1
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Carr DJJ, Filiberti A, Gmyrek GB. Complement Suppresses the Initial Type 1 Interferon Response to Ocular Herpes Simplex Virus Type 1 Infection in Mice. Pathogens 2024; 13:74. [PMID: 38251381 PMCID: PMC10820508 DOI: 10.3390/pathogens13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The complement system (CS) contributes to the initial containment of viral and bacterial pathogens and clearance of dying cells in circulation. We previously reported mice deficient in complement component 3 (C3KO mice) were more sensitive than wild-type (WT) mice to ocular HSV-1 infection, as measured by a reduction in cumulative survival and elevated viral titers in the nervous system but not the cornea between days three and seven post infection (pi). The present study was undertaken to determine if complement deficiency impacted virus replication and associated changes in inflammation at earlier time points in the cornea. C3KO mice were found to possess significantly (p < 0.05) less infectious virus in the cornea at 24 h pi that corresponded with a decrease in HSV-1 lytic gene expression at 12 and 24 h pi compared to WT animals. Flow cytometry acquisition found no differences in the myeloid cell populations residing in the cornea including total macrophage and neutrophil populations at 24 h pi with minimal infiltrating cell populations detected at the 12 h pi time point. Analysis of cytokine and chemokine content in the cornea measured at 12 and 24 h pi revealed that only CCL3 (MIP-1α) was found to be different between WT and C3KO mice with >2-fold increased levels (p < 0.05, ANOVA and Tukey's post hoc t-test) in the cornea of WT mice at 12 h pi. C3KO mouse resistance to HSV-1 infection at the early time points correlated with a significant increase in type I interferon (IFN) gene expression including IFN-α1 and IFN-β and downstream effector genes including tetherin and RNase L (p < 0.05, Mann-Whitney rank order test). These results suggest early activation of the CS interferes with the induction of the type I IFN response and leads to a transient increase in virus replication following corneal HSV-1 infection.
Collapse
Affiliation(s)
- Daniel J. J. Carr
- Department of Ophthalmology, Microbiology, and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| |
Collapse
|
3
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
4
|
Li Q, Wong HL, Ip YL, Chu WY, Li MS, Saha C, Shih KC, Chan YK. Current microfluidic platforms for reverse engineering of cornea. Mater Today Bio 2023; 20:100634. [PMID: 37139464 PMCID: PMC10149412 DOI: 10.1016/j.mtbio.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
According to the World Health Organization, corneal blindness constitutes 5.1% of global blindness population. Surgical outcomes have been improved significantly in the treatment of corneal blindness. However, corneal transplantation is limited by global shortage of donor tissue, prompting researchers to explore alternative therapies such as novel ocular pharmaceutics to delay corneal disease progression. Animal models are commonly adopted for investigating pharmacokinetics of ocular drugs. However, this approach is limited by physiological differences in the eye between animals and human, ethical issues and poor bench-to-bedside translatability. Cornea-on-a-chip (CoC) microfluidic platforms have gained great attention as one of the advanced in vitro strategies for constructing physiologically representative corneal models. With significant improvements in tissue engineering technology, CoC integrates corneal cells with microfluidics to recapitulate human corneal microenvironment for the study of corneal pathophysiological changes and evaluation of ocular drugs. Such model, in complement to animal studies, can potentially accelerate translational research, in particular the pre-clinical screening of ophthalmic medication, driving clinical treatment advancement for corneal diseases. This review provides an overview of engineered CoC platforms with respect to their merits, applications, and technical challenges. Emerging directions in CoC technology are also proposed for further investigations, to accentuate preclinical obstacles in corneal research.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Ho Lam Wong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yan Lam Ip
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Wang Yee Chu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Man Shek Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Chinmoy Saha
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Kendrick Co Shih
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yau Kei Chan
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
5
|
Vereertbrugghen A, Pizzano M, Sabbione F, Keitelman IA, Shiromizu CM, Aguilar DV, Fuentes F, de Paiva CS, Giordano M, Trevani A, Galletti JG. An ocular Th1 immune response promotes corneal nerve damage independently of the development of corneal epitheliopathy. J Neuroinflammation 2023; 20:120. [PMID: 37217914 PMCID: PMC10201717 DOI: 10.1186/s12974-023-02800-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene Angelica Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mirta Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Posarelli M, Chirapapaisan C, Muller R, Abbouda A, Pondelis N, Cruzat A, Cavalcanti BM, Cox SM, Jamali A, Pavan-Langston D, Hamrah P. Corneal nerve regeneration is affected by scar location in herpes simplex keratitis: A longitudinal in vivo confocal microscopy study. Ocul Surf 2023; 28:42-52. [PMID: 36646165 DOI: 10.1016/j.jtos.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess the effect of corneal scar location on corneal nerve regeneration in patients with herpes simplex virus (HSV) keratitis in their affected and contralateral eyes over a 1-year period by in vivo confocal microscopy (IVCM), and to correlate these findings to corneal sensation measured by Cochet-Bonnet Esthesiometer. METHODS Prospective, longitudinal, case-control study. Bilateral corneal nerve density and corneal sensation were analyzed centrally and peripherally in 24 healthy controls and 23 patients with unilateral HSV-related corneal scars using IVCM. RESULTS In the central scar (CS) group, total nerve density in the central cornea remained significantly lower compared to controls at follow-up (11.05 ± 1.97mm/mm2, p < 0.001), and no significant nerve regeneration was observed (p = 0.090). At follow-up, total nerve density was not significantly different from controls in the central and peripheral cornea of the peripheral scar (PS) group (all p > 0.05), but significant nerve regeneration was observed in central corneas (16.39 ± 2.39mm/mm2, p = 0.007) compared to baseline. In contralateral eyes, no significant corneal nerve regeneration was observed in central or peripheral corneas of patients with central scars or peripheral scars at 1-year follow-up, compared to baseline (p > 0.05). There was a positive correlation between corneal nerve density and sensation in both central (R = 0.53, p < 0.0001) and peripheral corneas (R = 0.27, p = 0.0004). In the CS group, the corneal sensitivity was <4 cm in 4 (30.8%) and 7 (53.8%) patients in the central and peripheral corneas at baseline, and in 5 (38.5%) and 2 subjects (15.4%) at follow-up, whereas in the PS group only 1 patient (10%) showed a corneal sensation < 4 cm in the central cornea at baseline, and only 1 (10.0%), 3 (30.0%) and 1 (10.0%) patients at follow-up in the central, affected and opposite area of the cornea, respectively. CONCLUSION The location of HSV scarring in the cornea affects the level of corneal nerve regeneration. Eyes with central corneal scar have a diminished capacity to regenerate nerves in central cornea, show a more severe reduction in corneal sensation in the central and peripheral corneas that persist at follow-up, and have a reduced capability to restore the corneal sensitivity above the cut-off of 4 cm. Thus, clinicians should be aware that CS patients would benefit from closer monitoring for potential complications associated with neurotrophic keratopathy, as they have a lower likelihood for nerve regeneration.
Collapse
Affiliation(s)
- Matteo Posarelli
- Center for Translational Ocular Immunology, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chareenun Chirapapaisan
- Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rodrigo Muller
- Center for Translational Ocular Immunology, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Abbouda
- Center for Translational Ocular Immunology, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | | | - Andrea Cruzat
- Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Arsia Jamali
- Center for Translational Ocular Immunology, USA; Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Deborah Pavan-Langston
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Filiberti A, Gmyrek GB, Berube AN, Carr DJJ. Osteopontin contributes to virus resistance associated with type I IFN expression, activation of downstream ifn-inducible effector genes, and CCR2 +CD115 +CD206 + macrophage infiltration following ocular HSV-1 infection of mice. Front Immunol 2023; 13:1028341. [PMID: 36685562 PMCID: PMC9846535 DOI: 10.3389/fimmu.2022.1028341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Amanda N. Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia. Curr Top Microbiol Immunol 2022; 438:189-221. [PMID: 34524508 DOI: 10.1007/82_2021_240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.
Collapse
|
9
|
Wang S, Jaggi U, Ghiasi H. Knockout of signal peptide peptidase in the eye reduces HSV-1 replication and eye disease in ocularly infected mice. PLoS Pathog 2022; 18:e1010898. [PMID: 36215312 PMCID: PMC9584536 DOI: 10.1371/journal.ppat.1010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
We previously reported that knocking out signal peptide peptidase (SPP), a glycoprotein K (gK) binding partner, in mouse peripheral sensory neurons reduced latency-reactivation in infected mice without affecting primary virus replication or eye disease. Since virus replication in the eye plays an essential role in eye disease, we generated a conditional knockout mouse lacking SPP expression in the eye by crossing Pax6 (paired box 6)-Cre mice that have intact Pax6 expression with SPPflox/flox mice. Significantly less SPP protein expression was detected in the eyes of Pax6-SPP-/- mice than in WT control mice. HSV-1 replication in the eyes of Pax6-SPP-/- mice was significantly lower than in WT control mice. Levels of gB, gK, and ICP0 transcripts in corneas, but not trigeminal ganglia (TG), of Pax6-SPP-/- infected mice were also significantly lower than in WT mice. Corneal scarring and angiogenesis were significantly lower in Pax6-SPP-/- mice than in WT control mice, while corneal sensitivity was significantly higher in Pax6-SPP-/- mice compared with WT control mice. During acute viral infection, absence of SPP in the eye did not affect CD4 expression but did affect CD8α and IFNγ expression in the eye. However, in the absence of SPP, latency-reactivation was similar in Pax6-SPP-/- and WT control groups. Overall, our results showed that deleting SPP expression in the eyes reduced primary virus replication in the eyes, reduced CD8α and IFNγ mRNA expression, reduced eye disease and reduced angiogenesis but did not alter corneal sensitivity or latency reactivation to HSV-1 infection. Thus, blocking gK binding to SPP in the eye may have therapeutic potential by reducing both virus replication in the eye and eye disease associated with virus replication.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Gmyrek GB, Berube AN, Sjoelund VH, Carr DJJ. HSV-1 0∆NLS vaccine elicits a robust B lymphocyte response and preserves vision without HSV-1 glycoprotein M or thymidine kinase recognition. Sci Rep 2022; 12:15920. [PMID: 36151255 PMCID: PMC9508094 DOI: 10.1038/s41598-022-20180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Effective experimental prophylactic vaccines against viral pathogens such as herpes simplex virus type 1 (HSV-1) have been shown to protect the host through T and/or B lymphocyte-driven responses. Previously, we found a live-attenuated HSV-1 mutant, 0ΔNLS used as a prophylactic vaccine, provided significant protection against subsequent ocular HSV-1 challenge aligned with a robust neutralizing antibody response. Yet, how the virus mutant elicited the humoral immune response relative to parental virus was unknown. Herein, we present the characterization of B cell subsets in vaccinated mice at times after primary vaccination and following boost compared to the parental virus, termed GFP105. We found that 0∆NLS-vaccinated mice possessed more CD4+ follicular helper T (TFH) cells, germinal B cells and class-switched B cells within the first 7 days post-vaccination. Moreover, 0∆NLS vaccination resulted in an increase in plasmablasts and plasma cells expressing amino-acid transporter CD98 along with an elevated titer of HSV-1-specific antibody compared to GFP105-vaccinated animals. Furthermore, O∆NLS-vaccine-induced CD4+ (TFH) cells produced significantly more IL-21 compared to mice immunized with the parental HSV-1 strain. In contrast, there were no differences in the number of regulatory B cells comparing the two groups of immunized mice. In comparing sera recognition of HSV-1-encoded proteins, it was noted antiserum from GFP105-vaccinated mice immunoprecipitated HSV-1 thymidine kinase (TK) and glycoprotein M (gM) whereas sera from 0∆NLS-immunized mice did not even though both groups of vaccinated mice displayed similar neutralizing antibody titers to HSV-1 and were highly resistant to ocular HSV-1 challenge. Collectively, the results suggest (1) the live-attenuated HSV-1 mutant 0∆NLS elicits a robust B cell response that drives select B cell responses greater than the parental HSV-1 and (2) HSV-1 TK and gM are likely expendable components in efficacy of a humoral response to ocular HSV-1 infection.
Collapse
Affiliation(s)
- Grzegorz B. Gmyrek
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA
| | - Amanda N. Berube
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA
| | - Virginie H. Sjoelund
- grid.266902.90000 0001 2179 3618Laboratory for Molecular Biology and Cytometry Research, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Daniel J. J. Carr
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA ,grid.266902.90000 0001 2179 3618Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
11
|
Cheng J, Wang Q, Hu Y, Mou T, Wang J, Wang L, Zhang Y, Wang T, Li Q. Understanding global changes of the mouse brain proteome after vaginal infection with HSV-2 using a label-free shotgun approach. Front Cell Infect Microbiol 2022; 12:942334. [PMID: 36061859 PMCID: PMC9433710 DOI: 10.3389/fcimb.2022.942334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a common human pathogen that establishes lifelong latency in neurons of the nervous system. The number of severe central nervous system infections caused by the virus has increased recently. However, the pathogenesis of HSV-2 infection in the nervous system is not fully understood. Here, we demonstrated global proteomic changes in the brain tissue in BALB/c mice vaginally infected with HSV-2. Data are available via ProteomeXchange with identifier PXD034186. A total of 249 differentially expressed proteins were identified in infected brain tissue. The GO and KEGG enrichment analysis of these proteins indicated that they were mainly involved in the regulation of synapse formation and synaptic excitability. In addition, genes affecting autophagy, the development of other neurodegenerative diseases, and signaling pathways relevant to other neurologic diseases were identified. Additional experiments, comparing the brain tissue of asymptomatic and symptomatic mice showed a differential expression of proteins involved in synapse formation and synaptic transmission. Others were involved in autophagy, addiction, and signaling pathways of other neurologic diseases. These results suggest that changes in synaptic structure and function, as well as autophagy, may be related to the development of neurologic abnormalities that follow HSV-2 infection. We also identified a protein GluN2A encoded by Grin2a was continuously expressed at high levels after infection. We propose that GluN2A may be a key molecule in the pathogenesis of HSV-2-induced neurologic diseases.
Collapse
Affiliation(s)
- Jishuai Cheng
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Qingzhen Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yiwen Hu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Tangwei Mou
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Tinghua Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
12
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
13
|
Wu M, Downie LE, Hill LJ, Chinnery HR. The effect of topical decorin on temporal changes to corneal immune cells after epithelial abrasion. J Neuroinflammation 2022; 19:90. [PMID: 35414012 PMCID: PMC9006562 DOI: 10.1186/s12974-022-02444-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Corneal immune cells interact with corneal sensory nerves during both homeostasis and inflammation. This study sought to evaluate temporal changes to corneal immune cell density in a mouse model of epithelial abrasion and nerve injury, and to investigate the immunomodulatory effects of topical decorin, which we have shown previously to promote corneal nerve regeneration. METHODS Bilateral corneal epithelial abrasions (2 mm) were performed on C57BL/6J mice. Topical decorin or saline eye drops were applied three times daily for 12 h, 24 h, 3 days or 5 days. Optical coherence tomography imaging was performed to measure the abrasion area. The densities of corneal sensory nerves (β-tubulin III) and immune cells, including dendritic cells (DCs; CD11c+), macrophages (Iba-1+) and neutrophils (NIMP-R14+) were measured. Cx3cr1gfp/gfp mice that spontaneously lack resident corneal intraepithelial DCs were used to investigate the specific contribution of epithelial DCs. Neuropeptide and cytokine gene expression was evaluated using qRT-PCR at 12 h post-injury. RESULTS In decorin-treated corneas, higher intraepithelial DC densities and lower neutrophil densities were observed at 24 h after injury, compared to saline controls. At 12 h post-injury, topical decorin application was associated with greater re-epithelialisation. At 5 days post-injury, corneal stromal macrophage density in the decorin-treated and contralateral eyes was lower, and nerve density was higher, compared to eyes treated with saline only. Lower expression of transforming growth factor beta (TGF-β) and higher expression of CSPG4 mRNA was detected in corneas treated with topical decorin. There was no difference in corneal neutrophil density in Cx3cr1gfp/gfp mice treated with or without decorin at 12 h. CONCLUSIONS Topical decorin regulates immune cell dynamics after corneal injury, by inhibiting neutrophils and recruiting intraepithelial DCs during the acute phase (< 24 h), and inhibiting macrophage density at the study endpoint (5 days). These immunomodulatory effects were associated with faster re-epithelialisation and likely contribute to promoting sensory nerve regeneration. The findings suggest a potential interaction between DCs and neutrophils with topical decorin treatment, as the decorin-induced neutrophil inhibition was absent in Cx3cr1gfp/gfp mice that lack corneal epithelial DCs. TGF-β and CSPG4 proteoglycan likely regulate decorin-mediated innate immune cell responses and nerve regeneration after injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Tripartite-Motif 21 (TRIM21) Deficiency Results in a Modest Loss of Herpes Simplex Virus (HSV)-1 Surveillance in the Trigeminal Ganglia Following Cornea Infection. Viruses 2022; 14:v14030589. [PMID: 35336995 PMCID: PMC8951137 DOI: 10.3390/v14030589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Tripartite-motif 21 (TRIM21) is thought to regulate the type I interferon (IFN) response to virus pathogens and serve as a cytosolic Fc receptor for immunoglobulin. Since herpes simplex virus (HSV)-1 is sensitive to type I IFN and neutralizing antibody, we investigated the role of TRIM21 in response to ocular HSV-1 infection in mice. In comparison to wild type (WT) mice, TRIM21 deficient (TRIM21 KO) mice were found to be no more susceptible to ocular HSV-1 infection than WT animals, in terms of infectious virus recovered in the cornea. Similar pathology, in terms of neovascularization, opacity, and loss of peripheral vision function, was observed in both WT and TRIM21 KO mice. However, TRIM21 KO mice did possess a significant increase in infectious virus recovered in the trigeminal ganglia, in comparison to the WT animals. The increased susceptibility was not due to changes in HSV-1-specific CD4+ or CD8+ T cell numbers or functional capabilities, or in changes in type I IFN or IFN-inducible gene expression. In summary, the absence of TRIM21 results in a modest, but significant, increase in HSV-1 titers recovered from the TG of TRIM21 KO mice during acute infection, by a mechanism yet to be determined.
Collapse
|
15
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Yun H, Yin XT, Stuart PM, St Leger AJ. Sensory Nerve Retraction and Sympathetic Nerve Innervation Contribute to Immunopathology of Murine Recurrent Herpes Stromal Keratitis. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35103749 PMCID: PMC8819360 DOI: 10.1167/iovs.63.2.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Herpes stromal keratitis (HSK) represents a spectrum of pathologies which is caused by herpes simplex virus type 1 (HSV-1) infection and is considered a leading cause of infectious blindness. HSV-1 infects corneal sensory nerves and establishes latency in the trigeminal ganglion (TG). Recently, retraction of sensory nerves and replacement with “unsensing” sympathetic nerves was identified as a critical contributor of HSK in a mouse model where corneal pathology is caused by primary infection. This resulted in the loss of blink reflex, corneal desiccation, and exacerbation of inflammation leading to corneal opacity. Despite this, it was unclear whether inflammation associated with viral reactivation was sufficient to initiate this cascade of events. Methods We examined viral reactivation and corneal pathology in a mouse model with recurrent HSK by infecting the cornea with HSV-1 (McKrae) and transferring (intravenous [IV]) human sera to establish primary infection without discernible disease and then exposed the cornea to UV-B light to induce viral reactivation. Results UV-B light induced viral reactivation from latency in 100% of mice as measured by HSV-1 antigen deposition in the cornea. Further, unlike conventional HSK models, viral reactivation resulted in focal retraction of sensory nerves and corneal opacity. Dependent on CD4+ T cells, inflammation foci were innervated by sympathetic nerves. Conclusions Collectively, our data reveal that sectoral corneal sensory nerve retraction and replacement of sympathetic nerves were involved in the progressive pathology that is dependent on CD4+ T cells after viral reactivation from HSV-1 latency in the UV-B induced recurrent HSK mouse model.
Collapse
Affiliation(s)
- Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University, St. Louis, Missouri, United States
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University, St. Louis, Missouri, United States
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
17
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Immunity and pain in the eye: focus on the ocular surface. Clin Exp Immunol 2021; 207:149-163. [PMID: 35020868 PMCID: PMC8982975 DOI: 10.1093/cei/uxab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Most ocular diseases are associated with pain. While pain has been generally considered a mere (deleterious) additional symptom, it is now emerging that it is a key modulator of innate/adaptive immunity. Because the cornea receives the highest nerve density of the entire body, it is an ideal site to demonstrate interactions between pain and the immune response. Indeed, most neuropeptides involved in pain generation are also potent regulators of innate and adaptive leukocyte physiology. On the other hand, most inflammatory cells can modulate the generation of ocular pain through release of specific mediators (cytokines, chemokines, growth factors, and lipid mediators). This review will discuss the reciprocal role(s) of ocular surface (and specifically: corneal) pain on the immune response of the eye. Finally, we will discuss the clinical implications of such reciprocal interactions in the context of highly prevalent corneal diseases.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy,Correspondence: Giulio Ferrari, Cornea and Ocular Surface Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy. E-mail:
| |
Collapse
|
18
|
Nabi R, Lewin AC, Collantes TM, Chouljenko VN, Kousoulas KG. Intramuscular Vaccination With the HSV-1(VC2) Live-Attenuated Vaccine Strain Confers Protection Against Viral Ocular Immunopathogenesis Associated With γδT Cell Intracorneal Infiltration. Front Immunol 2021; 12:789454. [PMID: 34868077 PMCID: PMC8634438 DOI: 10.3389/fimmu.2021.789454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused by an exacerbated reaction of the adaptive immune response that persists beyond virus clearance causing substantial damage to the cornea. Intramuscular immunization of mice with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice against lethal ocular challenge. Herein, we show that following ocular challenge, VC2 vaccinated animals control ocular immunopathogenesis in the absence of neutralizing antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal infiltration of γδ T cells compared to mock-vaccinated animals. The observed γδ T cellular infiltration was inversely proportional to the infiltration of neutrophils, the latter associated with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice and marked increase in neutrophil infiltration. These results indicate that ocular challenge of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that leads into the infiltration of γδ T cells resulting in the amelioration of infection-associated immunopathogenesis.
Collapse
MESH Headings
- Animals
- Chemotaxis, Leukocyte
- Cornea/immunology
- Cornea/pathology
- Cornea/virology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Herpes Simplex Virus Vaccines/administration & dosage
- Herpes Simplex Virus Vaccines/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Host-Pathogen Interactions
- Injections, Intramuscular
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/virology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/prevention & control
- Keratitis, Herpetic/virology
- Lymphangiogenesis
- Mice, Inbred BALB C
- Neovascularization, Pathologic
- Neutrophil Infiltration
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Mice
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Andrew C. Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Therese M. Collantes
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Vladimir N. Chouljenko
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
19
|
Carr DJJ, Berube A, Gershburg E. The Durability of Vaccine Efficacy against Ocular HSV-1 Infection Using ICP0 Mutants 0∆NLS and 0∆RING Is Lost over Time. Pathogens 2021; 10:1470. [PMID: 34832625 PMCID: PMC8618588 DOI: 10.3390/pathogens10111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vaccines to viral pathogens in experimental animal models are often deemed successful if immunization enhances resistance of the host to virus challenge as measured by cumulative survival, reduction in virus replication and spread and/or lessen or eliminate overt tissue pathology. Furthermore, the duration of the protective response against challenge is another important consideration that drives a vaccination regimen. In the current study, we assessed the durability of two related vaccines, 0∆NLS and 0∆RING, against ocular herpes simplex virus type 1 (HSV-1) challenge in mice thirty days (short-term) and one year (long-term) following the vaccine boost. The short-term vaccine efficacy study found the 0∆RING vaccine to be nearly equivalent to the 0∆NLS vaccine in comparison to vehicle-vaccinated mice in terms of controlling virus replication and preserving the visual axis. By comparison, the long-term assessment of the two vaccines found notable differences and less efficacy overall as noted below. Specifically, the results show that in comparison to vehicle-vaccinated mice, the 0∆NLS and 0∆RING vaccinated groups were more resistant in terms of survival and virus shedding following ocular challenge. Moreover, 0∆NLS vaccinated mice also possessed significantly less infectious virus in the peripheral and central nervous systems but not the cornea compared to mice vaccinated with vehicle or 0∆RING which had similar levels. However, all vaccinated groups showed similar levels of blood and lymphatic vessel genesis into the central cornea 30 days post infection. Likewise, corneal opacity was also similar among all groups of vaccinated mice following infection. Functionally, the blink response and visual acuity were 25-50% lower in vaccinated mice 30 days post infection compared to measurements taken prior to infection. The results demonstrate a dichotomy between resistance to infection and functional performance of the visual axis that collectively show an overall loss in vaccine efficacy long-term in comparison to short-term studies in a conventional prime-boost protocol.
Collapse
Affiliation(s)
- Daniel J. J. Carr
- Department of Ophthalmology, Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | | |
Collapse
|
20
|
Jamali A, Hu K, Sendra VG, Blanco T, Lopez MJ, Ortiz G, Qazi Y, Zheng L, Turhan A, Harris DL, Hamrah P. Characterization of Resident Corneal Plasmacytoid Dendritic Cells and Their Pivotal Role in Herpes Simplex Keratitis. Cell Rep 2021; 32:108099. [PMID: 32877681 PMCID: PMC7511260 DOI: 10.1016/j.celrep.2020.108099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 04/14/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
The presence and potential functions of resident plasmacytoid dendritic cells (pDCs) in peripheral tissues is unclear. We report that pDCs constitutively populate naïve corneas and are increased during sterile injuries or acute herpes simplex virus 1 (HSV-1) keratitis. Their local depletion leads to severe clinical disease, nerve loss, viral dissemination to the trigeminal ganglion and draining lymph nodes, and mortality, while their local adoptive transfer limits disease. pDCs are the main source of HSV-1-induced IFN-α in the corneal stroma through TLR9, and they prevent re-programming of regulatory T cells (Tregs) to effector ex-Tregs. Clinical signs of infection are observed in pDC-depleted corneas, but not in pDC-sufficient corneas, following low-dose HSV-1 inoculation, suggesting their critical role in corneal antiviral immunity. Our findings demonstrate a vital role for corneal pDCs in the control of local viral infections. Jamali et al. show that the cornea, as an immune-privileged tissue, hosts resident pDCs, which mediate immunity against HSV-1 by secreting IFN-a via TLR9 and preserving Tregs. pDCs minimize the clinical severity of HSV-1 keratitis, infiltration of immune cells, nerve damage, and viral dissemination to TG and dLNs.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kai Hu
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Maria J Lopez
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Yureeda Qazi
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lixin Zheng
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Aslihan Turhan
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Program in Immunology, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
21
|
An intact complement system dampens cornea inflammation during acute primary HSV-1 infection. Sci Rep 2021; 11:10247. [PMID: 33986436 PMCID: PMC8119410 DOI: 10.1038/s41598-021-89818-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Corneal transparency is an essential characteristic necessary for normal vision. In response to microbial infection, the integrity of the cornea can become compromised as a result of the inflammatory response and the ensuing tissue pathology including neovascularization (NV) and collagen lamellae destruction. We have previously found complement activation contributes to cornea pathology-specifically, denervation in response to HSV-1 infection. Therefore, we investigated whether the complement system also played a role in HSV-1-mediated neovascularization. Using wild type (WT) and complement component 3 deficient (C3 KO) mice infected with HSV-1, we found corneal NV was accelerated associated with an increase in inflammatory monocytes (CD11b+CCR2+CD115+/-Ly6G-Ly6Chigh), macrophages (CD11b+CCR2+CD115+Ly6G-Ly6Chigh) and a subpopulation of granulocytes/neutrophils (CD11b+CCR2-CD115+Ly6G+Ly6Clow). There were also increases in select pro-inflammatory and pro-angiogenic factors including IL-1α, matrix metalloproteinases (MMP)-2, MMP-3, MMP-8, CXCL1, CCL2, and VEGF-A that coincided with increased inflammation, neovascularization, and corneal opacity in the C3 KO mice. The difference in inflammation between WT and C3 KO mice was not driven by changes in virus titer. However, viral antigen clearance was hindered in C3 KO mouse corneas suggesting the complement system has a dynamic regulatory role within the cornea once an inflammatory cascade is initiated by HSV-1.
Collapse
|
22
|
Yun H, Yee MB, Lathrop KL, Kinchington PR, Hendricks RL, St Leger AJ. Production of the Cytokine VEGF-A by CD4 + T and Myeloid Cells Disrupts the Corneal Nerve Landscape and Promotes Herpes Stromal Keratitis. Immunity 2021; 53:1050-1062.e5. [PMID: 33207210 DOI: 10.1016/j.immuni.2020.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus type 1 (HSV-1)-infected corneas can develop a blinding immunoinflammatory condition called herpes stromal keratitis (HSK), which involves the loss of corneal sensitivity due to retraction of sensory nerves and subsequent hyperinnervation with sympathetic nerves. Increased concentrations of the cytokine VEGF-A in the cornea are associated with HSK severity. Here, we examined the impact of VEGF-A on neurologic changes that underly HSK using a mouse model of HSV-1 corneal infection. Both CD4+ T cells and myeloid cells produced pathogenic levels of VEGF-A within HSV-1-infected corneas, and CD4+ cell depletion promoted reinnervation of HSK corneas with sensory nerves. In vitro, VEGF-A from infected corneas repressed sensory nerve growth and promoted sympathetic nerve growth. Neutralizing VEGF-A in vivo using bevacizumab inhibited sympathetic innervation, promoted sensory nerve regeneration, and alleviated disease. Thus, VEGF-A can shape the sensory and sympathetic nerve landscape within the cornea, with implications for the treatment of blinding corneal disease.
Collapse
Affiliation(s)
- Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael B Yee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Moein HR, Sendra VG, Jamali A, Kheirkhah A, Harris DL, Hamrah P. Herpes simplex virus-1 KOS-63 strain is virulent and causes titer-dependent corneal nerve damage and keratitis. Sci Rep 2021; 11:4267. [PMID: 33608598 PMCID: PMC7895966 DOI: 10.1038/s41598-021-83412-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
To investigate the acute clinical, immunological, and corneal nerve changes following corneal HSV-1 KOS-63 strain inoculation. Corneas of C57BL/6 mice were inoculated with either low dose (Ld) or high dose (Hd) HSV-1 KOS-63 or culture medium. Clinical evaluation was conducted up to 7 days post inoculation (dpi). Viral titers were assessed by standard plaque assay. Excised corneas were stained for CD45 and beta-III tubulin. Corneal flow cytometry was performed to assess changes in leukocyte subpopulations. Corneal sensation was measured using a Cochet-Bonnet esthesiometer. Naïve, sham-infected (post scarification), and McKrae-infected C57BL/6 corneas served as two negative and positive controls, respectively. Compared to Ld infected mice, Hd HSV-1 KOS-63 demonstrated higher incidence of corneal opacity (1.5 ×) and neovascularization (2.6 × ; p < 0.05). At 7 dpi Hd infected mice showed more severe corneal opacity (2.23 vs. 0.87; p = 0.0003), neovascularization (6.00 vs. 0.75; p < 0.0001), and blepharitis (3.11 vs. 2.06; p = 0.001) compared to the Ld group. At 3 dpi epitheliopathy was significantly larger in the Hd group (23.59% vs. 3.44%; p = 0.001). Similarly, corneal opacity was significantly higher in Hd McKrae-infected corneas as compared with Ld McKrae-infected corneas at 3 and 5 dpi. No significant corneal opacity, neovascularization, blepharitis, and epitheliopathy were observed in naïve or sham-infected mice. Higher viral titers were detected in corneas (1 and 3 dpi) and trigeminal ganglia (TG) (3 and 5 dpi) in Hd versus Ld KOS-63 groups (p < 0.05). Leukocyte density showed a gradual increase over time from 1 to 7 dpi in both KOS-63 and McKrae-infected corneas. Corneal flow cytometric analysis (3 dpi) demonstrated a higher percentage of Gr-1 + (71.6 vs. 26.3) and CD11b + (90.6 vs. 41.1) cells in Hd versus Ld KOS-63 groups. Corneal nerve density significantly decreased in both Hd KOS-63 and Hd McKrae infected corneas in comparison with naïve and sham-infected corneas. At 3 dpi corneal nerve density was lower in the Hd versus Ld KOS-63 groups (16.79 vs. 57.41 mm/mm2; p = 0.004). Corneal sensation decreased accordingly at 5 and 7 dpi in both Ld and Hd KOS-63-infected mice. Corneal inoculation with HSV-1 KOS-63 strain shows acute keratitis and nerve degeneration in a dose-dependent fashion, demonstrating virulence of this strain.
Collapse
Affiliation(s)
- Hamid-Reza Moein
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Victor G. Sendra
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Arsia Jamali
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Ahmad Kheirkhah
- grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Deshea L. Harris
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Pedram Hamrah
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA ,grid.67033.310000 0000 8934 4045Cornea Service, New England Eye Center, Tufts Medical Center, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
24
|
Gmyrek GB, Filiberti A, Montgomery M, Chitrakar A, Royer DJ, Carr DJJ. Herpes Simplex Virus 1 (HSV-1) 0ΔNLS Live-Attenuated Vaccine Protects against Ocular HSV-1 Infection in the Absence of Neutralizing Antibody in HSV-1 gB T Cell Receptor-Specific Transgenic Mice. J Virol 2020; 94:e01000-20. [PMID: 32999018 PMCID: PMC7925190 DOI: 10.1128/jvi.01000-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The contribution of T cell and antibody responses following vaccination in resistance to herpes simplex virus 1 (HSV-1) infection continues to be rigorously investigated. In the present article, we explore the contribution of CD8+ T cells specific for the major antigenic epitope for HSV-1 glycoprotein B (gB498-505, gB) in C57BL/6 mice using a transgenic mouse (gBT-I.1) model vaccinated with HSV-1 0ΔNLS. gBT-I.1-vaccinated mice did not generate a robust neutralization antibody titer in comparison to the HSV-1 0ΔNLS-vaccinated wild-type C57BL/6 counterpart. Nevertheless, the vaccinated gBT-I.1 mice were resistant to ocular challenge with HSV-1 compared to vehicle-vaccinated animals based on survival and reduced corneal neovascularization but displayed similar levels of corneal opacity. Whereas there was no difference in the virus titer recovered from the cornea comparing vaccinated mice, HSV-1 0ΔNLS-vaccinated animals possessed significantly less infectious virus during acute infection in the trigeminal ganglia (TG) and brain stem compared to the control-vaccinated group. These results correlated with a significant increase in gB-elicited interferon-γ (IFN-γ), granzyme B, and CD107a and a reduction in lymphocyte activation gene 3 (LAG-3), programmed cell death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expressed by TG infiltrating gB-specific CD8+ T cells from the HSV-1 0ΔNLS-vaccinated group. Antibody depletion of CD8+ T cells in HSV-1 0ΔNLS-vaccinated mice rendered animals highly susceptible to virus-mediated mortality similar to control-vaccinated mice. Collectively, the HSV-1 0ΔNLS vaccine is effective against ocular HSV-1 challenge, reducing ocular neovascularization and suppressing peripheral nerve virus replication in the near absence of neutralizing antibody in this unique mouse model.IMPORTANCE The role of CD8+ T cells in antiviral efficacy using a live-attenuated virus as the vaccine is complicated by the humoral immune response. In the case of the herpes simplex virus 1 (HSV-1) 0ΔNLS vaccine, the correlate of protection has been defined to be primarily antibody driven. The current study shows that in the near absence of anti-HSV-1 antibody, vaccinated mice are protected from subsequent challenge with wild-type HSV-1 as measured by survival. The efficacy is lost following depletion of CD8+ T cells. Whereas increased survival and reduction in virus replication were observed in vaccinated mice challenged with HSV-1, cornea pathology was mixed with a reduction in neovascularization but no change in opacity. Collectively, the study suggests CD8+ T cells significantly contribute to the host adaptive immune response to HSV-1 challenge following vaccination with an attenuated virus, but multiple factors are involved in cornea pathology in response to ocular virus challenge.
Collapse
Affiliation(s)
- Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Micaela Montgomery
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha Chitrakar
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
25
|
Carr DJJ, Gmyrek GB, Filiberti A, Berube AN, Browne WP, Gudgel BM, Sjoelund VH. Distinguishing Features of High- and Low-Dose Vaccine against Ocular HSV-1 Infection Correlates with Recognition of Specific HSV-1-Encoded Proteins. Immunohorizons 2020; 4:608-626. [PMID: 33037098 DOI: 10.4049/immunohorizons.2000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Amanda N Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William P Browne
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Brett M Gudgel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Virginie H Sjoelund
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
26
|
Beaver JT, Mills LK, Swieboda D, Lelutiu N, Esser ES, Antao OQ, Scountzou E, Williams DT, Papaioannou N, Littauer EQ, Skountzou I. Zika virus-induced neuro-ocular pathology in immunocompetent mice correlates with anti-ganglioside autoantibodies. Hum Vaccin Immunother 2020; 16:2092-2108. [PMID: 32758108 PMCID: PMC7553712 DOI: 10.1080/21645515.2020.1775459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A severe consequence of adult Zika virus (ZIKV) infection is Guillain-Barré Syndrome (GBS), where autoreactive antibodies attack peripheral and central nervous systems (CNS) resulting in neuro-ocular pathology and fatal complications. During virally induced GBS, autoimmune brain demyelination and macular degeneration correlate with low virus neutralization and elevated antibody-mediated infection among Fcγ-R bearing cells. The use of interferon-deficient mice for ZIKV studies limits elucidation of antibody-dependent enhancement (ADE) and long-term pathology (≥120 days), due to high lethality post-infection. Here we used immunocompetent BALB/c mice, which generate robust humoral immune responses, to investigate long-term impacts of ZIKV infection. A high infectious dose (1x106 FFU per mouse) of ZIKV was administered intravenously. Control animals received a single dose of anti-IFNAR blocking monoclonal antibody and succumbed to lethal neurological pathology within 13 days. Immunocompetent mice exhibited motor impairment such as arthralgia, as well as ocular inflammation resulting in retinal vascular damage, and corneal edema. This pathology persisted 100 days after infection with evidence of chronic inflammation in immune-privileged tissues, demyelination in the hippocampus and motor cortex regions of the brain, and retinal/corneal hyperplasia. Anti-inflammatory transcriptional responses were tissue-specific, likely contributing to differential pathology in these organs. Pathology in immunocompetent animals coincided with weakly neutralizing antibodies and increased ADE among ZIKV strains (PRVABC59, FLR, and MR766) and all Dengue virus (DENV) serotypes. These antibodies were autoreactive to GBS-associated gangliosides. This study highlights the importance of longevity studies in ZIKV infection and confirms the role of anti-ganglioside antibodies in ZIKV-induced neuro-ocular disease.
Collapse
Affiliation(s)
- Jacob T Beaver
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Lisa K Mills
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Dominika Swieboda
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nadia Lelutiu
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Edward S Esser
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Olivia Q Antao
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Dahnide T Williams
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Elizabeth Q Littauer
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
27
|
Xian-Kui H, Hui-Fang W, Jing-Ran S, Yu-Rong H, Bo-Yu C, Xiu-Jun S. P38 Inhibition Prevents Herpes Simplex Virus Type 1 (HSV-1) Infection in Cultured Corneal Keratocytes. Curr Eye Res 2020; 45:1342-1351. [PMID: 32250648 DOI: 10.1080/02713683.2020.1748658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose: To evaluate keratocyte viability and proinflammatory cytokine secretion induced by HSV-1 infection. Methods: Keratocytes were separated from corneal tissues obtained with the SMILE procedure, and an in vitro system was established to study HSV-1 infection in human keratocytes. Cell viability, HSV-1 genomic DNA copy number, and the expression levels of α-SMA, ALDH1A1, phospho-p38, p38, phospho-IRF3, and IRF3 were evaluated. Antibody array and ELISA kits were used to measure the production of proinflammatory cytokines and chemokines. Results: We found that HSV-1 infection reduced cell viability and activated keratocyte transdifferentiation into corneal fibroblast-like cells. Furthermore, p38 inhibition improved cell viability and IFN-β production and played an anti-inflammatory role by reducing the production of proinflammatory cytokines and chemokines. Conclusions: Our study reveals an important role played by keratocytes during innate immune responses and identifies p38 inhibition as a potential therapeutic approach to control ocular HSV-1 infection.
Collapse
Affiliation(s)
- Han Xian-Kui
- Department of Ophthalmology, Shijiazhuang Aier Eye Hospital , Shijiazhuang, China
| | - Wang Hui-Fang
- Department of Ophthalmology, Shijiazhuang Aier Eye Hospital , Shijiazhuang, China
| | - Shen Jing-Ran
- Department of Ophthalmology, Shijiazhuang Aier Eye Hospital , Shijiazhuang, China
| | - Hou Yu-Rong
- Department of Ophthalmology, Shijiazhuang Aier Eye Hospital , Shijiazhuang, China
| | - Chen Bo-Yu
- Department of Ophthalmology, Shijiazhuang Aier Eye Hospital , Shijiazhuang, China
| | - Song Xiu-Jun
- Department of Ophthalmology, Shijiazhuang Aier Eye Hospital , Shijiazhuang, China
| |
Collapse
|
28
|
Klarlund JK, Callaghan JD, Stella NA, Kowalski RP, McNamara NA, Shanks RMQ. Use of Collagen Binding Domains to Deliver Molecules to the Cornea. J Ocul Pharmacol Ther 2019; 35:491-496. [PMID: 31593501 DOI: 10.1089/jop.2019.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: The combined activity of the tear film and blinking is remarkably efficient at removal of foreign materials from the ocular surface. This has prevented the use of certain classes of drugs for the treatment of ocular surface problems. We propose that the use of peptide and protein domains that bind to moieties on the cornea could be used to deliver therapeutics by anchoring the drugs on the ocular surface long enough to provide therapeutic effects. Methods: In this study, we evaluated 4 different collagen binding domains fused to bacterial β-galactosidase for delivery of a reporter protein to collagen I and collagen IV-coated plates, rabbit corneas, and Herpes simplex virus (HSV-1) infected mouse corneas. Results: All 4 domains bound to collagen I and IV in vitro, whereas only a 10 amino acid (AA) sequence from bovine von Willebrand factor (vWF) and a 215 AA collagen binding domain from the bacterial protein ColH efficiently bound to abraded rabbit corneas. To test binding to corneas in a clinically relevant model, we assessed binding of the vWF collagen binding peptide fusions to HSV-1 infected mouse corneas. We observed that the vWF derived peptide mediated attachment to infected corneas, whereas the reporter protein without a collagen binding domain did not bind. Conclusions: Moving forward, the vWF collagen binding peptide could be used as an anchor to deliver therapeutics to prevent scarring and vision loss from damaged corneal surfaces due to disease and inflammation.
Collapse
Affiliation(s)
- Jes K Klarlund
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jake D Callaghan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicholas A Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nancy A McNamara
- School of Optometry, University of California, Berkeley, Berkeley, California.,Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Montgomery ML, Callegan MC, Fuller KK, Carr DJJ. Ocular Glands Become Infected Secondarily to Infectious Keratitis and Play a Role in Corneal Resistance to Infection. J Virol 2019; 93:e00314-19. [PMID: 31167909 PMCID: PMC6675880 DOI: 10.1128/jvi.00314-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Ocular glands play a critical role in eye health through the secretion of factors directly onto the ocular surface. The cornea is a normally transparent tissue necessary for visual acuity located in the anterior segment of the eye. Corneal damage can occur during microbial infection of the cornea, resulting in potentially permanent visual deficits. The involvement of ocular glands during corneal infection has been only briefly described. We hypothesized that ocular glands contribute to resistance as an arm of the eye-associated lymphoid tissue and may also be susceptible to infection secondary to microbial keratitis. Utilizing a mouse model of herpes simplex virus 1 (HSV-1) keratitis, we found that infection of corneas resulted in subsequent infection of ocular glands, including harderian glands (HGs) and extraorbital glands. Similarly, infection of corneas with Pseudomonas aeruginosa resulted in secondary infection of ocular glands. A robust immune response, characterized by increased numbers of immune cells and inflammatory mediators, occurred within ocular glands following HSV-1 keratitis. Removal of HGs altered corneal resistance to HSV-1, as measured by increased viral load, decreased corneal edema, and decreased inflammatory cell infiltration. These novel findings suggest that ocular glands are involved in microbial keratitis through their susceptibility to secondary infection and contribution to corneal resistance.IMPORTANCE Microbial keratitis accounts for up to 700,000 clinical visits annually in the United States. The involvement of ocular glands during microbial keratitis is not readily appreciated, and treatment options do not address the consequences of ocular gland dysfunction. The present study shows that ocular glands are susceptible to direct infection by common ocular pathogens, including HSV-1 and Pseudomonas aeruginosa, subsequent to microbial keratitis. Additionally, ocular glands contribute soluble factors that play a role in corneal resistance to HSV-1 and alter viral load, corneal edema, and immune cell infiltration. Further studies are needed to elucidate the mechanisms by which this occurs.
Collapse
Affiliation(s)
- Micaela L Montgomery
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michelle C Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kevin K Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
30
|
Royer DJ, Echegaray-Mendez J, Lin L, Gmyrek GB, Mathew R, Saban DR, Perez VL, Carr DJ. Complement and CD4 + T cells drive context-specific corneal sensory neuropathy. eLife 2019; 8:48378. [PMID: 31414985 PMCID: PMC6783265 DOI: 10.7554/elife.48378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - Liwen Lin
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Immunology, Duke University Medical Center, Durham, United States
| | - Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel Jj Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
31
|
Rao P, McKown RL, Laurie GW, Suvas S. Development of lacrimal gland inflammation in the mouse model of herpes stromal keratitis. Exp Eye Res 2019; 184:101-106. [PMID: 31009613 PMCID: PMC6570564 DOI: 10.1016/j.exer.2019.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023]
Abstract
Herpes stromal keratitis (HSK) is a chronic immunoinflammatory condition which develops in response to recurrent herpes simplex virus-1 (HSV-1) infection of the cornea. Patients with HSK often demonstrate the concurrence of corneal desiccation and the loss of blink reflex. However, the relationship between severity of HSK, level of basal tears and inflammation of the lacrimal gland is mostly unexplored. In this study, we compared these variables in extraorbital lacrimal gland (EoLG) after corneal HSV-1 infection in the C57BL/6J mouse model. Our results showed a significant reduction in the volume of tears in infected eyes during the development of HSK. Extensive architectural damage to EoLG, presumably caused by a massive influx of interferon-gamma secreting T cells, was observed during clinical disease period of HSK. A positive correlation between the decrease in tear volume, severity of HSK and the damage to EoLG were evident in infected mice. The presence of infectious virus measured in EoLG during pre-clinical, but not clinical disease period of HSK, suggested that viral cytopathic effects are not the major contributors of extensive damage seen in EoLG. Furthermore, topical administration of lacritin peptide delayed but did not prevent the decrease in tears in HSV-1 infected mice, and had no significant effect in either reducing the severity of HSK or T cell infiltration in EoLG of infected mice. Together, our results showed an interplay between the severity of HSK, inflammation of EoLG, and the reduced level of tears after corneal HSV-1 infection.
Collapse
Affiliation(s)
- Pushpa Rao
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert L McKown
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, VA, USA
| | - Gordon W Laurie
- Department of Cell Biology and Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Rajasagi NK, Rouse BT. The Role of T Cells in Herpes Stromal Keratitis. Front Immunol 2019; 10:512. [PMID: 30941142 PMCID: PMC6433787 DOI: 10.3389/fimmu.2019.00512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 12/23/2022] Open
Abstract
The blinding inflammatory lesion stromal keratitis (SK), which occurs in some patients in response to ocular herpes simplex virus (HSV) infection, represents mainly an immune cell mediated inflammatory response to the virus infection. The principal orchestrators of the immunopathological lesions are T cells although additional events participate that include the extent of recruitment of non-lymphoid cells, the extent of neoangiogenesis, and the extent of damage to nerve function. This review focuses on evidence that the balance of the functional subsets of T cells has a major impact on lesion severity and duration. Accordingly, if proinflammatory Th1 and Th17 CD4 T cells, and perhaps in some cases CD8 T cells, predominate lesions occur earlier and are more severe. Lesions are diminished when cells with regulatory function predominate. Moreover, when regulatory cells acquire the property to produce Amphiregulin this may facilitate lesion resolution. An objective to controlling lesions is to learn how to manipulate the balance of T cells to favor the representation and function of regulatory T cells and their products over proinflammatory cells. In this review we emphasize how exploiting the differential metabolic requirements of immune cells could be a valuable approach to control SK.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Barry T Rouse
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
33
|
Tian X, Wang T, Zhang S, Wang Q, Hu X, Ge C, Xie L, Zhou Q. PEDF Reduces the Severity of Herpetic Simplex Keratitis in Mice. Invest Ophthalmol Vis Sci 2019; 59:2923-2931. [PMID: 30025136 DOI: 10.1167/iovs.18-23942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to explore the effects of pigment epithelium derived factor (PEDF) and PEDF-derived peptides Mer44 and Mer34 on the severity of herpetic simplex keratitis (HSK) in mice. Methods Adult C57BL/6 mice were infected ocularly with the herpes simplex virus type 1 (HSV-1, McKrae strain) and injected subconjunctivally with PEDF, Mer44, or Mer34. Corneal nerve degeneration, neovascularization, sensitivity, neutrophils, macrophages and CD4+ T-cell infiltration, virus contents, and expressions of VEGF, PEDF, and proinflammatory factors were evaluated during acute period. The direct inhibitory effect of PEDF on HSV-1 replication was further evaluated in cultured monkey Vero cells. Results Following HSV-1 infection, corneal PEDF expression decreased at 3 and 7 days postinfection (dpi) but increased at 15 dpi, and returned to the similar level of normal mice at 45 dpi, which was accompanied with the progress of corneal nerve degeneration and neovascularization. Exogenous PEDF application attenuated corneal nerve degeneration and neovascularization and improved the impaired corneal sensitivity. Moreover, PEDF attenuated the neutrophils, but not macrophage or CD4+ T-cell infiltration, with the reduced expressions of IL-1β, IL-6, TNF-α, and VEGF. In addition, PEDF inhibited the replication of HSV-1 both in vitro and in mice. Mer44 attenuated corneal nerve degeneration more significantly than Mer34, whereas Mer34 inhibited corneal neovascularization. Conclusions PEDF and its derived peptides reduce the severity of herpetic simplex keratitis in mice, representing the potential therapeutic approach to control HSK lesions.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Tongsong Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Songmei Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qian Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Cheng Ge
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
34
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Jaggi U, Wang S, Tormanen K, Matundan H, Ljubimov AV, Ghiasi H. Role of Herpes Simplex Virus Type 1 (HSV-1) Glycoprotein K (gK) Pathogenic CD8 + T Cells in Exacerbation of Eye Disease. Front Immunol 2018; 9:2895. [PMID: 30581441 PMCID: PMC6292954 DOI: 10.3389/fimmu.2018.02895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
HSV-1-induced corneal scarring (CS), also broadly referred to as Herpes Stromal Keratitis (HSK), is the leading cause of infectious blindness in developed countries. It is well-established that HSK is in fact an immunopathological disease. The contribution of the potentially harmful T cell effectors that lead to CS remains an area of intense study. Although the HSV-1 gene(s) involved in eye disease is not yet known, we have demonstrated that gK, which is one of the 12 known HSV-1 glycoproteins, has a crucial role in CS. Immunization of HSV-1 infected mice with gK, but not with any other known HSV-1 glycoprotein, significantly exacerbates CS, and dermatitis. The gK-induced eye disease occurs independently of the strain of the virus or mouse. HSV-1 mutants that lack gK are unable to efficiently infect and establish latency in neurons. HSV-1 recombinant viruses expressing two additional copies of the gK (total of three gK genes) exacerbated CS as compared with wild type HSV-1 strain McKrae that contains one copy of gK. Furthermore, we have shown that an 8mer (ITAYGLVL) within the signal sequence of gK enhanced CS in ocularly infected BALB/c mice, C57BL/6 mice, and NZW rabbits. In HSV-infected “humanized” HLA-A*0201 transgenic mice, this gK 8mer induced strong IFN-γ-producing cytotoxic CD8+ T cell responses. gK induced CS is dependent on gK binding to signal peptide peptidase (SPP). gK also binds to HSV-1 UL20, while UL20 binds GODZ (DHHC3) and these quadruple interactions are required for gK induced pathology. Thus, potential therapies might include blocking of gK-SPP, gK-UL20, UL20-GODZ interactions, or a combination of these strategies.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shaohui Wang
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kati Tormanen
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Harry Matundan
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Cedars-Sinai Medical Center, and David Geffen School of Medicine, Board of Governors Regenerative Medicine Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
36
|
Koyuncu OO, MacGibeny MA, Enquist LW. Latent versus productive infection: the alpha herpesvirus switch. Future Virol 2018; 13:431-443. [PMID: 29967651 DOI: 10.2217/fvl-2018-0023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
Alpha herpesviruses are common pathogens of mammals. They establish a productive infection in many cell types, but a life-long latent infection occurs in PNS neurons. A vast majority of the human population has latent HSV-1 infections. Currently, there is no cure to clear latent infections. Even though HSV-1 is among the best studied viral pathogens, regulation of latency and reactivation is not well understood due to several challenges including a lack of animal models that precisely recapitulate latency/reactivation episodes; a difficulty in modeling in vitro latency; and a limited understanding of neuronal biology. In this review, we discuss insights gained from in vitro latency models with a focus on the neuronal and viral factors that determine the mode of infection.
Collapse
Affiliation(s)
- Orkide O Koyuncu
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Margaret A MacGibeny
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
37
|
Rajasagi NK, Rouse BT. Application of our understanding of pathogenesis of herpetic stromal keratitis for novel therapy. Microbes Infect 2018; 20:526-530. [PMID: 29329934 DOI: 10.1016/j.micinf.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
HSV-1 ocular infection can cause herpes stromal keratitis (SK), an immunopathological lesion. Frequent recurrences can lead to progressive corneal scaring which can result in vision impairment if left untreated. Currently, the acute and epithelial forms of SK are usually controlled using anti-viral drugs. However, chronic forms of SK which are inflammatory in nature, require the addition of a topical corticosteroid to the anti-viral treatment regimen. In this review, we highlight the essential events involved in SK pathogenesis which can be targeted for improved therapy. We also examine some approaches which can be combined with the current treatments to effectively control SK.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996-0845, United States
| | - Barry T Rouse
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996-0845, United States.
| |
Collapse
|
38
|
Moein HR, Kheirkhah A, Muller RT, Cruzat AC, Pavan-Langston D, Hamrah P. Corneal nerve regeneration after herpes simplex keratitis: A longitudinal in vivo confocal microscopy study. Ocul Surf 2018; 16:218-225. [PMID: 29305292 DOI: 10.1016/j.jtos.2017.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/06/2017] [Accepted: 12/31/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE To evaluate the long-term alterations of corneal nerves in patients with herpes simplex virus (HSV) keratitis using in vivo confocal microscopy (IVCM). DESIGN Prospective, longitudinal, cross sectional. METHODS This study included 16 patients with a history of HSV keratitis and 15 age-matched normal controls. Slit-scanning IVCM was performed in all subjects at baseline and then after a mean follow-up of 37.3 ± 1.7 months in the patient group. Corneal subbasal nerve density and corneal sensation were compared between groups at baseline and follow-up. RESULTS At baseline, the mean subbasal nerve density was significantly lower in both affected eyes (1.4 ± 0.6 mm/mm2) and contralateral unaffected eyes (6.4 ± 0.7 mm/mm2) compared with the controls (14.1 ± 1.6 mm/mm2; all P < .001). At the end of follow-up, the mean nerve density in affected eyes increased to 2.8 ± 0.7 mm/mm2 (P = .006), with no significant change in contralateral unaffected eyes (6.5 ± 1.0 mm/mm2, P = .72). However, both eyes had lower nerve density than controls (all P < .001). Corneal sensation was significantly lower in affected eyes (2.6 ± 0.6 cm) than in the control group (6.0 ± 0.0, P < .001) and showed no significant change at the end of follow-up (2.5 ± 0.6 cm, P = .80). Corneal sensation in contralateral unaffected eyes was not different in comparison with controls at both baseline and follow up (all p > .05). CONCLUSIONS Our results demonstrate that although corneal nerve regeneration occurs in patients with HSV keratitis, this change is not clinically significant and does not results in changes of corneal sensation. Therefore, these patients need to be followed closely for complications of neurotrophic keratopathy and might benefit from neuro-regenerative therapies.
Collapse
Affiliation(s)
- Hamid-Reza Moein
- Ocular Surface Imaging Center, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ahmad Kheirkhah
- Ocular Surface Imaging Center, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rodrigo T Muller
- Ocular Surface Imaging Center, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea C Cruzat
- Ocular Surface Imaging Center, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Deborah Pavan-Langston
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Ocular Surface Imaging Center, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Chucair-Elliott AJ, Gurung HR, Carr MM, Carr DJJ. Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection. Invest Ophthalmol Vis Sci 2017; 58:4670-4682. [PMID: 28903153 PMCID: PMC5597033 DOI: 10.1167/iovs.17-22159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/05/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Herpes simplex virus type-1 (HSV-1) is a leading cause of neurotrophic keratitis, characterized by decreased or absent corneal sensation due to damage to the sensory corneal innervation. We previously reported the elicited immune response to infection contributes to the mechanism of corneal nerve regression/damage during acute HSV-1 infection. Our aim is to further establish the involvement of infiltrated macrophages in the mechanism of nerve loss upon infection. Methods Macrophage Fas-Induced Apoptosis (MAFIA) transgenic C57BL/6 mice were systemically treated with AP20187 dimerizer or vehicle (VEH), and their corneas, lymph nodes, and blood were assessed for CD45+CD11b+GFP+ cell depletion by flow cytometry (FC). Mice were ocularly infected with HSV-1 or left uninfected. At 2, 4, and/or 6 days post infection (PI), corneas were assessed for sensitivity and harvested for FC, nerve structure by immunohistochemistry, viral content by plaque assay, soluble factor content by suspension array, and activation of signaling pathways by Western blot analysis. C57BL6 mice were used to compare to the MAFIA mouse model. Results MAFIA mice treated with AP20187 had efficient depletion of CD45+CD11b+GFP+ cells in the tissues analyzed. The reduction of CD45+CD11b+GFP+ cells recruited to the infected corneas of AP20187-treated mice correlated with preservation of corneal nerve structure and function, decreased protein concentration of inflammatory cytokines, and decreased STAT3 activation despite no changes in viral content in the cornea compared to VEH-treated animals. Conclusions Our results suggest infiltrated macrophages are early effectors in the nerve regression following HSV-1 infection. We propose the neurodegeneration mechanism involves macrophages, local up-regulation of IL-6, and activation of STAT3.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Hem R Gurung
- Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
40
|
Rowe AM, Yun H, Hendricks RL. Exposure Stress Induces Reversible Corneal Graft Opacity in Recipients With Herpes Simplex Virus-1 Infections. Invest Ophthalmol Vis Sci 2017; 58:35-41. [PMID: 28055100 PMCID: PMC5225994 DOI: 10.1167/iovs.16-19673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Most of the inflammation in murine herpes simplex virus type 1 (HSV-1)-induced stromal keratitis (HSK) is due to exposure stress resulting from loss of corneal nerves and blink reflex. Corneal grafts often fail when placed on corneal beds with a history of HSK. We asked if corneal exposure contributes to the severe pathology of corneal grafts on HSV-1–infected corneal beds. Methods Herpes simplex virus type 1–infected corneas were tested for blink reflex. Opacity and vascularization were monitored in allogeneic and syngeneic corneal grafts that were transplanted to corneal beds with no blink reflex or to those that retained blink reflex in at least one quadrant following infection. Results Retention of any level of blink reflex significantly reduced inflammation in HSV-1–infected corneas. Corneal allografts placed on HSV-1–infected beds lacking corneal blink reflex developed opacity faster and more frequently than those placed on infected beds that partially or completely retained blink reflex. Corneal grafts placed on infected corneal beds with no blink reflex rapidly became opaque to a level that would be considered rejection. However, protecting these grafts from exposure by tarsorrhaphy prevented or reversed the opacity in both syngeneic and allogenic grafts. Conclusions Exposure due to HSV-1–engendered hypoesthesia causes rapid, severe, persistent, but reversible opacification of both allogeneic and syngeneic corneal grafts. This opacity should not be interpreted as immunologic rejection. Exposure stress may contribute to the high rate of corneal graft pathology in patients with recurrent HSK.
Collapse
Affiliation(s)
- Alexander M Rowe
- University of Pittsburgh Department of Ophthalmology, Pittsburgh, Pennsylvania, United States
| | - Hongmin Yun
- University of Pittsburgh Department of Ophthalmology, Pittsburgh, Pennsylvania, United States
| | - Robert L Hendricks
- University of Pittsburgh Department of Immunology, and Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
41
|
Edwards RG, Kopp SJ, Ifergan I, Shui JW, Kronenberg M, Miller SD, Longnecker R. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci 2017; 58:282-291. [PMID: 28114589 PMCID: PMC5256684 DOI: 10.1167/iovs.16-20668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine cellular and temporal expression patterns of herpes virus entry mediator (HVEM, Tnfrsf14) in the murine cornea during the course of herpes simplex virus 1 (HSV-1) infection, the impact of this expression on pathogenesis, and whether alterations in HVEM or downstream HVEM-mediated effects ameliorate corneal disease. Methods Corneal HVEM levels were assessed in C57BL/6 mice after infection with HSV-1(17). Leukocytic infiltrates and corneal sensitivity loss were measured in the presence, global absence (HVEM knockout [KO] mice; Tnfrsf14-/-), or partial absence of HVEM (HVEM conditional KO). Effects of immune-modifying nanoparticles (IMPs) on viral replication, corneal sensitivity, and corneal infiltrates were measured. Results Corneal HVEM+ populations, particularly monocytes/macrophages during acute infection (3 days post infection [dpi]) and polymorphonuclear neutrophils (PMN) during the chronic inflammatory phase (14 dpi), increased after HSV-1 infection. Herpes virus entry mediator increased leukocytes in the cornea and corneal sensitivity loss. Ablation of HVEM from CD45+ cells, or intravenous IMP therapy, reduced infiltrates in the chronic phase and maintained corneal sensitivity. Conclusions Herpes virus entry mediator was expressed on two key populations: corneal monocytes/macrophages and PMNs. Herpes virus entry mediator promoted the recruitment of myeloid cells to the cornea in the chronic phase. Herpes virus entry mediator-associated corneal sensitivity loss preceded leukocytic infiltration, suggesting it may play an active role in recruitment. We propose that HVEM on resident corneal macrophages increases nerve damage and immune cell invasion, and we showed that prevention of late-phase infiltration of PMN and CD4+ T cells by IMP therapy improved clinical symptoms and mortality and reduced corneal sensitivity loss caused by HSV-1.
Collapse
Affiliation(s)
- Rebecca G Edwards
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Sarah J Kopp
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Igal Ifergan
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States 2Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States
| | - Stephen D Miller
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States 2Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
42
|
He J, Neumann D, Kakazu A, Pham TL, Musarrat F, Cortina MS, Bazan HEP. PEDF plus DHA modulate inflammation and stimulate nerve regeneration after HSV-1 infection. Exp Eye Res 2017. [PMID: 28642110 DOI: 10.1016/j.exer.2017.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herpes simplex virus type-1 (HSV-1) infection leads to impaired corneal sensation and, in severe cases, to corneal ulceration, melting and perforation. Here, we explore the potential therapeutic action of pigment epithelial-derived factor (PEDF) plus docosahexaenoic acid (DHA) on corneal inflammation and nerve regeneration following HSV-1 infection. Rabbits inoculated with 100,000 PFU/eye of HSV-1 strain 17Syn+ were treated with PEDF + DHA or vehicle. PEDF + DHA treatment resulted in a biphasic immune response with stronger infiltration of CD4+T cells, neutrophils and macrophages at 7-days post-treatment (p.t.) that was significantly decreased by 14 days, compared to the vehicle-treated group. Screening of 14 immune-related genes by q-PCR showed that treatment induced higher expression of IFN-γ and CCL20 and inhibition of IL-18 by 7 days in the cornea. PEDF + DHA-treated animals developed less dendritic corneal lesions, opacity and neovascularization. Corneal nerve density increased at 12-weeks p.t. with functional recovery of corneal sensation. Treatment with PEDF + DHA that was postponed by 3 weeks also showed increased nerve density when compared to vehicle. Our data demonstrate that PEDF + DHA promotes resolution of the inflammatory response to the virus and, most importantly, induces regeneration of damaged corneal nerves vital for maintaining ocular surface homeostasis.
Collapse
Affiliation(s)
- Jiucheng He
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, LA, United States; Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, LA, United States
| | - Donna Neumann
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, LA, United States; Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health New Orleans, LA, United States
| | - Azucena Kakazu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, LA, United States; Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, LA, United States
| | - Thang Luong Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, LA, United States
| | - Farhana Musarrat
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, LA, United States; Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health New Orleans, LA, United States
| | - M Soledad Cortina
- Department of Ophthalmology, University of Illinois Medical Center, Chicago, IL, United States
| | - Haydee E P Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, LA, United States; Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, LA, United States.
| |
Collapse
|
43
|
Chucair-Elliott AJ, Carr MM, Carr DJJ. Long-term consequences of topical dexamethasone treatment during acute corneal HSV-1 infection on the immune system. J Leukoc Biol 2017; 101:1253-1261. [PMID: 28115476 PMCID: PMC5380376 DOI: 10.1189/jlb.4a1116-459r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a leading cause of neurotrophic keratitis (NTK). NTK is characterized by decreased corneal sensation from damage to the corneal sensory fibers. We have reported on the regression of corneal nerves and their function during acute HSV-1 infection. That nerve loss is followed by an aberrant process of nerve regeneration during the latent phase of infection that lacks functional recovery. We recently showed the elicited immune response in the infected cornea, and not viral replication itself, is part of the mechanism responsible for the nerve degeneration process after infection. Specifically, we showed infected corneas topically treated with dexamethasone (DEX) significantly retained both structure and sensitivity of the corneal nerve network in comparison to mice treated with control eye drops, consistent with decreased levels of proinflammatory cytokines and reduced influx of macrophages and CD8+ T cells into the cornea. This study was undertaken to analyze the long-term effect of such a localized, immunosuppressive paradigm (DEX drops on the cornea surface during the first 8 d of HSV-1 infection) on the immune system and on corneal pathology. We found the profound immunosuppressive effect of DEX on lymphoid tissue was sustained in surviving mice for up to 30 d postinfection (p.i.). DEX treatment had prolonged effects, preserving corneal innervation and its function and blunting neovascularization, as analyzed at 30 d p.i. Our data support previously reported observations of an association between the persistent presence of inflammatory components in the latently infected cornea and structural and functional nerve defects in NTK.
Collapse
MESH Headings
- Acute Disease
- Administration, Ophthalmic
- Animals
- Anti-Inflammatory Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cell Movement/drug effects
- Cornea/blood supply
- Cornea/drug effects
- Cornea/innervation
- Cornea/virology
- Corneal Neovascularization/drug therapy
- Corneal Neovascularization/immunology
- Corneal Neovascularization/mortality
- Corneal Neovascularization/virology
- Dexamethasone/pharmacology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Immunity, Innate/drug effects
- Keratitis, Herpetic/drug therapy
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/mortality
- Keratitis, Herpetic/virology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Optic Nerve/drug effects
- Optic Nerve/immunology
- Optic Nerve/pathology
- Optic Nerve/virology
- Survival Analysis
- Viral Load/drug effects
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
44
|
Zhang J, Liu H, Wei B. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. J Zhejiang Univ Sci B 2017; 18:277-288. [PMID: 28378566 PMCID: PMC5394093 DOI: 10.1631/jzus.b1600460] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.
Collapse
|
45
|
Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice. J Virol 2017; 91:JVI.02342-16. [PMID: 28122977 DOI: 10.1128/jvi.02342-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential.
Collapse
|
46
|
Rowe AM, Yun H, Treat BR, Kinchington PR, Hendricks RL. Subclinical Herpes Simplex Virus Type 1 Infections Provide Site-Specific Resistance to an Unrelated Pathogen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1706-1717. [PMID: 28062697 PMCID: PMC5815862 DOI: 10.4049/jimmunol.1601310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
Abstract
HSV-1 infections of the cornea range in severity from minor transient discomfort to the blinding disease herpes stromal keratitis, yet most patients experience a single episode of epithelial keratitis followed by re-establishment of a clear cornea. We asked whether a single transient episode of HSV-1 epithelial keratitis causes long-term changes in the corneal microenvironment that influence immune responses to subsequent corneal infection or trauma. We showed that C57BL/6 mouse corneas infected with HSV-1 KOS, which induces transient herpes epithelial keratitis without herpes stromal keratitis sequelae, possessed a significant leukocytic infiltrate composed primarily of CD4+ T cells and macrophages along with elevated chemokines and cytokines that persisted without loss of corneal clarity (subclinical inflammation). Chemokine and cytokine expression was CD4+ T cell dependent, in that their production was significantly reduced by systemic CD4+ T cell depletion starting before infection, although short-term (3-d) local CD4+ T cell depletion postinfection did not influence chemokine levels in cornea. Corneas with subclinical inflammation developed significantly greater trauma-induced inflammation when they were recipients of syngeneic corneal transplants but also exhibited significantly increased resistance to infections by unrelated pathogens, such as pseudorabies virus. The resistance to pseudorabies virus was CD4+ T cell dependent, because it was eliminated by local CD4+ T cell depletion from the cornea. We conclude that transient HSV-1 corneal infections cause long-term alterations of the corneal microenvironment that provide CD4-dependent innate resistance to subsequent infections by antigenically unrelated pathogens.
Collapse
Affiliation(s)
- Alexander M Rowe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201;
| | - Hongming Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Benjamin R Treat
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201; and
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201; and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| |
Collapse
|
47
|
Gaddipati S, Rao P, Jerome AD, Burugula BB, Gerard NP, Suvas S. Loss of Neurokinin-1 Receptor Alters Ocular Surface Homeostasis and Promotes an Early Development of Herpes Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4021-4033. [PMID: 27798158 PMCID: PMC5113833 DOI: 10.4049/jimmunol.1600836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022]
Abstract
Substance P neuropeptide and its receptor, neurokinin-1 receptor (NK1R), are reported to present on the ocular surface. In this study, mice lacking functional NK1R exhibited an excessive desquamation of apical corneal epithelial cells in association with an increased epithelial cell proliferation and increased epithelial cell density, but decreased epithelial cell size. The lack of NK1R also resulted in decreased density of corneal nerves, corneal epithelial dendritic cells (DCs), and a reduced volume of basal tears. Interestingly, massive accumulation of CD11c+CD11b+ conventional DCs was noted in the bulbar conjunctiva and near the limbal area of corneas from NK1R-/- mice. After ocular HSV-1 infection, the number of conventional DCs and neutrophils infiltrating the infected corneas was significantly higher in NK1R-/- than C57BL/6J mice. This was associated with an increased viral load in infected corneas of NK1R-/- mice. As a result, the number of IFN-γ-secreting virus-specific CD4 T cells in the draining lymph nodes of NK1R-/- mice was much higher than in infected C57BL/6J mice. An increased number of CD4 T cells and mature neutrophils (CD11b+Ly6ghigh) in the inflamed corneas of NK1R-/- mice was associated with an early development of severe herpes stromal keratitis. Collectively, our results show that the altered corneal biology of uninfected NK1R-/- mice along with an enhanced immunological response after ocular HSV-1 infection causes an early development of herpes stromal keratitis in NK1R-/- mice.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Conjunctiva/immunology
- Conjunctiva/pathology
- Conjunctiva/virology
- Cornea/immunology
- Cornea/pathology
- Cornea/virology
- Dendritic Cells/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Homeostasis
- Interferon-gamma/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/physiopathology
- Keratitis, Herpetic/virology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutrophils/immunology
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-1/physiology
- Viral Load
Collapse
Affiliation(s)
- Subhash Gaddipati
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Pushpa Rao
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Andrew David Jerome
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bala Bharathi Burugula
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Norma P Gerard
- Division of Respiratory Diseases, Department of Medicine, Boston's Children Hospital, Harvard Medical School, Boston, MA 02215; and
| | - Susmit Suvas
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201;
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
48
|
Hamrah P, Qazi Y, Shahatit B, Dastjerdi MH, Pavan-Langston D, Jacobs DS, Rosenthal P. Corneal Nerve and Epithelial Cell Alterations in Corneal Allodynia: An In Vivo Confocal Microscopy Case Series. Ocul Surf 2016; 15:139-151. [PMID: 27816571 DOI: 10.1016/j.jtos.2016.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate morphological changes of the corneal epithelium and subbasal nerves in patients with corneal allodynia using in vivo confocal microscopy (IVCM). DESIGN Case-control study of patients with corneal allodynia and healthy controls. METHODS Ten eyes of six patients were diagnosed with corneal allodynia at a single center and compared to fifteen healthy eyes. IVCM of the central cornea was performed on all subjects and controls. Images were retrospectively analyzed numbers of total corneal subbasal nerves, main trunks and branches, total nerve length and density, nerve branching, and tortuosity, superficial and basal epithelial cell densities, and superficial epithelial cell size. RESULTS Corneal allodynia was seen in patients with dry eye disease, recurrent corneal erosion syndrome, exposure to ultraviolet radiation, and Accutane use. Compared to controls, patients with corneal allodynia had a significant decrease in the total numbers of subbasal nerves (P=.014), nerve branches (P=.006), total nerve length (P=.0029), total nerve density (P=.0029) and superficial and basal epithelial cell densities (P=.0004, P=.0036) with an increase in superficial epithelial cell size (P=.016). There were no statistically significant differences in the number of subbasal nerve main trunks (P=.09), nerve branching (P=.21), and nerve tortuosity (P=.05). CONCLUSIONS Corneal IVCM enables near-histological visualization and quantification of the cellular and neural changes in corneal allodynia. Regardless of etiology, corneal allodynia is associated with decreased corneal epithelial cell densities, increased epithelial cell size, and decreased numbers and lengths of subbasal nerves despite an unremarkable slit-lamp examination. Therefore, IVCM may be useful in the management of patients with corneal allodynia.
Collapse
Affiliation(s)
- Pedram Hamrah
- Boston Image Reading Center, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| | - Yureeda Qazi
- Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Bashar Shahatit
- Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mohammad H Dastjerdi
- Ocular Surface Imaging Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Deborah Pavan-Langston
- Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Deborah S Jacobs
- Cornea & Refractive Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Boston Foundation for Sight, Needham, MA, USA
| | | |
Collapse
|
49
|
Liu J, Sun J, Diao Y, Deng A. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients. Med Sci Monit 2016; 22:3135-9. [PMID: 27592207 PMCID: PMC5021016 DOI: 10.12659/msm.897050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. Material/Methods Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. Results The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. Conclusions Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.
Collapse
Affiliation(s)
- Jianliang Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Juanjuan Sun
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Yumei Diao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Aijun Deng
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
50
|
Yun H, Lathrop KL, Hendricks RL. A Central Role for Sympathetic Nerves in Herpes Stromal Keratitis in Mice. Invest Ophthalmol Vis Sci 2016; 57:1749-56. [PMID: 27070108 PMCID: PMC4849540 DOI: 10.1167/iovs.16-19183] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Herpes simplex virus type 1 (HSV-1) is a neurotrophic virus that can cause herpes stromal keratitis (HSK), a severe corneal inflammation that can lead to corneal scarring and blindness. This study identified neurologic changes that occur in HSV-1–infected corneas and related them to HSV-1–induced immunopathology. Methods Corneas of BALB/c and C57BL/6 mice were infected with HSV-1 strains that induce HSK. Changes in sensory nerves were identified by immunofluorescence staining of sensory and sympathetic nerves for substance P (SP) and tyrosine hydroxylase (TH), respectively, and confocal microscopic examination. Some mice received superior cervical ganglionectomy (SCGx) to eliminate sympathetic nerves from the cornea. Results Normal corneas exclusively expressed sensory nerves that entered the stroma as large nerve stalks, branched to form a plexus at the epithelial/stromal interface, and extended termini into the epithelium. These nerves completely retracted from the infected cornea and were replaced by sympathetic nerves that sprouted extensively to hyperinnervate the corneal stroma but failed to form a plexus or extend termini into the epithelium. The hyperinnervating nerves expressed the sympathetic nerve marker TH and their invasion was blocked by performing SCGx. Moreover, the corneal opacity and neovascularization that normally characterizes HSK in this mouse model were largely abrogated by SCGx. Sensory nerves reinnervated infected corneas following SCGx, reformed a nerve plexus, and extended termini into the epithelium resulting in recovery of corneal sensitivity. Conclusions Sympathetic nerves have a central role in HSK in mice, preventing reinnervation by sensory nerves and promoting severe and persistent corneal inflammation.
Collapse
Affiliation(s)
- Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States 2Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States 3Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Microbiology and Molecular Geneti
| |
Collapse
|