram, Haryana, 122002, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, UP, India
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
2
|
Lin SC, Zhao FR, Janova H, Gervais A, Rucknagel S, Murray KO, Casanova JL, Diamond MS. Blockade of interferon signaling decreases gut barrier integrity and promotes severe West Nile virus disease. Nat Commun 2023; 14:5973. [PMID: 37749080 PMCID: PMC10520062 DOI: 10.1038/s41467-023-41600-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice. However, when STAT1 or type I interferon (IFN) responses are absent, GI tract cells become infected, and this is associated with augmented GI tract and blood-brain barrier (BBB) permeability, accumulation of gut-derived molecules in the brain, and more severe WNV disease. The increased gut permeability requires TNF-α signaling, and is absent in WNV-infected IFN-deficient germ-free mice. To link these findings to human disease, we measured auto-antibodies against type I IFNs in serum from WNV-infected human cohorts. A greater frequency of auto- and neutralizing antibodies against IFN-α2 or IFN-ω is present in patients with severe WNV infection, whereas virtually no asymptomatic WNV-infected subjects have such antibodies (odds ratio 24 [95% confidence interval: 3.0 - 192.5; P = 0.003]). Overall, our experiments establish that blockade of type I IFN signaling extends WNV tropism to enterocytes, which correlates with increased gut and BBB permeability, and more severe disease.
Collapse
Affiliation(s)
- Shih-Ching Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
| | - Summer Rucknagel
- Gnotobiotic Research, Education, and Transgenic Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristy O Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
- Department of Paediatrics, Necker Hospital for Sick Children, Paris, EU, 75015, France
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
4
|
Boruah AP, Thakur KT. Arthropod-borne encephalitis: an overview for the clinician and emerging considerations. Postgrad Med J 2023; 99:826-833. [PMID: 37130817 PMCID: PMC10464853 DOI: 10.1136/pmj-2022-142002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
The rapid spread of arboviral infections in recent years has continually established arthropod-borne encephalitis to be a pressing global health concern. Causing a wide range of clinical presentations ranging from asymptomatic infection to fulminant neurological disease, the hallmark features of arboviral infection are important to clinically recognise. Arboviral infections may cause severe neurological presentations such as meningoencephalitis, epilepsy, acute flaccid paralysis and stroke. While the pathogenesis of arboviral infections is still being investigated, shared neuroanatomical pathways among these viruses may give insight into future therapeutic targets. The shifting infection transmission patterns and evolving distribution of arboviral vectors are heavily influenced by global climate change and human environmental disruption, therefore it is of utmost importance to consider this potential aetiology when assessing patients with encephalitic presentations.
Collapse
Affiliation(s)
- Abhilasha Pankaj Boruah
- Department of Neurology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kiran T Thakur
- Department of Neurology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Perez K, Ciotlos S, McGirr J, Limbad C, Doi R, Nederveen JP, Nilsson MI, Winer DA, Evans W, Tarnopolsky M, Campisi J, Melov S. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence. Aging (Albany NY) 2022; 14:9393-9422. [PMID: 36516485 PMCID: PMC9792217 DOI: 10.18632/aging.204435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and frail human subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach revealed changes in gene expression that occur with age and frailty in multiple cell types comprising mature skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased expression of the gene IGFN1, in aged muscle. We validated several key genes changes in fixed human muscle tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, present only in aged samples, consistent with p21cip1-driven senescence in this subpopulation. Overall, our findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the development of new therapeutic strategies to combat age-related frailty.
Collapse
Affiliation(s)
- Kevin Perez
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Serban Ciotlos
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Julia McGirr
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | | | - Ryosuke Doi
- Buck Institute for Research on Aging, Novato, CA 94952, USA
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki, Japan
| | | | | | | | - William Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| |
Collapse
|
6
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|
7
|
Monogue B, Chen Y, Sparks H, Behbehani R, Chai A, Rajic AJ, Massey A, Kleinschmidt-Demasters BK, Vermeren M, Kunath T, Beckham JD. Alpha-synuclein supports type 1 interferon signalling in neurons and brain tissue. Brain 2022; 145:3622-3636. [PMID: 35858675 PMCID: PMC10233298 DOI: 10.1093/brain/awac192] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023] Open
Abstract
The protein alpha-synuclein is predominantly expressed in neurons and is associated with neurodegenerative diseases like Parkinson's disease and dementia with Lewy bodies. However, the normal function of alpha-synuclein in neurons is not clearly defined. We have previously shown that mice lacking alpha-synuclein expression exhibit markedly increased viral growth in the brain, increased mortality and increased neuronal cell death, implicating alpha-synuclein in the neuronal innate immune response. To investigate the mechanism of alpha-synuclein-induced immune responses to viral infections in the brain, we challenged alpha-synuclein knockout mice and human alpha-synuclein knockout dopaminergic neurons with RNA virus infection and discovered that alpha-synuclein is required for neuronal expression of interferon-stimulated genes. Furthermore, human alpha-synuclein knockout neurons treated with type 1 interferon failed to induce a broad range of interferon stimulated genes, implying that alpha-synuclein interacts with type 1 interferon signalling. We next found that alpha-synuclein accumulates in the nucleus of interferon-treated human neurons after interferon treatment and we demonstrated that interferon-mediated phosphorylation of STAT2 is dependent on alpha-synuclein expression in human neurons. Next, we found that activated STAT2 co-localizes with alpha-synuclein following type 1 interferon stimulation in neurons. Finally, we found that brain tissue from patients with viral encephalitis expresses increased levels of phospho-serine129 alpha-synuclein in neurons. Taken together, our results show that alpha-synuclein expression supports neuron-specific interferon responses by localizing to the nucleus, supporting STAT2 activation, co-localizing with phosphorylated STAT2 in neurons and supporting expression of interferon-stimulated genes. These data provide a novel mechanism that links interferon activation and alpha-synuclein function in neurons.
Collapse
Affiliation(s)
- Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yixi Chen
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hadrian Sparks
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ranya Behbehani
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew Chai
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alexander J Rajic
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aaron Massey
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - B K Kleinschmidt-Demasters
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Departments of Pathology and Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthieu Vermeren
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules 2022; 12:biom12101456. [PMID: 36291665 PMCID: PMC9599177 DOI: 10.3390/biom12101456] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prevalence of asthma in older adults is growing along with increasing global life expectancy. Due to poor clinical consequences such as high mortality, advancement in understanding the pathophysiology of asthma in older patients has been sought to provide prompt treatment for them. Age-related alterations of functions in the immune system and lung parenchyma occur throughout life. Alterations with advancing age are promoted by various stimuli, including pathobionts, fungi, viruses, pollutants, and damage-associated molecular patterns derived from impaired cells, abandoned cell debris, and senescent cells. Age-related changes in the innate and adaptive immune response, termed immunosenescence, includes impairment of phagocytosis and antigen presentation, enhancement of proinflammatory mediator generation, and production of senescence-associated secretory phenotype. Immnunosenescence could promote inflammaging (chronic low-grade inflammation) and contribute to late-onset adult asthma and asthma in the elderly, along with age-related pulmonary disease, such as chronic obstructive pulmonary disease and pulmonary fibrosis, due to lung parenchyma senescence. Aged patients with asthma exhibit local and systemic type 2 and non-type 2 inflammation, associated with clinical manifestations. Here, we discuss immunosenescence’s contribution to the immune response and the combination of type 2 inflammation and inflammaging in asthma in the elderly and present an overview of age-related features in the immune system and lung structure.
Collapse
|
9
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
10
|
Mamais A, Kaganovich A, Harvey K. Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiol Dis 2022; 169:105721. [PMID: 35405260 DOI: 10.1016/j.nbd.2022.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022] Open
Abstract
In recent years progress in molecular biology and genetics have advanced our understanding of neurological disorders and highlighted synergistic relationships with inflammatory and age-related processes. Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Increasing extensive evidence supports the contribution of genetic risk variants and inflammation in the pathobiology of this disease. Functional and genetic studies demonstrate an overlap between genes linked to increased risk for PD and autoimmune diseases. Variants identified in loci adjacent to LRRK2, GBA, and HLA establish a crosstalk between the pathobiologies of the two disease spectra. Furthermore, common signalling pathways associated with the pathogenesis of genetic PD are also relevant to inflammatory signaling include MAPK, NF-κB, Wnt and inflammasome signaling. Importantly, post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines. In this review we will focus on the principal mechanisms of genetic, inflammatory and age-related risk that intersect in the pathogenesis of PD.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK..
| |
Collapse
|
11
|
Kumar M, James MM, Kumawat M, Nabi B, Sharma P, Pal N, Shubham S, Tiwari RR, Sarma DK, Nagpal R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022; 10:biomedicines10071545. [PMID: 35884849 PMCID: PMC9313064 DOI: 10.3390/biomedicines10071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host’s genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Meenu Mariya James
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India;
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
- Correspondence: (D.K.S.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (D.K.S.); (R.N.)
| |
Collapse
|
12
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
13
|
Chang H, Zou Z, Li J, Shen Q, Liu L, An X, Yang S, Xing D. Photoactivation of mitochondrial reactive oxygen species-mediated Src and protein kinase C pathway enhances MHC class II-restricted T cell immunity to tumours. Cancer Lett 2021; 523:57-71. [PMID: 34563641 DOI: 10.1016/j.canlet.2021.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.
Collapse
Affiliation(s)
- Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Jie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Lei Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| | - Xiaorui An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
14
|
Gilbert C, Lefeuvre C, Preisser L, Pivert A, Soleti R, Blanchard S, Delneste Y, Ducancelle A, Couez D, Jeannin P. Age-Related Expression of IFN-λ1 Versus IFN-I and Beta-Defensins in the Nasopharynx of SARS-CoV-2-Infected Individuals. Front Immunol 2021; 12:750279. [PMID: 34858406 PMCID: PMC8631500 DOI: 10.3389/fimmu.2021.750279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 coronavirus infection induces heterogeneous symptoms, ranging from asymptomatic to lethal forms. Severe forms usually occur in the elderly and/or individuals with comorbidities. Children generally remain asymptomatic to primary infection, suggesting that they may have an effective local innate immune response. IFN-I and -III have non-redundant protective roles against SARS-CoV-2, although sometimes damaging the host. The expression and role of anti-viral peptides during SARS-CoV-2 infection have thus far been little studied. We aimed to identify the innate immune molecules present at the SARS-CoV-2 entry point. We analyzed the mRNA levels of type I (IFN-α and -β) and type III (IFN-λ1-3) interferons and selected antiviral peptides (i.e., β-defensins 1-3, α-defensins [HNP1-3, HD5] pentraxin-3, surfactant protein D, the cathelicidin LL-37 and interleukin-26) in nasopharyngeal swabs from 226 individuals of various ages, either infected with SARS-CoV-2 (symptomatic or asymptomatic) or negative for the virus. We observed that infection induced selective upregulation of IFN-λ1 expression in pediatric subjects (≤15 years), whereas IFN-α, IFN-β, IFN-λ2/λ3, and β-defensin 1-3 expression was unaffected. Conversely, infection triggered upregulation of IFN-α, IFN-β, IFN-λ2/λ3, and β-defensin 1-3 mRNA expression in adults (15-65 years) and the elderly (≥ 65 years), but without modulation of IFN-λ1. The expression of these innate molecules was not associated with gender or symptoms. Expression of the interferon-stimulated genes IFITM1 and IFITM3 was upregulated in SARS-CoV-2-positive subjects and reached similar levels in the three age groups. Finally, age-related differences in nasopharyngeal innate immunity were also observed in SARS-CoV-2-negative subjects. This study shows that the expression patterns of IFN-I/-III and certain anti-viral molecules in the nasopharyngeal mucosa of SARS-CoV-2-infected subjects differ with age and suggests that susceptibility to SARS-CoV-2 may be related to intrinsic differences in the nature of mucosal anti-viral innate immunity.
Collapse
Affiliation(s)
- Charly Gilbert
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| | - Caroline Lefeuvre
- Laboratory of Virology, Angers University Hospital, Angers, France
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, Angers, France
| | - Laurence Preisser
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Adeline Pivert
- Laboratory of Virology, Angers University Hospital, Angers, France
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, Angers, France
| | - Raffaella Soleti
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Simon Blanchard
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| | - Yves Delneste
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| | - Alexandra Ducancelle
- Laboratory of Virology, Angers University Hospital, Angers, France
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, Angers, France
| | - Dominique Couez
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Pascale Jeannin
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| |
Collapse
|
15
|
Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:antiox10091440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
|
16
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
17
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
18
|
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells 2021; 10:708. [PMID: 33806810 PMCID: PMC8004738 DOI: 10.3390/cells10030708] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (E.F.); (E.B.); (S.M.P.); (M.L.)
| | | |
Collapse
|
19
|
Godaert L, Dramé M, Roubaud-Baudron C. Emerging viruses in older population Chikungunya, West Nile fever and Dengue. Aging Clin Exp Res 2021; 33:723-727. [PMID: 31741192 DOI: 10.1007/s40520-019-01389-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lidvine Godaert
- Department of Geriatrics, University Hospital of Martinique, 97261, Fort-De-France Cedex, Martinique, France
| | - Moustapha Dramé
- Department of Clinical Research and Innovation, University Hospital of Martinique, 97261, Fort-De-France Cedex, Martinique, France
- Department of Public Health, University of French West-Indies, 97261, Fort-De-France Cedex, Martinique, France
| | - Claire Roubaud-Baudron
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000, Bordeaux, France.
- Univ. Bordeaux, UMR INSERM, 1053 BaRITOn, 33000, Bordeaux, France.
| |
Collapse
|
20
|
Antiviral Cytokine Response in Neuroinvasive and Non-Neuroinvasive West Nile Virus Infection. Viruses 2021; 13:v13020342. [PMID: 33671821 PMCID: PMC7927094 DOI: 10.3390/v13020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
Data on the immune response to West Nile virus (WNV) are limited. We analyzed the antiviral cytokine response in serum and cerebrospinal fluid (CSF) samples of patients with WNV fever and WNV neuroinvasive disease using a multiplex bead-based assay for the simultaneous quantification of 13 human cytokines. The panel included cytokines associated with innate and early pro-inflammatory immune responses (TNF-α/IL-6), Th1 (IL-2/IFN-γ), Th2 (IL-4/IL-5/IL-9/IL-13), Th17 immune response (IL-17A/IL-17F/IL-21/IL-22) and the key anti-inflammatory cytokine IL-10. Elevated levels of IFN-γ were detected in 71.7% of CSF and 22.7% of serum samples (p = 0.003). Expression of IL-2/IL-4/TNF-α and Th1 17 cytokines (IL-17A/IL-17F/IL-21) was detected in the serum but not in the CSF (except one positive CSF sample for IL-17F/IL-4). While IL-6 levels were markedly higher in the CSF compared to serum (CSF median 2036.71, IQR 213.82–6190.50; serum median 24.48, IQR 11.93–49.81; p < 0.001), no difference in the IL-13/IL-9/IL-10/IFN-γ/IL-22 levels in serum/CSF was found. In conclusion, increased concentrations of the key cytokines associated with innate and early acute phase responses (IL-6) and Th1 type immune responses (IFN-γ) were found in the CNS of patients with WNV infection. In contrast, expression of the key T-cell growth factor IL-2, Th17 cytokines, a Th2 cytokine IL-4 and the proinflammatory cytokine TNF-α appear to be concentrated mainly in the periphery.
Collapse
|
21
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
22
|
Nikolich-Žugich J, Bradshaw CM, Uhrlaub JL, Watanabe M. Immunity to acute virus infections with advanced age. Curr Opin Virol 2020; 46:45-58. [PMID: 33160186 DOI: 10.1016/j.coviro.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
New infections in general, and new viral infections amongst them, represent a serious challenge to an older organism. This review discusses the age-related alterations in responsiveness to infection from the standpoint of virus:host relationship and the host physiological whole-organism and specific immune response to the virus. Changes with age in the innate and adaptive immune system homeostasis and function are reviewed briefly. This is followed by a review of specific alterations and defects in the response of older organisms (chiefly mice and humans) to acute (particularly emerging and re-emerging) viral infections, with a very brief summary of the response to latent persistent infections. Finally, we provide a brief summary of the perspectives for possible interventions to enhance antiviral immunity.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| | - Christine M Bradshaw
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
23
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
24
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020; 9:1771143. [PMID: 32934877 PMCID: PMC7466857 DOI: 10.1080/2162402x.2020.1771143] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor that senses exogenous (viral) as well as endogenous (mammalian) double-stranded RNA in endosomes. On activation, TLR3 initiates a signal transduction pathway that culminates with the secretion of pro-inflammatory cytokines including type I interferon (IFN). The latter is essential not only for innate immune responses to infection but also for the initiation of antigen-specific immunity against viruses and malignant cells. These aspects of TLR3 biology have supported the development of various agonists for use as stand-alone agents or combined with other therapeutic modalities in cancer patients. Here, we review recent preclinical and clinical advances in the development of TLR3 agonists for oncological disorders. Abbreviations cDC, conventional dendritic cell; CMT, cytokine modulating treatment; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; dsRNA, double-stranded RNA; FLT3LG, fms-related receptor tyrosine kinase 3 ligand; HNSCC, head and neck squamous cell carcinoma; IFN, interferon; IL, interleukin; ISV, in situ vaccine; MUC1, mucin 1, cell surface associated; PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; polyA:U, polyadenylic:polyuridylic acid; polyI:C, polyriboinosinic:polyribocytidylic acid; TLR, Toll-like receptor.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
25
|
Kobayashi S, Kaneko C, Kawakami R, Hasebe R, Sawa H, Yoshii K, Kariwa H. Amino acid 159 of the envelope protein affects viral replication and T-cell infiltration by West Nile virus in intracranial infection. Sci Rep 2020; 10:7168. [PMID: 32346055 PMCID: PMC7189269 DOI: 10.1038/s41598-020-64199-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
West Nile virus (WNV) is an important cause of viral encephalitis in birds and animals, including humans. Amino acid 159 of the envelope (E) protein is reportedly implicated in the different levels of neurovirulence in mice infected with WNV NY99 or Eg101. We investigated the role of amino acid 159 of the E protein in the pathogenesis of WNV infection. We produced recombinant WNV with the structural proteins of the NY99 or Eg101 strain (NY-WT or EgCME-WT) and mutant viruses with substitutions of amino acid 159 of the E protein (NY-E-V159I or EgCME-E-I159V). The NY-WT and NY-E-V159I or EgCME-WT and EgCME-E-I159V titers in culture supernatant were similar. The mortality rate and viral titer in the brains of mice inoculated intraperitoneally with NY-WT or NY-E-V159I were also similar. In contrast, the mortality rate and viral titer in the brains of mice inoculated intracranially with EgCME-E-I159V were significantly higher than those of mice inoculated with EgCME-WT. The numbers of CD3-positive and CD8-positive T cells were greater in brains inoculated with EgCME-E-I159V than in those inoculated with EgCME-WT. Therefore, amino acid 159 of the E protein modulates the pathogenicity of WNV by affecting viral replication and T-cell infiltration in the brain.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Chisato Kaneko
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryoko Kawakami
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-0815, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, MD, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
26
|
Goldberg EL, Shaw AC, Montgomery RR. How Inflammation Blunts Innate Immunity in Aging. Interdiscip Top Gerontol Geriatr 2020; 43:1-17. [PMID: 32294641 PMCID: PMC8063508 DOI: 10.1159/000504480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The collective loss of immune protection during aging leads to poor vaccine responses and an increased severity of infection for the elderly. Here, we review our current understanding of effects of aging on the cellular and molecular dysregulation of innate immune cells as well as the relevant tissue milieu which influences their functions. The innate immune system is composed of multiple cell types which provide distinct and essential roles in tissue surveillance and antigen presentation as well as early responses to infection or injury. Functional defects that arise during aging lead to a reduced dynamic range of responsiveness, altered cytokine dynamics, and impaired tissue repair. Heightened inflammation influences both the dysregulation of innate immune responses as well as surrounding tissue microenvironments which have a critical role in development of a functional immune response. In particular, age-related physical and inflammatory changes in the skin, lung, lymph nodes, and adipose tissue reflect disrupted architecture and spatial organization contributing to diminished immune responsiveness. Underlying mechanisms include altered transcriptional programming and dysregulation of critical innate immune signaling cascades. Further, we identify signaling functions of bioactive lipid mediators which address chronic inflammation and may contribute to the resolution of inflammation to improve innate immunity during aging.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
27
|
Role of NS1 and TLR3 in Pathogenesis and Immunity of WNV. Viruses 2019; 11:v11070603. [PMID: 31277274 PMCID: PMC6669597 DOI: 10.3390/v11070603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022] Open
Abstract
West Nile Virus (WNV) is a mosquito-transmitted flavivirus which causes encephalitis especially in elderly and immunocompromised individuals. Previous studies have suggested the protective role of the Toll-like receptor 3 (TLR3) pathway against WNV entry into the brain, while the WNV non-structural protein 1 (NS1) interferes with the TLR3 signaling pathway, besides being a component of viral genome replication machinery. In this study, we investigated whether immunization with NS1 could protect against WNV neuroinvasion in the context of TLR3 deficiency. We immunized mice with either an intact or deleted TLR3 system (TLR3KO) with WNV envelope glycoprotein (gE) protein, NS1, or a combination of gE and NS1. Immunization with gE or gE/NS1, but not with NS1 alone, induced WNV neutralizing antibodies and protected against WNV brain invasion and inflammation. The presence of intact TLR3 signaling had no apparent effect on WNV brain invasion. However, mock-immunized TLR3KO mice had higher inflammatory cell invasion upon WNV brain infection than NS1-immunized TLR3KO mice and wild type mice. Thus, immunization against NS1 may reduce brain inflammation in a context of TLR3 signaling deficiency.
Collapse
|
28
|
Abstract
Aging is a key aspect of neoplasia at the level of cells, individuals and populations. Unrestrained expression and production of inflammatory mediators is a key feature of aging at the cellular and organism level. Inflammatory cells and mediators are a key component of the tumor microenvironment and drive tumor progression. Non-resolving smoldering inflammation increases the risk of cancer (the extrinsic pathway connecting inflammation and cancer). In the intrinsic pathway, genetic events that cause neoplasia (oncogenes and oncosupressor genes) orchestrate the construction of cancer-related inflammation. We argue that uncontrolled smoldering inflammation drives carcinogenesis in aging and acts as a common denominator linking aging and cancer.
Collapse
|
29
|
Pandey RK, Dahiya S, Mahita J, Sowdhamini R, Prajapati VK. Vaccination and immunization strategies to design Aedes aegypti salivary protein based subunit vaccine tackling Flavivirus infection. Int J Biol Macromol 2018; 122:1203-1211. [PMID: 30219509 DOI: 10.1016/j.ijbiomac.2018.09.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
Flavivirus causes arthropod-borne severe diseases that sometimes lead to the death. The Flavivirus species including Dengue virus, Zika virus and yellow fever virus are transmitted by the bite of Aedes mosquitoes. All these viral species target the people living in their respective endemic zone causing a high mortality rate. Recent studies show that immune factors present in the Ae. aegypti saliva is the hidden culprit promoting blood meal collection, suppressing host immune molecules and promoting disease establishment. This study was designed to develop a subunit vaccine using Aedes mosquito salivary proteins targeting the aforementioned Flaviviruses. Subunit vaccine was designed very precisely by combining the immunogenic B-cell epitope with CTL and HTL epitopes and also suitable adjuvant and linkers. Immunogenicity, allergenicity and physiochemical characterization were also performed for scientific validation. Molecular docking and molecular dynamics simulations studies were carried out to confirm the stable affinity between the vaccine protein (3D) and TLR3 receptor. At last, in silico cloning was executed to get the subunit vaccine restriction clone into pET28a vectro to express it in microbial expression system. Additionally, this study warrants the experimental evaluation for the validation purposes.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India
| | - Surbhi Dahiya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India
| | - Jarjapu Mahita
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India.
| |
Collapse
|
30
|
Zeng Y, Nie C, Min J, Chen H, Liu X, Ye R, Chen Z, Bai C, Xie E, Yin Z, Lv Y, Lu J, Li J, Ni T, Bolund L, Land KC, Yashin A, O’Rand AM, Sun L, Yang Z, Tao W, Gurinovich A, Franceschi C, Xie J, Gu J, Hou Y, Liu X, Xu X, Robine JM, Deelen J, Sebastiani P, Slagboom E, Perls T, Hauser E, Gottschalk W, Tan Q, Christensen K, Shi X, Lutz M, Tian XL, Yang H, Vaupel J. Sex Differences in Genetic Associations With Longevity. JAMA Netw Open 2018; 1:e181670. [PMID: 30294719 PMCID: PMC6173523 DOI: 10.1001/jamanetworkopen.2018.1670] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE Sex differences in genetic associations with human longevity remain largely unknown; investigations on this topic are important for individualized health care. OBJECTIVE To explore sex differences in genetic associations with longevity. DESIGN SETTING AND PARTICIPANTS This population-based case-control study used sex-specific genome-wide association study and polygenic risk score (PRS) analyses to examine sex differences in genetic associations with longevity. Five hundred sixty-four male and 1614 female participants older than 100 years were compared with a control group of 773 male and 1526 female individuals aged 40 to 64 years. All were Chinese Longitudinal Healthy Longevity Study participants with Han ethnicity who were recruited in 1998 and 2008 to 2014. MAIN OUTCOMES AND MEASURES Sex-specific loci and pathways associated with longevity and PRS measures of joint effects of sex-specific loci. RESULTS Eleven male-specific and 11 female-specific longevity loci (P < 10-5) and 35 male-specific and 25 female-specific longevity loci (10-5 ≤ P < 10-4) were identified. Each of these loci's associations with longevity were replicated in north and south regions of China in one sex but were not significant in the other sex (P = .13-.97), and loci-sex interaction effects were significant (P < .05). The associations of loci rs60210535 of the LINC00871 gene with longevity were replicated in Chinese women (P = 9.0 × 10-5) and US women (P = 4.6 × 10-5) but not significant in Chinese and US men. The associations of the loci rs2622624 of the ABCG2 gene were replicated in Chinese women (P = 6.8 × 10-5) and European women (P = .003) but not significant in both Chinese and European men. Eleven male-specific pathways (inflammation and immunity genes) and 34 female-specific pathways (tryptophan metabolism and PGC-1α induced) were significantly associated with longevity (P < .005; false discovery rate < 0.05). The PRS analyses demonstrated that sex-specific associations with longevity of the 4 exclusive groups of 11 male-specific and 11 female-specific loci (P < 10-5) and 35 male-specific and 25 female-specific loci (10-5 ≤P < 10-4) were jointly replicated across north and south discovery and target samples. Analyses using the combined data set of north and south showed that these 4 groups of sex-specific loci were jointly and significantly associated with longevity in one sex (P = 2.9 × 10-70 to 1.3 × 10-39) but not jointly significant in the other sex (P = .11 to .70), while interaction effects between PRS and sex were significant (P = 4.8 × 10-50 to 1.2 × 10-16). CONCLUSION AND RELEVANCE The sex differences in genetic associations with longevity are remarkable, but have been overlooked by previously published genome-wide association studies on longevity. This study contributes to filling this research gap and provides a scientific basis for further investigating effects of sex-specific genetic variants and their interactions with environment on healthy aging, which may substantially contribute to more effective and targeted individualized health care for male and female elderly individuals.
Collapse
Affiliation(s)
- Yi Zeng
- Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, North Carolina
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Chao Nie
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI–Shenzhen, Shenzhen, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huashuai Chen
- Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, North Carolina
- Business School of Xiangtan University, Xiangtan, China
| | | | - Rui Ye
- BGI–Shenzhen, Shenzhen, China
| | | | - Chen Bai
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoxue Yin
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiehua Lu
- Department of Sociology, Peking University, Beijing, China
| | - Jianxin Li
- Department of Sociology, Peking University, Beijing, China
| | - Ting Ni
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lars Bolund
- BGI–Shenzhen, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kenneth C. Land
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Anatoliy Yashin
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Angela M. O’Rand
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Tao
- School of Life Sciences, Peking University, Beijing, China
| | | | | | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Jun Gu
- School of Life Sciences, Peking University, Beijing, China
| | | | | | - Xun Xu
- BGI–Shenzhen, Shenzhen, China
| | - Jean-Marie Robine
- French National Institute on Health and Medical Research and Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Elizabeth Hauser
- Molecular Physiology Institute, Medical Center, Duke University, Durham, North Carolina
| | - William Gottschalk
- Department of Neurology, Medical Center, Duke University, Durham, North Carolina
| | - Qihua Tan
- University of Southern Denmark, Odense, Denmark
| | | | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mike Lutz
- Department of Neurology, Medical Center, Duke University, Durham, North Carolina
| | - Xiao-Li Tian
- Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi, China
| | - Huanming Yang
- BGI–Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - James Vaupel
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
31
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
Spurthi KM, Sarikhani M, Mishra S, Desingu PA, Yadav S, Rao S, Maity S, Tamta AK, Kumar S, Majumdar S, Jain A, Raghuraman A, Khan D, Singh I, Samuel RJ, Ramachandra SG, Nandi D, Sundaresan NR. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem 2018; 293:13073-13089. [PMID: 29929978 DOI: 10.1074/jbc.ra118.001880] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors involved in innate immunity. Previous studies have shown that TLR2 inhibition protects the heart from acute stress, including myocardial infarction and doxorubicin-induced cardiotoxicity in animal models. However, the role of TLR2 in the development of aging-associated heart failure is not known. In this work, we studied aging-associated changes in structure and function of TLR2-deficient mice hearts. Whereas young TLR2-KO mice did not develop marked cardiac dysfunction, 8- and 12-month-old TLR2-KO mice exhibited spontaneous adverse cardiac remodeling and cardiac dysfunction in an age-dependent manner. The hearts of the 8-month-old TLR2-KO mice had increased fibrosis, cell death, and reactivation of fetal genes. Moreover, TLR2-KO hearts displayed reduced infiltration by macrophages, increased numbers of myofibroblasts and atrophic cardiomyocytes, and higher levels of the atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Mechanistically, TLR2 deficiency impaired the PI3K/Akt signaling pathway, leading to hyperactivation of the transcription factor Forkhead box protein O1 (FoxO1) and, in turn, to elevated expression of FoxO target genes involved in the regulation of muscle wasting and cell death. AS1842856-mediated chemical inhibition of FoxO1 reduced the expression of the atrophy-related ubiquitin ligases and significantly reversed the adverse cardiac remodeling while improving the contractile functions in the TLR2-KO mice. Interestingly, TLR2 levels decreased in hearts of older mice, and the activation of TLR1/2 signaling improved cardiac functions in these mice. These findings suggest that TLR2 signaling is essential for protecting the heart against aging-associated adverse remodeling and contractile dysfunction in mice.
Collapse
Affiliation(s)
- Kondapalli Mrudula Spurthi
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mohsen Sarikhani
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sneha Mishra
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Perumal Arumugam Desingu
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shikha Yadav
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Swathi Rao
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sangeeta Maity
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ankit Kumar Tamta
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shweta Kumar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shamik Majumdar
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Aditi Jain
- the Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India, and
| | - Aishwarya Raghuraman
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Danish Khan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ishwar Singh
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Rosa J Samuel
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subbaraya G Ramachandra
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Dipankar Nandi
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Nagalingam R Sundaresan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India,
| |
Collapse
|
33
|
Popescu CP, Florescu SA, Cotar AI, Badescu D, Ceianu CS, Zaharia M, Tardei G, Codreanu D, Ceausu E, Ruta SM. Re-emergence of severe West Nile virus neuroinvasive disease in humans in Romania, 2012 to 2017-implications for travel medicine. Travel Med Infect Dis 2018; 22:30-35. [PMID: 29544774 DOI: 10.1016/j.tmaid.2018.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/25/2018] [Accepted: 03/11/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND In Romania, after a major outbreak in 1996, West Nile neuroinvasive disease (WNND) was reported only in a limited number of cases annually. During 2016-2017, a significant increase in the number of WNND cases was reported at the national level, associated with high mortality rates. METHODS A retrospective analysis of all cases confirmed with WNND, hospitalized during 2012-2017 in a single tertiary facility from Bucharest was performed in order to determine the annual prevalence and mortality rate and the risk factors associated with a severe outcome. RESULTS 47 cases were confirmed as WNND. The mortality rate was 25.5%, all death occurred during 2016-2017. Coma, confusion, obtundation, sleepiness and depressed deep tendon reflexes were symptoms predicting a severe outcome. In a univariate analysis age (p < 0.001), associated cancers (p = 0.012) and low levels of chloride in the CSF (p = 0.008) were risk factors for mortality. In a multinomial logistic analysis, age older than 75 years remained the only independent predictor of death in WNND. CONCLUSIONS The increase in both the number and the mortality rate of WNND cases suggest a changing pattern of WNV infection in Romania. Public health authorities and clinicians should be aware of the risk of severe WNV infection in travelers returning from Romania.
Collapse
Affiliation(s)
- Corneliu Petru Popescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania; ESCMID Study Group for Infectious Diseases of the Brain, Basel, Switzerland; ESCMID Study Group for Infections in Travellers and Migrants, Basel, Switzerland.
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Ani Ioana Cotar
- Laboratory for Vector-Borne Infections, Cantacuzino National Institute for Research, Bucharest, Romania
| | - Daniela Badescu
- Laboratory for Vector-Borne Infections, Cantacuzino National Institute for Research, Bucharest, Romania
| | - Cornelia Svetlana Ceianu
- Laboratory for Vector-Borne Infections, Cantacuzino National Institute for Research, Bucharest, Romania
| | - Mihaela Zaharia
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania; ESCMID Study Group for Infectious Diseases of the Brain, Basel, Switzerland; ESCMID Study Group for Infections in Travellers and Migrants, Basel, Switzerland
| | - Gratiela Tardei
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Daniel Codreanu
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Emanoil Ceausu
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Simona Maria Ruta
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Stefan S Nicolau Institute of Virology, Bucharest, Romania
| |
Collapse
|
34
|
Dunn RM, Busse PJ, Wechsler ME. Asthma in the elderly and late-onset adult asthma. Allergy 2018; 73:284-294. [PMID: 28722758 DOI: 10.1111/all.13258] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
Elderly asthmatics are at a higher risk for morbidity and mortality from their asthma than younger patients. There are important age-related physiologic and immunologic changes that complicate the presentation, diagnosis, and management of asthma in the aged population. Evidence suggests that elderly asthmatics are more likely to be underdiagnosed and undertreated. Additionally, elderly patients with asthma have highest rates of morbidity and mortality from their disease than younger patients. The underlying airway inflammation of asthma in this age group likely differs from younger patients and is felt to be non-type 2 mediated. While elderly patients are underrepresented in clinical trials, subgroup analysis of large clinical trials suggests they may be less likely to respond to traditional asthma therapies (ie, corticosteroids). As the armamentarium of pharmacologic asthma therapies expands, it will be critical to include elderly asthmatics in large clinical trials so that therapy may be better tailored to this at-risk and growing population.
Collapse
Affiliation(s)
- R. M. Dunn
- Department of Pulmonary and Critical Care Medicine; University of Colorado School of Medicine; Aurora CO USA
- National Jewish Health; Denver CO USA
| | - P. J. Busse
- Division of Clinical Immunology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - M. E. Wechsler
- Department of Pulmonary and Critical Care Medicine; National Jewish Health; Denver CO USA
| |
Collapse
|
35
|
Wang X, Malawista A, Qian F, Ramsey C, Allore HG, Montgomery RR. Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes. Oncotarget 2018. [PMID: 29515754 PMCID: PMC5839385 DOI: 10.18632/oncotarget.23851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The multifactorial immune deterioration in aging--termed “inflamm-aging”--is comprised of a state of low-grade, chronic inflammation and complex dysregulation of responses to immune stimulation. The TAM family (Tyro 3, Axl, and Mer) of receptor tyrosine kinases are negative regulators of Toll like receptor-mediated immune responses that broadly inhibit cytokine receptor cascades to inhibit inflammation. Here we demonstrate elevated expression of TAM receptors in monocytes of older adults, and an age-dependent difference in signaling mediator AKT resulting in dysregulated responses to signaling though Mer. Our results may be especially significant in tissue, where levels of Mer are highest, and may present avenues for modulation of chronic tissue inflammation noted in aging.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Malawista
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Feng Qian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Christine Ramsey
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Heather G Allore
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.,Human Translational Immunology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
36
|
Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 2017; 4:1. [PMID: 29285399 PMCID: PMC5740164 DOI: 10.1038/s41514-017-0020-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The progressive increase of the aged population worldwide mandates new strategies to ensure sustained health and well-being with age. The development of better and/or new vaccines against pathogens that affect older adults is one pivotal intervention in approaching this goal. However, the functional decline of various physiological systems, including the immune system, requires novel approaches to counteract immunosenescence. Although important progress has been made in understanding the mechanisms underlying the age-related decline of the immune response to infections and vaccinations, knowledge gaps remain, both in the areas of basic and translational research. In particular, it will be important to better understand how environmental factors, such as diet, physical activity, co-morbidities, and pharmacological treatments, delay or contribute to the decline of the capability of the aging immune system to appropriately respond to infectious diseases and vaccination. Recent findings suggest that successful approaches specifically targeted to the older population can be developed, such as the high-dose and adjuvanted vaccines against seasonal influenza, the adjuvanted subunit vaccine against herpes zoster, as well as experimental interventions with immune-potentiators or immunostimulants. Learning from these first successes may pave the way to developing novel and improved vaccines for the older adults and immunocompromised. With an integrated, holistic vaccination strategy, society will offer the opportunity for an improved quality of life to the segment of the population that is going to increase most significantly in numbers and proportion over future decades.
Collapse
|
37
|
Bullone M, Lavoie JP. The Contribution of Oxidative Stress and Inflamm-Aging in Human and Equine Asthma. Int J Mol Sci 2017; 18:ijms18122612. [PMID: 29206130 PMCID: PMC5751215 DOI: 10.3390/ijms18122612] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with a dysregulation of the immune system, leading to a general pro-inflammatory state of the organism, a process that has been named inflamm-aging. Oxidative stress has an important role in aging and in the regulation of immune responses, probably playing a role in the development of age-related diseases. The respiratory system function physiologically declines with the advancement of age. In elderly asthmatic patients, this may contribute to disease expression. In this review, we will focus on age-related changes affecting the immune system and in respiratory structure and function that could contribute to asthma occurrence, and/or clinical presentation in the elderly. Also, naturally occurring equine asthma will be discussed as a possible model for studying the importance of oxidative stress and immun-aging/inflamm-aging in humans.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Clinical and Biological Sciences, University of Turin, AUO San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
38
|
Barber BE, Grigg MJ, William T, Piera KA, Boyle MJ, Yeo TW, Anstey NM. Effects of Aging on Parasite Biomass, Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Plasmodium knowlesi and Plasmodium falciparum Malaria. J Infect Dis 2017; 215:1908-1917. [PMID: 28863470 DOI: 10.1093/infdis/jix193] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/15/2017] [Indexed: 02/06/2023] Open
Abstract
Background In populations pauci-immune to malaria, risk of severe malaria increases with age. This is particularly apparent in Plasmodium knowlesi malaria. However, pathophysiological mechanisms underlying knowlesi malaria, and of the age-related increase in risk of severe malaria in general, are poorly understood. Methods In Malaysian patients aged ≥12 years with severe (n = 47) and nonsevere (n = 99) knowlesi malaria, severe (n = 21) and nonsevere (n = 109) falciparum malaria, and healthy controls (n = 50), we measured parasite biomass, systemic inflammation (interleukin 6 [IL-6]), endothelial activation (angiopoietin-2), and microvascular function, and evaluated the effects of age. Results Plasmodium knowlesi parasitemia correlated with age (Spearman's correlation coefficient [rs] = 0.36; P < .0001). In knowlesi malaria, IL-6, angiopoietin-2, and microvascular dysfunction were increased in severe compared to nonsevere disease, and all correlated with age, independent of parasitemia. In falciparum malaria, angiopoietin-2 increased with age, independent of parasite biomass (histidine-rich protein 2 [HRP2]). Independent risk factors for severe malaria included parasitemia and angiopoietin-2 in knowlesi malaria, and HRP2, angiopoietin-2, and microvascular dysfunction in falciparum malaria. Conclusions Parasite biomass, endothelial activation, and microvascular dysfunction are associated with severe disease in knowlesi malaria and likely contribute to pathogenesis. The association of each of these processes with aging may account for the greater severity of malaria observed in older adults in low-endemic regions.
Collapse
Affiliation(s)
- Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Northern Territory, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Northern Territory, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital.,Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Northern Territory, Australia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Northern Territory, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Northern Territory, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Northern Territory, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital
| |
Collapse
|
39
|
Molony RD, Malawista A, Montgomery RR. Reduced dynamic range of antiviral innate immune responses in aging. Exp Gerontol 2017; 107:130-135. [PMID: 28822811 PMCID: PMC5815956 DOI: 10.1016/j.exger.2017.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/04/2023]
Abstract
The worldwide population aged ≥ 65 years is increasing and the average life span is expected to increase another 10 years by 2050. This extended lifespan is associated with a progressive decline in immune function and a paradoxical state of low-grade, chronic inflammation that may contribute to susceptibility to viral infection, and reduced responses to vaccination. Here we review the effects of aging on innate immune responses to viral pathogens including elements of recognition, signaling, and production of inflammatory mediators. We specifically focus on age-related changes in key pattern recognition receptor signaling pathways, converging on altered cytokine responses, including a notable impairment of antiviral interferon responses. We highlight an emergent change in innate immunity that arises during aging – the dampening of the dynamic range of responses to multiple sources of stimulation – which may underlie reduced efficiency of immune responses in aging. We review the effects of aging on innate antiviral immunity, including recognition, signaling, and cytokine responses. Lower Toll-like receptor expression leads to impaired signaling and responses upon activation of these sensors. Effects of aging on cytosolic nucleic acid sensing receptors and inflammasomes remains incompletely characterized. In aging the dynamic range of innate immunity is compressed, with increased basal activation of many signaling pathways. Interferon production is impaired with age, which may lead to the increased viral susceptibility of older persons.
Collapse
Affiliation(s)
- Ryan D Molony
- Departments of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Anna Malawista
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Ruth R Montgomery
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Human Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
40
|
Ponte EV, Lima A, Almeida PCA, de Jesus JPV, Lima VB, Scichilone N, Souza-Machado A, Cruz ÁA. Age is associated with asthma phenotypes. Respirology 2017; 22:1558-1563. [PMID: 28654167 DOI: 10.1111/resp.13102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The relationship between age and asthma phenotypes is important as population is ageing, asthma is becoming common in older ages and recently developed treatments for asthma are guided by phenotypes. The aim of this study is to evaluate whether age is associated with specific asthma phenotypes. METHODS This is a cross-sectional study. We included subjects with asthma of varied degrees of severity. Subjects underwent spirometry, skin prick test to aeroallergens, answered the Asthma Control Questionnaire and had blood samples collected. We performed binary logistic regression analysis to evaluate whether age is associated with asthma phenotypes. RESULTS We enrolled 868 subjects. In comparison with subjects ≤ 40 years, older subjects had high odds of irreversible airway obstruction (from 41 to 64 years, OR: 1.83 (95% CI: 1.32-2.54); ≥65 years, OR: 3.45 (2.12-5.60)) and severe asthma phenotypes (from 41 to 64 years, OR: 3.23 (2.26-4.62); ≥65 years, OR: 4.55 (2.39-8.67)). Older subjects had low odds of atopic (from 41 to 64 years, OR: 0.56 (0.39-0.79); ≥65 years, OR: 0.47 (0.27-0.84)) and eosinophilic phenotypes (from 41 to 64 years, OR: 0.63 (0.46-0.84); ≥65 years, OR: 0.39 (0.24-0.64)). CONCLUSION Older subjects with asthma have low odds of atopic and eosinophilic phenotypes, whereas they present high odds of irreversible airway obstruction and severe asthma.
Collapse
Affiliation(s)
- Eduardo V Ponte
- Internal Medicine, Jundiaí Medical School, São Paulo, Brazil
| | - Aline Lima
- Center of Excellence in Asthma, Universidade Federal da Bahia, Salvador, Brazil
| | - Paula C A Almeida
- Center of Excellence in Asthma, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Valmar B Lima
- Center of Excellence in Asthma, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Adelmir Souza-Machado
- Center of Excellence in Asthma, Health Institute, Federal University of Bahia, Salvador, Brazil
| | - Álvaro A Cruz
- Center of Excellence in Asthma, Health Institute, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
41
|
Yao Y, Strauss-Albee DM, Zhou JQ, Malawista A, Garcia MN, Murray KO, Blish CA, Montgomery RR. The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection. PLoS One 2017; 12:e0172625. [PMID: 28235099 PMCID: PMC5325267 DOI: 10.1371/journal.pone.0172625] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) typically leads to asymptomatic infection but can cause severe neuroinvasive disease or death, particularly in the elderly. Innate NK cells play a critical role in antiviral defenses, yet their role in human WNV infection is poorly defined. Here we demonstrate that NK cells mount a robust, polyfunctional response to WNV characterized by cytolytic activity, cytokine and chemokine secretion. This is associated with downregulation of activating NK cell receptors and upregulation of NK cell activating ligands for NKG2D. The NK cell response did not differ between young and old WNV-naïve subjects, but a history of symptomatic infection is associated with more IFN-γ producing NK cell subsets and a significant decline in a specific NK cell subset. This NK repertoire skewing could either contribute to or follow heightened immune pathogenesis from WNV infection, and suggests that NK cells could play an important role in WNV infection in humans.
Collapse
Affiliation(s)
- Yi Yao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dara M. Strauss-Albee
- Stanford Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julian Q. Zhou
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Anna Malawista
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Melissa N. Garcia
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kristy O. Murray
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
| | - Catherine A. Blish
- Stanford Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Program on Human Translational Immunology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
42
|
Toll like receptor 3 and viral infections of nervous system. J Neurol Sci 2017; 372:40-48. [DOI: 10.1016/j.jns.2016.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
|
43
|
Montgomery RR. Age-related alterations in immune responses to West Nile virus infection. Clin Exp Immunol 2016; 187:26-34. [PMID: 27612657 DOI: 10.1111/cei.12863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) is the most important causative agent of viral encephalitis worldwide and an important public health concern in the United States due to its high prevalence, severe disease, and the absence of effective treatments. Infection with WNV is mainly asymptomatic, but some individuals develop severe, possibly fatal, neurological disease. Individual host factors play a role in susceptibility to WNV infection, including genetic polymorphisms in key anti-viral immune genes, but age is the most well-defined risk factor for susceptibility to severe disease. Ageing is associated with distinct changes in immune cells and a decline in immune function leading to increased susceptibility to infection and reduced responses to vaccination. WNV is detected by pathogen recognition receptors including Toll-like receptors (TLRs), which show reduced expression and function in ageing. Neutrophils, monocyte/macrophages and dendritic cells, which first recognize and respond to infection, show age-related impairment of many functions relevant to anti-viral responses. Natural killer cells control many viral infections and show age-related changes in phenotype and functional responses. A role for the regulatory receptors Mertk and Axl in blood-brain barrier permeability and in facilitating viral uptake through phospholipid binding may be relevant for susceptibility to WNV, and age-related up-regulation of Axl has been noted previously in human dendritic cells. Understanding the specific immune parameters and mechanisms that influence susceptibility to symptomatic WNV may lead to a better understanding of increased susceptibility in elderly individuals and identify potential avenues for therapeutic approaches: an especially relevant goal, as the world's populating is ageing.
Collapse
Affiliation(s)
- R R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Kovats S, Turner S, Simmons A, Powe T, Chakravarty E, Alberola-Ila J. West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 2016; 186:214-226. [PMID: 27513522 DOI: 10.1111/cei.12850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) infection is a mosquito-borne zoonosis with increasing prevalence in the United States. WNV infection begins in the skin, and the virus replicates initially in keratinocytes and dendritic cells (DCs). In the skin and cutaneous lymph nodes, infected DCs are likely to interact with invariant natural killer T cells (iNKTs). Bidirectional interactions between DCs and iNKTs amplify the innate immune response to viral infections, thus controlling viral load and regulating adaptive immunity. iNKTs are stimulated by CD1d-bound lipid antigens or activated indirectly by inflammatory cytokines. We exposed human monocyte-derived DCs to WNV Kunjin and determined their ability to activate isolated blood iNKTs. DCs became infected as judged by synthesis of viral mRNA and Envelope and NS-1 proteins, but did not undergo significant apoptosis. Infected DCs up-regulated the co-stimulatory molecules CD86 and CD40, but showed decreased expression of CD1d. WNV infection induced DC secretion of type I interferon (IFN), but no or minimal interleukin (IL)-12, IL-23, IL-18 or IL-10. Unexpectedly, we found that the WNV-infected DCs stimulated human iNKTs to up-regulate CD69 and produce low amounts of IL-10, but not proinflammatory cytokines such as IFN-γ or tumour necrosis factor (TNF)-α. Both CD1d and IFNAR blockade partially abrogated this iNKT response, suggesting involvement of a T cell receptor (TCR)-CD1d interaction and type I interferon receptor (IFNAR) signalling. Thus, WNV infection interferes with DC-iNKT interactions by preventing the production of proinflammatory cytokines. iNKTs may be a source of IL-10 observed in human flavivirus infections and initiate an anti-inflammatory innate response that limits adaptive immunity and immune pathology upon WNV infection.
Collapse
Affiliation(s)
- S Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - S Turner
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - A Simmons
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - T Powe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - E Chakravarty
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - J Alberola-Ila
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
45
|
Salimi H, Cain MD, Klein RS. Encephalitic Arboviruses: Emergence, Clinical Presentation, and Neuropathogenesis. Neurotherapeutics 2016; 13:514-34. [PMID: 27220616 PMCID: PMC4965410 DOI: 10.1007/s13311-016-0443-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution, contributing to systemic and neurologic infections in a variety of geographical locations. Arboviruses are transmitted to vertebral hosts during blood feedings by mosquitoes, ticks, biting flies, mites, and nits. While the majority of arboviral infections do not lead to neuroinvasive forms of disease, they are among the most severe infectious risks to the health of the human central nervous system. The neurologic diseases caused by arboviruses include meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and myositis in which virus- and immune-mediated injury may lead to severe, persisting neurologic deficits or death. Here we will review the major families of emerging arboviruses that cause neurologic infections, their neuropathogenesis and host neuroimmunologic responses, and current strategies for treatment and prevention of neurologic infections they cause.
Collapse
Affiliation(s)
- Hamid Salimi
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
46
|
Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 2016; 6:26350. [PMID: 27211830 PMCID: PMC4876452 DOI: 10.1038/srep26350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics.
Collapse
|
47
|
Malawista A, Wang X, Trentalange M, Allore HG, Montgomery RR. Coordinated expression of tyro3, axl, and mer receptors in macrophage ontogeny. ACTA ACUST UNITED AC 2016; 3. [PMID: 27695708 PMCID: PMC5040214 DOI: 10.14800/macrophage.1261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The TAM receptors (Tyro3, Axl, and Mer) are a family of homologous receptor-tyrosine kinases that inhibit Toll-like receptor signaling to regulate downstream pathways and restore homeostasis. TAM triple mutant mice (Tyro3−/−, Axl−/−, Mer−/−) have elevated levels of pro-inflammatory cytokines and are prone to developing lymphoproliferative disorders and autoimmunity. Understanding differential expression of TAM receptors among human subjects is critical to harnessing this pathway for therapeutic interventions. We have quantified changes in TAM expression during the ontogeny of human macrophages using paired samples of monocytes and macrophages to take advantage of characteristic expression within an individual. No significant differences in levels of Tyro3 were found between monocytes and macrophages (flow cytometry: p=0.652, immunoblot: p=0.231, qPCR: p=0.389). Protein levels of Axl were reduced (flow cytometry: p=0.049, immunoblot: p<0.001) when monocytes matured to macrophages. No significant differences in the levels of Axl mRNA transcripts were found (qPCR: p=0.082), however, Tyro3 and Axl were proportionate. The most striking difference was upregulation of expression of Mer with both protein and mRNA being significantly increased when monocytes developed into macrophages (flow cytometry: p<0.001, immunoblot: p<0.001, qPCR: p=0.004). A fuller characterization of TAM receptor expression in macrophage ontogeny informs our understanding of their function and potential therapeutic interventions.
Collapse
Affiliation(s)
- Anna Malawista
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Mark Trentalange
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Heather G Allore
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06519, USA; Program on Human Translational Immunology, Yale University School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
48
|
Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, Solis AG, Bielecki P, Mohanty S, Trentalange M, Homer RJ, Flavell RA, Wagner DD, Montgomery RR, Shaw AC, Staeheli P, Iwasaki A. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 2016; 352:463-6. [PMID: 27102485 PMCID: PMC5465864 DOI: 10.1126/science.aaf3926] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Influenza A virus (IAV) causes up to half a million deaths worldwide annually, 90% of which occur in older adults. We show that IAV-infected monocytes from older humans have impaired antiviral interferon production but retain intact inflammasome responses. To understand the in vivo consequence, we used mice expressing a functional Mx gene encoding a major interferon-induced effector against IAV in humans. In Mx1-intact mice with weakened resistance due to deficiencies in Mavs and Tlr7, we found an elevated respiratory bacterial burden. Notably, mortality in the absence of Mavs and Tlr7 was independent of viral load or MyD88-dependent signaling but dependent on bacterial burden, caspase-1/11, and neutrophil-dependent tissue damage. Therefore, in the context of weakened antiviral resistance, vulnerability to IAV disease is a function of caspase-dependent pathology.
Collapse
Affiliation(s)
- Padmini S Pillai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ryan D Molony
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiping Dong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Iris K Pang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Michal C Tal
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Angel G Solis
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Piotr Bielecki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark Trentalange
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Peter Staeheli
- Institut für Medizinische Mikrobiologie und Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
50
|
Reduced levels of cytosolic DNA sensor AIM2 are associated with impaired cytokine responses in healthy elderly. Exp Gerontol 2016; 78:39-46. [PMID: 26944367 DOI: 10.1016/j.exger.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Human aging is associated with remodeling of the immune system. While most studies on immunosenescence have focused on adaptive immunity, the effects of aging on innate immunity are not well understood. Here, we investigated whether aging affects cytokine responses to a wide range of well-defined pattern recognition receptor (PRR) ligands, such as ligands for Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), retinoic-acid-inducible gene-I like receptors (RLRs) and the cytosolic DNA sensor absent in melanoma 2 (AIM2). METHOD Blood was collected from 16 young (20-39 years) and 18 elderly (60-84 years) healthy participants. Pro-inflammatory cytokine (TNF-α, IL-1β, IL-6, and IL-8) production in a whole blood assay (WBA) after stimulation with TLR ligands (Pam3csk4, poly(I:C), LPS, CpG), CLR ligand (β-glucan), NLR ligand (MDP), RLR ligands (5'ppp-dsDNA and poly(I:C)/lyovec) and the AIM2 ligand (poly(dA:dT) was assessed by ELISA. TLR2 and TLR4 expression by leukocytes and monocytes was determined by flow-cytometry. Expression of AIM2 by peripheral blood mononuclear cells (PBMC) was assessed by qRT-PCR and Western blot. RESULT Cytokine responses to Pam3csk4, poly(I:C) and CpG, β-glucan, MDP, 5'ppp-dsDNA and poly(I:C)/lyovec were comparable between young and old participants. We observed a higher IL-8 response following stimulation of elderly blood samples with the TLR4 ligand LPS, which was associated with higher proportions of TLR4 expressing monocytes. Interestingly, stimulation of whole blood cells with the AIM2 ligand poly(dA:dT) resulted in significantly lower cytokine responses in old participants. Moreover, these lower cytokine responses were associated with lower AIM2 protein expression and activation in PBMC of old participants. CONCLUSION Our findings reveal an age-dependent reduction of AIM2 expression and activation which may explain reduced cytokine responses to the cytosolic DNA mimic poly(dA:dT) in healthy elderly individuals. Reduced AIM2-mediated sensing with age may contribute to increased vulnerability to bacterial or viral infections in the elderly.
Collapse
|