1
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
3
|
Impact of Caveolin-Mediated Endocytosis on the Trafficking of HIV within the Colonic Barrier. J Virol 2022; 96:e0020222. [PMID: 35297667 PMCID: PMC9006927 DOI: 10.1128/jvi.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the United States, most new cases of human immunodeficiency virus (HIV) belong to the at-risk group of gay and bisexual men. Developing therapies to reverse viral latency and prevent spread is paramount for the HIV cure agenda. In gay and bisexual men, a major, yet poorly characterized, route of HIV entry is via transport across the colonic epithelial barrier. While colonic tears and paracellular transport contribute to infection, we hypothesize that HIV entry through the colonic mucosa proceeds via a process known as transcytosis, involving (i) virion binding to the apical surface of the colonic epithelium, (ii) viral endocytosis, (iii) transport of virions across the cell, and (iv) HIV release from the basolateral membrane. Using Caco-2 colonic epithelial cells plated as a polarized monolayer in transwells, we characterized the mechanism of HIV transport. After exposing the monolayer to HIV apically, reverse transcription quantitative PCR (RT-qPCR) of the viral genome present in the basolateral chamber revealed that transport is dose dependent, cooperative, and inefficient, with released virus first detectable at 12 h. Inefficiency may be associated with >50% decline in detectable intracellular virus that correlates temporally with increased association of the virion with lysosomal-associated membrane protein 1 (LAMP-1+) endosomes. Microscopy revealed green fluorescent protein (GFP)-labeled HIV within the confines of the epithelial monolayer, with no virus detectable between cells, suggesting that viral transport is transcellular. Treatment of the monolayer with endocytosis inhibitors, cholesterol reducing agents, and small interfering RNA (siRNA) to caveolin showed that viral endocytosis is mediated by caveolin-coated endosomes contained in lipid rafts. These results indicate that HIV transport across the intestinal epithelial barrier via transcytosis is a viable mechanism for viral spread and a potential therapeutic target. IMPORTANCE Despite the success of combination antiretroviral therapy in suppressing HIV replication and the emergence and effectiveness of PrEP-based prevention strategies, in 2018, 37,968 people in the United States received a new HIV diagnosis, accompanied by 15,820 deaths. While the annual number of new diagnoses decreased 7% from 2014 to 2018, 14% of people with HIV did not know they were infected. Gay and bisexual men accounted for 69% of all HIV diagnoses and 83% of diagnoses among males. Due to the scope of the HIV epidemic, determining and understanding precise routes of infection and the mechanisms of viral spread are paramount to ending the epidemic. Since transcellular transport of HIV across an intact colonic epithelial barrier is poorly understood, our overall goal is to characterize the molecular events involved in HIV transcytosis across the intestinal epithelial cell.
Collapse
|
4
|
Day CJ, Hardison RL, Spillings BL, Poole J, Jurcisek JA, Mak J, Jennings MP, Edwards JL. Complement Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell Barrier: New Insight into HIV Transmission in Women. mBio 2022; 13:e0217721. [PMID: 35012346 PMCID: PMC8749410 DOI: 10.1128/mbio.02177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αMβ2 or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. IMPORTANCE In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.
Collapse
Affiliation(s)
- Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Rachael L. Hardison
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Jessica Poole
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Joseph A. Jurcisek
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Glycoprotein 340's scavenger receptor cysteine-rich domain promotes adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to contact lens polymers. Infect Immun 2021; 90:e0033921. [PMID: 34662210 DOI: 10.1128/iai.00339-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contact lenses are biomaterials worn on the eye to correct refractive errors. Bacterial adhesion and colonization of these lenses results in adverse events such as microbial keratitis. The adsorption of tear proteins to contact lens materials enhances bacterial adhesion. Glycoprotein 340 (Gp340), a tear component, is known to promote microbial colonization in the oral cavity, however, it has not been investigated in any contact lens-related adverse event. Therefore, this study examined the adsorption of Gp340 and its recombinantly expressed scavenger receptor cysteine rich (iSRCR1Gp340) domain on two common contact lens materials, etafilcon A and lotrafilcon B, and the concomitant effects on the adherence of clinical isolates of microbial keratitis causative agents, Pseudomonas aeruginosa (PA6206, PA6294), and Staphylococcus aureus (SA38, USA300). Across all strains and materials, iSRCR1Gp340 enhanced adherence of bacteria in a dose-dependent manner. However, iSRCR1Gp340 did not modulate lysozyme's and lactoferrin's effects on bacterial adhesion to the contact lens. The Gp340 binding surface protein SraP significantly enhanced USA300 binding to iSRCR1Gp340-coated lenses. In addition, iSRCR1Gp340-coated surfaces had significantly diminished biofilms with the SraP mutant (ΔSraP), and with the Sortase A mutant (ΔSrtA), there was a further reduction in biofilms, indicating the likely involvement of additional surface proteins. Finally, the binding affinities between iSRCR1Gp340 and SraP were determined using surface plasmon resonance (SPR), where the complete SraP binding region displayed nanomolar affinity, whereas its smaller fragments adhered with micromolar affinities. This study concludes that Gp340 and its SRCR domains play an important role in bacterial adhesion to the contact lens.
Collapse
|
6
|
Han G, Sinjab A, Hara K, Treekitkarnmongkol W, Brennan P, Chang K, Bogatenkova E, Sanchez-Espiridion B, Behrens C, Solis LM, Gao B, Girard L, Zhang J, Sepesi B, Cascone T, Byers LA, Gibbons DL, Chen J, Moghaddam SJ, Ostrin EJ, Scheet P, Fujimoto J, Shay J, Heymach JV, Minna JD, Dubinett S, Wistuba II, Stevenson CS, Spira AE, Wang L, Kadara H. Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers (Basel) 2021; 13:cancers13061250. [PMID: 33809063 PMCID: PMC7998226 DOI: 10.3390/cancers13061250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The coronavirus disease 2019 (COVID-19) pandemic continues to spread rapidly on a global scale. When presenting with severe respiratory complications, COVID-19 results in markedly high death rates, particularly among patients with comorbidities such as cancer. Motivated by the ongoing global health crisis, we leveraged a growing in-house cohort of pulmonary tissues from lung cancer patients to analyze, at high resolution, the expression of host proteins implicated in the entryway of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into lung epithelial cells. Our results identify key pathways in lung pathobiology and inflammation that offer the potential to identify novel markers and therapeutic targets that can be repurposed for clinical management of COVID-19, particularly among lung cancer patients, a population that represents over half a million individuals in the United States alone. Abstract The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells. The single-cell expression landscape of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung cancer patients remains unknown. We sought to delineate single-cell expression profiles of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung adenocarcinoma (LUAD) patients. We examined the expression levels and cellular distribution of ACE2 and SARS-CoV-2-priming proteases TMPRSS2 and TMPRSS4 in 5 LUADs and 14 matched normal tissues by single-cell RNA-sequencing (scRNA-seq) analysis. scRNA-seq of 186,916 cells revealed epithelial-specific expression of ACE2, TMPRSS2, and TMPRSS4. Analysis of 70,030 LUAD- and normal-derived epithelial cells showed that ACE2 levels were highest in normal alveolar type 2 (AT2) cells and that TMPRSS2 was expressed in 65% of normal AT2 cells. Conversely, the expression of TMPRSS4 was highest and most frequently detected (75%) in lung cells with malignant features. ACE2-positive cells co-expressed genes implicated in lung pathobiology, including COPD-associated HHIP, and the scavengers CD36 and DMBT1. Notably, the viral scavenger DMBT1 was significantly positively correlated with ACE2 expression in AT2 cells. We describe normal and tumor lung epithelial populations that express SARS-CoV-2 receptor and proteases, as well as major host defense genes, thus comprising potential treatment targets for COVID-19 particularly among lung cancer patients.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Kieko Hara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Patrick Brennan
- Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.B.); (E.B.)
| | - Kyle Chang
- Guardant Health, Redwood City, CA 94063, USA;
| | - Elena Bogatenkova
- Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.B.); (E.B.)
| | - Beatriz Sanchez-Espiridion
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Carmen Behrens
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75390, USA; (B.G.); (L.G.); (J.D.M.)
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75390, USA; (B.G.); (L.G.); (J.D.M.)
| | - Jianjun Zhang
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Boris Sepesi
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA;
| | - Tina Cascone
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Lauren A. Byers
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Don L. Gibbons
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (S.J.M.)
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (S.J.M.)
| | - Edwin J. Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA;
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Jerry Shay
- Department of Cell Biology, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - John V. Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75390, USA; (B.G.); (L.G.); (J.D.M.)
| | - Steven Dubinett
- Department of Medicine, The University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | | | - Avrum E. Spira
- Lung Cancer Initiative at Johnson and Johnson, Cambridge, MA 02142, USA; (C.S.S.); (A.E.S.)
- Section of Computational Biomedicine, Boston University, Boston, MA 02215, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence: (L.W.); (H.K.)
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
- Correspondence: (L.W.); (H.K.)
| |
Collapse
|
7
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
8
|
Zarei M, Bose D, Ali Akbari Ghavimi S, Nouri-Vaskeh M, Mohammadi M, Sahebkar A. Potential role of glycoprotein 340 in milder SARS-CoV-2 infection in children. Expert Rev Anti Infect Ther 2021; 19:675-677. [PMID: 33444084 PMCID: PMC7814565 DOI: 10.1080/14787210.2021.1850263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohammad Zarei
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deepanwita Bose
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Soheila Ali Akbari Ghavimi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Masoud Nouri-Vaskeh
- Immunology and Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Mohammadi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
9
|
HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6016278. [PMID: 31885806 PMCID: PMC6915010 DOI: 10.1155/2019/6016278] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of “non-AIDS-defining” malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.
Collapse
|
10
|
Zhang S, Huo X, Zhang Y, Lu X, Xu C, Xu X. The association of PM 2.5 with airway innate antimicrobial activities of salivary agglutinin and surfactant protein D. CHEMOSPHERE 2019; 226:915-923. [PMID: 31509921 DOI: 10.1016/j.chemosphere.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Fine particulate matter ≤2.5 μm (PM2.5) is a prominent global public health risk factor that can cause respiratory infection by downregulating the amounts of antimicrobial proteins and peptides (AMPs). Both salivary agglutinin (SAG) and surfactant protein D (SPD) are important AMPs in respiratory mucosal fluid, providing protection against airway pathogen invasion and infection by inducing microbial aggregation and enhancing pathogen clearance. However, the relationship between PM2.5 and these AMPs is unclear. To better understand the relationship between PM2.5 and airway innate immune defenses, we review the respiratory antimicrobial activities of SAG and SPD, as well as the adverse effects of PM2.5 on airway innate antimicrobial defense. We speculate there exists a dual effect between PM2.5 and respiratory antimicrobial activity, which means that PM2.5 suppresses respiratory antimicrobial activity through downregulating airway AMPs, while airway AMPs accelerate PM2.5 clearance by inducing PM2.5 microbial aggregation. We propose further research on the relationship between PM2.5 and these AMPs.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
11
|
Gonzalez SM, Aguilar-Jimenez W, Su RC, Rugeles MT. Mucosa: Key Interactions Determining Sexual Transmission of the HIV Infection. Front Immunol 2019; 10:144. [PMID: 30787929 PMCID: PMC6373783 DOI: 10.3389/fimmu.2019.00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
In the context of HIV sexual transmission at the genital mucosa, initial interactions between the virus and the mucosal immunity determine the outcome of the exposure. Hence, these interactions have been deeply explored in attempts to undercover potential targets for developing preventative strategies. The knowledge gained has led to propose a hypothetical model for mucosal HIV transmission. Subsequent research studies on this topic further revealed new mechanisms and identified new host-HIV interactions. This review aims at integrating these findings to inform better and update the current model of HIV transmission. At the earliest stage of virus exposure, the epithelial integrity and the presence of antiviral factors are critical in preventing viral entry to the submucosa. However, the virus has been shown to enter to the submucosa in the presence of physical abrasion or via epithelial transmigration using paracellular passage or transcytosis mechanisms. The efficiency of these processes is greater with cell-associated viral inoculums and can be influenced by the presence of viral and immune factors, and by the structure of the exposed epithelium. Once the virus reaches the submucosa, dendritic cells and fibroblasts, as recently described, have been shown in vitro of being capable of facilitating the transfer of viral particles to susceptible cells, leading to viral dissemination, most likely in a trans-infection manner. The presence of activated CD4+ T cells in submucosa increases the probability of infection, where the predominant microbiota could be implicated through the modulation of an inflammatory microenvironment. Other factors such as genital fluids and hormones could also play an essential role in HIV transmission. Here, we review the most recent evidence described for mucosal HIV-transmission contributing with the understanding of this phenomenon.
Collapse
Affiliation(s)
- Sandra M Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,National HIV and Retrovirology Laboratory, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
12
|
Glycoprotein 340 in mucosal immunity and ocular surface. Ocul Surf 2018; 16:282-288. [DOI: 10.1016/j.jtos.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
|
13
|
Aiello A, Giannessi F, Percario ZA, Affabris E. The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 2018; 40:77-89. [PMID: 29588163 DOI: 10.1016/j.cytogfr.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset.
Collapse
|
14
|
HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles. Virology 2017; 515:92-107. [PMID: 29277006 PMCID: PMC5823522 DOI: 10.1016/j.virol.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/11/2023]
Abstract
Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30-40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission.
Collapse
|
15
|
In vitro models for deciphering the mechanisms underlying the sexual transmission of viruses at the mucosal level. Virology 2017; 515:1-10. [PMID: 29220713 DOI: 10.1016/j.virol.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/31/2023]
Abstract
Sexually transmitted viruses infect the genital and colorectal mucosa of the partner exposed to contaminated genital secretions through a wide range of mechanisms, dictated in part by the organization of the mucosa. Because understanding the modes of entry into the organism of viruses transmitted through sexual intercourse is a necessary prerequisite to the design of treatments to block those infections, in vitro modeling of the transmission is essential. The aim of this review is to present the models and methodologies available for the in vitro study of the interactions between viruses and mucosal tissue and for the preclinical evaluation of antiviral compounds, and to point out their advantages and limitations according to the question being studied.
Collapse
|
16
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
17
|
Limeres Posse J, Diz Dios P, Scully C. Infection Transmission by Saliva and the Paradoxical Protective Role of Saliva. SALIVA PROTECTION AND TRANSMISSIBLE DISEASES 2017. [PMCID: PMC7173548 DOI: 10.1016/b978-0-12-813681-2.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Saliva is produced by both major (parotid and submandibular and sublingual) and minor (located in the mouth) glands, with different constituents and properties between the two groups. In the mouth saliva is a colorless, odorless, tasteless, watery liquid containing 99% water and 1% organic and inorganic substances and dissolved gases, mainly oxygen and carbon dioxide. Salivary constituents can be grouped into proteins (e.g., amylase and lysozyme), organic molecules (e.g., urea, lipids, and glucose mainly), and electrolytes (e.g., sodium, calcium, chlorine, and phosphates). Cellular elements such as epithelial cells, leukocytes and various hormones, and vitamins have also been detected. The composition of saliva is modified, depending on factors such as secreted amount, circadian rhythm, duration and nature of stimuli, diet, and medication intake, among others.
Collapse
|
18
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
19
|
Patyka M, Malamud D, Weissman D, Abrams WR, Kurago Z. Periluminal Distribution of HIV-Binding Target Cells and Gp340 in the Oral, Cervical and Sigmoid/Rectal Mucosae: A Mapping Study. PLoS One 2015; 10:e0132942. [PMID: 26172445 PMCID: PMC4501766 DOI: 10.1371/journal.pone.0132942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/21/2015] [Indexed: 12/01/2022] Open
Abstract
Studies have shown that the transmission of HIV is most likely to occur via rectal or vaginal routes, and rarely through oral exposure. However, the mechanisms of virus entry at mucosal surfaces remain incompletely understood. Prophylactic strategies against HIV infection may be attainable once gaps in current knowledge are filled. To address these gaps, we evaluated essentially normal epithelial surfaces and mapped the periluminal distribution of CD4+ HIV target cells, including T cells and antigen-presenting cells, and an HIV-binding molecule gp340 that can be expressed by epithelial cells in secreted and cell-associated forms. Immunohistochemistry for CD4, CD16, CD3, CD1a and gp340 in human oral, rectal/sigmoid and cervical mucosal samples from HIV-negative subjects demonstrated that periluminal HIV target cells were more prevalent at rectal/sigmoid and endocervical surfaces lined by simple columnar epithelium, than at oral and ectocervical surfaces covered by multilayered stratified squamous epithelium (p<0.001). gp340 expression patterns at these sites were also distinct and strong in oral minor salivary gland acini and ducts, including ductal saliva, in individual rectum/sigmoid and endocervix periluminar columnar cells, and in ectocervix squamous cells. Only weak expression was noted in the oral non-ductal squamous epithelium. We conclude that periluminal HIV target cells, together with periluminal epithelial cell-associated gp340 appear to be most accessible for HIV transmission at rectal/sigmoid and endocervical surfaces. Our data help define vulnerable structural features of mucosal sites exposed to HIV.
Collapse
Affiliation(s)
- Mariia Patyka
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Malamud
- NYU College of Dentistry, Department of Basic Sciences, HIV/AIDS Research Program (HARP), New York, New York, United States of America
- NYU School of Medicine, Infectious Disease, New York, New York, United States of America
| | - Drew Weissman
- Medicine (Infectious Disease), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William R. Abrams
- NYU College of Dentistry, Department of Basic Sciences, HIV/AIDS Research Program (HARP), New York, New York, United States of America
| | - Zoya Kurago
- Oral Health and Diagnostic Sciences, College of Dental Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
20
|
Shey MS, Garrett NJ, McKinnon LR, Passmore JAS. The role of dendritic cells in driving genital tract inflammation and HIV transmission risk: are there opportunities to intervene? Innate Immun 2015; 21:99-112. [PMID: 24282122 PMCID: PMC4033703 DOI: 10.1177/1753425913513815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Effective prevention of new HIV infections will require an understanding of the mechanisms involved in HIV acquisition. HIV transmission across the female genital tract is the major mode of new HIV infections in sub-Saharan Africa and involves complex processes, including cell activation, inflammation and recruitment of HIV target cells. Activated CD4(+) T-cells, dendritic cells (DC) and macrophages have been described as targets for HIV at the genital mucosa. Activation of these cells may occur in the presence of sexually-transmitted infections, disturbances of commensal flora and other inflammatory processes. In this review, we discuss causes and consequences of inflammation in the female genital tract, with a focus on DC. We describe the central role these cells may play in facilitating or preventing HIV transmission across the genital mucosa, and in the initial recognition of HIV and other pathogens, allowing activation of an adaptive immune response to infection. We discuss studies that investigate interventions to limit DC activation, inflammation and HIV transmission. This knowledge is essential in the development of novel strategies for effective HIV control, including microbicides and pre-exposure prophylaxis.
Collapse
Affiliation(s)
| | | | | | - Jo-Ann S Passmore
- CAPRISA, Durban, South Africa Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
21
|
Ferreira VH, Dizzell S, Nazli A, Kafka JK, Mueller K, Nguyen PV, Tremblay MJ, Cochrane A, Kaushic C. Medroxyprogesterone Acetate Regulates HIV-1 Uptake and Transcytosis but Not Replication in Primary Genital Epithelial Cells, Resulting in Enhanced T-Cell Infection. J Infect Dis 2014; 211:1745-56. [PMID: 25538276 DOI: 10.1093/infdis/jiu832] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
Although clinical and experimental evidence indicates that female sex hormones and hormonal contraceptives regulate susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, the underlying mechanism remains unknown. Genital epithelial cells (GECs) are the first cells to encounter HIV during sexual transmission and their interaction with HIV may determine the outcome of exposure. This is the first report that HIV uptake by GECs increased significantly in the presence of the hormonal contraceptive medroxyprogesterone acetate (MPA) and progesterone and that uptake occurred primarily via endocytosis. No productive infection was detected, but endocytosed virus was released into apical and basolateral compartments. Significantly higher viral transcytosis was observed in the presence of MPA. In GEC and T-cell cocultures, maximum viral replication in T cells was observed in the presence of MPA, which also broadly upregulated chemokine production by GECs. These results suggest that MPA may play a significant role in regulating susceptibility to HIV.
Collapse
Affiliation(s)
- Victor H Ferreira
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| | - Sara Dizzell
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| | - Aisha Nazli
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| | - Jessica K Kafka
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| | - Kristen Mueller
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| | - Philip V Nguyen
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| | - Michel J Tremblay
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Canada
| | - Alan Cochrane
- Department of Medical Genetics, University of Toronto
| | - Charu Kaushic
- Deptartment of Pathology and Molecular Medicine McMaster Immunology Research Centre, McMaster University, Hamilton
| |
Collapse
|
22
|
Purushotham S, Deivanayagam C. The calcium-induced conformation and glycosylation of scavenger-rich cysteine repeat (SRCR) domains of glycoprotein 340 influence the high affinity interaction with antigen I/II homologs. J Biol Chem 2014; 289:21877-87. [PMID: 24923446 PMCID: PMC4139206 DOI: 10.1074/jbc.m114.565507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.
Collapse
Affiliation(s)
- Sangeetha Purushotham
- From the Department of Vision Sciences/Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400
| | - Champion Deivanayagam
- From the Department of Vision Sciences/Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400
| |
Collapse
|
23
|
Shen R, Richter HE, Smith PD. Interactions between HIV-1 and mucosal cells in the female reproductive tract. Am J Reprod Immunol 2014; 71:608-17. [PMID: 24689653 PMCID: PMC4073589 DOI: 10.1111/aji.12244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Worldwide, the heterosexual route is the prevalent mode of HIV-1 transmission, and the female reproductive tract accounts for approximately 40% of all HIV-1 transmissions. HIV-1 infection in the female reproductive tract involves three major events: entry through the mucosal epithelium, productive infection in subepithelial mononuclear cells, and delivery to lymph nodes to initiate systemic infection. Here, we provide a focused review of the interaction between HIV-1 and mucosal epithelial cells, lymphocytes, macrophages, and dendritic cells in female genital mucosa. Increased understanding of these interactions could illuminate new approaches for interdicting HIV-1 heterosexual transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly E. Richter
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
24
|
Mantri CK, Chen C, Dong X, Goodwin JS, Xie H. Porphyromonas gingivalis-mediated Epithelial Cell Entry of HIV-1. J Dent Res 2014; 93:794-800. [PMID: 24874702 DOI: 10.1177/0022034514537647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022] Open
Abstract
HIV-1 relies on the host's cell machinery to establish a successful infection. Surface receptors, such as CD4, CCR5, and CXCR4 of T cells and macrophages, are essential for membrane fusion of HIV-1, an initiate step in viral entry. However, it is not well defined how HIV-1 infects CD4-negative mucosal epithelial cells. Here we show that there is a specific interaction between HIV-1 and an invasive oral bacterium, Porphyromonas gingivalis. We found that HIV-1 was trapped on the bacterial surface, which led to internalization of HIV-1 virions as the bacteria invaded CD4-negative epithelial cells. Both bacterial and viral DNA was detected in HeLa and TERT-2 cells exposed to the HIV-1-P. gingivalis complexes 2 hr after the initial infection but not in cells exposed to HIV-1 alone. Moreover, epithelial cell entry of HIV-1 was positively correlated with invasive activity of the P. gingivalis strains tested, even when the binding affinities of HIV-1 to these strains were similar. Finally, it was demonstrated that the viral DNA was integrated into the genome of the host epithelial cells. These results reveal a receptor-independent HIV-1 entry into epithelial cells, which may be relevant in HIV transmission in other mucosal epithelia where complex microbial communities can be found.
Collapse
Affiliation(s)
- C K Mantri
- Department of Oral Biology, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - C Chen
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - X Dong
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | - J S Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - H Xie
- Department of Oral Biology, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
25
|
Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol 2014; 71:575-88. [PMID: 24754244 DOI: 10.1111/aji.12250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 01/13/2023] Open
Abstract
The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
26
|
Ferreira VH, Kafka JK, Kaushic C. Influence of common mucosal co-factors on HIV infection in the female genital tract. Am J Reprod Immunol 2014; 71:543-54. [PMID: 24617528 DOI: 10.1111/aji.12221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Women constitute almost half of HIV-infected population globally, and the female genital tract (FGT) accounts for approximately 40% of all new HIV infections worldwide. The FGT is composed of upper and lower parts, distinct in their morphological and functional characteristics. Co-factors in the genital microenvironment, such as presence of hormones, semen, and other sexually transmitted infections, can facilitate or deter HIV infection and play a critical role in determining susceptibility to HIV. In this review, we examine some of these co-factors and their potential influence. Presence of physical and chemical barriers such as epithelial tight junctions, mucus, and anti-microbial peptides can actively block and inhibit viral replication, presenting a significant deterrent to HIV. Upon exposure, HIV and other pathogens first encounter the genital epithelium: cells that express a wide repertoire of pattern recognition receptors that can recognize and directly initiate innate immune responses. These and other interactions in the genital tract can lead to direct and indirect inflammation and enhance the number of local target cells, immune activation, and microbial translocation, all of which promote HIV infection and replication. Better understanding of the dynamics of HIV transmission in the female genital tract would be invaluable for improving the design of prophylactic strategies against HIV.
Collapse
Affiliation(s)
- Victor H Ferreira
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute of Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
27
|
Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S. Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol Rev 2014; 37:762-92. [PMID: 23789590 DOI: 10.1111/1574-6976.12029] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/21/2023] Open
Abstract
The urogenital tract appears to be the only niche of the human body that shows clear differences in microbiota between men and women. The female reproductive tract has special features in terms of immunological organization, an epithelial barrier, microbiota, and influence by sex hormones such as estrogen. While the upper genital tract is regarded as free of microorganisms, the vagina is colonized by bacteria dominated by Lactobacillus species, although their numbers vary considerably during life. Bacterial vaginosis is a common pathology characterized by dysbiosis, which increases the susceptibility for HIV infection and transmission. On the other hand, HIV infections are often characterized by a disturbed vaginal microbiota. The endogenous vaginal microbiota may protect against HIV by direct production of antiviral compounds, through blocking of adhesion and transmission by ligands such as lectins, and/or by stimulation of immune responses. The potential role of probiotics in the prevention of HIV infections and associated symptoms, by introducing them to the vaginal and gastrointestinal tract (GIT), is also discussed. Of note, the GIT is a site of considerable HIV replication and CD4(+) T-cell destruction, resulting in both local and systemic inflammation. Finally, genetically engineered lactobacilli show promise as new microbicidal agents against HIV.
Collapse
Affiliation(s)
- Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | | | | | | | | |
Collapse
|
28
|
Gupta S, Gach JS, Becerra JC, Phan TB, Pudney J, Moldoveanu Z, Joseph SB, Landucci G, Supnet MJ, Ping LH, Corti D, Moldt B, Hel Z, Lanzavecchia A, Ruprecht RM, Burton DR, Mestecky J, Anderson DJ, Forthal DN. The Neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog 2013; 9:e1003776. [PMID: 24278022 PMCID: PMC3836734 DOI: 10.1371/journal.ppat.1003776] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/04/2013] [Indexed: 11/30/2022] Open
Abstract
The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure. HIV-1 causes a sexually transmitted disease. However, the mechanisms employed by the virus to cross genital tract tissue and establish infection are uncertain. Since cervicovaginal fluid is acidic and HIV-1 in cervicovaginal fluid is likely coated with antibodies, we explored the effect of low pH and HIV-1-specific antibodies on transcytosis, the movement of HIV-1 across tight-junctioned epithelial cells. We found that the combination of HIV-1-specific antibodies and low pH enhanced transcytosis as much as 20-fold. Virus that underwent transcytosis under these conditions was infectious, and infectivity was highly influenced by whether or not the antibody neutralized the virus. We observed enhanced transcytosis using antibody from cervicovaginal and seminal fluids and using transmitted/founder strains of HIV-1. We also found that the enhanced transcytosis was due to the Fc neonatal receptor (FcRn), which binds immune complexes at acidic pH and releases them at neutral pH. Finally, staining of human tissue revealed abundant FcRn expression on columnar epithelial cells of penile urethra and endocervix. Our findings reveal a novel mechanism wherein HIV-1 may facilitate its own transmission by usurping the antibody response directed against itself. These results have important implications for HIV vaccine development and for understanding the earliest events in HIV transmission.
Collapse
Affiliation(s)
- Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Johannes S. Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Juan C. Becerra
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Tran B. Phan
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Jeffrey Pudney
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Medalyn Jude Supnet
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Li-Hua Ping
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Davide Corti
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Humabs BioMed SA, Bellinzona, Switzerland
| | - Brian Moldt
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Ruth M. Ruprecht
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Institute of Immunology and Microbiology, First School of Medicine, Charles University, Prague, Czech Republic
| | - Deborah J. Anderson
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Barber C, Weissman D, Barnhart K, Dalvi M, Abrams WR, Malamud D. An electrochemiluminescence assay for gp340 (DMBT1). Anal Biochem 2013; 440:78-80. [PMID: 23727557 DOI: 10.1016/j.ab.2013.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022]
Abstract
Gp340 is a member of the scavenger receptor cysteine-rich family of innate immune molecules and also functions as a tumor suppressor. This study describes a picogram-level assay using electrochemiluminescence technology on the MesoScale Discovery platform. Antibodies were evaluated and the best pair was used to assay whole-mouth stimulated saliva and cervical/vaginal lavage. The assay was tested using specimens obtained from healthy volunteers to determine if gp340 concentration in saliva correlates with levels in vaginal lavage fluid. Interestingly, no correlation was determined between gp340 content in these two fluids.
Collapse
Affiliation(s)
- Cheryl Barber
- Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
30
|
Rodriguez-Garcia M, Patel MV, Wira CR. Innate and adaptive anti-HIV immune responses in the female reproductive tract. J Reprod Immunol 2013; 97:74-84. [PMID: 23432874 PMCID: PMC3581821 DOI: 10.1016/j.jri.2012.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 01/17/2023]
Abstract
The mucosal surface of the female reproductive tract (FRT) is the primary site of transmission for a plethora of sexually transmitted infections, including human immunodeficiency virus (HIV), that represent a significant burden upon womens' health worldwide. However, fundamental aspects of innate and adaptive immune protection against HIV infection in the FRT are poorly understood. The FRT immune system is regulated by the cyclical changes of the sex hormones estradiol and progesterone across the menstrual cycle, which as we have hypothesized, leads to the creation of a window of vulnerability during the secretory stage of the menstrual cycle, when the risk of HIV transmission is increased. The goal of this review is to summarize the multiple levels of protection against HIV infection in the FRT, the contribution of different cell types including epithelial cells, macrophages, T cells, and dendritic cells to this, and their regulation by estradiol and progesterone. Understanding the unique immune environment in the FRT will allow for the potential development of novel therapeutic interventions such as vaccines and microbicides that may reduce or prevent HIV transmission in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
31
|
Sim WH, Wagner J, Cameron DJ, Catto‐Smith AG, Bishop RF, Kirkwood CD. Expression profile of genes involved in pathogenesis of pediatric Crohn's disease. J Gastroenterol Hepatol 2012; 27:1083-93. [PMID: 22098497 PMCID: PMC7167032 DOI: 10.1111/j.1440-1746.2011.06973.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Expression profiling of genes specific to pediatric Crohn's Disease (CD) patients was performed to elucidate the molecular mechanisms underlying disease cause and pathogenesis at disease onset. METHODS We used suppressive subtractive hybridization (SSH) and differential screening analysis to profile the mRNA expression patterns of children with CD and age- and sex-matched controls without inflammatory bowel disease (IBD). RESULTS Sequence analysis of 1000 clones enriched by SSH identified 75 functionally annotated human genes, represented by 430 clones. The 75 genes have potential involvement in gene networks, such as antigen presentation, inflammation, infection mechanism, connective tissue development, cell cycle and cancer. Twenty-eight genes were previously described in association with CD, while 47 were new genes not previously reported in the context of IBD. Additionally, 29 of the 75 genes have been previously implicated in bacterial and viral infections. Quantitative real-time reverse transcription polymerase chain reaction performed on ileal-derived RNA from 13 CD and nine non-IBD patients confirmed the upregulation of extracellular matrix gene MMP2 (P = 0.001), and cell proliferation gene REG1A (P = 0.063) in our pediatric CD cohort. CONCLUSION The retrieval of 28 genes previously reported in association with adult CD emphasizes the importance of these genes in the pediatric setting. The observed upregulation of REG1A and MMP2, and their known impact on cell proliferation and extracellular matrix remodeling, agrees with the clinical behavior of the disease. Moreover, the expressions of bacterial- and virus-related genes in our CD-patient tissues support the concept that microbial agents are important in the etiopathogenesis of CD.
Collapse
Affiliation(s)
- Winnie H Sim
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Josef Wagner
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Donald J Cameron
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anthony G Catto‐Smith
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ruth F Bishop
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| |
Collapse
|
32
|
Differential transmission of HIV traversing fetal oral/intestinal epithelia and adult oral epithelia. J Virol 2011; 86:2556-70. [PMID: 22205732 DOI: 10.1128/jvi.06578-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While human immunodeficiency virus (HIV) transmission through the adult oral route is rare, mother-to-child transmission (MTCT) through the neonatal/infant oral and/or gastrointestinal route is common. To study the mechanisms of cell-free and cell-associated HIV transmission across adult oral and neonatal/infant oral/intestinal epithelia, we established ex vivo organ tissue model systems of adult and fetal origin. Given the similarity of neonatal and fetal oral epithelia with respect to epithelial stratification and density of HIV-susceptible immune cells, we used fetal oral the epithelium as a model for neonatal/infant oral epithelium. We found that cell-free HIV traversed fetal oral and intestinal epithelia and infected HIV-susceptible CD4(+) T lymphocytes, Langerhans/dendritic cells, and macrophages. To study the penetration of cell-associated virus into fetal oral and intestinal epithelia, HIV-infected macrophages and lymphocytes were added to the surfaces of fetal oral and intestinal epithelia. HIV-infected macrophages, but not lymphocytes, transmigrated across fetal oral epithelia. HIV-infected macrophages and, to a lesser extent, lymphocytes transmigrated across fetal intestinal epithelia. In contrast to the fetal oral/intestinal epithelia, cell-free HIV transmigration through adult oral epithelia was inefficient and virions did not infect intraepithelial and subepithelial HIV-susceptible cells. In addition, HIV-infected macrophages and lymphocytes did not transmigrate through intact adult oral epithelia. Transmigration of cell-free and cell-associated HIV across the fetal oral/intestinal mucosal epithelium may serve as an initial mechanism for HIV MTCT.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response can influence mucosal transmission of HIV-1. RECENT FINDINGS A large array of cell types reside at the mucosal surface ranging from Langerhans cells, dendritic cells, macrophages as well as CD4⁺ lymphocytes, all of which interact with the virus in a unique and different way and which can contribute to risk of HIV-1 transmission. Numerous factors present in bodily secretions as well as the carrier fluids of HIV-1 (breast milk, vaginal secretions, semen and intestinal mucus) can influence transmission and early virus replication. These range from cytokines, chemokines, small peptides, glycoproteins as well as an array of host intracellular molecules which can influence viral uncoating, reverse transcription as well as egress from the infected cell. SUMMARY Better understanding the cellular mechanisms of HIV-1 transmission and how different host factor can influence infection will aide in the future development of vaccines, microbicides, and therapies.
Collapse
|
34
|
Friedrich BM, Dziuba N, Li G, Endsley MA, Murray JL, Ferguson MR. Host factors mediating HIV-1 replication. Virus Res 2011; 161:101-14. [PMID: 21871504 DOI: 10.1016/j.virusres.2011.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Human immunodeficiency virus type 1(HIV-1) infection is the leading cause of death worldwide in adults attributable to infectious diseases. Although the majority of infections are in sub-Saharan Africa and Southeast Asia, HIV-1 is also a major health concern in most countries throughout the globe. While current antiretroviral treatments are generally effective, particularly in combination therapy, limitations exist due to drug resistance occurring among the drug classes. Traditionally, HIV-1 drugs have targeted viral proteins, which are mutable targets. As cellular genes mutate relatively infrequently, host proteins may prove to be more durable targets than viral proteins. HIV-1 replication is dependent upon cellular proteins that perform essential roles during the viral life cycle. Maraviroc is the first FDA-approved antiretroviral drug to target a cellular factor, HIV-1 coreceptor CCR5, and serves to intercept viral-host protein-protein interactions mediating entry. Recent large-scale siRNA and shRNA screens have revealed over 1000 candidate host factors that potentially support HIV-1 replication, and have implicated new pathways in the viral life cycle. These host proteins and cellular pathways may represent important targets for future therapeutic discoveries. This review discusses critical cellular factors that facilitate the successive steps in HIV-1 replication.
Collapse
Affiliation(s)
- Brian M Friedrich
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0435, United States.
| | | | | | | | | | | |
Collapse
|
35
|
Hansen PL, Blaich S, End C, Schmidt S, Moeller JB, Holmskov U, Mollenhauer J. The pattern recognition molecule deleted in malignant brain tumors 1 (DMBT1) and synthetic mimics inhibit liposomal nucleic acid delivery. Chem Commun (Camb) 2011; 47:188-90. [PMID: 20830348 DOI: 10.1039/c0cc02186e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liposomal nucleic acid delivery is a preferred option for therapeutic settings. The cellular pattern recognition molecule DMBT1, secreted at high levels in various diseases, and synthetic mimics efficiently inhibit liposomal nucleic acid delivery to human cells. These findings may have relevance for therapeutic nucleic acid delivery strategies.
Collapse
Affiliation(s)
- Pernille Lund Hansen
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Madsen J, Mollenhauer J, Holmskov U. Review: Gp-340/DMBT1 in mucosal innate immunity. Innate Immun 2010; 16:160-7. [PMID: 20418254 DOI: 10.1177/1753425910368447] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deleted in Malignant Brain Tumour 1 (DMBT1) is a gene that encodes alternatively spliced proteins involved in mucosal innate immunity. It also encodes a glycoprotein with a molecular mass of 340 kDa, and is referred to as gp-340 (DMBT1(gp340)) and salivary agglutinin (DMBT1(SAG)). DMBT1(gp340) is secreted into broncho-alveolar surface lining fluid whereas DMBT(SAG) is present in the saliva. The two molecules were shown to be identical and both interact with and agglutinate several Gram-negative and Gram-positive bacteria including Streptococcus mutans, a bacterium responsible for caries in the oral cavity. DMBT1(gp340) interacts with surfactant proteins A and D (SP-D). DMBT1(gp340) and SP-D can individually and together interact and agglutinate influenza A virus. DMBT1(gp340) also binds to HIV-1 and facilitates transcytosis of the virus into epithelial cells. DMBT1 binds to a variety of other host proteins, including serum and secretory IgA, C1q, lactoferrin, MUC5B and trefoil factor 2 (TFF2), all molecules with involvement in innate immunity and/or wound-healing processes. Recent generation of Dmbt1-deficient mice has provided the research field of DMBT1 with a model that allows research to progress from in vitro studies to in vivo functional studies of the multifunctional proteins encoded by the DMBT1 gene.
Collapse
Affiliation(s)
- Jens Madsen
- University of Southampton, Southampton General Hospital, UK.
| | | | | |
Collapse
|
37
|
Kaushic C, Ferreira VH, Kafka JK, Nazli A. HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol 2010; 63:566-75. [PMID: 20384619 DOI: 10.1111/j.1600-0897.2010.00843.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Women acquire HIV infections predominantly at the genital mucosa through heterosexual transmission. Therefore, the immune milieu at female genital surfaces is a critical determinant of HIV susceptibility. In this review, we recapitulate the evidence suggesting that several distinctive innate immune mechanisms in the female genital tract (FGT) serve to significantly deter or facilitate HIV-1 infection. Epithelial cells lining the FGT play a key role in forming a primary barrier to HIV entry. These cells express Toll-like receptors and other receptors that recognize and respond directly to pathogens, including HIV-1. In addition, innate biological factors produced by epithelial and other cells in the FGT have anti-HIV activity. Female sex hormones, co-infection with other pathogens and components in semen may also exacerbate or down-modulate HIV transmission. A combination of innate and adaptive immune factors and their interactions with the local microenvironment determine the outcome of HIV transmission. Improving our understanding of the female genital microenvironment will be useful in developing treatments that augment and sustain protective immune responses in the genital mucosa, such as microbicides and vaccines, and will provide greater insight into viral pathogenesis in the FGT.
Collapse
Affiliation(s)
- Charu Kaushic
- Center For Gene Therapeutics, Michael G. DeGroote Institute of Infectious Diseases Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
38
|
|
39
|
|