1
|
Li S, Yuan X, Mao L, Cai X, Xu X, Li J, Li B. First isolation of bovine coronavirus with a three-amino-acid deletion in the N gene causing severe respiratory and digestive disease in calve. Front Microbiol 2024; 15:1466096. [PMID: 39411436 PMCID: PMC11477655 DOI: 10.3389/fmicb.2024.1466096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
Bovine coronavirus (BCoV), a persistent threat to global cattle industry, has caused significant economic losses worldwide. In this study, a viral strain was isolated from the intestinal content of a diseased calve, and identified by cytopathic effects observation, indirect immunofluorescence assay and electron microscopy. Results showed that BCoV NXWZ2310 belonging to the GIIb genotype and has a three-amino-acid deletion in the serine-rich region of the N gene. Importantly, the BCoV NXWZ2310 strain exhibited strong pathogenicity, causing nasal discharge and watery diarrhea in calves for 8 and 10 days, respectively. Viral shedding was detected in nasal, throat and rectal swabs at levels reaching 106.228 copies/mL, 105.0 copies /mL and 106.692 copies/mL, respectively. Pathological examination showed that NXWZ2310 resulted in parenchymal lesions of the pulmonary lobe and significant intestinal lesions. Both the lungs and intestines displayed marked microscopic lesions with clear viral antigens present. BCoV NXWZ2310 strain with N-gene deletion mutations, caused severe respiratory and digestive disease in calves. Therefore, effective strategies are needed for the prevention and control of this isolate.
Collapse
Affiliation(s)
- Siyuan Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuesong Yuan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Li Mao
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Xuhang Cai
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
2
|
Maestri R, Perez-Lamarque B, Zhukova A, Morlon H. Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses. eLife 2024; 13:RP91745. [PMID: 39196812 PMCID: PMC11357359 DOI: 10.7554/elife.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus-host codiversification have been largely over-estimated.
Collapse
Affiliation(s)
- Renan Maestri
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Benoît Perez-Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, UAParisFrance
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| |
Collapse
|
3
|
Li Y, Palomares RA, Liu M, Xu J, Koo C, Granberry F, Locke SR, Habing G, Saif LJ, Wang L, Wang Q. Isolation and Characterization of Contemporary Bovine Coronavirus Strains. Viruses 2024; 16:965. [PMID: 38932257 PMCID: PMC11209117 DOI: 10.3390/v16060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine coronavirus (BCoV) poses a threat to cattle health worldwide, contributing to both respiratory and enteric diseases. However, few contemporary strains have been isolated. In this study, 71 samples (10 nasal and 61 fecal) were collected from one farm in Ohio in 2021 and three farms in Georgia in 2023. They were screened by BCoV-specific real-time reverse transcription-PCR, and 15 BCoV-positive samples were identified. Among them, five BCoV strains from fecal samples were isolated using human rectal tumor-18 (HRT-18) cells. The genomic sequences of five strains were obtained. The phylogenetic analysis illustrated that these new strains clustered with US BCoVs that have been detected since the 1990s. Sequence analyses of the spike proteins of four pairs of BCoVs, with each pair originally collected from the respiratory and enteric sites of one animal, revealed the potential amino acid residue patterns, such as D1180 for all four enteric BCoVs and G1180 for three of four respiratory BCoVs. This project provides new BCoV isolates and sequences and underscores the genetic diversity of BcoVs, the unknown mechanisms of disease types, and the necessity of sustained surveillance and research for BCoVs.
Collapse
Affiliation(s)
- Yu Li
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
| | - Roberto A. Palomares
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Rd., Athens, GA 30602, USA; (R.A.P.); (C.K.); (F.G.)
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Jiayu Xu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Chohee Koo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Rd., Athens, GA 30602, USA; (R.A.P.); (C.K.); (F.G.)
| | - Francesca Granberry
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Rd., Athens, GA 30602, USA; (R.A.P.); (C.K.); (F.G.)
| | - Samantha R. Locke
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Greg Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| |
Collapse
|
4
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
5
|
de Mello JL, Lorencena D, Delai RR, Kunz AF, Possatti F, Alfieri AA, Takiuchi E. A comprehensive molecular analysis of bovine coronavirus strains isolated from Brazil and comparison of a wild-type and cell culture-adapted strain associated with respiratory disease. Braz J Microbiol 2024; 55:1967-1977. [PMID: 38381350 PMCID: PMC11154165 DOI: 10.1007/s42770-024-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Bovine coronavirus (BCoV) has dual tropisms that can trigger enteric and respiratory diseases in cattle. Despite its global distribution, BCoV field strains from Brazil remain underexplored in studies investigating the virus's worldwide circulation. Another research gap involves the comparative analysis of S protein sequences in BCoV isolates from passages in cell lines versus direct sequencing from clinical samples. Therefore, one of the objectives of our study was to conduct a comprehensive phylogenetic analysis of BCoV strains identified from Brazil, including a respiratory strain obtained during this study, comparing them with global and ancestral BCoV strains. Additionally, we performed a comparative analysis between wild-type BCoV directly sequenced from the clinical sample (nasal secretion) and the cell culture-adapted strain, utilizing the Sanger method. The field strain and multiple cell passage in cell culture (HRT-18) adapted BCoV strain (BOV19 NS) detected in this study were characterized through molecular and phylogenetic analyses based on partial fragments of 1,448 nt covering the hypervariable region of the S gene. The analyses have demonstrated that different BCoV strains circulating in Brazil, and possibly Brazilian variants, constitute a new genotype (putative G15 genotype). Compared with the ancestral prototype (Mebus strain) of BCoV, 33 nt substitutions were identified of which 15 resulted in non-synonymous mutations (nine transitions and six transversions). Now, compared with the wild-type strain was identified only one nt substitution in nt 2,428 from the seventh passage onwards, which resulted in transversion, neutral-neutral charge, and one substitution of asparagine for tyrosine at aa residue 810 (N810Y).
Collapse
Affiliation(s)
- Janaina Lustosa de Mello
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Daniela Lorencena
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Ruana Renostro Delai
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Andressa Fernanda Kunz
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil
| | - Flávia Possatti
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina-UEL, PO Box 6001, Londrina, Paraná, 86051-990, Brazil
| | - Amauri Alcindo Alfieri
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina-UEL, PO Box 6001, Londrina, Paraná, 86051-990, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Elisabete Takiuchi
- Departament of Veterinary Sciences, Universidade Federal do Paraná-UFPR, Rua Pioneiro, 2153, Palotina, Paraná, 85950-000, Brazil.
| |
Collapse
|
6
|
Ujike M, Suzuki T. Progress of research on coronaviruses and toroviruses in large domestic animals using reverse genetics systems. Vet J 2024; 305:106122. [PMID: 38641200 DOI: 10.1016/j.tvjl.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
7
|
Zhang F, Chai C, Niu R, Diao Y, Zhou Y, Zhang J, Feng L, Yao C, Wu Y, Ma Y, Zan X, Wang W. Genetic characterization of bovine coronavirus strain isolated in Inner Mongolia of China. BMC Vet Res 2024; 20:209. [PMID: 38760785 PMCID: PMC11102244 DOI: 10.1186/s12917-024-04046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Chunxia Chai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Rui Niu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yun Diao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yanyan Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Jinlong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Lin Feng
- Helinger County Bureau of Agriculture and Animal Husbandry, Hohhot, 011500, China
| | - Chunming Yao
- Helinger County Bureau of Agriculture and Animal Husbandry, Hohhot, 011500, China
| | - Youzhi Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yanhua Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Xiaohui Zan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Wei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China.
| |
Collapse
|
8
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559030. [PMID: 37808797 PMCID: PMC10557615 DOI: 10.1101/2023.09.22.559030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Xu FH, Han PY, Tian JW, Zong LD, Yin HM, Zhao JY, Yang Z, Kong W, Ge XY, Zhang YZ. Detection of Alpha- and Betacoronaviruses in Small Mammals in Western Yunnan Province, China. Viruses 2023; 15:1965. [PMID: 37766371 PMCID: PMC10535241 DOI: 10.3390/v15091965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The genetic diversity of coronaviruses (CoVs) is high, and their infection in animals has not yet been fully revealed. By RT-PCR detection of the partial RNA-dependent RNA polymerase (RdRp) gene of CoVs, we screened a total of 502 small mammals in the Dali and Nujiang prefectures of Western Yunnan Province, China. The number of overall CoV positives was 20, including β-CoV (n = 13) and α-CoV (n = 7), with a 3.98% prevalence in rectal tissue samples. The identity of the partial RdRp genes obtained for 13 strains of β-CoV was 83.42-99.23% at the nucleotide level, and it is worth noting that the two strains from Kachin red-backed voles showed high identity to BOV-36/IND/2015 from Indian bovines and DcCoV-HKU23 from dromedary camels (Camelus dromedarius) in Morocco; the nucleotide identity was between 97.86 and 98.33%. Similarly, the identity of the seven strains of α-CoV among the partial RdRp sequences was 94.00-99.18% at nucleotide levels. The viral load in different tissues was measured by quantitative RT-PCR (qRT-PCR). The average CoV viral load in small mammalian rectal tissue was 1.35 × 106 copies/g; differently, the mean CoV viral load in liver, heart, lung, spleen, and kidney tissue was from 0.97 × 103 to 3.95 × 103 copies/g, which revealed that CoV has extensive tropism in rectal tissue in small mammals (p < 0.0001). These results revealed the genetic diversity, epidemiology, and infective tropism of α-CoV and β-CoV in small mammals from Dali and Nujiang, which deepens the comprehension of the retention and infection of coronavirus in natural hosts.
Collapse
Affiliation(s)
- Fen-Hui Xu
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Pei-Yu Han
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Jia-Wei Tian
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Li-Dong Zong
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Hong-Min Yin
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Jun-Ying Zhao
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Ze Yang
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Wei Kong
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| | - Xing-Yi Ge
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410012, China;
| | - Yun-Zhi Zhang
- School of Public Health, Institute of Preventive Medicine, Dali University, Dali 671000, China; (F.-H.X.); (P.-Y.H.); (J.-W.T.); (L.-D.Z.); (H.-M.Y.); (J.-Y.Z.); (Z.Y.); (W.K.)
- Key Laboratory of Pathogen Resistant Plant Resources Screening Research in Western Yunnan, Dali 671000, China
- Key Laboratory of Cross-Border Prevention and Control and Quarantine of Zoonotic Diseases in Yunnan, Dali 671000, China
| |
Collapse
|
10
|
Hans N, Gupta S, Patel AK, Naik S, Malik A. Deciphering the role of fucoidan from brown macroalgae in inhibiting SARS-CoV-2 by targeting its main protease and receptor binding domain: Invitro and insilico approach. Int J Biol Macromol 2023; 248:125950. [PMID: 37487999 DOI: 10.1016/j.ijbiomac.2023.125950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The current study investigated the role of fucoidan from Padina tetrastromatica and Turbinaria conoides against 3-chymotrypsin like protease (3CLpro) and receptor binding domain (RBD) spike protein of SARS-CoV-2 using an invitro and computational approach. The 3CLpro and RBD genes were successfully cloned in pET28a vector, expressed in BL-21DE3 E. coli rosetta cells and purified by ion exchange affinity and size exclusion chromatography. Fucoidan extracted from both biomass using green approach, subcritical water, was found to inhibit 3CLpro of SARS-CoV-2 with an IC50 value of up to 0.35 mg mL-1. However, fucoidan was found to be inactive against the RBD protein. Molecular docking studies demonstrated that fucoidan binds to the active sites of 3CLpro with an affinity of -5.0 kcal mol-1. In addition, molecular dynamic simulations recorded stabilized interactions of protein-ligand complexes in terms of root mean square deviation, root mean square fluctuation, the radius of gyration, solvent accessible surface area and hydrogen bond interaction. The binding energy of fucoidan with 3CLpro was determined to be -101.821 ± 12.966 kJ mol-1 using Molecular Mechanic/Poisson-Bolt-Boltzmann Surface Area analysis. Fucoidan satisfies the Absorption, Distribution, Metabolism, and Excretion (ADME) properties, including Lipinski's rule of five, which play an essential role in drug design. According to the toxicity parameters, fucoidan does not exhibit skin sensitivity, hepatotoxicity, or AMES toxicity. Therefore, this work reveals that fucoidan from brown macroalgae could act as possible inhibitors in regulating the function of the 3CLpro protein, hence inhibiting viral replication and being effective against COVID-19.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India
| | - Shreya Gupta
- Kausma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| | - Ashok Kumar Patel
- Kausma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Palermo PM, Orbegozo J, Watts DM, Morrill JC. Serosurveillance for Severe Acute Respiratory Syndrome Coronavirus 2 Antibody in Feral Swine and White-Tailed Deer in Texas. Vector Borne Zoonotic Dis 2023; 23:397-400. [PMID: 37163291 PMCID: PMC10354299 DOI: 10.1089/vbz.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Background: Serological evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been reported in white-tailed deer (WTD) in the United States and Canada. Even though WTD are susceptible to SARS-CoV-2 infection, there is no evidence of infection by this virus in other mammalian species that might interact with WTD in nature. Similar to WTD, feral swine are widely distributed and generally occupy the same range as WTD in Texas. The objective of this study was to determine the prevalence of SARS-CoV-2 neutralizing antibody in WTD during 2020 and 2021 and determine the prevalence of SARS-CoV-2 neutralizing antibody in feral swine during 2018 (prepandemic period) and from March 2020 to February 2021 (pandemic period) in Travis County, Texas. Materials and Methods: Sera samples were collected from hunter-killed WTD and feral swine during the prepandemic and pandemic period and tested for SARS-CoV-2 antibody by a plaque reduction neutralization assay in Vero cells. Results: SARS-CoV-2 antibody was not detected in any of the 166 feral swine sera samples, including 24 samples collected during the prepandemic and 142 samples collected during the pandemic period. Furthermore, SARS-CoV-2 antibody was not detected in the 115 WTD samples collected during late 2020, but antibody was detected in WTD in early 2021. Conclusions: The results indicated that SARS-CoV-2 infection of WTD occurred during early 2021 in Travis County, Texas, but serological evidence of SARS-CoV-2 infection was not detected in the feral swine samples collected from the same locality and during the same time period of the collection of WTD samples.
Collapse
Affiliation(s)
- Pedro M. Palermo
- Department of Biological Science and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Jeanette Orbegozo
- Department of Biological Science and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas M. Watts
- Department of Biological Science and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - John C. Morrill
- Orion Research and Management Services, Gatesville, Texas, USA
| |
Collapse
|
12
|
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe 2023; 31:874-889. [PMID: 37321171 PMCID: PMC10265781 DOI: 10.1016/j.chom.2023.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| | - Cassandra M Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Blake Vilchez
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
13
|
Leopardi S, Desiato R, Mazzucato M, Orusa R, Obber F, Averaimo D, Berjaoui S, Canziani S, Capucchio MT, Conti R, di Bella S, Festa F, Garofalo L, Lelli D, Madrau MP, Mandola ML, Moreno Martin AM, Peletto S, Pirani S, Robetto S, Torresi C, Varotto M, Citterio C, Terregino C. One health surveillance strategy for coronaviruses in Italian wildlife. Epidemiol Infect 2023; 151:e96. [PMID: 37263583 PMCID: PMC10282179 DOI: 10.1017/s095026882300081x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
The recent reinforcement of CoV surveillance in animals fuelled by the COVID-19 pandemic provided increasing evidence that mammals other than bats might hide further diversity and play critical roles in human infectious diseases. This work describes the results of a two-year survey carried out in Italy with the double objective of uncovering CoV diversity associated with wildlife and of excluding the establishment of a reservoir for SARS-CoV-2 in particularly susceptible or exposed species. The survey targeted hosts from five different orders and was harmonised across the country in terms of sample size, target tissues, and molecular test. Results showed the circulation of 8 CoV species in 13 hosts out of the 42 screened. Coronaviruses were either typical of the host species/genus or normally associated with their domestic counterpart. Two novel viruses likely belonging to a novel CoV genus were found in mustelids. All samples were negative for SARS-CoV-2, with minimum detectable prevalence ranging between 0.49% and 4.78% in the 13 species reaching our threshold sample size of 59 individuals. Considering that within-species transmission in white-tailed deer resulted in raising the prevalence from 5% to 81% within a few months, this result would exclude a sustained cycle after spillback in the tested species.
Collapse
Affiliation(s)
- Stefania Leopardi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Rosanna Desiato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
- National Reference Center Wildlife Diseases, Aosta Valley, Quart, Italy
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Daniela Averaimo
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy
| | - Raffaella Conti
- Istituto Zooprofilattico Sperimentale di Lazio e Toscana, Roma, Italy
| | - Santina di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Francesca Festa
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Luisa Garofalo
- Istituto Zooprofilattico Sperimentale di Lazio e Toscana, Roma, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
- Molecular Medicine PhD Program, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maria Lucia Mandola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | | | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale di Umbria e Marche, Perugia, Italy
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale di Umbria e Marche, Perugia, Italy
| | - Maria Varotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Carlo Citterio
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | |
Collapse
|
14
|
Lopes LR. Cervids ACE2 Residues that Bind the Spike Protein can Provide Susceptibility to SARS-CoV-2. ECOHEALTH 2023; 20:9-17. [PMID: 37106170 PMCID: PMC10139662 DOI: 10.1007/s10393-023-01632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 06/11/2023]
Abstract
The susceptibility of the white-tailed deer (WTD; Odocoileus virginianus) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted cervids as coronavirus reservoirs. This study aimed to evaluate the angiotensin-converting enzyme 2 (ACE2) residues which bind the spike protein of SARS-CoV-2 from 16 cervids to predict their potential susceptibility to SARS-CoV-2 infection. Eleven out of 16 species presented identical ACE2 key residues to WTD ACE2. Four cervids presented K31N, a variant associated with low SARS-CoV-2 susceptibility. Large herding of cervids with ACE2 key residues identical to that of the WTD can result in extensive reservoirs of SARS-CoV-2. Cervids as potential reservoirs could favor SARS-CoV-2 adaptation and the emergence of new coronavirus strains.
Collapse
Affiliation(s)
- Luciano Rodrigo Lopes
- Bioinformatics and Bio-Data Science Division, Health Informatics Department, Universidade Federal de São Paulo - UNIFESP, Rua Botucatu 862 - Prédio Leal Prado (térreo), São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
15
|
Bandyopadhyay SS, Halder AK, Saha S, Chatterjee P, Nasipuri M, Basu S. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human-Coronavirus Family Interactome. Vaccines (Basel) 2023; 11:549. [PMID: 36992133 PMCID: PMC10059867 DOI: 10.3390/vaccines11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host proteins. As a result, identifying virus and host protein-protein interactions could help researchers better understand the virus disease transmission behavior and identify possible COVID-19 drugs. The International Committee on Virus Taxonomy has determined that nCoV is genetically 89% compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host-pathogen protein interaction affinity of the coronavirus family, having 44 different variants. In light of these considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for determining the binding affinity of any two proteins at the organism level. Based on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants. The fuzzy scoring function of the entire host-pathogen network has been processed with ~180 million potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million potential level one host-pathogen interactions are computed based on the estimated interaction affinity threshold. The resulting host-pathogen interactome is also validated with state-of-the-art experimental networks. The study has also been extended further toward the drug-repurposing study by analyzing the FDA-listed COVID drugs.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, Sector V, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
16
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
17
|
Ji C, Feng Y, Sun R, Gu Q, Zhang Y, Ma J, Pan Z, Yao H. Development of a multienzyme isothermal rapid amplification and lateral flow dipstick combination assay for bovine coronavirus detection. Front Vet Sci 2023; 9:1059934. [PMID: 36686176 PMCID: PMC9845563 DOI: 10.3389/fvets.2022.1059934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Bovine coronavirus (BCoV) is a major cause of infectious disease in cattle, causing huge economic losses to the beef and dairy industries worldwide. BCoV can infect humans and multiple other species of animals. A rapid, reliable, and simple test is needed to detect BCoV infection in suspected farms. In this study, we developed a novel multienzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) combination assay, targeting a highly conserved region of the viral nucleocapsid (N) gene for BCoV detection. The MIRA-LFD assay was highly specific and sensitive, comparable to a published reverse transcription quantitative PCR (RT-qPCR) assay for BCoV detection. Compared with the published RT-qPCR assay, the κ value of the MIRA-LFD assay in the detection of 192 cattle clinical samples was 0.982. The MIRA-LFD assay did not require sophisticated instruments and the results could be observed with eyes. Our results showed that the MIRA-LFD assay was a useful diagnostic tool for rapid on-site detection of BCoV.
Collapse
|
18
|
Cool K, Gaudreault NN, Morozov I, Trujillo JD, Meekins DA, McDowell C, Carossino M, Bold D, Mitzel D, Kwon T, Balaraman V, Madden DW, Artiaga BL, Pogranichniy RM, Roman-Sosa G, Henningson J, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg Microbes Infect 2022; 11:95-112. [PMID: 34842046 PMCID: PMC8725908 DOI: 10.1080/22221751.2021.2012528] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.
Collapse
Affiliation(s)
- Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dana Mitzel
- United States Department of Agriculture, Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman M. Pogranichniy
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gleyder Roman-Sosa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - William C. Wilson
- United States Department of Agriculture, Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Workman AM, McDaneld TG, Harhay GP, Das S, Loy JD, Hause BM. Recent Emergence of Bovine Coronavirus Variants with Mutations in the Hemagglutinin-Esterase Receptor Binding Domain in U.S. Cattle. Viruses 2022; 14:2125. [PMID: 36298681 PMCID: PMC9607061 DOI: 10.3390/v14102125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.
Collapse
Affiliation(s)
- Aspen M. Workman
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Tara G. McDaneld
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Gregory P. Harhay
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Subha Das
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop N, Lincoln, NE 68503, USA
| | - Benjamin M. Hause
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
20
|
Savard C, Provost C, Ariel O, Morin S, Fredrickson R, Gagnon CA, Broes A, Wang L. First report and genomic characterization of a bovine-like coronavirus causing enteric infection in an odd-toed non-ruminant species (Indonesian tapir, Acrocodia indica) during an outbreak of winter dysentery in a zoo. Transbound Emerg Dis 2022; 69:3056-3065. [PMID: 34427399 PMCID: PMC8943714 DOI: 10.1111/tbed.14300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 02/05/2023]
Abstract
Bovine coronavirus (BCoV) is associated with three distinct clinical syndromes in cattle that is, neonatal diarrhoea, haemorrhagic diarrhoea in adults (the so-called winter dysentery syndrome, WD) and respiratory infections in cattle of different ages. In addition, bovine-like CoVs have been detected in various species including domestic and wild ruminants. However, bovine-like CoVs have not been reported so far in odd-toed ungulates. We describe an outbreak of WD associated with a bovine-like CoV affecting several captive wild ungulates, including Indonesian tapirs (Acrocodia indica) an odd-toed ungulate species (Perissodactyla) which, with even-toed ungulates species (Artiodactyla) form the clade Euungulata. Genomic characterization of the CoV revealed that it was closely related to BCoVs previously reported in America. This case illustrates the adaptability of bovine-like CoVs to new species and the necessity of continued surveillance of bovine-like CoVs in various species.
Collapse
Affiliation(s)
| | - Chantale Provost
- Molecular diagnostic laboratory, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Samuel Morin
- Bureau vétérinaire Iberville, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Carl A. Gagnon
- Molecular diagnostic laboratory, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - André Broes
- Biovet Inc., Saint-Hyacinthe, Québec, Canada
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
21
|
Soules KR, Rahe MC, Purtle L, Moeckly C, Stark P, Samson C, Knittel JP. Bovine Coronavirus Infects the Respiratory Tract of Cattle Challenged Intranasally. Front Vet Sci 2022; 9:878240. [PMID: 35573402 PMCID: PMC9100586 DOI: 10.3389/fvets.2022.878240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine Coronavirus (BCoV) is a member of a family of viruses associated with both enteric and respiratory diseases in a wide range of hosts. BCoV has been well-established as a causative agent of diarrhea in cattle, however, its role as a respiratory pathogen is controversial. In this study, fifteen calves were challenged intranasally with virulent BCoV in order to observe the clinical manifestation of the BCoV infection for up to 8 days after initial challenge, looking specifically for indication of symptoms, pathology, and presence of viral infection in the respiratory tract, as compared to six unchallenged control calves. Throughout the study, clinical signs of disease were recorded and nasal swabs were collected daily. Additionally, bronchoalveolar lavage (BAL) was performed at 4 days Post-challenge, and blood and tissue samples were collected from calves at 4, 6, or 8 days Post-challenge to be tested for the presence of BCoV and disease pathology. The data collected support that this BCoV challenge resulted in respiratory infections as evidenced by the isolation of BCoV in BAL fluids and positive qPCR, immunohistochemistry (IHC), and histopathologic lesions in the upper and lower respiratory tissues. This study can thus be added to a growing body of data supporting that BCoV is a respiratory pathogen and contributor to respiratory disease in cattle.
Collapse
Affiliation(s)
| | - Michael C. Rahe
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Lisa Purtle
- Merck Animal Health, De Soto, KS, United States
| | | | - Paul Stark
- Merck Animal Health, De Soto, KS, United States
| | - Clay Samson
- Merck Animal Health, De Soto, KS, United States
| | | |
Collapse
|
22
|
Smith FL, Heller MC, Crossley BM, Clothier KA, Anderson ML, Barnum SS, Pusterla N, Rowe JD. Diarrhea outbreak associated with coronavirus infection in adult dairy goats. J Vet Intern Med 2022; 36:805-811. [PMID: 35165938 PMCID: PMC8965271 DOI: 10.1111/jvim.16354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Background Infection by coronaviruses cause gastrointestinal disease in many species. Little is known about its prevalence and importance in goats. Objective Identify the etiology, demographics, and clinical features of an outbreak of diarrhea in adult goats. Hypothesis Bovine coronavirus (BCoV) PCR would detect viral material in feces of goats in the herds involved in the diarrhea outbreak. Animals Twelve herds with 4 to 230 adult goats were affected. Goats sampled for fecal PCR were ≥1‐year‐old: 25 from affected herds and 6 from a control herd. Methods This is a cross‐sectional descriptive study of an outbreak of diarrheal disease in adult goats. BCoV PCR primers for the spike (S) or nucleocapsid (N) proteins were used to test fecal material from affected goats. The N protein sequencing and phylogenetic analysis was performed. Herd records and owner surveys were used to characterize morbidity, clinical signs, and treatment. Results In 2 affected herds 18/25 of animals had at least 1 positive BCoV PCR test. Goats from affected herds were significantly more likely to be PCR positive than the control herd (OR 8.75, 95% CI 1.11‐104, P = .05). The most common clinical signs were change in fecal consistency (19/20) and decreased milk production (14/15). Phylogenetic analysis of the N protein showed this virus was closely related to a bovine‐like coronavirus isolated from a giraffe. Conclusions and Clinical Importance Bovine coronavirus primers detected nucleic acids of the N and S proteins in feces of goats in affected herds. Coronavirus shedding frequency was temporally associated with the outbreak.
Collapse
Affiliation(s)
- Fauna Leah Smith
- Graduate Group in Integrative Pathobiology, Center for Immunology and Infectious Disease, University of California, Davis, Davis, California, USA
| | - Meera C Heller
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Beate M Crossley
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA.,California Animal Health and Food Safety Laboratory System, Davis, California, USA
| | - Kristin A Clothier
- California Animal Health and Food Safety Laboratory System, Davis, California, USA.,Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Mark L Anderson
- California Animal Health and Food Safety Laboratory System, Davis, California, USA.,Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Samantha S Barnum
- School of Veterinary Medicine, University of California, Davis, California, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Joan D Rowe
- Department of Population, Health & Reproduction, University of California, Davis, California, USA
| |
Collapse
|
23
|
Liu X, Wu Q, Zhang Z. Global Diversification and Distribution of Coronaviruses With Furin Cleavage Sites. Front Microbiol 2021; 12:649314. [PMID: 34690939 PMCID: PMC8529245 DOI: 10.3389/fmicb.2021.649314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Knowledge about coronaviruses (CoVs) with furin cleavage sites is extremely limited, although these sites mediate the hydrolysis of glycoproteins in plasma membranes required for MERS-CoV or SARS-CoV-2 to enter cells and infect humans. Thus, we have examined the global epidemiology and evolutionary history of SARS-CoV-2 and 248 other CoVs with 86 diversified furin cleavage sites that have been detected in 24 animal hosts in 28 countries since 1954. Besides MERS-CoV and SARS-CoV-2, two of five other CoVs known to infect humans (HCoV-OC43 and HCoV-HKU1) also have furin cleavage sites. In addition, human enteric coronavirus (HECV-4408) has a furin cleavage site and has been detected in humans (first in Germany in 1988), probably via spillover events from bovine sources. In conclusion, the presence of furin cleavage sites might explain the polytropic nature of SARS-CoV-2- and SARS-CoV-2-like CoVs, which would be helpful for ending the COVID-19 pandemic and preventing outbreaks of novel CoVs.
Collapse
Affiliation(s)
- Xiaotong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
24
|
Islam A, Ferdous J, Islam S, Sayeed MA, Dutta Choudhury S, Saha O, Hassan MM, Shirin T. Evolutionary Dynamics and Epidemiology of Endemic and Emerging Coronaviruses in Humans, Domestic Animals, and Wildlife. Viruses 2021; 13:1908. [PMID: 34696338 PMCID: PMC8537103 DOI: 10.3390/v13101908] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Diverse coronavirus (CoV) strains can infect both humans and animals and produce various diseases. CoVs have caused three epidemics and pandemics in the last two decades, and caused a severe impact on public health and the global economy. Therefore, it is of utmost importance to understand the emergence and evolution of endemic and emerging CoV diversity in humans and animals. For diverse bird species, the Infectious Bronchitis Virus is a significant one, whereas feline enteric and canine coronavirus, recombined to produce feline infectious peritonitis virus, infects wild cats. Bovine and canine CoVs have ancestral relationships, while porcine CoVs, especially SADS-CoV, can cross species barriers. Bats are considered as the natural host of diverse strains of alpha and beta coronaviruses. Though MERS-CoV is significant for both camels and humans, humans are nonetheless affected more severely. MERS-CoV cases have been reported mainly in the Arabic peninsula since 2012. To date, seven CoV strains have infected humans, all descended from animals. The severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) are presumed to be originated in Rhinolopoid bats that severely infect humans with spillover to multiple domestic and wild animals. Emerging alpha and delta variants of SARS-CoV-2 were detected in pets and wild animals. Still, the intermediate hosts and all susceptible animal species remain unknown. SARS-CoV-2 might not be the last CoV to cross the species barrier. Hence, we recommend developing a universal CoV vaccine for humans so that any future outbreak can be prevented effectively. Furthermore, a One Health approach coronavirus surveillance should be implemented at human-animal interfaces to detect novel coronaviruses before emerging to humans and to prevent future epidemics and pandemics.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, VIC 3216, Australia
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Md. Abu Sayeed
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Shusmita Dutta Choudhury
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| |
Collapse
|
25
|
Islam MS, Hasib FMY, Nath C, Ara J, Nu MS, Fazal MA, Chowdhury S. Coronavirus disease 2019 and its potential animal reservoirs: A review. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.171-181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the 21st century, the world has been plagued by coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus of the family Coronaviridae epidemiologically suspected to be linked to a wet market in Wuhan, China. The involvement of wildlife and wet markets with the previous outbreaks simultaneously has been brought into sharp focus. Although scientists are yet to ascertain the host range and zoonotic potential of SARS-CoV-2 rigorously, information about its two ancestors, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), is a footprint for research on COVID-19. A 96% genetic similarity with bat coronaviruses and SARS-CoV-2 indicates that the bat might be a potential reservoir of SARS-CoV-2 just like SARS-CoV and MERS-CoV, where civets and dromedary camels are considered the potential intermediate host, respectively. Perceiving the genetic similarity between pangolin coronavirus and SARS-CoV-2, many scientists also have given the scheme that the pangolin might be the intermediate host. The involvement of SARS-CoV-2 with other animals, such as mink, snake, and turtle has also been highlighted in different research articles based on the interaction between the key amino acids of S protein in the receptor-binding domain and angiotensin-converting enzyme II (ACE2). This study highlights the potential animal reservoirs of SARS-CoV-2 and the role of wildlife in the COVID-19 pandemic. Although different causes, such as recurring viral genome recombination, wide genetic assortment, and irksome food habits, have been blamed for this emergence, basic research studies and literature reviews indicate an enormous consortium between humans and animals for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Md. Sirazul Islam
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - F. M. Yasir Hasib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Jahan Ara
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mong Sing Nu
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md. Abul Fazal
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
26
|
Cool K, Gaudreault NN, Morozov I, Trujillo JD, Meekins DA, McDowell C, Carossino M, Bold D, Kwon T, Balaraman V, Madden DW, Artiaga BL, Pogranichniy RM, Sosa GR, Henningson J, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.15.456341. [PMID: 34426811 PMCID: PMC8382122 DOI: 10.1101/2021.08.15.456341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2, a novel Betacoronavirus, was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks (SARS-CoV and MERS-CoV) have demonstrated the significant role of intermediate and reservoir hosts in viral maintenance and transmission cycles. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (Odocoileus virginianus) are amongst the most abundant, densely populated, and geographically widespread wild ruminant species in the United States. Human interaction with white-tailed deer has resulted in the occurrence of disease in human populations in the past. Recently, white-tailed deer fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult white-tailed deer. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A (SARS-CoV-2/human/USA/WA1/2020) and the alpha variant of concern (VOC) B.1.1.7 (SARS-CoV-2/human/USA/CA_CDC_5574/2020), through co-infection of white-tailed deer. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult white-tailed deer are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in white-tailed deer, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from virus present in tissues of principal infected deer, fetuses and contact animals.
Collapse
Affiliation(s)
- Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman M. Pogranichniy
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gleyder Roman Sosa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - William C. Wilson
- National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
27
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6312. [PMID: 34200934 PMCID: PMC8296125 DOI: 10.3390/ijerph18126312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.
Collapse
Affiliation(s)
- Mohamed A. Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Haitham M. Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Rauf Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Ahmad K. Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Raid Saleem Al-Baradi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| |
Collapse
|
29
|
Vlasova AN, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci 2021; 8:643220. [PMID: 33869323 PMCID: PMC8044316 DOI: 10.3389/fvets.2021.643220] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb) that encodes for 16 non-structural proteins regulating RNA synthesis and modification. Coronaviruses are known to infect a wide range of mammalian and avian species causing remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs) are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers have been identified in BCoVs associated with these distinct clinical syndromes. In contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and bovine-like CoVs were identified in various domestic and wild ruminant species (water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes, giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot be reliably distinguished from BCoVs using comparative genomics. Additionally, there are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
30
|
Predicting mammalian hosts in which novel coronaviruses can be generated. Nat Commun 2021; 12:780. [PMID: 33594041 PMCID: PMC7887240 DOI: 10.1038/s41467-021-21034-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Novel pathogenic coronaviruses – such as SARS-CoV and probably SARS-CoV-2 – arise by homologous recombination between co-infecting viruses in a single cell. Identifying possible sources of novel coronaviruses therefore requires identifying hosts of multiple coronaviruses; however, most coronavirus-host interactions remain unknown. Here, by deploying a meta-ensemble of similarity learners from three complementary perspectives (viral, mammalian and network), we predict which mammals are hosts of multiple coronaviruses. We predict that there are 11.5-fold more coronavirus-host associations, over 30-fold more potential SARS-CoV-2 recombination hosts, and over 40-fold more host species with four or more different subgenera of coronaviruses than have been observed to date at >0.5 mean probability cut-off (2.4-, 4.25- and 9-fold, respectively, at >0.9821). Our results demonstrate the large underappreciation of the potential scale of novel coronavirus generation in wild and domesticated animals. We identify high-risk species for coronavirus surveillance. Homologous recombination between co-infecting coronaviruses can produce novel pathogens. Here, Wardeh et al. develop a machine learning approach to predict associations between mammals and multiple coronaviruses and hence estimate the potential for generation of novel coronaviruses by recombination.
Collapse
|
31
|
Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human coronaviruses. Onderstepoort J Vet Res 2021; 88:e1-e8. [PMID: 33567843 PMCID: PMC7876959 DOI: 10.4102/ojvr.v88i1.1872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Human coronaviruses are known respiratory pathogens associated with a range of respiratory illnesses, and there are considerable morbidity and hospitalisation amongst immune-compromised individuals of all age groups. The emergence of a highly pathogenic human coronavirus in China in 2019 has confirmed the long-held opinion that these viruses are important emerging and re-emerging pathogens. In this review article, we trace the discovery and emergence of coronaviruses (CoVs) over time since they were first reported. The review article will enrich our understanding on the host range, diversity and evolution, transmission of human CoVs and the threat posed by these viruses circulating in animal populations but overtime have spilled over to humans because of the increased proximity between humans and animals.
Collapse
Affiliation(s)
- Elijah N Mulabbi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala.
| | | | | |
Collapse
|
32
|
Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human coronaviruses. Onderstepoort J Vet Res 2020. [DOI: 10.4102/ojvr.v87i1.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Yoshizawa N, Ishihara R, Omiya D, Ishitsuka M, Hirano S, Suzuki T. Application of a Photocatalyst as an Inactivator of Bovine Coronavirus. Viruses 2020; 12:E1372. [PMID: 33266175 PMCID: PMC7761435 DOI: 10.3390/v12121372] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Bovine coronavirus (BCoV), a major causative pathogen of bovine enteric and respiratory diseases and a zoonotic pathogen transmissible between animals and humans, has led to severe economic losses in numerous countries. BCoV belongs to the genus Betacoronavirus, which is a model of a pathogen that is threatening human health and includes severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus. This study aimed to determine whether photocatalytic material effectively reduces CoVs in the environment. Using the film adhesion method of photocatalytic materials, we assessed its antiviral activity and the effect of visible light irradiation according to methods defined by the International Organization for Standardization. Consequently, photocatalytic material was found to have antiviral activity, reducing the viral loads by 2.7 log TCID50 (tissue culture infective dose 50)/0.1 mL (500 lux), 2.8 log TCID50/0.1 mL (1000 lux), and 2.4 log TCID50/0.1 mL (3000 lux). Hence, this photocatalytic material might be applicable not only to reducing CoVs in the cattle breeding environment but also perhaps in other indoor spaces, such as offices and hospital rooms. To our knowledge, this study is the first to evaluate the antiviral activity of a photocatalytic material against CoV.
Collapse
Affiliation(s)
- Nobuki Yoshizawa
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan; (N.Y.); (R.I.)
- Ehime Prefectural Livestock Disease Diagnostic Center, Toon, Ehime 791-0212, Japan
| | - Ryoko Ishihara
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan; (N.Y.); (R.I.)
| | - Daisuke Omiya
- Bio and Healthcare Business Division, Tsukuba Technical Center, Wako Filter Technology Co., Ltd., Bando, Ibaraki 306-0616, Japan; (D.O.); (M.I.); (S.H.)
| | - Midori Ishitsuka
- Bio and Healthcare Business Division, Tsukuba Technical Center, Wako Filter Technology Co., Ltd., Bando, Ibaraki 306-0616, Japan; (D.O.); (M.I.); (S.H.)
| | - Shouichirou Hirano
- Bio and Healthcare Business Division, Tsukuba Technical Center, Wako Filter Technology Co., Ltd., Bando, Ibaraki 306-0616, Japan; (D.O.); (M.I.); (S.H.)
| | - Tohru Suzuki
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan; (N.Y.); (R.I.)
| |
Collapse
|
34
|
Bhatia R, Ganti SS, Narang RK, Rawal RK. Strategies and Challenges to Develop Therapeutic Candidates against COVID-19 Pandemic. Open Virol J 2020. [DOI: 10.2174/1874357902014010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
35
|
An emerging novel bovine coronavirus with a 4-amino-acid insertion in the receptor-binding domain of the hemagglutinin-esterase gene. Arch Virol 2020; 165:3011-3015. [PMID: 33025200 PMCID: PMC7538171 DOI: 10.1007/s00705-020-04840-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
The hemagglutinin-esterase (HE) protein of betacoronavirus lineage A is a secondary receptor in the infection process and is involved in the emergence of new betacoronavirus genotypes with altered host specificity and tissue tropism. We previously reported a novel recombinant bovine coronavirus (BCoV) strain that was circulating in dairy cattle in China, but this virus was not successfully isolated, and the genetic characteristics of BCoV are still largely unknown. In this study, 20 diarrheic faecal samples were collected from a farm in Liaoning province that had an outbreak of calf diarrhea (≤ 3 months of age) in November 2018, and all of the samples tested positive for BCoV by RT-PCR. In addition, a BCoV strain with a recombinant HE (designated as SWUN/A1/2018) and another BCoV strain with a recombinant HE containing an insertion (designated as SWUN/A10/2018) were successfully isolated in cell culture (TCID50: 104.25/mL and 104.73/mL, respectively). Unexpectedly, we identified the emergence of a novel BCoV variant characterized by a 12-nt bovine gene insertion in the receptor-binding domain in a natural recombinant HE gene, suggesting a novel evolutionary pattern in BCoV.
Collapse
|
36
|
Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A 2020. [DOI: 10.1073/pnas.2010146117 'a=0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Significance
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a major pandemic that threatens millions of human lives and the global economy. We identified a large number of mammals that can potentially be infected by SARS-CoV-2 via their ACE2 proteins. This can assist the identification of intermediate hosts for SARS-CoV-2 and hence reduce the opportunity for a future outbreak of COVID-19. Among the species we found with the highest risk for SARS-CoV-2 infection are wildlife and endangered species. These species represent an opportunity for spillover of SARS-CoV-2 from humans to other susceptible animals. Given the limited infectivity data for the species studied, we urge caution not to overinterpret the predictions of the present study.
Collapse
|
37
|
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A 2020; 117:22311-22322. [PMID: 32826334 PMCID: PMC7486773 DOI: 10.1073/pnas.2010146117] [Citation(s) in RCA: 433] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency <0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, CA 95616
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kathleen C Keough
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, Quantitative Biosciences Consortium, University of California, San Francisco, CA 94117
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
| | - Corrie A Painter
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nicole S Persky
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Marco Corbo
- The Genome Center, University of California, Davis, CA 95616
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- College of Science, Tibet University, Lhasa 850000, China
| | | | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94158
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093
| | - Martin T Nweeia
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106
- Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Harris A Lewin
- The Genome Center, University of California, Davis, CA 95616;
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- John Muir Institute for the Environment, University of California, Davis, CA 95616
| |
Collapse
|
38
|
Villas-Boas GR, Rescia VC, Paes MM, Lavorato SN, de Magalhães-Filho MF, Cunha MS, Simões RDC, de Lacerda RB, de Freitas-Júnior RS, Ramos BHDS, Mapeli AM, Henriques MDST, de Freitas WR, Lopes LAF, Oliveira LGR, da Silva JG, Silva-Filho SE, da Silveira APS, Leão KV, Matos MMDS, Fernandes JS, Cuman RKN, Silva-Comar FMDS, Comar JF, Brasileiro LDA, dos Santos JN, Oesterreich SA. The New Coronavirus (SARS-CoV-2): A Comprehensive Review on Immunity and the Application of Bioinformatics and Molecular Modeling to the Discovery of Potential Anti-SARS-CoV-2 Agents. Molecules 2020; 25:E4086. [PMID: 32906733 PMCID: PMC7571161 DOI: 10.3390/molecules25184086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
On March 11, 2020, the World Health Organization (WHO) officially declared the outbreak caused by the new coronavirus (SARS-CoV-2) a pandemic. The rapid spread of the disease surprised the scientific and medical community. Based on the latest reports, news, and scientific articles published, there is no doubt that the coronavirus has overloaded health systems globally. Practical actions against the recent emergence and rapid expansion of the SARS-CoV-2 require the development and use of tools for discovering new molecular anti-SARS-CoV-2 targets. Thus, this review presents bioinformatics and molecular modeling strategies that aim to assist in the discovery of potential anti-SARS-CoV-2 agents. Besides, we reviewed the relationship between SARS-CoV-2 and innate immunity, since understanding the structures involved in this infection can contribute to the development of new therapeutic targets. Bioinformatics is a technology that assists researchers in coping with diseases by investigating genetic sequencing and seeking structural models of potential molecular targets present in SARS-CoV2. The details provided in this review provide future points of consideration in the field of virology and medical sciences that will contribute to clarifying potential therapeutic targets for anti-SARS-CoV-2 and for understanding the molecular mechanisms responsible for the pathogenesis and virulence of SARS-CoV-2.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Rafael da C. Simões
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Roseli B. de Lacerda
- Department of Pharmacology of the Biological Sciences Center, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Renilson S. de Freitas-Júnior
- Clinical Health is Life-Integrated Health Center, Rua dos Andrades, 99, Barreirinhas, Barreiras CEP 47810-689, BA, Brazil;
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Ana M. Mapeli
- Research Group on Biomolecules and Catalyze, Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Matheus da S. T. Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas, Teixeira de Freitas CEP 45988-058, Brazil;
| | - Luiz A. F. Lopes
- University Hospital of the Federal University of Grande Dourados (HU-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Jonatas G. da Silva
- Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (J.G.d.S.); (K.V.L.); (J.S.F.)
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/nº, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, University Center Unigran Capital, Rua Balbina de Matos, 2121, Jd. University, Dourados CEP 79.824-900, MS, Brazil;
| | - Katyuscya V. Leão
- Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (J.G.d.S.); (K.V.L.); (J.S.F.)
| | - Maria M. de S. Matos
- Health Sciences at ABC Health University Center, Avenida Príncipe de Gales, 667, Bairro Princípe de Gales, Santo André CEP 09060-870, SP, Brazil;
| | - Jamille S. Fernandes
- Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (J.G.d.S.); (K.V.L.); (J.S.F.)
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, nº 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, nº 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State University of Maringá, Avenida Colombo, nº 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, Mato Grosso do Sul, Brazil;
| |
Collapse
|
39
|
Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. J Clin Microbiol 2020; 58:JCM.01355-20. [PMID: 32522830 PMCID: PMC7383540 DOI: 10.1128/jcm.01355-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).
Collapse
|
40
|
|
41
|
Global Transmission, Spatial Segregation, and Recombination Determine the Long-Term Evolution and Epidemiology of Bovine Coronaviruses. Viruses 2020; 12:v12050534. [PMID: 32414076 PMCID: PMC7290379 DOI: 10.3390/v12050534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Bovine coronavirus (BCoV) is widespread in cattle and wild ruminant populations throughout the world. The virus causes neonatal calf diarrhea and winter dysentery in adult cattle, as well as upper and lower respiratory tract infection in young cattle. We isolated and deep sequenced whole genomes of BCoV from calves with respiratory distress in the south–west of France and conducted a comparative genome analysis using globally collected BCoV sequences to provide insights into the genomic characteristics, evolutionary origins, and global diversity of BCoV. Molecular clock analyses allowed us to estimate that the BCoV ancestor emerged in the 1940s, and that two geographically distinct lineages diverged from the 1960s–1970s. A recombination event in the spike gene (breakpoint at nt 1100) may be at the origin of the genetic divergence sixty years ago. Little evidence of genetic mixing between the spatially segregated lineages was found, suggesting that BCoV genetic diversity is a result of a global transmission pathway that occurred during the last century. However, we found variation in evolution rates between the European and non-European lineages indicating differences in virus ecology.
Collapse
|
42
|
Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol 2020; 244:108693. [PMID: 32402329 PMCID: PMC7195271 DOI: 10.1016/j.vetmic.2020.108693] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
The recent pandemic caused by the novel human coronavirus, referrred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), not only is having a great impact on the health care systems and economies in all continents but it is also causing radical changes of common habits and life styles. The novel coronavirus (CoV) recognises, with high probability, a zoonotic origin but the role of animals in the SARS-CoV-2 epidemiology is still largely unknown. However, CoVs have been known in animals since several decades, so that veterinary coronavirologists have a great expertise on how to face CoV infections in animals, which could represent a model for SARS-CoV-2 infection in humans. In the present paper, we provide an up-to-date review of the literature currently available on animal CoVs, focusing on the molecular mechanisms that are responsible for the emergence of novel CoV strains with different antigenic, biologic and/or pathogenetic features. A full comprehension of the mechanisms driving the evolution of animal CoVs will help better understand the emergence, spreading, and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| |
Collapse
|
43
|
Abstract
Coronaviruses (CoVs) cause a broad spectrum of diseases in domestic and wild animals, poultry, and rodents, ranging from mild to severe enteric, respiratory, and systemic disease, and also cause the common cold or pneumonia in humans. Seven coronavirus species are known to cause human infection, 4 of which, HCoV 229E, HCoV NL63, HCoV HKU1 and HCoV OC43, typically cause cold symptoms in immunocompetent individuals. The others namely SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (Middle East respiratory syndrome coronavirus) were zoonotic in origin and cause severe respiratory illness and fatalities. On 31 December 2019, the existence of patients with pneumonia of an unknown aetiology was reported to WHO by the national authorities in China. This virus was officially identified by the coronavirus study group as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the present outbreak of a coronavirus-associated acute respiratory disease was labelled coronavirus disease 19 (COVID-19). COVID-19’s first cases were seen in Turkey on March 10, 2020 and was number 47,029 cases and 1006 deaths after 1 month. Infections with SARS-CoV-2 are now widespread, and as of 10 April 2020, 1,727,602 cases have been confirmed in more than 210 countries, with 105,728 deaths.
Collapse
Affiliation(s)
- Mustafa HASÖKSÜZ
- Department of Virology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, İstanbulTurkey
| | - Selcuk KILIÇ
- Microbiology Reference Lab and Biological Products Department, General Directorate of Public Health Department,Republic of Turkey Ministry of Health, AnkaraTurkey
| | | |
Collapse
|
44
|
Abstract
Coronaviruses (CoVs) cause a broad spectrum of diseases in domestic and wild animals, poultry, and rodents, ranging from mild to severe enteric, respiratory, and systemic disease, and also cause the common cold or pneumonia in humans. Seven coronavirus species are known to cause human infection, 4 of which, HCoV 229E, HCoV NL63, HCoV HKU1 and HCoV OC43, typically cause cold symptoms in immunocompetent individuals. The others namely SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (Middle East respiratory syndrome coronavirus) were zoonotic in origin and cause severe respiratory illness and fatalities. On 31 December 2019, the existence of patients with pneumonia of an unknown aetiology was reported to WHO by the national authorities in China. This virus was officially identified by the coronavirus study group as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the present outbreak of a coronavirus-associated acute respiratory disease was labelled coronavirus disease 19 (COVID-19). COVID-19’s first cases were seen in Turkey on March 10, 2020 and was number 47,029 cases and 1006 deaths after 1 month. Infections with SARS-CoV-2 are now widespread, and as of 10 April 2020, 1,727,602 cases have been confirmed in more than 210 countries, with 105,728 deaths.
Collapse
Affiliation(s)
- Mustafa Hasöksüz
- Department of Virology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Selçuk Kiliç
- Microbiology Reference Lab and Biological Products Department, General Directorate of Public Health Department,
Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Fahriye Saraç
- Pendik Veterinary Control Institute, İstanbul, Turkey
| |
Collapse
|
45
|
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad Host Range of SARS-CoV-2 Predicted by Comparative and Structural Analysis of ACE2 in Vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.16.045302. [PMID: 32511356 PMCID: PMC7263403 DOI: 10.1101/2020.04.16.045302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The novel coronavirus SARS-CoV-2 is the cause of Coronavirus Disease-2019 (COVID-19). The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of 410 vertebrates, including 252 mammals, to study cross-species conservation of ACE2 and its likelihood to function as a SARS-CoV-2 receptor. We designed a five-category ranking score based on the conservation properties of 25 amino acids important for the binding between receptor and virus, classifying all species from very high to very low. Only mammals fell into the medium to very high categories, and only catarrhine primates in the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 binding, and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (<0.1%) variants in 10/25 binding sites. In addition, we observed evidence of positive selection in ACE2 in multiple species, including bats. Utilized appropriately, our results may lead to the identification of intermediate host species for SARS-CoV-2, justify the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kathleen C. Keough
- University of California San Francisco, San Francisco, CA 94117, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Corrie A. Painter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicole S. Persky
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marco Corbo
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, Front Royal, VA 22630, Washington, DC 20008 USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katherine S. Pollard
- University of California San Francisco, San Francisco, CA 94117, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Oliver A. Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
- Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin T. Nweeia
- Harvard School of Dental Medicine, Boston, MA 02115, USA
- Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106, USA
- Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 751 23, Sweden
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Harris A. Lewin
- The Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
- John Muir Institute for the Environment, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
46
|
Suzuki T, Otake Y, Uchimoto S, Hasebe A, Goto Y. Genomic Characterization and Phylogenetic Classification of Bovine Coronaviruses Through Whole Genome Sequence Analysis. Viruses 2020; 12:v12020183. [PMID: 32041103 PMCID: PMC7077292 DOI: 10.3390/v12020183] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/18/2023] Open
Abstract
Bovine coronavirus (BCoV) is zoonotically transmissible among species, since BCoV-like viruses have been detected in wild ruminants and humans. BCoV causing enteric and respiratory disease is widespread in cattle farms worldwide; however, limited information is available regarding the molecular characterization of BCoV because of its large genome size, despite its significant economic impact. This study aimed to better understand the genomic characterization and evolutionary dynamics of BCoV via comparative sequence and phylogenetic analyses through whole genome sequence analysis using 67 BCoV isolates collected throughout Japan from 2006 to 2017. On comparing the genomic sequences of the 67 BCoVs, genetic variations were detected in 5 of 10 open reading frames (ORFs) in the BCoV genome. Phylogenetic analysis using whole genomes from the 67 Japanese BCoV isolates in addition to those from 16 reference BCoV strains, revealed the existence of two major genotypes (classical and US wild ruminant genotypes). All Japanese BCoV isolates originated from the US wild ruminant genotype, and they tended to form the same clusters based on the year and farm of collection, not the disease type. Phylogenetic trees on hemagglutinin-esterase protein (HE), spike glycoprotein (S), nucleocapsid protein (N) genes and ORF1 revealed clusters similar to that on whole genome, suggesting that the evolution of BCoVs may be closely associated with variations in these genes. Furthermore, phylogenetic analysis of BCoV S genes including those of European and Asian BCoVs and human enteric coronavirus along with the Japanese BCoVs revealed that BCoVs differentiated into two major types (European and American types). Moreover, the European and American types were divided into eleven and three genotypes, respectively. Our analysis also demonstrated that BCoVs with different genotypes periodically emerged and predominantly circulated within the country. These findings provide useful information to elucidate the detailed molecular characterization of BCoVs, which have spread worldwide. Further genomic analyses of BCoV are essential to deepen the understanding of the evolution of this virus.
Collapse
Affiliation(s)
- Tohru Suzuki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 3050856, Japan
- Correspondence: ; Tel.: +81-29-838-7914
| | - Yoshihiro Otake
- Central Tochigi Prefectural Livestock Health and Hygiene Center, Utsunomiya, Tochigi 3210905, Japan;
| | - Satoko Uchimoto
- Shiga Prefectural Livestock Health and Hygiene Center, Omihachiman, Shiga 5230813, Japan;
| | - Ayako Hasebe
- Central Gifu Prefectural Livestock Health and Hygiene Center, Gifu 5011112, Japan;
| | - Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 0200605, Japan;
| |
Collapse
|
47
|
Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus. J Virol 2019; 93:JVI.01236-19. [PMID: 31534035 PMCID: PMC6854494 DOI: 10.1128/jvi.01236-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution. Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3′ end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV). IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution.
Collapse
|
48
|
Abstract
Coronaviruses (CoVs) produce a wide spectrum of disease syndromes in different mammalian and avian host species. These viruses are well-recognized for their ability to change tissue tropism, to hurdle the interspecies barriers and to adapt ecological variations. It is predicted that the inherent genetic diversity of CoVs caused by accumulation of point mutations and high frequency of homologous recombination is the principal determinant of these competences. Several CoVs (e.g. Severe acute respiratory syndrome-CoV, Middle East respiratory syndrome-CoV) have been recorded to cross the interspecies barrier, inducing different disease conditions in variable animal hosts. Bovine CoV (BCoV) is a primary cause of gastroenteritis and respiratory disease in cattle calves, winter dysentery in lactating cows and shipping fever pneumonia in feedlot cattle. Although it has long been known as a restrictive cattle pathogen, CoVs that are closely related to BCoV have been recognized in dogs, humans and in other ruminant species. Biologic, antigenic and genetic analyses of the so-called ‘bovine-like CoVs’ proposed classification of these viruses as host-range variants rather than distinct virus species. In this review, the different bovine-like CoVs that have been identified in domesticated ruminants (water buffalo, sheep, goat, dromedary camel, llama and alpaca) and wild ruminants (deer, wild cattle, antelopes, giraffes and wild goats) are discussed in terms of epidemiology, transmission and virus characteristics. The presented data denote the importance of these viruses in the persistence of BCoV in nature, spread to new geographical zones, and continuous emergence of disease epidemics in cattle farms.
Collapse
|
49
|
Castells M, Giannitti F, Caffarena RD, Casaux ML, Schild C, Castells D, Riet-Correa F, Victoria M, Parreño V, Colina R. Bovine coronavirus in Uruguay: genetic diversity, risk factors and transboundary introductions from neighboring countries. Arch Virol 2019; 164:2715-2724. [PMID: 31456086 PMCID: PMC7087214 DOI: 10.1007/s00705-019-04384-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022]
Abstract
Bovine coronavirus (BCoV) is a recognized cause of severe neonatal calf diarrhea, with a negative impact on animal welfare, leading to economic losses to the livestock industry. Cattle production is one of the most important economic sectors in Uruguay. The aim of this study was to determine the frequency of BCoV infections and their genetic diversity in Uruguayan calves and to describe the evolutionary history of the virus in South America. The overall detection rate of BCoV in Uruguay was 7.8% (64/824): 7.7% (60/782) in dairy cattle and 9.5% (4/42) in beef cattle. The detection rate of BCoV in samples from deceased and live calves was 10.0% (6/60) and 7.6% (58/763), respectively. Interestingly, there was a lower frequency of BCoV detection in calves born to vaccinated dams (3.3%, 8/240) than in calves born to unvaccinated dams (12.2%, 32/263) (OR: 4.02, 95%CI: 1.81–8.90; p = 0.00026). The frequency of BCoV detection was higher in colder months (11.8%, 44/373) than in warmer months (1.5%, 3/206) (OR: 9.05, 95%CI: 2.77–29.53, p = 0.000013). Uruguayan strains grouped together in two different lineages: one with Argentinean strains and the other with Brazilian strains. Both BCoV lineages were estimated to have entered Uruguay in 2013: one of them from Brazil (95%HPD interval: 2011–2014) and the other from Argentina (95%HPD interval: 2010–2014). The lineages differed by four amino acid changes, and both were divergent from the Mebus reference strain. Surveillance should be maintained to detect possible emerging strains that can clearly diverge at the antigenic level from vaccine strains.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay.,Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Rubén Darío Caffarena
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay.,Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, Montevideo, Uruguay
| | - María Laura Casaux
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Carlos Schild
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Daniel Castells
- Centro de Investigación y Experimentación Dr. Alejandro Gallinal, Secretariado Uruguayo de la Lana, Ruta 7 km 140, Cerro Colorado, Florida, Uruguay
| | - Franklin Riet-Correa
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay
| | - Viviana Parreño
- Sección de Virus Gastroentéricos, Instituto de Virología, CICV y A, INTA Castelar, Buenos Aires, Argentina
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
50
|
Szczepanski A, Owczarek K, Bzowska M, Gula K, Drebot I, Ochman M, Maksym B, Rajfur Z, Mitchell JA, Pyrc K. Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors. Viruses 2019; 11:v11040328. [PMID: 30959796 PMCID: PMC6521053 DOI: 10.3390/v11040328] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023] Open
Abstract
Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.
Collapse
Affiliation(s)
- Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Katarzyna Owczarek
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Katarzyna Gula
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Inga Drebot
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Marek Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Marii Curie Sklodowskiej 9, 41-800 Zabrze, Poland.
| | - Beata Maksym
- Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland.
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland.
| | - Judy A Mitchell
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|