1
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
2
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
3
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
4
|
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024; 16:734. [PMID: 38793616 PMCID: PMC11125860 DOI: 10.3390/v16050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Harshita Katiyar
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Chen Liang
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
| |
Collapse
|
5
|
Le Pen J, Rice CM. The antiviral state of the cell: lessons from SARS-CoV-2. Curr Opin Immunol 2024; 87:102426. [PMID: 38795501 PMCID: PMC11260430 DOI: 10.1016/j.coi.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
In this review, we provide an overview of the intricate host-virus interactions that have emerged from the study of SARS-CoV-2 infection. We focus on the antiviral mechanisms of interferon-stimulated genes (ISGs) and their modulation of viral entry, replication, and release. We explore the role of a selection ISGs, including BST2, CD74, CH25H, DAXX, IFI6, IFITM1-3, LY6E, NCOA7, PLSCR1, OAS1, RTP4, and ZC3HAV1/ZAP, in restricting SARS-CoV-2 infection and discuss the virus's countermeasures. By synthesizing the latest research on SARS-CoV-2 and host antiviral responses, this review aims to provide a deeper understanding of the antiviral state of the cell under SARS-CoV-2 and other viral infections, offering insights for the development of novel antiviral strategies and therapeutics.
Collapse
Affiliation(s)
- Jérémie Le Pen
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
6
|
Staroverov V, Galatenko A, Knyazev E, Tonevitsky A. Mathematical model explains differences in Omicron and Delta SARS-CoV-2 dynamics in Caco-2 and Calu-3 cells. PeerJ 2024; 12:e16964. [PMID: 38560455 PMCID: PMC10981414 DOI: 10.7717/peerj.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Within-host infection dynamics of Omicron dramatically differs from previous variants of SARS-CoV-2. However, little is still known about which parameters of virus-cell interplay contribute to the observed attenuated replication and pathogenicity of Omicron. Mathematical models, often expressed as systems of differential equations, are frequently employed to study the infection dynamics of various viruses. Adopting such models for results of in vitro experiments can be beneficial in a number of aspects, such as model simplification (e.g., the absence of adaptive immune response and innate immunity cells), better measurement accuracy, and the possibility to measure additional data types in comparison with in vivo case. In this study, we consider a refinement of our previously developed and validated model based on a system of integro-differential equations. We fit the model to the experimental data of Omicron and Delta infections in Caco-2 (human intestinal epithelium model) and Calu-3 (lung epithelium model) cell lines. The data include known information on initial conditions, infectious virus titers, and intracellular viral RNA measurements at several time points post-infection. The model accurately explains the experimental data for both variants in both cell lines using only three variant- and cell-line-specific parameters. Namely, the cell entry rate is significantly lower for Omicron, and Omicron triggers a stronger cytokine production rate (i.e., innate immune response) in infected cells, ultimately making uninfected cells resistant to the virus. Notably, differences in only a single parameter (e.g., cell entry rate) are insufficient to obtain a reliable model fit for the experimental data.
Collapse
Affiliation(s)
- Vladimir Staroverov
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
7
|
Xiong C, Li B, Song R, Ma Z, Huber SA, Liu W. IFITM3 mediates inflammation induced myocardial injury through JAK2/STAT3 signaling pathway. Mol Immunol 2024; 167:1-15. [PMID: 38306778 DOI: 10.1016/j.molimm.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Myocarditis is an inflammation of the heart muscle often associated with viral infections and can lead to dilated cardiomyopathy. Interferon-induced transmembrane protein 3 (IFITM3) is a small endosomal membrane protein with anti-viral activity against multiple viruses and is also implicated in non-infectious diseases such as cancer and Alzheimer's Disease. Since the IFITM3 proteins are expressed both in T cells and in cardiomyocytes, it is reasonable to hypothesize that these molecules could affect myocarditis either through their effect on the autoimmune response or through direct modulation of cardiomyocyte damage. The aim of this study was to investigate the role of IFITM3 in experimental autoimmune myocarditis (EAM)-mediated myocardial injury. Immunization of rats with cardiac myosin results in substantial cardiac inflammation and is associated with increased expression of IFITM3 after 21 days. In vivo IFITM3 shRNA knockdown using the lentivirus transfection method reduced cardiac injury while restoring IFITM3 expression reversed the protective effect of IFITM3 RNA interference. To determine the direct impact of IFITM3, the rat ventricular cell line, H9c2, was treated with palmitic acid which causes apoptosis in these cells. Suppressing IFITM3 expression protects H9c2 cells while overexpressing IFITM3 enhances cell injury. JAK inhibitors reduced IFITM3-mediated myocardial cell injury. In conclusion, IFITM3 may mediate myocardial injury in EAM rats and palmitic acid-induced damage to H9c2 cells through the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Chunming Xiong
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Renxing Song
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Zizhe Ma
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT 05446 United States
| | - Wei Liu
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China; Harbin Medical University, Harbin, Heilongjiang 150001 China; Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080 China.
| |
Collapse
|
8
|
Marceau T, Braibant M. Role of Viral Envelope Proteins in Determining Susceptibility of Viruses to IFITM Proteins. Viruses 2024; 16:254. [PMID: 38400030 PMCID: PMC10892237 DOI: 10.3390/v16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of proteins which inhibit infections of various enveloped viruses. While their general mechanism of inhibition seems to be non-specific, involving the tightening of membrane structures to prevent fusion between the viral envelope and cell membrane, numerous studies have underscored the importance of viral envelope proteins in determining the susceptibility of viruses to IFITMs. Mutations in envelope proteins may lead to viral escape from direct interaction with IFITM proteins or result in indirect resistance by modifying the viral entry pathway, allowing the virus to modulate its exposure to IFITMs. In a broader context, the nature of viral envelope proteins and their interaction with IFITMs can play a crucial role in the context of adaptive immunity, leading to viral envelope proteins that are more susceptible to antibody neutralization. The precise mechanisms underlying these observations remain unclear, and further studies in this field could contribute to a better understanding of how IFITMs control viral infections.
Collapse
|
9
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Yang D, Chan JFW, Yoon C, Luk TY, Shuai H, Hou Y, Huang X, Hu B, Chai Y, Yuen TTT, Liu Y, Zhu T, Liu H, Shi J, Wang Y, He Y, Sit KY, Au WK, Zhang AJ, Yuan S, Zhang BZ, Huang YW, Chu H. Type-II IFN inhibits SARS-CoV-2 replication in human lung epithelial cells and ex vivo human lung tissues through indoleamine 2,3-dioxygenase-mediated pathways. J Med Virol 2024; 96:e29472. [PMID: 38373201 DOI: 10.1002/jmv.29472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNβ treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.
Collapse
Affiliation(s)
- Dong Yang
- Xianghu Laboratory, Hangzhou, Zhejiang, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- The University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
- Guangzhou Laboratory, Guangdong Province, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz-Yat Luk
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ko-Yung Sit
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Kuk Au
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | | | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
11
|
Shi G, Li T, Lai KK, Johnson RF, Yewdell JW, Compton AA. Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue. Nat Commun 2024; 15:889. [PMID: 38291024 PMCID: PMC10828397 DOI: 10.1038/s41467-024-45075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, we show that mutations unique to Omicron Spike enable enhanced entry into nasal tissue. Unlike earlier variants of SARS-CoV-2, our findings suggest that Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon metalloproteinases to catalyze membrane fusion. Furthermore, we demonstrate that this entry pathway unlocked by Omicron Spike enables evasion from constitutive and interferon-induced antiviral factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Reed F Johnson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alex A Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
12
|
McCormack CP, Yan AWC, Brown JC, Sukhova K, Peacock TP, Barclay WS, Dorigatti I. Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants in different cell types. J R Soc Interface 2023; 20:20230187. [PMID: 37553993 PMCID: PMC10410224 DOI: 10.1098/rsif.2023.0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants.
Collapse
Affiliation(s)
- Clare P. McCormack
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Ada W. C. Yan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P. Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
13
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
14
|
Nigos LR, Scott NE, Brooks AG, Ait-Goughoulte M, Londrigan SL, Reading PC, Farrukee R. TRIM16 Overexpression in HEK293T Cells Results in Cell Line-Specific Antiviral Activity. Pathogens 2023; 12:852. [PMID: 37375542 DOI: 10.3390/pathogens12060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Host cell restriction factors are intracellular proteins that can inhibit virus replication. Characterisation of novel host cell restriction factors can provide potential targets for host-directed therapies. In this study, we aimed to assess a member of the Tripartite-motif family protein (TRIM) family, TRIM16, as a putative host cell restriction factor. To this end, we utilized constitutive or doxycycline-inducible systems to overexpress TRIM16 in HEK293T epithelial cells and then tested for its ability to inhibit growth by a range of RNA and DNA viruses. In HEK293T cells, overexpression of TRIM16 resulted in potent inhibition of multiple viruses, however, when TRIM16 was overexpressed in other epithelial cell lines (A549, Hela, or Hep2), virus inhibition was not observed. When investigating the antiviral activity of endogenous TRIM16, we report that siRNA-mediated knockdown of TRIM16 in A549 cells also modulated the mRNA expression of other TRIM proteins, complicating the interpretation of results using this method. Therefore, we used CRISPR/Cas9 editing to knockout TRIM16 in A549 cells and demonstrate that endogenous TRIM16 did not mediate antiviral activity against the viruses tested. Thus, while initial overexpression in HEK293T cells suggested that TRIM16 was a host cell restriction factor, alternative approaches did not validate these findings. These studies highlight the importance of multiple complementary experimental approaches, including overexpression analysis in multiple cell lines and investigation of the endogenous protein, when defining host cell restriction factors with novel antiviral activity.
Collapse
Affiliation(s)
- Lance R Nigos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Malika Ait-Goughoulte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Disease Reference Laboratory, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| |
Collapse
|
15
|
Salgado-Benvindo C, Leijs AA, Thaler M, Tas A, Arbiser JL, Snijder EJ, van Hemert MJ. Honokiol Inhibits SARS-CoV-2 Replication in Cell Culture at a Post-Entry Step. Microbiol Spectr 2023; 11:e0327322. [PMID: 37212560 PMCID: PMC10269499 DOI: 10.1128/spectrum.03273-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019, and the resulting pandemic has already caused the death of over 6 million people. There are currently few antivirals approved for treatment of the 2019 coronavirus disease (COVID-19), and more options would be beneficial, not only now but also to increase our preparedness for future coronavirus outbreaks. Honokiol is a small molecule from magnolia trees for which several biological effects have been reported, including anticancer and anti-inflammatory activities. Honokiol has also been shown to inhibit several viruses in cell culture. In this study, we determined that honokiol protected Vero E6 cells from SARS-CoV-2-mediated cytopathic effect, with a 50% effective concentration of 7.8 μM. In viral load reduction assays, honokiol decreased viral RNA copies as well as viral infectious progeny titers. The compound also inhibited SARS-CoV-2 replication in the more relevant human A549 cells expressing angiotensin converting enzyme 2 and transmembrane protease serine 2. Time-of-addition and other assays showed that honokiol inhibited virus replication at a post-entry step of the replication cycle. Honokiol was also effective against more recent variants of SARS-CoV-2, including Omicron, and it inhibited other human coronaviruses as well. Our study suggests that honokiol is an interesting molecule to be evaluated further in animal studies and, when successful, maybe even in clinical trials to investigate its effect on virus replication and pathogenic (inflammatory) host responses. IMPORTANCE Honokiol is a compound that shows both anti-inflammatory and antiviral effects, and therefore its effect on SARS-CoV-2 infection was assessed. This small molecule inhibited SARS-CoV-2 replication in various cell-based infection systems, with up to an ~1,000-fold reduction in virus titer. In contrast to earlier reports, our study clearly showed that honokiol acts on a postentry step of the replication cycle. Honokiol also inhibited different recent SARS-CoV-2 variants and other human coronaviruses (Middle East respiratory syndrome CoV and SARS-CoV), demonstrating its broad spectrum of antiviral activity. The anticoronavirus effect, combined with its anti-inflammatory properties, make honokiol an interesting compound to be further explored in animal coronavirus infection models.
Collapse
Affiliation(s)
| | - Anouk A. Leijs
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa Thaler
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jack L. Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Dermatology, Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Eric J. Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Hoffmann M, Wong LYR, Arora P, Zhang L, Rocha C, Odle A, Nehlmeier I, Kempf A, Richter A, Halwe NJ, Schön J, Ulrich L, Hoffmann D, Beer M, Drosten C, Perlman S, Pöhlmann S. Omicron subvariant BA.5 efficiently infects lung cells. Nat Commun 2023; 14:3500. [PMID: 37311762 PMCID: PMC10262933 DOI: 10.1038/s41467-023-39147-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
The SARS-CoV-2 Omicron subvariants BA.1 and BA.2 exhibit reduced lung cell infection relative to previously circulating SARS-CoV-2 variants, which may account for their reduced pathogenicity. However, it is unclear whether lung cell infection by BA.5, which displaced these variants, remains attenuated. Here, we show that the spike (S) protein of BA.5 exhibits increased cleavage at the S1/S2 site and drives cell-cell fusion and lung cell entry with higher efficiency than its counterparts from BA.1 and BA.2. Increased lung cell entry depends on mutation H69Δ/V70Δ and is associated with efficient replication of BA.5 in cultured lung cells. Further, BA.5 replicates in the lungs of female Balb/c mice and the nasal cavity of female ferrets with much higher efficiency than BA.1. These results suggest that BA.5 has acquired the ability to efficiently infect lung cells, a prerequisite for causing severe disease, suggesting that evolution of Omicron subvariants can result in partial loss of attenuation.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| | - Lok-Yin Roy Wong
- Departments of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA, USA
| | - Prerna Arora
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Lu Zhang
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Abby Odle
- Departments of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA, USA
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Nico Joel Halwe
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Jacob Schön
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lorenz Ulrich
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stanley Perlman
- Departments of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
18
|
Kuzmina A, Korovin D, Cohen Lass I, Atari N, Ottolenghi A, Hu P, Mandelboim M, Rosental B, Rosenberg E, Diaz-Griffero F, Taube R. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 2023; 9:e16750. [PMID: 37292300 PMCID: PMC10238279 DOI: 10.1016/j.heliyon.2023.e16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
The rapid spread and dominance of the Omicron SARS-CoV-2 lineages have posed severe health challenges worldwide. While extensive research on the role of the Receptor Binding Domain (RBD) in promoting viral infectivity and vaccine sensitivity has been well documented, the functional significance of the 681PRRAR/SV687 polybasic motif of the viral spike is less clear. In this work, we monitored the infectivity levels and neutralization potential of the wild-type human coronavirus 2019 (hCoV-19), Delta, and Omicron SARS-CoV-2 pseudoviruses against sera samples drawn four months post administration of a third dose of the BNT162b2 mRNA vaccine. Our findings show that in comparison to hCoV-19 and Delta SARS-CoV-2, Omicron lineages BA.1 and BA.2 exhibit enhanced infectivity and a sharp decline in their sensitivity to vaccine-induced neutralizing antibodies. Interestingly, P681 mutations within the viral spike do not play a role in the neutralization potential or infectivity of SARS Cov-2 pseudoviruses carrying mutations in this position. The P681 residue however, dictates the ability of the spike protein to promote fusion and syncytia formation between infected cells. While spike from hCoV-19 (P681) and Omicron (H681) promote only modest cell fusion and formation of syncytia between cells that express the spike-protein, Delta spike (R681) displays enhanced fusogenic activity and promotes syncytia formation. Additional analysis shows that a single P681R mutation within the hCoV-19 spike, or H681R within the Omicron spike, restores fusion potential to similar levels observed for the Delta R681 spike. Conversely, R681P point mutation within the spike of Delta pseudovirus abolishes efficient fusion and syncytia formation. Our investigation also demonstrates that spike proteins from hCoV-19 and Delta SARS-CoV-2 are efficiently incorporated into viral particles relative to the spike of Omicron lineages. We conclude that the third dose of the Pfizer-BNT162b2 provides appreciable protection against the newly emerged Omicron sub-lineages. However, the neutralization sensitivity of these new variants is diminished relative to that of the hCoV-19 or Delta SARS-CoV-2. We further show that the P681 residue within spike dictates cell fusion and syncytia formation with no effects on the infectivity of the specific viral variant and on its sensitivity to vaccine-mediated neutralization.
Collapse
Affiliation(s)
- Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Dina Korovin
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ido Cohen Lass
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Israel
| | - Pan Hu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Israel
| | | | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
19
|
García-Bernalt Diego J, Singh G, Jangra S, Handrejk K, Laporte M, Chang LA, El Zahed SS, Pache L, Chang MW, Warang P, Aslam S, Mena I, Webb BT, Benner C, García-Sastre A, Schotsaert M. Breakthrough infections by SARS-CoV-2 variants boost cross-reactive hybrid immune responses in mRNA-vaccinated Golden Syrian Hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541294. [PMID: 37425792 PMCID: PMC10327228 DOI: 10.1101/2023.05.22.541294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hybrid immunity to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.
Collapse
Affiliation(s)
- Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Kim Handrejk
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Manon Laporte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Max W Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Brett T Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Christopher Benner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
20
|
Chen DY, Turcinovic J, Feng S, Kenney DJ, Chin CV, Choudhary MC, Conway HL, Semaan M, Close BJ, Tavares AH, Seitz S, Khan N, Kapell S, Crossland NA, Li JZ, Douam F, Baker SC, Connor JH, Saeed M. Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus. iScience 2023; 26:106634. [PMID: 37095858 PMCID: PMC10083141 DOI: 10.1016/j.isci.2023.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Shuchen Feng
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Devin J. Kenney
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Chue Vin Chin
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Manish C. Choudhary
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Hasahn L. Conway
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Marc Semaan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Brianna J. Close
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexander H. Tavares
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Scott Seitz
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - John H. Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| |
Collapse
|
21
|
Unali G, Crivicich G, Pagani I, Abou‐Alezz M, Folchini F, Valeri E, Matafora V, Reisz JA, Giordano AMS, Cuccovillo I, Butta GM, Donnici L, D'Alessandro A, De Francesco R, Manganaro L, Cittaro D, Merelli I, Petrillo C, Bachi A, Vicenzi E, Kajaste‐Rudnitski A. Interferon-inducible phospholipids govern IFITM3-dependent endosomal antiviral immunity. EMBO J 2023; 42:e112234. [PMID: 36970857 PMCID: PMC10183820 DOI: 10.15252/embj.2022112234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.
Collapse
Affiliation(s)
- Giulia Unali
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Giovanni Crivicich
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety UnitIRCCS Ospedale San RaffaeleMilanItaly
| | - Monah Abou‐Alezz
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Filippo Folchini
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | | | - Julie A Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Anna Maria Sole Giordano
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Giacomo M Butta
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
- Department of Pharmacological and Biomolecular Sciences (DiSFeB)University of MilanMilanItaly
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Raffaele De Francesco
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
- Department of Pharmacological and Biomolecular Sciences (DiSFeB)University of MilanMilanItaly
| | - Lara Manganaro
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
- Department of Pharmacological and Biomolecular Sciences (DiSFeB)University of MilanMilanItaly
| | - Davide Cittaro
- Center for Omics SciencesIRCCS Ospedale San RaffaeleMilanItaly
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Angela Bachi
- FIRC Institute of Molecular Oncology (IFOM)MilanItaly
| | - Elisa Vicenzi
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Anna Kajaste‐Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
22
|
Kenney AD, Zani A, Kawahara J, Eddy AC, Wang X, Mahesh KC, Lu M, Thomas J, Kohlmeier JE, Suthar MS, Hemann EA, Li J, Peeples ME, Hall‐Stoodley L, Forero A, Cai C, Ma J, Yount JS. Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice. EMBO Rep 2023; 24:e56660. [PMID: 36880581 PMCID: PMC10074051 DOI: 10.15252/embr.202256660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Ashley Zani
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jeffrey Kawahara
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adrian C Eddy
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | | | - KC Mahesh
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
| | - Mijia Lu
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Jeronay Thomas
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Jacob E Kohlmeier
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Mehul S Suthar
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
- Department of PediatricsEmory University School of MedicineAtlantaGAUSA
- Emory Vaccine Center, Yerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
| | - Emily A Hemann
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jianrong Li
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Mark E Peeples
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
- Department of PediatricsThe Ohio State UniversityColumbusOHUSA
| | - Luanne Hall‐Stoodley
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adriana Forero
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Chuanxi Cai
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jianjie Ma
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jacob S Yount
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
23
|
Meischel T, Fritzlar S, Villalón-Letelier F, Smith JM, Brooks AG, Reading PC, Londrigan SL. Caveats of Using Overexpression Approaches to Screen Cellular Host IFITM Proteins for Antiviral Activity. Pathogens 2023; 12:pathogens12040519. [PMID: 37111405 PMCID: PMC10145288 DOI: 10.3390/pathogens12040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Ectopic protein overexpression in immortalised cell lines is a commonly used method to screen host factors for their antiviral activity against different viruses. However, the question remains as to what extent such artificial protein overexpression recapitulates endogenous protein function. Previously, we used a doxycycline-inducible overexpression system, in conjunction with approaches to modulate the expression of endogenous protein, to demonstrate the antiviral activity of IFITM1, IFITM2, and IFITM3 against influenza A virus (IAV) but not parainfluenza virus-3 (PIV-3) in A549 cells. We now show that constitutive overexpression of the same IFITM constructs in A549 cells led to a significant restriction of PIV-3 infection by all three IFITM proteins. Variable IFITM mRNA and protein expression levels were detected in A549 cells with constitutive versus inducible overexpression of each IFITM. Our findings show that overexpression approaches can lead to levels of IFITM1, IFITM2, and IFITM3 that significantly exceed those achieved through interferon stimulation of endogenous protein. We propose that exceedingly high levels of overexpressed IFITMs may not accurately reflect the true function of endogenous protein, thus contributing to discrepancies when attributing the antiviral activity of individual IFITM proteins against different viruses. Our findings clearly highlight the caveats associated with overexpression approaches used to screen cellular host proteins for antiviral activity.
Collapse
Affiliation(s)
- Tina Meischel
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Fernando Villalón-Letelier
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Jeffrey M. Smith
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- Correspondence: ; Tel.: +61-3-8344-5708
| |
Collapse
|
24
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 321] [Impact Index Per Article: 160.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Cassari L, Pavan A, Zoia G, Chinellato M, Zeni E, Grinzato A, Rothenberger S, Cendron L, Dettin M, Pasquato A. SARS-CoV-2 S Mutations: A Lesson from the Viral World to Understand How Human Furin Works. Int J Mol Sci 2023; 24:4791. [PMID: 36902222 PMCID: PMC10003014 DOI: 10.3390/ijms24054791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent responsible for the worldwide pandemic and has now claimed millions of lives. The virus combines several unusual characteristics and an extraordinary ability to spread among humans. In particular, the dependence of the maturation of the envelope glycoprotein S from Furin enables the invasion and replication of the virus virtually within the entire body, since this cellular protease is ubiquitously expressed. Here, we analyzed the naturally occurring variation of the amino acids sequence around the cleavage site of S. We found that the virus grossly mutates preferentially at P positions, resulting in single residue replacements that associate with gain-of-function phenotypes in specific conditions. Interestingly, some combinations of amino acids are absent, despite the evidence supporting some cleavability of the respective synthetic surrogates. In any case, the polybasic signature is maintained and, as a consequence, Furin dependence is preserved. Thus, no escape variants to Furin are observed in the population. Overall, the SARS-CoV-2 system per se represents an outstanding example of the evolution of substrate-enzyme interaction, demonstrating a fast-tracked optimization of a protein stretch towards the Furin catalytic pocket. Ultimately, these data disclose important information for the development of drugs targeting Furin and Furin-dependent pathogens.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Angela Pavan
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Giulia Zoia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Chinellato
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Elena Zeni
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
26
|
Abstract
SARS-CoV-2 spike requires proteolytic processing for viral entry. A polybasic furin-cleavage site (FCS) in spike, and evolution toward an optimized FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Here we show interferon-inducible restriction factors Guanylate-binding proteins (GBP) 2 and 5 interfere with furin-mediated spike cleavage and inhibit the infectivity of early-lineage isolates Wuhan-Hu-1 and VIC. By contrast, VOCs Alpha and Delta escape restriction by GBP2/5 that we map to the spike substitution D614G present in these VOCs. Despite inhibition of spike cleavage, these viruses remained sensitive to plasma membrane IFITM1, but not endosomal IFITM2 and 3, consistent with a preference for TMPRSS2-dependent plasma membrane entry. Strikingly, we find that Omicron is unique among VOCs, being sensitive to restriction factors GBP2/5, and also IFITM1, 2, and 3. Using chimeric spike mutants, we map the Omicron phenotype and show that the S1 domain determines Omicron's sensitivity to GBP2/5, whereas the S2' domain determines its sensitivity to endosomal IFITM2/3 and preferential use of TMPRSS2-independent entry. We propose that evolution of SARS-CoV-2 for the D614G substitution has allowed for escape from GBP restriction factors, but the selective pressures on Omicron for spike changes that mediate antibody escape, and altered tropism, have come at the expense of increased sensitivity to innate immune restriction factors that target virus entry.
Collapse
|
27
|
Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J Med Virol 2023; 95:e28212. [PMID: 36224449 PMCID: PMC9874878 DOI: 10.1002/jmv.28212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 01/27/2023]
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to public health and has quickly become a global concern. The infection of SARS-CoV-2 begins with the binding of its spike protein to the receptor-angiotensin-converting enzyme 2 (ACE2), which, after a series of conformation changes, results in the fusion of viral-cell membranes and the release of the viral RNA genome into the cytoplasm. In addition, infected host cells can express spike protein on their cell surface, which will interact with ACE2 on neighboring cells, leading to cell membrane fusion and the formation of multinucleated cells or syncytia. Both viral entry and syncytia formation are mediated by spike-ACE2 interaction and share some common mechanisms of membrane fusion. Here in this review, we will summarize our current understanding of spike-mediated membrane fusion, which may shed light on future broad-spectrum antiviral development.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Huijun Yuan
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiaozhen Li
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Hongliang Wang
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
28
|
Berkowitz RL, Ostrov DA. The Elusive Coreceptors for the SARS-CoV-2 Spike Protein. Viruses 2022; 15:67. [PMID: 36680105 PMCID: PMC9862613 DOI: 10.3390/v15010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Evidence suggests that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein interacts with host coreceptors that participate in viral entry. Resolving the identity of coreceptors has important clinical implications as it may provide the basis for the development of antiviral drugs and vaccine candidates. The majority of characteristic mutations in variants of concern (VOCs) have occurred in the NTD and receptor binding domain (RBD). Unlike the RBD, mutations in the NTD have clustered in the most flexible parts of the spike protein. Many possible coreceptors have been proposed, including various sugars such as gangliosides, sialosides, and heparan sulfate. Protein coreceptors, including neuropilin-1 and leucine-rich repeat containing 15 (LRRC15), are also proposed coreceptors that engage the NTD.
Collapse
Affiliation(s)
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Shi G, Chiramel AI, Li T, Lai KK, Kenney AD, Zani A, Eddy AC, Majdoul S, Zhang L, Dempsey T, Beare PA, Kar S, Yewdell JW, Best SM, Yount JS, Compton AA. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. J Clin Invest 2022; 132:e160766. [PMID: 36264642 PMCID: PMC9753997 DOI: 10.1172/jci160766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Adrian C. Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Saliha Majdoul
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Tirhas Dempsey
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Paul A. Beare
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | | | | | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| |
Collapse
|
30
|
Lista MJ, Winstone H, Wilson HD, Dyer A, Pickering S, Galao RP, De Lorenzo G, Cowton VM, Furnon W, Suarez N, Orton R, Palmarini M, Patel AH, Snell L, Nebbia G, Swanson C, Neil SJD. The P681H Mutation in the Spike Glycoprotein of the Alpha Variant of SARS-CoV-2 Escapes IFITM Restriction and Is Necessary for Type I Interferon Resistance. J Virol 2022; 96:e0125022. [PMID: 36350154 PMCID: PMC9749455 DOI: 10.1128/jvi.01250-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-β) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-β and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-β downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.
Collapse
Affiliation(s)
- Maria Jose Lista
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Helena Winstone
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Harry D. Wilson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Adam Dyer
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Rui Pedro Galao
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vanessa M. Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolas Suarez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Luke Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Chad Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| |
Collapse
|
31
|
Chen Y, Qin Y, Fu Y, Gao Z, Deng Y. Integrated Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unravels the Influences of SARS-CoV-2 Infections to Cancer Patients. Int J Mol Sci 2022; 23:15698. [PMID: 36555339 PMCID: PMC9779348 DOI: 10.3390/ijms232415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic coronavirus that emerged in late 2019 and caused a pandemic of respiratory illness termed as coronavirus disease 2019 (COVID-19). Cancer patients are more susceptible to SARS-CoV-2 infection. The treatment of cancer patients infected with SARS-CoV-2 is more complicated, and the patients are at risk of poor prognosis compared to other populations. Patients infected with SARS-CoV-2 are prone to rapid development of acute respiratory distress syndrome (ARDS) of which pulmonary fibrosis (PF) is considered a sequelae. Both ARDS and PF are factors that contribute to poor prognosis in COVID-19 patients. However, the molecular mechanisms among COVID-19, ARDS and PF in COVID-19 patients with cancer are not well-understood. In this study, the common differentially expressed genes (DEGs) between COVID-19 patients with and without cancer were identified. Based on the common DEGs, a series of analyses were performed, including Gene Ontology (GO) and pathway analysis, protein-protein interaction (PPI) network construction and hub gene extraction, transcription factor (TF)-DEG regulatory network construction, TF-DEG-miRNA coregulatory network construction and drug molecule identification. The candidate drug molecules (e.g., Tamibarotene CTD 00002527) obtained by this study might be helpful for effective therapeutic targets in COVID-19 patients with cancer. In addition, the common DEGs among ARDS, PF and COVID-19 patients with and without cancer are TNFSF10 and IFITM2. These two genes may serve as potential therapeutic targets in the treatment of COVID-19 patients with cancer. Changes in the expression levels of TNFSF10 and IFITM2 in CD14+/CD16+ monocytes may affect the immune response of COVID-19 patients. Specifically, changes in the expression level of TNFSF10 in monocytes can be considered as an immune signature in COVID-19 patients with hematologic cancer. Targeting N6-methyladenosine (m6A) pathways (e.g., METTL3/SERPINA1 axis) to restrict SARS-CoV-2 reproduction has therapeutic potential for COVID-19 patients.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
32
|
Vavougios GD, de Erausquin GA, Snyder HM. Type I interferon signaling in SARS-CoV-2 associated neurocognitive disorder (SAND): Mapping host-virus interactions to an etiopathogenesis. Front Neurol 2022; 13:1063298. [PMID: 36570454 PMCID: PMC9771386 DOI: 10.3389/fneur.2022.1063298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Epidemiological, clinical, and radiological studies have provided insights into the phenomenology and biological basis of cognitive impairment in COVID-19 survivors. Furthermore, its association with biomarkers associated with neuroinflammation and neurodegeneration supports the notion that it is a distinct aspect of LongCOVID syndrome with specific underlying biology. Accounting for the latter, translational studies on SARS-CoV-2's interactions with its hosts have provided evidence on type I interferon dysregulation, which is seen in neuroinflammatory and neurodegenerative diseases. To date, studies attempting to describe this overlap have only described common mechanisms. In this manuscript, we attempt to propose a mechanistic model based on the host-virus interaction hypothesis. We discuss the molecular basis for a SARS-CoV-2-associated neurocognitive disorder (SAND) focusing on specific genes and pathways with potential mechanistic implications, several of which have been predicted by Vavougios and their research group. Furthermore, our hypothesis links translational evidence on interferon-responsive gene perturbations introduced by SARS-CoV-2 and known dysregulated pathways in dementia. Discussion emphasizes the crosstalk between central and peripheral immunity via danger-associated molecular patterns in inducing SAND's emergence in the absence of neuroinfection. Finally, we outline approaches to identifying targets that are both testable and druggable, and could serve in the design of future clinical and translational studies.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, University of Cyprus, Lefkosia, Cyprus,Department of Respiratory Medicine, University of Thessaly, Larisa, Greece,*Correspondence: George D. Vavougios ;
| | - Gabriel A. de Erausquin
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UTHSA, San Antonio, TX, United States
| | - Heather M. Snyder
- Division of Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, United States
| |
Collapse
|
33
|
Xu F, Wang G, Zhao F, Huang Y, Fan Z, Mei S, Xie Y, Wei L, Hu Y, Wang C, Cen S, Liang C, Ren L, Guo F, Wang J. IFITM3 Inhibits SARS-CoV-2 Infection and Is Associated with COVID-19 Susceptibility. Viruses 2022; 14:2553. [PMID: 36423162 PMCID: PMC9692367 DOI: 10.3390/v14112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
SARS-CoV-2 has become a global threat to public health. Infected individuals can be asymptomatic or develop mild to severe symptoms, including pneumonia, respiratory distress, and death. This wide spectrum of clinical presentations of SARS-CoV-2 infection is believed in part due to the polymorphisms of key genetic factors in the population. In this study, we report that the interferon-induced antiviral factor IFITM3 inhibits SARS-CoV-2 infection by preventing SARS-CoV-2 spike-protein-mediated virus entry and cell-to-cell fusion. Analysis of a Chinese COVID-19 patient cohort demonstrates that the rs12252 CC genotype of IFITM3 is associated with SARS-CoV-2 infection risk in the studied cohort. These data suggest that individuals carrying the rs12252 C allele in the IFITM3 gene may be vulnerable to SARS-CoV-2 infection and thus may benefit from early medical intervention.
Collapse
Affiliation(s)
- Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Geng Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Xie
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
35
|
Lu J, Meng M, Zhou X, Ding S, Feng K, Zeng Z, Huang T, Cai YD. Identification of COVID-19 severity biomarkers based on feature selection on single-cell RNA-Seq data of CD8 + T cells. Front Genet 2022; 13:1053772. [PMID: 36437952 PMCID: PMC9682094 DOI: 10.3389/fgene.2022.1053772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
The global outbreak of the COVID-19 epidemic has become a major public health problem. COVID-19 virus infection triggers a complex immune response. CD8+ T cells, in particular, play an essential role in controlling the severity of the disease. However, the mechanism of the regulatory role of CD8+ T cells on COVID-19 remains poorly investigated. In this study, single-cell gene expression profiles from three CD8+ T cell subtypes (effector, memory, and naive T cells) were downloaded. Each cell subtype included three disease states, namely, acute COVID-19, convalescent COVID-19, and unexposed individuals. The profiles on each cell subtype were individually analyzed in the same way. Irrelevant features in the profiles were first excluded by the Boruta method. The remaining features for each CD8+ T cells subtype were further analyzed by Max-Relevance and Min-Redundancy, Monte Carlo feature selection, and light gradient boosting machine methods to obtain three feature lists. These lists were then brought into the incremental feature selection method to determine the optimal features for each cell subtype. Their corresponding genes may be latent biomarkers to determine COVID-19 severity. Genes, such as ZFP36, DUSP1, TCR, and IL7R, can be confirmed to play an immune regulatory role in COVID-19 infection and recovery. The results of functional enrichment analysis revealed that these important genes may be associated with immune functions, such as response to cAMP, response to virus, T cell receptor complex, T cell activation, and T cell differentiation. This study further set up different gene expression pattens, represented by classification rules, on three states of COVID-19 and constructed several efficient classifiers to distinguish COVID-19 severity. The findings of this study provided new insights into the biological processes of CD8+ T cells in regulating the immune response.
Collapse
Affiliation(s)
- Jian Lu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XianChao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
36
|
Shilagardi K, Spear ED, Abraham R, Griffin DE, Michaelis S. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation. mBio 2022; 13:e0254322. [PMID: 36197088 PMCID: PMC9601121 DOI: 10.1128/mbio.02543-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on global public health, emphasizing the importance of understanding innate immune mechanisms and cellular restriction factors that cells can harness to fight viral infections. The multimembrane-spanning zinc metalloprotease ZMPSTE24 is one such restriction factor. ZMPSTE24 has a well-characterized proteolytic role in the maturation of prelamin A, precursor of the nuclear scaffold protein lamin A. An apparently unrelated role for ZMPSTE24 in viral defense involves its interaction with the interferon-inducible membrane proteins (IFITMs), which block virus-host cell fusion by rigidifying cellular membranes and thereby prevent viral infection. ZMPSTE24, like the IFITMs, defends cells against a broad spectrum of enveloped viruses. However, its ability to protect against coronaviruses has never been examined. Here, we show that overexpression of ZMPSTE24 reduces the efficiency of cellular infection by SARS-CoV-2 Spike-pseudotyped lentivirus and that genetic knockout or small interfering RNA-mediated knockdown of endogenous ZMPSTE24 enhances infectivity. We further demonstrate a protective role for ZMPSTE24 in a Spike-ACE2-dependent cell-cell fusion assay. In both assays, a catalytic dead version of ZMPSTE24 is equally as protective as the wild-type protein, indicating that ZMPSTE24's proteolytic activity is not required for defense against SARS-CoV-2. Finally, we demonstrate by plaque assays that Zmpste24-/- mouse cells show enhanced infection by a genuine coronavirus, mouse hepatitis virus (MHV). This study extends the range of viral protection afforded by ZMPSTE24 to include coronaviruses and suggests that targeting ZMPSTE24's mechanism of viral defense could have therapeutic benefit. IMPORTANCE The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has underscored the importance of understanding intrinsic cellular components that can be harnessed as the cell's first line of defense to fight against viral infection. Our paper focuses on one such protein, the integral membrane protease ZMPSTE24, which interacts with interferon-inducible transmembrane proteins (IFITMs). IFITMs interfere with virus entry by inhibiting fusion between viral and host cell membranes, and ZMPSTE24 appears to contribute to this inhibitory activity. ZMPSTE24 has been shown to defend cells against several, but not all, enveloped viruses. In this study, we extend ZMPSTE24's reach to include coronaviruses, by showing that ZMPSTE24 protects cells from SARS-CoV-2 pseudovirus infection, Spike protein-mediated cell-cell fusion, and infection by the mouse coronavirus MHV. This work lays the groundwork for further studies to decipher the mechanistic role of ZMPSTE24 in blocking the entry of SARS-CoV-2 and other viruses into cells.
Collapse
Affiliation(s)
- Khurts Shilagardi
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Eric D. Spear
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rachy Abraham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Michaelis
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Song J, Chow RD, Peña-Hernández MA, Zhang L, Loeb SA, So EY, Liang OD, Ren P, Chen S, Wilen CB, Lee S. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biol 2022; 20:e3001805. [PMID: 36228039 PMCID: PMC9595563 DOI: 10.1371/journal.pbio.3001805] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 10/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is mediated by the entry receptor angiotensin-converting enzyme 2 (ACE2). Although attachment factors and coreceptors facilitating entry are extensively studied, cellular entry factors inhibiting viral entry are largely unknown. Using a surfaceome CRISPR activation screen, we identified human LRRC15 as an inhibitory attachment factor for SARS-CoV-2 entry. LRRC15 directly binds to the receptor-binding domain (RBD) of spike protein with a moderate affinity and inhibits spike-mediated entry. Analysis of human lung single-cell RNA sequencing dataset reveals that expression of LRRC15 is primarily detected in fibroblasts and particularly enriched in pathological fibroblasts in COVID-19 patients. ACE2 and LRRC15 are not coexpressed in the same cell types in the lung. Strikingly, expression of LRRC15 in ACE2-negative cells blocks spike-mediated viral entry in ACE2+ cell in trans, suggesting a protective role of LRRC15 in a physiological context. Therefore, LRRC15 represents an inhibitory attachment factor for SARS-CoV-2 that regulates viral entry in trans.
Collapse
Affiliation(s)
- Jaewon Song
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Ryan D. Chow
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mario A. Peña-Hernández
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Li Zhang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Skylar A. Loeb
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Olin D. Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Ping Ren
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Sidi Chen
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
38
|
Clement M, Forbester JL, Marsden M, Sabberwal P, Sommerville MS, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg JA, Strittmatter SM, Weekes MP, Stanton RJ, Dong T, Humphreys IR. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nat Commun 2022; 13:5294. [PMID: 36075894 PMCID: PMC9454482 DOI: 10.1038/s41467-022-32587-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a restriction factor that limits viral pathogenesis and exerts poorly understood immunoregulatory functions. Here, using human and mouse models, we demonstrate that IFITM3 promotes MyD88-dependent, TLR-mediated IL-6 production following exposure to cytomegalovirus (CMV). IFITM3 also restricts IL-6 production in response to influenza and SARS-CoV-2. In dendritic cells, IFITM3 binds to the reticulon 4 isoform Nogo-B and promotes its proteasomal degradation. We reveal that Nogo-B mediates TLR-dependent pro-inflammatory cytokine production and promotes viral pathogenesis in vivo, and in the case of TLR2 responses, this process involves alteration of TLR2 cellular localization. Nogo-B deletion abrogates inflammatory cytokine responses and associated disease in virus-infected IFITM3-deficient mice. Thus, we uncover Nogo-B as a driver of viral pathogenesis and highlight an immunoregulatory pathway in which IFITM3 fine-tunes the responsiveness of myeloid cells to viral stimulation.
Collapse
Affiliation(s)
- M Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - J L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - M Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - P Sabberwal
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - M S Sommerville
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - D Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - S Dimonte
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - S Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - K Harcourt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Z Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - L Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - B Jin
- Fourth Military Medical University, Xian, China
| | - M Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - S Makvandi-Nejad
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - J A Lindborg
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - S M Strittmatter
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R J Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - T Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - I R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
39
|
Seow J, Khan H, Rosa A, Calvaresi V, Graham C, Pickering S, Pye VE, Cronin NB, Huettner I, Malim MH, Politis A, Cherepanov P, Doores KJ. A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination. Cell Rep 2022; 40:111276. [PMID: 35981534 PMCID: PMC9365860 DOI: 10.1016/j.celrep.2022.111276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | | | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Nora B Cronin
- LonCEM Facility, The Francis Crick Institute, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK; Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
40
|
Das T, Yang X, Lee H, Garst EH, Valencia E, Chandran K, Im W, Hang HC. S-Palmitoylation and Sterol Interactions Mediate Antiviral Specificity of IFITMs. ACS Chem Biol 2022; 17:2109-2120. [PMID: 35861660 PMCID: PMC10597057 DOI: 10.1021/acschembio.2c00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interferon-induced transmembrane proteins (IFITM1, 2, and 3) are important antiviral proteins that are active against many viruses, including influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV), and severe acute respiratory syndrome coronavirus (SARS-CoV). IFITM proteins exhibit specificity in activity, but their distinct mechanisms of action and regulation are unclear. Since S-palmitoylation and cholesterol homeostasis are crucial for viral infections, we investigated IFITM interactions with cholesterol by photoaffinity cross-linking in mammalian cells along with molecular dynamic simulations and nuclear magnetic resonance analysis in vitro. These studies suggest that cholesterol can directly interact with S-palmitoylated IFITMs in cells and alter the conformation of IFITMs in membrane bilayers. Notably, we discovered that the S-palmitoylation levels regulate differential IFITM protein interactions with cholesterol in mammalian cells and specificity of antiviral activity toward IAV, SARS-CoV-2, and EBOV. Our studies suggest that modulation of IFITM S-palmitoylation levels and cholesterol interaction influence host susceptibility to different viruses.
Collapse
Affiliation(s)
- Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Hwayoung Lee
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Emma H. Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, United States
| |
Collapse
|
41
|
Ahmed SS, Al-Mamun A, Hossain SI, Akter F, Ahammad I, Chowdhury ZM, Salimullah M. Virtual screening reveals liquiritigenin as a broad-spectrum inhibitor of SARS-CoV-2 variants of concern: an in silico study. J Biomol Struct Dyn 2022:1-19. [PMID: 35971968 DOI: 10.1080/07391102.2022.2111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The SARS-CoV-2 has severely impacted the lives of people worldwide. Global concern is on the rise due to a large number of unexpected mutations in the viral genome, resulting in new variants. Nature-based bioactive phytochemicals hold great promise as inhibitors against pathogenic viruses. The current study was aimed at evaluating some bioactive antiviral phytochemicals against SARS-CoV-2 variants of concern. A total of 46 phytochemicals were screened against the pathogenic spike protein of Alpha, Beta, Delta, Gamma, and Omicron variants. In addition to molecular docking, screening for favorable pharmacokinetic and pharmacodynamic properties such as absorption, distribution, metabolism, excretion, and toxicity was undertaken. For each of the aforementioned five SARS-CoV-2 variants of concern, a 100 ns molecular dynamics simulation was run to assess the stability of the complexes between their respective spike protein receptor-binding domain and the best-selected compound. From our current investigation, the natural compound liquiritigenin turned out to be the most promising potential lead compound against almost all the variants. These findings could pave the way for the development of effective medications against SARS-CoV-2 variants. However, in vivo trials in future studies are necessary for further validation of our results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abdullah Al-Mamun
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Shah Imran Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Farzana Akter
- Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| |
Collapse
|
42
|
Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, Cantoni D, Scott S, Logan N, Ashraf S, Manali M, Szemiel A, Cowton V, Vink E, Harvey WT, Davis C, Asamaphan P, Smollett K, Tong L, Orton R, Hughes J, Holland P, Silva V, Pascall DJ, Puxty K, da Silva Filipe A, Yebra G, Shaaban S, Holden MTG, Pinto RM, Gunson R, Templeton K, Murcia PR, Patel AH, Klenerman P, Dunachie S, Haughney J, Robertson DL, Palmarini M, Ray S, Thomson EC. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol 2022; 7:1161-1179. [PMID: 35798890 PMCID: PMC9352574 DOI: 10.1038/s41564-022-01143-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Craig Wilkie
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Manali
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Agnieszka Szemiel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elen Vink
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Patawee Asamaphan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - David J Pascall
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - Matthew T G Holden
- Public Health Scotland, Glasgow, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | | | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
- NHS Greater Glasgow & Clyde, Glasgow, UK.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
43
|
Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, Hashemian SMR, Mirzaei H. Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cell Mol Biol Lett 2022; 27:63. [PMID: 35907817 PMCID: PMC9338538 DOI: 10.1186/s11658-022-00363-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
44
|
Singh S, Dahiya S, Singh YJ, Beeton K, Jain A, Sarkar R, Dubey A, Tehseen A, Sehrawat S. Robust anti-SARS-CoV2 single domain antibodies cross neutralize multiple viruses. iScience 2022; 25:104549. [PMID: 35702569 PMCID: PMC9181070 DOI: 10.1016/j.isci.2022.104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
We report robust SARS-CoV2 neutralizing sdAbs targeting the viral peptides encompassing the polybasic cleavage site (CSP) and in the receptor binding domain (RBD) of the spike (S) protein. Both the sdAbs inhibited infectivity of the CoV2 S protein expressing pseudoviruses (LV-CoV2S). Both anti-CSP and RBD intrabodies (IB) inhibited the output of LV(CoV2 S). Anti-CSP IB altered the proteolytic processing and targeted the viral S protein for degradation. Because of cross-reactive CSPs in the entry mediators, the anti-CSP sdAb neutralized in vitro and in vivo the infectivity of SARS-CoV2 unrelated viruses such as herpes simplex virus 1 (HSV1) and pestes des petits ruminants virus (PPRV). Conversely, anti-HSV1 and anti-PPRV sera neutralized LV(CoV2 S) owing to the presence of CSP reactive antibodies indicating that a prior infection with such pathogens could impact on the pattern of COVID-19.
Collapse
Affiliation(s)
- Sudhakar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Surbhi Dahiya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Yuviana J. Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Komal Beeton
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Ayush Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Roman Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Azeez Tehseen
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
45
|
Khorramdelazad H, Kazemi MH, Azimi M, Aghamajidi A, Mehrabadi AZ, Shahba F, Aghamohammadi N, Falak R, Faraji F, Jafari R. Type-I interferons in the immunopathogenesis and treatment of Coronavirus disease 2019. Eur J Pharmacol 2022; 927:175051. [PMID: 35618037 PMCID: PMC9124632 DOI: 10.1016/j.ejphar.2022.175051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is currently the major global health problem. Still, it continues to infect people globally and up to the end of February 2022, over 436 million confirmed cases of COVID-19, including 5.95 million deaths, were reported to the world health organization (WHO). No specific treatment is currently available for COVID-19, and the discovery of effective therapeutics requires understanding the effective immunologic and immunopathologic mechanisms behind this infection. Type-I interferons (IFN-Is), as the critical elements of the immediate immune response against viral infections, can inhibit the replication and spread of the viruses. However, the available evidence shows that the antiviral IFN-I response is impaired in patients with the severe form of COVID-19. Moreover, the administration of exogenous IFN-I in different phases of the disease can lead to various outcomes. Therefore, understanding the role of IFN-I molecules in COVID-19 development and its severity can provide valuable information for better management of this disease. This review summarizes the role of IFN-Is in the pathogenesis of COIVD-19 and discusses the importance of autoantibodies against this cytokine in the spreading of SARS-CoV-2 and control of the subsequent excessive inflammation.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Aghamohammadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran,Corresponding author. Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Hazrat-e Rasool General Hospital, Niyayesh St, Sattar Khan St, 1445613131, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran,Corresponding author. Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd, Imam Khomeini Hospital Complex, 113857147, Urmia, Iran
| |
Collapse
|
46
|
Evidence for an ACE2-Independent Entry Pathway That Can Protect from Neutralization by an Antibody Used for COVID-19 Therapy. mBio 2022; 13:e0036422. [PMID: 35467423 PMCID: PMC9239067 DOI: 10.1128/mbio.00364-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy.
Collapse
|
47
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
48
|
Insertion-and-Deletion Mutations between the Genomes of SARS-CoV, SARS-CoV-2, and Bat Coronavirus RaTG13. Microbiol Spectr 2022; 10:e0071622. [PMID: 35658573 PMCID: PMC9241832 DOI: 10.1128/spectrum.00716-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The evolutional process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) development remains inconclusive. This study compared the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), bat coronavirus RaTG13, and SARS-CoV-2. In total, the genomes of SARS-CoV-2 and RaTG13 were 77.9% and 77.7% identical to the genome of SARS-CoV, respectively. A total of 3.6% (1,068 bases) of the SARS-CoV-2 genome was derived from insertion and/or deletion (indel) mutations, and 18.6% (5,548 bases) was from point mutations from the genome of SARS-CoV. At least 35 indel sites were confirmed in the genome of SARS-CoV-2, in which 17 were with ≥10 consecutive bases long. Ten of these relatively long indels were located in the spike (S) gene, five in nonstructural protein 3 (Nsp3) gene of open reading frame (ORF) 1a, and one in ORF8 and noncoding region. Seventeen (48.6%) of the 35 indels were based on insertion-and-deletion mutations with exchanged gene sequences of 7–325 consecutive bases. Almost the complete ORF8 gene was replaced by a single 325 consecutive base-long indel. The distribution of these indels was roughly in accordance with the distribution of the rate of point mutation rate around the indels. The genome sequence of SARS-CoV-2 was 96.0% identical to that of RaTG13. There was no long insertion-and-deletion mutation between the genomes of RaTG13 and SARS-CoV-2. The findings of the uneven distribution of multiple indels and the presence of multiple long insertion-and-deletion mutations with exchanged consecutive base sequences in the viral genome may provide insights into SARS-CoV-2 development. IMPORTANCE The developmental mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains inconclusive. This study compared the base sequence one-by-one between severe acute respiratory syndrome coronavirus (SARS-CoV) or bat coronavirus RaTG13 and SARS-CoV-2. The genomes of SARS-CoV-2 and RaTG13 were 77.9% and 77.7% identical to the genome of SARS-CoV, respectively. Seventeen of the 35 sites with insertion and/or deletion mutations between SARS-CoV-2 and SARS-CoV were based on insertion-and-deletion mutations with the replacement of 7–325 consecutive bases. Most of these long insertion-and-deletion sites were concentrated in the nonstructural protein 3 (Nsp3) gene of open reading frame (ORF) 1a, S1 domain of the spike protein, and ORF8 genes. Such long insertion-and-deletion mutations were not observed between the genomes of RaTG13 and SARS-CoV-2. The presence of multiple long insertion-and-deletion mutations in the genome of SARS-CoV-2 and their uneven distributions may provide further insights into the development of the virus.
Collapse
|
49
|
Faraji SN, Raee MJ, Hashemi SMA, Daryabor G, Tabrizi R, Dashti FS, Behboudi E, Heidarnejad K, Nowrouzi-Sohrabi P, Hatam G. Human interaction targets of SARS-COV-2 spike protein: A systematic review. EUR J INFLAMM 2022. [PMCID: PMC9160582 DOI: 10.1177/1721727x221095382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives: The development of effective targeted therapy and drug-design approaches against the SARS-CoV-2 is a universal health priority. Therefore, it is important to assess possible therapeutic strategies against SARS-CoV-2 via its most interaction targets. The present study aimed to perform a systematic review on clinical and experimental investigations regarding SARS-COV-2 interaction targets for human cell entry. Methods: A systematic search using relevant MeSH terms and keywords was performed in PubMed, Scopus, Embase, and Web of Science (ISI) databases up to July 2021. Two reviewers independently assessed the eligibility of the studies, extracted the data, and evaluated the methodological quality of the included studies. Additionally, a narrative synthesis was done as a qualitative method for data gathering and synthesis of each outcome measure. Results: A total of 5610 studies were identified, and 128 articles were included in the systematic review. Based on the results, spike antigen was the only interaction protein from SARS-CoV-2. However, the interaction proteins from humans varied including different spike receptors and several cleavage enzymes. The most common interactions of the spike protein of SARS-CoV-2 for cell entry were ACE2 (entry receptor) and TMPRSS2 (for spike priming). A lot of published studies have mainly focused on the ACE2 receptor followed by the TMPRSS family and furin. Based on the results, ACE2 polymorphisms as well as spike RBD mutations affected the SARS-CoV-2 binding affinity. Conclusion: The included studies shed more light on SARS-CoV-2 cellular entry mechanisms and detailed interactions, which could enhance the understanding of SARS-CoV-2 pathogenesis and the development of new and comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- Seyed Nooreddin Faraji
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohamad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Fateme Sadat Dashti
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Kamran Heidarnejad
- Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
A call for an independent inquiry into the origin of the SARS-CoV-2 virus. Proc Natl Acad Sci U S A 2022; 119:e2202769119. [PMID: 35588448 PMCID: PMC9173817 DOI: 10.1073/pnas.2202769119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|