1
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
2
|
Klatte N, Shields DC, Agoni C. Modelling the Transitioning of SARS-CoV-2 nsp3 and nsp4 Lumenal Regions towards a More Stable State on Complex Formation. Int J Mol Sci 2022; 24:ijms24010720. [PMID: 36614163 PMCID: PMC9821074 DOI: 10.3390/ijms24010720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
During coronavirus infection, three non-structural proteins, nsp3, nsp4, and nsp6, are of great importance as they induce the formation of double-membrane vesicles where the replication and transcription of viral gRNA takes place, and the interaction of nsp3 and nsp4 lumenal regions triggers membrane pairing. However, their structural states are not well-understood. We investigated the interactions between nsp3 and nsp4 by predicting the structures of their lumenal regions individually and in complex using AlphaFold2 as implemented in ColabFold. The ColabFold prediction accuracy of the nsp3-nsp4 complex was increased compared to nsp3 alone and nsp4 alone. All cysteine residues in both lumenal regions were modelled to be involved in intramolecular disulphide bonds. A linker region in the nsp4 lumenal region emerged as crucial for the interaction, transitioning to a structured state when predicted in complex. The key interactions modelled between nsp3 and nsp4 appeared stable when the transmembrane regions of nsp3 and nsp4 were added to the modelling either alone or together. While molecular dynamics simulations (MD) demonstrated that the proposed model of the nsp3 lumenal region on its own is not stable, key interactions between nsp and nsp4 in the proposed complex model appeared stable after MD. Together, these observations suggest that the interaction is robust to different modelling conditions. Understanding the functional importance of the nsp4 linker region may have implications for the targeting of double membrane vesicle formation in controlling coronavirus infection.
Collapse
Affiliation(s)
- Nele Klatte
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
| | - Denis C. Shields
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Belfield, Ireland
- Correspondence:
| | - Clement Agoni
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Belfield, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu Natal, Durban 4041, South Africa
| |
Collapse
|
3
|
Melayah S, Mankaï A, Jemni M, Chaben AB, Ghozzi M, Ben Abdelkrim A, Ach K, Ghariani N, Denguezli M, Benzarti W, Benzarti M, Melayah S, Naija W, Ghedira I. Anti-Saccharomyces cerevisiae antibodies in patients with COVID-19. Arab J Gastroenterol 2022; 23:241-245. [PMID: 36351870 PMCID: PMC9309156 DOI: 10.1016/j.ajg.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND STUDY AIM Anti-Saccharomyces cerevisiae antibodies (ASCA) have been described in many autoimmune diseases (AIDs). Coronavirus disease 2019 (COVID-19) could trigger AIDs. This study aimed to determine the frequency of ASCA in patients with COVID-19. PATIENTS AND METHODS This study included 88 adult patients with severe COVID-19, 51 mild COVID-19, and 160 healthy blood donors. ASCA of isotype immunoglobulin (Ig)G and IgA were detected by enzyme-linked immunosorbent assay. RESULTS The frequency of ASCA (IgG or IgA) was significantly higher in patients with severe COVID-19 (21.6 % vs 3.7 %, p < 10-3) and in patients with mild COVID-19 than in the healthy controls (13.7 % vs 3.7 %, p = 0.03). ASCA-IgA was significantly more frequent in patients with severe COVID-19 than in healthy controls (15.9 % vs 0.6 %, p < 10-3). ASCA-IgG was significantly more frequent in patients with mild COVID-19 than in healthy controls (13.7 % vs 3.1 %, p = 0.02). ASCA (IgG or IgA) were more frequent in severe than in mild COVID-19, but the difference was not statistically significant (21.6 % vs 13.7 %). ASCA-IgA was significantly more frequent in patients with severe than those with mild COVID-19 (15.9 % vs 0 %, p = 0.003). The mean ASCA-IgG and ASCA-IgA levels were significantly higher in patients with severe COVID-19 than in healthy controls (5.8 U/mL ± 11.8 vs 2.3 U/mL ± 2.8, p < 10-3 and 9.2 U/mL ± 21.5 vs 3.4 U/mL ± 1.7, respectively, p < 10-3). The mean ASCA-IgG levels were significantly higher in patients with mild COVID-19 than in healthy controls (6.2 U/mL ± 12.9 vs 2.3 U/mL ± 2.8, p < 10-3). The mean ASCA-IgA levels were significantly higher in patients with severe than in those with mild COVID-19 (9.2 U/mL ± 21.5 vs 2.6 U/mL ± 1.2, p = 0.03). CONCLUSION ASCA was more frequent in patients with COVID-19 than in healthy controls.
Collapse
Affiliation(s)
- Sarra Melayah
- Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia,Department of Immunology, Faculty of Pharmacy, University of Monastir, Tunisia,Corresponding author at: Laboratory of Immunology, Farhat Hached Hospital, Rue Ibn El Jazzar, 4000 Sousse, Tunisia
| | - Amani Mankaï
- Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia,High School of Sciences and Techniques of Health, Tunis El Manar University, Tunisia
| | - Malek Jemni
- Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia,Department of Immunology, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Arij Ben Chaben
- High School of Sciences and Techniques of Health, Tunis El Manar University, Tunisia
| | - Mariam Ghozzi
- Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia,Department of Immunology, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Asma Ben Abdelkrim
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Kousay Ach
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Nadia Ghariani
- Department of Dermatology, University Hospital of Farhat Hached Sousse, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Mohamed Denguezli
- Department of Dermatology, University Hospital of Farhat Hached Sousse, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Wafa Benzarti
- Department of Pneumology, University Hospital of Farhat Hached Sousse, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Mohamed Benzarti
- Department of Pneumology, University Hospital of Farhat Hached Sousse, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Salma Melayah
- Department of Anesthesia and Intensive Care, University Hospital of Sahloul, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Walid Naija
- Department of Anesthesia and Intensive Care, University Hospital of Sahloul, University of Medicine Ibn Jazzar, Sousse, Tunisia
| | - Ibtissem Ghedira
- Laboratory of Immunology, Farhat Hached Hospital, Sousse, Tunisia,Department of Immunology, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|
4
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Xie P, Fang Y, Baloch Z, Yu H, Zhao Z, Li R, Zhang T, Li R, Zhao J, Yang Z, Dong S, Xia X. A Mouse-Adapted Model of HCoV-OC43 and Its Usage to the Evaluation of Antiviral Drugs. Front Microbiol 2022; 13:845269. [PMID: 35755996 PMCID: PMC9220093 DOI: 10.3389/fmicb.2022.845269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
The human coronavirus OC43 (HCoV-OC43) is one of the most common causes of common cold but can lead to fatal pneumonia in children and elderly. However, the available animal models of HCoV-OC43 did not show respiratory symptoms that are insufficient to assist in screening antiviral agents for respiratory diseases. In this study, we adapted the HCoV-OC43 VR-1558 strain by serial passage in suckling C57BL/6 mice and the resulting mouse-adapted virus at passage 9 (P9) contained 8 coding mutations in polyprotein 1ab, spike (S) protein, and nucleocapsid (N) protein. Pups infected with the P9 virus significantly lost body weight and died within 5 dpi. In cerebral and pulmonary tissues, the P9 virus replication induced the production of G-CSF, IFN-γ, IL-6, CXCL1, MCP-1, MIP-1α, RANTES, IP-10, MIP-1β, and TNF-α, as well as pathological alterations including reduction of neuronal cells and typical symptoms of viral pneumonia. We found that the treatment of arbidol hydrochloride (ARB) or Qingwenjiere Mixture (QJM) efficiently improved the symptoms and decreased n gene expression, inflammatory response, and pathological changes. Furthermore, treating with QJM or ARB raised the P9-infected mice’s survival rate within a 15 day observation period. These findings suggested that the new mouse-adapted HCoV-OC43 model is applicable and reproducible for antiviral studies of HCoV-OC43.
Collapse
Affiliation(s)
- Peifang Xie
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yue Fang
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huanhuan Yu
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zeyuan Zhao
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongqiao Li
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tongtong Zhang
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuwei Dong
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Chan WKB, Olson KM, Wotring JW, Sexton JZ, Carlson HA, Traynor JR. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci Rep 2022; 12:5320. [PMID: 35351926 PMCID: PMC8963407 DOI: 10.1038/s41598-022-08320-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins. We compared drugs between binding sites and filtered out compounds that had no reported activity in an in vitro screen against SARS-CoV-2 infection of human liver (Huh-7) cells. This identified 17 "high-confidence", and 97 "medium-confidence" drug-site pairs. The "high-confidence" group was subjected to molecular dynamics simulations to yield six compounds with stable binding poses at their optimal target proteins. Three drugs-amprenavir, levomefolic acid, and calcipotriol-were predicted to bind to 3 different sites on the spike protein, domperidone to the Mac1 domain of the non-structural protein (Nsp) 3, avanafil to Nsp15, and nintedanib to the nucleocapsid protein involved in packaging the viral RNA. Our "two-way" virtual docking screen also provides a framework to prioritize drugs for testing in future emergencies requiring rapidly available clinical drugs and/or treating diseases where a moderate number of targets are known.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Keith M Olson
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Jesse W Wotring
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA.
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA.
| |
Collapse
|
8
|
Sasidharan S, Sarkar N, Saudagar P. Discovery of compounds inhibiting SARS-COV-2 multi-targets. J Biomol Struct Dyn 2022; 41:2602-2617. [PMID: 34994297 DOI: 10.1080/07391102.2021.2025149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic that has devastated the lives of millions. Researchers around the world are relentlessly working in hopes of finding a cure. Even though the virus shares similarities with reported SARS-CoV and MERS-CoV at the genomic and proteomic level, efforts to repurpose already known drugs against SARS-CoV-2 have resulted ineffective. In this succinct review, we discuss the different potential targets in SARS-CoV-2 at both the genomic and proteomic levels. In addition, we analyze the compounds inhibiting individual target protein as well as multiple targets of SARS-CoV-2. ACE-2 receptor in humans has also been considered a target, keeping the role of the receptor in mind. The mechanism of action of these compounds has also been highlighted along with their clinical manifestation. Towards the end of the review, a brief note on the drugs currently in clinical trials and the current status of the vaccines are also examined. In conclusion, compounds targeting multiple targets of the virus hold the key in putting an end to the coronavirus malady.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Neellohit Sarkar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
9
|
Genomic variation and point mutations analysis of Indian COVID-19 patient samples submitted in GISAID database. J INDIAN CHEM SOC 2021. [PMCID: PMC8442303 DOI: 10.1016/j.jics.2021.100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Corona virus disease 2019 (COVID-19) endemic has havoc on the world; the causative virus of the pandemic is SARS CoV-2. Pharmaceutical companies and academic institutes are in continuous efforts to identify anti-viral therapy or vaccines, but the most significant challenge faced is the highly evolving genome of SARS CoV-2, which is imparting evolutionary selective benefits to the virus. To understand the viral mutations, we have retrieved nine hundred and thirty-four samples from different states of India via the GISAID database and analyzed the frequency of all types of point mutation in all structural, non-structural proteins, and accessory factors of SARS CoV-2. Spike glycol protein, nsp3, nsp6, nsp12, N and NS3 were the most evolving proteins. High frequency point mutations were Q496P (nsp2), A380V (nsp4), A994D (nsp3), L37F (nsp6), P323L & A97V (nsp12), Q57H (ns3), D614G (S), P13L (N), R203K (N), G204R (N) and S194L (N).
Collapse
|
10
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
11
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
12
|
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, Schlundt A. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Front Mol Biosci 2021; 8:653148. [PMID: 34041264 PMCID: PMC8141814 DOI: 10.3389/fmolb.2021.653148] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sophie Marianne Korn
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Martí Ninot-Pedrosa
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Jose Abi Saad
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Fabio C. L. Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisele Cardoso de Amorim
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Thomas K. Anderson
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cristiane D. Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chelsea Anorma
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriaan Bax
- LCP, NIDDK, NIH, Bethesda, MD, United States
| | | | - Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Louis Brigandat
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Anna Bula
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Matthias Bütikofer
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Teresa Carlomagno
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Icaro Putinhon Caruso
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Marquise G. Crosby
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karthikeyan Dhamotharan
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Isabella C. Felli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yanick Fleischmann
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Juan Atilio Gerez
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Dhiman Ghosh
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | | | - Sabine Häfner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - K. Henzler-Wildman
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie T. Hutchison
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Katarina Jović
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Janina Kaderli
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Kaņepe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert N. Kirchdoerfer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - John Kirkpatrick
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Robin Krishnathas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felicitas Kutz
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne zur Lage
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roderick Lambertz
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andras Lang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Douglas Laurents
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Löhr
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anas Malki
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Damien Maurin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Seth W. McNutt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Nathane Cunha Mebus-Antunes
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beat H. Meier
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Celine Moser
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Thais Cristtina Neves-Martins
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xiamonin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Roberta Pierattelli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | - Julien Orts
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roland Riek
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Chad M. Rienstra
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anderson S. Pinheiro
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Linda Schulte
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marco Schiavina
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mara Silber
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcius da Silva Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | | | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Felix Torres
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sabrina Töws
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Á. Treviño
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ying Wang
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Marco E. Weber
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Julia E. Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Zehnder
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Srivastava N, Garg P, Srivastava P, Seth PK. A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ 2021; 9:e11171. [PMID: 33981493 PMCID: PMC8074842 DOI: 10.7717/peerj.11171] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/07/2021] [Indexed: 12/28/2022] Open
Abstract
Background & Objectives The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. Methods In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. Results Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. Interpretation & Conclusions The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.
Collapse
Affiliation(s)
- Neha Srivastava
- Bioinformatics Centre, Biotech Park, Lucknow, Uttar Pradesh, India
| | - Prekshi Garg
- Institute of Biotechnology, AMITY University, Lucknow, Uttar Pradesh, India
| | - Prachi Srivastava
- Institute of Biotechnology, AMITY University, Lucknow, Uttar Pradesh, India
| | - Prahlad Kishore Seth
- NASI Senior Scientist Platinum Jubilee Fellow, Biotech Park, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Gallo A, Tsika AC, Fourkiotis NK, Cantini F, Banci L, Sreeramulu S, Schwalbe H, Spyroulias GA. 1H, 13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: "the N-terminal domain-SUD-N". BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:85-89. [PMID: 33225414 PMCID: PMC7680711 DOI: 10.1007/s12104-020-09987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Among the proteins encoded by the SARS-CoV-2 RNA, nsP3 (non-structural Protein3) is the largest multi-domain protein. Its role is multifaceted and important for the viral life cycle. Nonetheless, regarding the specific role of each domain there are many aspects of their function that have to be investigated. SARS Unique Domains (SUDs), constitute the nsP3c region of the nsP3, and were observed for the first time in SARS-CoV. Two of them, namely SUD-N (the first SUD) and the SUD-M (sequential to SUD-N), exhibit structural homology with nsP3b ("X" or macro domain); indeed all of them are folded in a three-layer α/β/α sandwich. On the contrary, they do not exhibit functional similarities, like ADP-ribose binding properties and ADP-ribose hydrolase activity. There are reports that suggest that these two SUDs may exhibit a binding selectivity towards G-oligonucleotides, a feature which may contribute to the characterization of their role in the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell. While the structures of these domains of SARS-CoV-2 have not been determined yet, SUDs interaction with oligonucleotides and/or RNA molecules may provide a platform for drug discovery. Here, we report the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-N protein, and the NMR chemical shift-based prediction of the secondary structure elements. These data may be exploited for its 3D structure determination and the screening of chemical compounds libraries, which may alter SUD-N function.
Collapse
Affiliation(s)
- Angelo Gallo
- Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | | | | | - Francesca Cantini
- Magnetic Resonance Center–CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center–CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | | |
Collapse
|
15
|
Gallo A, Tsika AC, Fourkiotis NK, Cantini F, Banci L, Sreeramulu S, Schwalbe H, Spyroulias GA. 1H, 13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: "The SUD-M and SUD-C domains". BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:165-171. [PMID: 33423172 PMCID: PMC7796810 DOI: 10.1007/s12104-020-10000-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 RNA, nsP3c (non-structural Protein3c) spans the sequence of the so-called SARS Unique Domains (SUDs), first observed in SARS-CoV. Although the function of this viral protein is not fully elucidated, it is believed that it is crucial for the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell; thus, it is essential for the entire viral life cycle. The first two SUDs, the so-called SUD-N (the N-terminal domain) and SUD-M (domain following SUD-N) domains, exhibit topological and conformational features that resemble the nsP3b macro (or "X") domain. Indeed, they are all folded in a three-layer α/β/α sandwich structure, as revealed through crystallographic structural investigation of SARS-CoV SUDs, and they have been attributed to different substrate selectivity as they selectively bind to oligonucleotides. On the other hand, the C-terminal SUD (SUD-C) exhibit much lower sequence similarities compared to the SUD-N & SUD-M, as reported in previous crystallographic and NMR studies of SARS-CoV. In the absence of the 3D structures of SARS-CoV-2, we report herein the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-M and SUD-C proteins, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will set the base for further understanding at the atomic-level conformational dynamics of these proteins and will allow the effective screening of a large number of small molecules as binders with potential biological impact on their function.
Collapse
Affiliation(s)
- Angelo Gallo
- Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | | | | | - Francesca Cantini
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
| | | |
Collapse
|
16
|
Jha N, Jeyaraman M, Rachamalla M, Ojha S, Dua K, Chellappan D, Muthu S, Sharma A, Jha S, Jain R, Jeyaraman N, GS P, Satyam R, Khan F, Pandey P, Verma N, Singh S, Roychoudhury S, Dholpuria S, Ruokolainen J, Kesari K. Current Understanding of Novel Coronavirus: Molecular Pathogenesis, Diagnosis, and Treatment Approaches. IMMUNO 2021; 1:30-66. [DOI: 10.3390/immuno1010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease was named coronavirus disease 2019 (COVID-19). In a shorter period, this newly emergent infection brought the world to a standstill. On 11 March 2020, the WHO declared COVID-19 as a pandemic. Researchers across the globe have joined their hands to investigate SARS-CoV-2 in terms of pathogenicity, transmissibility, and deduce therapeutics to subjugate this infection. The researchers and scholars practicing different arts of medicine are on an extensive quest to come up with safer ways to curb the pathological implications of this viral infection. A huge number of clinical trials are underway from the branch of allopathy and naturopathy. Besides, a paradigm shift on cellular therapy and nano-medicine protocols has to be optimized for better clinical and functional outcomes of COVID-19-affected individuals. This article unveils a comprehensive review of the pathogenesis mode of spread, and various treatment modalities to combat COVID-19 disease.
Collapse
Affiliation(s)
- Niraj Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Dinesh Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Saurabh Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Naveen Jeyaraman
- Department of Orthopedics, Kasturba Medical College, Manipal 575001, Karnataka, India
| | - Prajwal GS
- Department of Orthopedics, JJM Medical College, Davangere 577004, Karnataka, India
| | - Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Nitin Verma
- School of Pharmacy, Chitkara University, Punjab 140401, Himachal Pradesh, India
| | - Sandeep Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | | | - Sunny Dholpuria
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Kavindra Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
17
|
Al-Qaaneh AM, Alshammari T, Aldahhan R, Aldossary H, Alkhalifah ZA, Borgio JF. Genome composition and genetic characterization of SARS-CoV-2. Saudi J Biol Sci 2021; 28:1978-1989. [PMID: 33519278 PMCID: PMC7834485 DOI: 10.1016/j.sjbs.2020.12.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5' cap and 3' poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5' terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3' terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2.
Collapse
Affiliation(s)
- Ayman M. Al-Qaaneh
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Drug Information Center, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Thamer Alshammari
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Hanan Aldossary
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zahra Abduljaleel Alkhalifah
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
18
|
Yin C. Latent periodicity-2 in coronavirus SARS-CoV-2 genome: Evolutionary implications. J Theor Biol 2021; 515:110604. [PMID: 33508323 PMCID: PMC7835100 DOI: 10.1016/j.jtbi.2021.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/02/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
The ongoing global pandemic of infection disease COVID-19 caused by the 2019 novel coronavirus (SARS-COV-2, formerly 2019-nCoV) presents critical threats to public health and the economy. The genome of SARS-CoV-2 had been sequenced and structurally annotated, yet little is known of the intrinsic organization and evolution of the genome. To this end, we present a mathematical method for the genomic spectrum, a kind of barcode, of SARS-CoV-2 and common human coronaviruses. The genomic spectrum is constructed according to the periodic distributions of nucleotides and therefore reflects the unique characteristics of the genome. The results demonstrate that coronavirus SARS-CoV-2 exhibits predominant latent periodicity-2 regions of non-structural proteins 3, 4, 5, and 6. Further analysis of the latent periodicity-2 regions suggests that the dinucleotide imbalances are increased during evolution and may confer the evolutionary fitness of the virus. Especially, SARS-CoV-2 isolates have increased latent periodicity-2 and periodicity-3 during COVID-19 pandemic. The special strong periodicity-2 regions and the intensity of periodicity-2 in the SARS-CoV-2 whole genome may become diagnostic and pharmaceutical targets in monitoring and curing the COVID-19 disease.
Collapse
Affiliation(s)
- Changchuan Yin
- Department of Mathematics, Statistics, and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045, USA.
| |
Collapse
|
19
|
Cavasotto CN, Lamas MS, Maggini J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur J Pharmacol 2021; 890:173705. [PMID: 33137330 PMCID: PMC7604074 DOI: 10.1016/j.ejphar.2020.173705] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 46 million people have been infected and over 1.2 million fatalities. With the purpose of contributing to the development of effective therapeutics, we performed an in silico determination of binding hot-spots and an assessment of their druggability within the complete SARS-CoV-2 proteome. All structural, non-structural, and accessory proteins have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the currently explored cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.
Collapse
Affiliation(s)
- Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina; Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
| | - Maximiliano Sánchez Lamas
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Meton AI, Inc., Wilmington, DE, 19801, USA
| | - Julián Maggini
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Technology Transfer Office, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
20
|
Garvin MR, T Prates E, Pavicic M, Jones P, Amos BK, Geiger A, Shah MB, Streich J, Felipe Machado Gazolla JG, Kainer D, Cliff A, Romero J, Keith N, Brown JB, Jacobson D. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biol 2020; 21:304. [PMID: 33357233 PMCID: PMC7756312 DOI: 10.1186/s13059-020-02191-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level. Integrated systems biology-directed analyses of these data layers afford valuable insights to build a global understanding of the COVID-19 pandemic. RESULTS Here we identify globally distributed haplotypes from 15,789 SARS-CoV-2 genomes and model their success based on their duration, dispersal, and frequency in the host population. Our models identify mutations that are likely compensatory adaptive changes that allowed for rapid expansion of the virus. Functional predictions from structural analyses indicate that, contrary to previous reports, the Asp614Gly mutation in the spike glycoprotein (S) likely reduced transmission and the subsequent Pro323Leu mutation in the RNA-dependent RNA polymerase led to the precipitous spread of the virus. Our model also suggests that two mutations in the nsp13 helicase allowed for the adaptation of the virus to the Pacific Northwest of the USA. Finally, our explainable artificial intelligence algorithm identified a mutational hotspot in the sequence of S that also displays a signature of positive selection and may have implications for tissue or cell-specific expression of the virus. CONCLUSIONS These results provide valuable insights for the development of drugs and surveillance strategies to combat the current and future pandemics.
Collapse
Affiliation(s)
- Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Erica T Prates
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Piet Jones
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - B Kirtley Amos
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- Department of Horticulture, N-318 Ag Sciences Center, University of Kentucky, Lexington, KY, USA
| | - Armin Geiger
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Manesh B Shah
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Jared Streich
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | | | - David Kainer
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Ashley Cliff
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Jonathon Romero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Nathan Keith
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA.
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| |
Collapse
|
21
|
Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alvarado LHA, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie-Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, de la Campa MOA, Paredes I, Wheeler B, Rupert A, Sam A, See K, Zapata SS, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33299989 DOI: 10.1101/2020.12.01.406637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
Collapse
|
22
|
Chen L, Zhong L. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis 2020; 7:542-550. [PMID: 32363223 PMCID: PMC7195040 DOI: 10.1016/j.gendis.2020.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 01/11/2023] Open
Abstract
A novel coronavirus appeared in Wuhan, China has led to major outbreaks. Recently, rapid classification of virus species, analysis of genome and screening for effective drugs are the most important tasks. In the present study, through literature review, sequence alignment, ORF identification, motif recognition, secondary and tertiary structure prediction, the whole genome of SARS-CoV-2 were comprehensively analyzed. To find effective drugs, the parameters of binding sites were calculated by SeeSAR. In addition, potential miRNAs were predicted according to RNA base-pairing. After prediction by using NCBI, WebMGA and GeneMark and comparison, a total of 8 credible ORFs were detected. Even the whole genome have great difference with other CoVs, each ORF has high homology with SARS-CoVs (>90%). Furthermore, domain composition in each ORFs was also similar to SARS. In the DrugBank database, only 7 potential drugs were screened based on the sequence search module. Further predicted binding sites between drug and ORFs revealed that 2-(N-Morpholino)-ethanesulfonic acid could bind 1# ORF in 4 different regions ideally. Meanwhile, both benzyl (2-oxopropyl) carbamate and 4-(dimehylamina) benzoic acid have bene demonstrated to inhibit SARS-CoV infection effectively. Interestingly, 2 miRNAs (miR-1307-3p and miR-3613-5p) were predicted to prevent virus replication via targeting 3'-UTR of the genome or as biomarkers. In conclusion, the novel coronavirus may have consanguinity with SARS. Drugs used to treat SARS may also be effective against the novel virus. In addition, altering miRNA expression may become a potential therapeutic schedule.
Collapse
Affiliation(s)
- Long Chen
- Bioengineering Institute of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Li Zhong
- Bioengineering Institute of Chongqing University, 174 Shazheng Street, Chongqing, China
| |
Collapse
|
23
|
Korn SM, Dhamotharan K, Fürtig B, Hengesbach M, Löhr F, Qureshi NS, Richter C, Saxena K, Schwalbe H, Tants JN, Weigand JE, Wöhnert J, Schlundt A. 1H, 13C, and 15N backbone chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural protein 3e. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:329-333. [PMID: 32770392 PMCID: PMC7414254 DOI: 10.1007/s12104-020-09971-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and drugability besides the classical virus' proteases. We here report the near-complete NMR backbone chemical shifts of the putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e.
Collapse
Affiliation(s)
- Sophie M Korn
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Nusrat S Qureshi
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany.
| |
Collapse
|
24
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
25
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
26
|
Haque SKM, Ashwaq O, Sarief A, Azad John Mohamed AK. A comprehensive review about SARS-CoV-2. Future Virol 2020; 15:625-648. [PMID: 33224265 PMCID: PMC7664148 DOI: 10.2217/fvl-2020-0124] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
The coronavirus disease (COVID-19) was first identified in China, December 2019. Since then, it has spread the length and breadth of the world at an unprecedented, alarming rate. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which causes COVID-19, has much in common with its closest homologs, SARS-CoV and Middle East respiratory syndrome-CoV. The virus-host interaction of SARS-CoV-2 uses the same receptor, ACE2, which is similar to that of SARS-CoV, which spreads through the respiratory tract. Patients with COVID-19 report symptoms including mild-to-severe fever, cough and fatigue; very few patients report gastrointestinal infections. There are no specific antiviral strategies. A few strong medications are under investigation, so we have to focus on proposals which ought to be taken to forestall this infection in a living host.
Collapse
Affiliation(s)
- SK Manirul Haque
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Omar Ashwaq
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdulla Sarief
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdul Kalam Azad John Mohamed
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| |
Collapse
|
27
|
Santerre M, Arjona SP, Allen CN, Shcherbik N, Sawaya BE. Why do SARS-CoV-2 NSPs rush to the ER? J Neurol 2020; 268:2013-2022. [PMID: 32870373 PMCID: PMC7461160 DOI: 10.1007/s00415-020-10197-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2, which led to the 2020 global pandemic, is responsible for the Coronavirus Disease 2019 (COVID-19), a respiratory illness, and presents a tropism for the central nervous system. Like most members of this family, the virus is composed of structural and non-structural proteins (NSPs). The non-structural proteins are critical elements of the replication and transcription complex (RTC), as well as immune system evasion. Through hijacking the endoplasmic reticulum (ER) membrane, NSPs help the virus establish the RTC, inducing ER stress after membrane rearrangement and causing severe neuronal disturbance. In this review, we focus on the role of Nsp3, 4, and 6 in intracellular membrane rearrangement and evaluate the potential disruption of the central nervous system and the neurodegeneration which it could trigger. Studies of these NSPs will not only bring to light their specific role in viral infection but also facilitate the discovery of novel targeted drugs.
Collapse
Affiliation(s)
- Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | - Charles Ns Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA. .,Department of Neurology, Lewis Katz School of Medicine - Temple University Philadelphia, Philadelphia, PA, 19140, USA.
| |
Collapse
|
28
|
Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR. Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3. Biochemistry 2020; 59:2608-2615. [PMID: 32578982 PMCID: PMC7341687 DOI: 10.1021/acs.biochem.0c00309] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Indexed: 12/21/2022]
Abstract
The virus that causes COVID-19, SARS-CoV-2, has a large RNA genome that encodes numerous proteins that might be targets for antiviral drugs. Some of these proteins, such as the RNA-dependent RNA polymerase, helicase, and main protease, are well conserved between SARS-CoV-2 and the original SARS virus, but several others are not. This study examines one of the proteins encoded by SARS-CoV-2 that is most different, a macrodomain of nonstructural protein 3 (nsp3). Although 26% of the amino acids in this SARS-CoV-2 macrodomain differ from those observed in other coronaviruses, biochemical and structural data reveal that the protein retains the ability to bind ADP-ribose, which is an important characteristic of beta coronaviruses and a potential therapeutic target.
Collapse
Affiliation(s)
- David N. Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Rajdeep S. Virdi
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Nemanja Vuksanovic
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Narayan Dahal
- Department of Physics, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Nicholas R. Silvaggi
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| |
Collapse
|
29
|
Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. ChemistrySelect 2020; 5:7521-7533. [PMID: 32835089 PMCID: PMC7361534 DOI: 10.1002/slct.202001709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Wuhan, a city of China, is the epicenter for the pandemic outbreak of coronavirus disease-2019 (COVID-19). It has become a severe public health challenge to the world and established a public health emergency of international worry. This infectious disease has pulled down the economy of almost all top developed nations. The coronaviruses (CoVs) known for various epidemics caused time to time. Infectious diseases such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), followed by COVID-19, are all coronaviruses led outbreaks that scourged the history of mankind. CoVs evolved themselves to more infectious, transmissible, and more pandemic with time. To prevent the spread of the SARS-CoV-2, many countries have ordered the complete lockdown to combat the outbreak. This paper briefly discussed the historical background of CoVs and the evolution of human coronaviruses (HCoVs), the case studies and the development of their antiviral medications. The viral infection encountered with present-day challenges and futuristic approaches with the help of nanotechnology to minimize the spread of infectious viruses. The antiviral drugs and their clinical advances, along with herbal medicines for viral inhibition and immunity boosters, are described. Elaboration of tables related to CoVs for the compilation of the literature has been adopted for the better understanding.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of ChemistrySri Venkateswara CollegeUniversity of DelhiIndia.
| | - Sanjay Kumar
- Department of ChemistryDeshbandhu CollegeUniversity of DelhiIndia.
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri VishwavidyalayaHaridwarIndia.
| | | | - Kamlesh Kumari
- Department of ZoologyDeen Dayal Upadhyaya CollegeDelhiIndia.
| | - Prashant Singh
- Department of ChemistryAtma Ram Sanatan Dharma CollegeDelhi UniversityNew DelhiIndia.
| | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of DelhiIndia
- Special Centre for Nano SciencesJawaharlal Nehru UniversityDelhiIndia
| |
Collapse
|
30
|
Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Int J Mol Sci 2020; 21:E4546. [PMID: 32604724 PMCID: PMC7352669 DOI: 10.3390/ijms21124546] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002-2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019-2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we review how genomic information has been used to tackle outbreaks caused by emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and SARS-CoV-2. We focus on shared genomic features of the betacoronaviruses and the application of genomic information to phylogenetic analysis, molecular epidemiology and the design of diagnostic systems, potential drugs and vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Zuleima Caballero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Sreekumari Rajeev
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Melissa A. Kennedy
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| |
Collapse
|
31
|
Abstract
Initially recognized of COVID-19 within the world in 2019, the World Health Organization situational report from May 22nd, 2020, globally, there is a complete of 5,204,508 confirmed cases, with 212 countries being affected by the novel coronavirus. 2019 novel coronavirus (SARS-CoV-2) is that the seventh member of the family of coronaviruses is enveloped viruses with a positive sense, single-stranded RNA genome. The SARS-CoV-2 may be a �-CoV of group 2B there is 70% comparability in genetic sequence to SARS-CoV. The source of the new coronavirus infection has been resolved as bats. With whole-genome sequences of SARS-CoV-2 is 96% comparatively at the whole-genome level to a bat coronavirus. Mechanisms of transmission are concluded to incorporate contact, droplet, and possibly airborne under certain circumstances supported ancient experiences associated with SARS-CoV outbreaks. Although antiretroviral therapy is being widely used everywhere the globe for such patents, effects at finding a SARS-CoV vaccine haven�t succeeded so far.
Collapse
|
32
|
Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics 2020; 112:3588-3596. [PMID: 32353474 PMCID: PMC7184998 DOI: 10.1016/j.ygeno.2020.04.016] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
The emerging global infectious COVID-19 disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. To understand the evolution and transmission of SARS-CoV-2, genotyping of virus isolates is of great importance. This study presents an accurate method for effectively genotyping SARS-CoV-2 viruses using complete genomes. The method employs the multiple sequence alignments of the genome isolates with the SARS-CoV-2 reference genome. The single-nucleotide polymorphism (SNP) genotypes are then measured by Jaccard distances to track the relationship of virus isolates. The genotyping analysis of SARS-CoV-2 isolates from the globe reveals that specific multiple mutations are the predominated mutation type during the current epidemic. The proposed method serves an effective tool for monitoring and tracking the epidemic of pathogenic viruses in their global and local genetic variations. The genotyping analysis shows that the genes encoding the S proteins and RNA polymerase, RNA primase, and nucleoprotein, undergo frequent mutations. These mutations are critical for vaccine development in disease control.
Collapse
Affiliation(s)
- Changchuan Yin
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
33
|
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92:418-423. [PMID: 31967327 PMCID: PMC7167049 DOI: 10.1002/jmv.25681] [Citation(s) in RCA: 1808] [Impact Index Per Article: 452.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
The recent emergence of a novel coronavirus (2019-nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life SciencesWuhan UniversityWuhanChina
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life SciencesWuhan UniversityWuhanChina
| | - Deyin Guo
- Center for Infection and Immunity Study, School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
34
|
Vila JA, Arnautova YA. 13C Chemical Shifts in Proteins: A Rich Source of Encoded Structural Information. SPRINGER SERIES ON BIO- AND NEUROSYSTEMS 2019. [PMCID: PMC7123919 DOI: 10.1007/978-3-319-95843-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the formidable progress in Nuclear Magnetic Resonance (NMR) spectroscopy, quality assessment of NMR-derived structures remains as an important problem. Thus, validation of protein structures is essential for the spectroscopists, since it could enable them to detect structural flaws and potentially guide their efforts in further refinement. Moreover, availability of accurate and efficient validation tools would help molecular biologists and computational chemists to evaluate quality of available experimental structures and to select a protein model which is the most suitable for a given scientific problem. The 13Cα nuclei are ubiquitous in proteins, moreover, their shieldings are easily obtainable from NMR experiments and represent a rich source of encoded structural information that makes 13Cα chemical shifts an attractive candidate for use in computational methods aimed at determination and validation of protein structures. In this chapter, the basis of a novel methodology of computing, at the quantum chemical level of theory, the 13Cα shielding for the amino acid residues in proteins is described. We also identify and examine the main factors affecting the 13Cα-shielding computation. Finally, we illustrate how the information encoded in the 13C chemical shifts can be used for a number of applications, viz., from protein structure prediction of both α-helical and β-sheet conformations, to determination of the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH or to accurate detection of structural flaws, at a residue-level, in NMR-determined protein models.
Collapse
|
35
|
Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res 2017; 149:58-74. [PMID: 29128390 PMCID: PMC7113668 DOI: 10.1016/j.antiviral.2017.11.001] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
The multi-domain non-structural protein 3 (Nsp3) is the largest protein encoded by the coronavirus (CoV) genome, with an average molecular mass of about 200 kD. Nsp3 is an essential component of the replication/transcription complex. It comprises various domains, the organization of which differs between CoV genera, due to duplication or absence of some domains. However, eight domains of Nsp3 exist in all known CoVs: the ubiquitin-like domain 1 (Ubl1), the Glu-rich acidic domain (also called “hypervariable region”), a macrodomain (also named “X domain”), the ubiquitin-like domain 2 (Ubl2), the papain-like protease 2 (PL2pro), the Nsp3 ectodomain (3Ecto, also called “zinc-finger domain”), as well as the domains Y1 and CoV-Y of unknown functions. In addition, the two transmembrane regions, TM1 and TM2, exist in all CoVs. The three-dimensional structures of domains in the N-terminal two thirds of Nsp3 have been investigated by X-ray crystallography and/or nuclear magnetic resonance (NMR) spectroscopy since the outbreaks of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003 as well as Middle-East Respiratory Syndrome coronavirus (MERS-CoV) in 2012. In this review, the structures and functions of these domains of Nsp3 are discussed in depth. Nonstructural protein 3 (∼200 kD) is a multifunctional protein comprising up to 16 different domains and regions. Nsp3 binds to viral RNA, nucleocapsid protein, as well as other viral proteins, and participates in polyprotein processing. The papain-like protease of Nsp3 is an established target for new antivirals. Through its de-ADP-ribosylating, de-ubiquitinating, and de-ISGylating activities, Nsp3 counteracts host innate immunity. Structural data are available for the N-terminal two thirds of Nsp3, but domains in the remainder are poorly characterized.
Collapse
|
36
|
Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol Sin 2016; 31:69-77. [PMID: 26847648 PMCID: PMC7090707 DOI: 10.1007/s12250-016-3727-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Bats have been implicated as important reservoir hosts of alpha- and betacoronaviruses. In this study, diverse coronaviruses (CoVs) were detected in 50 of 951 (positive rate 5.3%) intestinal specimens of eight bat species collected in four provinces and the Tibet Autonomous Region of China by pan-coronavirus RT-PCR screening. Based on 400-nt RNA-dependent RNA polymerase (RdRP) sequence analysis, eight belonged to genus Alphacoronavirus and 42 to Betacoronavirus. Among the 50 positive specimens, thirteen gave rise to CoV full-length RdRP gene amplification for further sequence comparison, of which three divergent sequences (two from a unreported province) were subjected to full genome sequencing. Two complete genomes of betacoronaviruses (JTMC15 and JPDB144) and one nearly-complete genome of alphacoronavirus (JTAC2) were sequenced and their genomic organization predicted. The present study has identified additional numbers of genetically diverse bat-borne coronaviruses with a wide distribution in China. Two new species of bat CoV, identified through sequence comparison and phylogenetic analysis, are proposed.![]()
Collapse
|
37
|
Chen Y, Savinov SN, Mielech AM, Cao T, Baker SC, Mesecar AD. X-ray Structural and Functional Studies of the Three Tandemly Linked Domains of Non-structural Protein 3 (nsp3) from Murine Hepatitis Virus Reveal Conserved Functions. J Biol Chem 2015; 290:25293-306. [PMID: 26296883 PMCID: PMC4646180 DOI: 10.1074/jbc.m115.662130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Murine hepatitis virus (MHV) has long served as a model system for the study of coronaviruses. Non-structural protein 3 (nsp3) is the largest nsp in the coronavirus genome, and it contains multiple functional domains that are required for coronavirus replication. Despite the numerous functional studies on MHV and its nsp3 domain, the structure of only one domain in nsp3, the small ubiquitin-like domain 1 (Ubl1), has been determined. We report here the x-ray structure of three tandemly linked domains of MHV nsp3, including the papain-like protease 2 (PLP2) catalytic domain, the ubiquitin-like domain 2 (Ubl2), and a third domain that we call the DPUP (domain preceding Ubl2 and PLP2) domain. DPUP has close structural similarity to the severe acute respiratory syndrome coronavirus unique domain C (SUD-C), suggesting that this domain may not be unique to the severe acute respiratory syndrome coronavirus. The PLP2 catalytic domain was found to have both deubiquitinating and deISGylating isopeptidase activities in addition to proteolytic activity. A computationally derived model of MHV PLP2 bound to ubiquitin was generated, and the potential interactions between ubiquitin and PLP2 were probed by site-directed mutagenesis. These studies extend substantially our structural knowledge of MHV nsp3, providing a platform for further investigation of the role of nsp3 domains in MHV viral replication.
Collapse
Affiliation(s)
| | | | - Anna M Mielech
- the Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153
| | - Thu Cao
- From the Department of Biological Sciences
| | - Susan C Baker
- the Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153
| | - Andrew D Mesecar
- From the Department of Biological Sciences, the Center for Cancer Research, and the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 and
| |
Collapse
|
38
|
Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 2015; 484:313-322. [PMID: 26149721 PMCID: PMC4567502 DOI: 10.1016/j.virol.2015.06.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/19/2015] [Accepted: 06/12/2015] [Indexed: 11/24/2022]
Abstract
The multi-domain non-structural protein 3 of SARS-coronavirus is a component of the viral replication/transcription complex (RTC). Among other domains, it contains three sequentially arranged macrodomains: the X domain and subdomains SUD-N as well as SUD-M within the “SARS-unique domain”. The X domain was proposed to be an ADP-ribose-1”-phosphatase or a poly(ADP-ribose)-binding protein, whereas SUD-NM binds oligo(G)-nucleotides capable of forming G-quadruplexes. Here, we describe the application of a reverse genetic approach to assess the importance of these macrodomains for the activity of the SARS-CoV RTC. To this end, Renilla luciferase-encoding SARS-CoV replicons with selectively deleted macrodomains were constructed and their ability to modulate the RTC activity was examined. While the SUD-N and the X domains were found to be dispensable, the SUD-M domain was crucial for viral genome replication/transcription. Moreover, alanine replacement of charged amino-acid residues of the SUD-M domain, which are likely involved in G-quadruplex-binding, caused abrogation of RTC activity. A SARS-CoV replicon encoding Renilla luciferase as reporter protein is constructed. The role of three macrodomains for the replication/transcription complex is analyzed. In contrast to macrodomains X and SUD-N, SUD-M is found indispensable for replication. Site-directed mutagenesis identifies charged SUD-M residues required for replication. These residues have previously been shown to be involved in G-quadruplex binding.
Collapse
Affiliation(s)
- Yuri Kusov
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel Site, University of Lübeck, Germany.
| | - Jinzhi Tan
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.
| | - Enrique Alvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Madrid, Spain.
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Madrid, Spain.
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel Site, University of Lübeck, Germany.
| |
Collapse
|
39
|
Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3. J Virol 2015; 89:6033-47. [PMID: 25810552 DOI: 10.1128/jvi.00197-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Coronaviruses, the largest RNA viruses, have a complex program of RNA synthesis that entails genome replication and transcription of subgenomic mRNAs. RNA synthesis by the prototype coronavirus mouse hepatitis virus (MHV) is carried out by a replicase-transcriptase composed of 16 nonstructural protein (nsp) subunits. Among these, nsp3 is the largest and the first to be inserted into the endoplasmic reticulum. nsp3 comprises multiple structural domains, including two papain-like proteases (PLPs) and a highly conserved ADP-ribose-1″-phosphatase (ADRP) macrodomain. We have previously shown that the ubiquitin-like domain at the amino terminus of nsp3 is essential and participates in a critical interaction with the viral nucleocapsid protein early in infection. In the current study, we exploited atypical expression schemes to uncouple PLP1 from the processing of nsp1 and nsp2 in order to investigate the requirements of nsp3 domains for viral RNA synthesis. In the first strategy, a mutant was created in which replicase polyprotein translation initiated with nsp3, thereby establishing that complete elimination of nsp1 and nsp2 does not abolish MHV viability. In the second strategy, a picornavirus autoprocessing element was used to separate a truncated nsp1 from nsp3. This provided a platform for further dissection of amino-terminal domains of nsp3. From this, we found that catalytic mutation of PLP1 or complete deletion of PLP1 and the adjacent ADRP domain was tolerated by the virus. These results showed that neither the PLP1 domain nor the ADRP domain of nsp3 provides integral activities essential for coronavirus genomic or subgenomic RNA synthesis. IMPORTANCE The largest component of the coronavirus replicase-transcriptase complex, nsp3, contains multiple modules, many of which do not have clearly defined functions in genome replication or transcription. These domains may play direct roles in RNA synthesis, or they may have evolved for other purposes, such as to combat host innate immunity. We initiated a dissection of MHV nsp3 aimed at identifying those activities or structures in this huge molecule that are essential to replicase activity. We found that both PLP1 and ADRP could be entirely deleted, provided that the requirement for proteolytic processing by PLP1 was offset by an alternative mechanism. This demonstrated that neither PLP1 nor ADRP plays an essential role in coronavirus RNA synthesis.
Collapse
|
40
|
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2015. [PMID: 25720466 DOI: 10.1007/978‐1‐4939‐2438‐7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | | |
Collapse
|
41
|
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Helena Jane Maier
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | - Erica Bickerton
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | - Paul Britton
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| |
Collapse
|
42
|
Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 2014; 115:21-38. [PMID: 25554382 PMCID: PMC5896749 DOI: 10.1016/j.antiviral.2014.12.015] [Citation(s) in RCA: 581] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023]
Abstract
HTS and structure-based design produced naphthalene-based lead compounds with inhibition of SARS-CoV PLpro in the nM range. These naphthalene-based lead compounds have antiviral potency against SARS-CoV in cell culture. SARS-CoV PLpro naphthalene-based inhibitors are non-toxic and highly selective for SARS-CoV PLpro. Designed SARS-CoV PLpro inhibitors act through a non-covalent, competitive mechanism of inhibition. Lessons from design of SARS-CoV PLpro inhibitors have profound implications for other USPs implicated in disease processes.
Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.”
Collapse
Affiliation(s)
- Yahira M Báez-Santos
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Chemistry, Purdue University, West Lafayette, IN, USA; Center for Drug Discovery, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Sarah E St John
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Chemistry, Purdue University, West Lafayette, IN, USA; Center for Drug Discovery, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Chemistry, Purdue University, West Lafayette, IN, USA; Center for Drug Discovery, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
43
|
V'kovski P, Al-Mulla H, Thiel V, Neuman BW. New insights on the role of paired membrane structures in coronavirus replication. Virus Res 2014; 202:33-40. [PMID: 25550072 PMCID: PMC7114427 DOI: 10.1016/j.virusres.2014.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Coronavirus replication is tied to formation of double-membrane organelles (DMOs). DMO-making genes are conserved across the Nidovirales. Here, we interpret recent experiments on the role and importance of coronavirus DMOs.
The replication of coronaviruses, as in other positive-strand RNA viruses, is closely tied to the formation of membrane-bound replicative organelles inside infected cells. The proteins responsible for rearranging cellular membranes to form the organelles are conserved not just among the Coronaviridae family members, but across the order Nidovirales. Taken together, these observations suggest that the coronavirus replicative organelle plays an important role in viral replication, perhaps facilitating the production or protection of viral RNA. However, the exact nature of this role, and the specific contexts under which it is important have not been fully elucidated. Here, we collect and interpret the recent experimental evidence about the role and importance of membrane-bound organelles in coronavirus replication.
Collapse
Affiliation(s)
- Philip V'kovski
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Graduate School for Biomedical Sciences, University of Bern, Switzerland
| | - Hawaa Al-Mulla
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom; University of Baghdad, College of Science, Baghdad, Iraq
| | - Volker Thiel
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom.
| |
Collapse
|
44
|
Vila JA, Arnautova YA. 13C Chemical Shifts in Proteins: A Rich Source of Encoded Structural Information. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [PMCID: PMC7121069 DOI: 10.1007/978-3-642-28554-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the formidable progress in Nuclear Magnetic Resonance (NMR) spectroscopy, quality assessment of NMR-derived structures remains as an important problem. Thus, validation of protein structures is essential for the spectroscopists, since it could enable them to detect structural flaws and potentially guide their efforts in further refinement. Moreover, availability of accurate and efficient validation tools would help molecular biologists and computational chemists to evaluate quality of available experimental structures and to select a protein model which is the most suitable for a given scientific problem. The 13Cα nuclei are ubiquitous in proteins, moreover, their shieldings are easily obtainable from NMR experiments and represent a rich source of encoded structural information that makes 13Cα chemical shifts an attractive candidate for use in computational methods aimed at determination and validation of protein structures. In this chapter, the basis of a novel methodology of computing, at the quantum chemical level of theory, the 13Cα shielding for the amino acid residues in proteins is described. We also identify and examine the main factors affecting the 13Cα-shielding computation. Finally, we illustrate how the information encoded in the 13C chemical shifts can be used for a number of applications, viz., from protein structure prediction of both α-helical and β-sheet conformations, to determination of the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH or to accurate detection of structural flaws, at a residue-level, in NMR-determined protein models.
Collapse
|
45
|
Neuman BW, Chamberlain P, Bowden F, Joseph J. Atlas of coronavirus replicase structure. Virus Res 2013; 194:49-66. [PMID: 24355834 PMCID: PMC7114488 DOI: 10.1016/j.virusres.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
Complete and up to date coverage of replicase protein structures for SARS-CoV. Discusses SARS-CoV structure in the context of other coronavirus structures. Summarizes data from a variety of structural methods to illuminate protein function. Uses models and predictions to fill gaps in the SARS-CoV structure. Discusses the high percentage of novel protein folds among SARS-CoV proteins.
The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.
Collapse
Affiliation(s)
| | | | - Fern Bowden
- School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
46
|
Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 2013; 100:286-95. [PMID: 24012996 PMCID: PMC7113673 DOI: 10.1016/j.antiviral.2013.08.015] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/18/2013] [Indexed: 12/13/2022]
Abstract
We review the outbreak of severe acute respiratory syndrome (SARS) in 2002–2003 and antiviral treatment of patients. We review efforts towards the rational design of anti-SARS therapeutics. We present a comprehensive list of all available 3-dimensional structures of coronavirus proteins. We discuss the emerging MERS coronavirus and review the few antivirals available for treatment. We critically discuss which lessons have been learned from SARS and which are yet to be learned.
This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: – clinical management and infection control of SARS; – reservoir hosts of coronaviruses; – receptor recognition and cross-species transmission of SARS-CoV; – SARS-CoV evasion of innate immune responses; – structures and functions of individual coronaviral proteins; – anti-coronavirus drug discovery and development; and – the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.”
Collapse
Affiliation(s)
- Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | |
Collapse
|
47
|
Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J Virol 2013; 87:9159-72. [PMID: 23760243 DOI: 10.1128/jvi.01275-13] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The coronavirus nucleocapsid protein (N) plays an essential structural role in virions through a network of interactions with positive-strand viral genomic RNA, the envelope membrane protein (M), and other N molecules. Additionally, N protein participates in at least one stage of the complex mechanism of coronavirus RNA synthesis. We previously uncovered an unanticipated interaction between N and the largest subunit of the viral replicase-transcriptase complex, nonstructural protein 3 (nsp3). This was found through analysis of revertants of a severely defective mutant of murine hepatitis virus (MHV) in which the N gene was replaced with that of its close relative, bovine coronavirus (BCoV). In the work reported here, we constructed BCoV chimeras and other mutants of MHV nsp3 and obtained complementary genetic evidence for its association with N protein. We found that the N-nsp3 interaction maps to the amino-terminal ubiquitin-like domain of nsp3, which is essential for the virus. The interaction does not require the adjacent acidic domain of nsp3, which is dispensable. In addition, we demonstrated a complete correspondence between N-nsp3 genetic interactions and the ability of N protein to enhance the infectivity of transfected coronavirus genomic RNA. The latter function of N was shown to depend on both of the RNA-binding domains of N, as well as on the serine- and arginine-rich central region of N, which binds nsp3. Our results support a model in which the N-nsp3 interaction serves to tether the genome to the newly translated replicase-transcriptase complex at a very early stage of infection.
Collapse
|
48
|
Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol 2011; 86:884-97. [PMID: 22072787 DOI: 10.1128/jvi.05957-11] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SARS coronavirus (SARS-CoV) causes severe acute respiratory tract disease characterized by diffuse alveolar damage and hyaline membrane formation. This pathology often progresses to acute respiratory distress (such as acute respiratory distress syndrome [ARDS]) and atypical pneumonia in humans, with characteristic age-related mortality rates approaching 50% or more in immunosenescent populations. The molecular basis for the extreme virulence of SARS-CoV remains elusive. Since young and aged (1-year-old) mice do not develop severe clinical disease following infection with wild-type SARS-CoV, a mouse-adapted strain of SARS-CoV (called MA15) was developed and was shown to cause lethal infection in these animals. To understand the genetic contributions to the increased pathogenesis of MA15 in rodents, we used reverse genetics and evaluated the virulence of panels of derivative viruses encoding various combinations of mouse-adapted mutations. We found that mutations in the viral spike (S) glycoprotein and, to a much less rigorous extent, in the nsp9 nonstructural protein, were primarily associated with the acquisition of virulence in young animals. The mutations in S likely increase recognition of the mouse angiotensin-converting enzyme 2 (ACE2) receptor not only in MA15 but also in two additional, independently isolated mouse-adapted SARS-CoVs. In contrast to the findings for young animals, mutations to revert to the wild-type sequence in nsp9 and the S glycoprotein were not sufficient to significantly attenuate the virus compared to other combinations of mouse-adapted mutations in 12-month-old mice. This panel of SARS-CoVs provides novel reagents that we have used to further our understanding of differential, age-related pathogenic mechanisms in mouse models of human disease.
Collapse
|
49
|
Vila JA, Serrano P, Wüthrich K, Scheraga HA. Sequential nearest-neighbor effects on computed 13Calpha chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2010; 48:23-30. [PMID: 20644980 PMCID: PMC2970923 DOI: 10.1007/s10858-010-9435-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/30/2010] [Indexed: 05/11/2023]
Abstract
To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of (13)C(alpha) chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue alpha/beta protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed (13)C(alpha) chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical (13)C(alpha) chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed (13)C(alpha) chemical shifts, Delta(ca,i), for the individual residues along the sequence. This indicates that the Delta(ca,i)-values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.
Collapse
Affiliation(s)
- Jorge A. Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 USA
- Universidad Nacional de San Luis, Instituto de Matemática Aplicada San Luis, CONICET, Ejército de Los Andes, 950-5700 San Luis Argentina
| | - Pedro Serrano
- Department of Molecular Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kurt Wüthrich
- Department of Molecular Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 USA
| |
Collapse
|
50
|
An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J Virol 2010; 84:10276-88. [PMID: 20660183 DOI: 10.1128/jvi.01287-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein plays an essential role in virion assembly via interactions with the large, positive-strand RNA viral genome and the carboxy-terminal endodomain of the membrane protein (M). To learn about the functions of N protein domains in the coronavirus mouse hepatitis virus (MHV), we replaced the MHV N gene with its counterpart from the closely related bovine coronavirus (BCoV). The resulting viral mutant was severely defective, even though individual domains of the N protein responsible for N-RNA, N-M, or N-N interactions were completely interchangeable between BCoV and MHV. The lesion in the BCoV N substitution mutant could be compensated for by reverting mutations in the central, serine- and arginine-rich (SR) domain of the N protein. Surprisingly, a second class of reverting mutations were mapped to the amino terminus of a replicase subunit, nonstructural protein 3 (nsp3). A similarly defective MHV N mutant bearing an insertion of the SR region from the severe acute respiratory syndrome coronavirus N protein was rescued by the same two classes of reverting mutations. Our genetic results were corroborated by the demonstration that the expressed amino-terminal segment of nsp3 bound selectively to N protein from infected cells, and this interaction was RNA independent. Moreover, we found a direct correlation between the N-nsp3 interaction and the ability of N protein to stimulate the infectivity of transfected MHV genomic RNA (gRNA). Our results suggest a role for this previously unknown N-nsp3 interaction in the localization of genomic RNA to the replicase complex at an early stage of infection.
Collapse
|