1
|
Tang J, Zou SM, Zhou JF, Gao RB, Xin L, Zeng XX, Huang WJ, Li XY, Cheng YH, Liu LQ, Xiao N, Wang DY. R229I substitution from oseltamivir induction in HA1 region significantly increased the fitness of a H7N9 virus bearing NA 292K. Emerg Microbes Infect 2024; 13:2373314. [PMID: 38922326 PMCID: PMC467099 DOI: 10.1080/22221751.2024.2373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.
Collapse
MESH Headings
- Animals
- Oseltamivir/pharmacology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/drug effects
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/physiology
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Dogs
- Virus Replication/drug effects
- Antiviral Agents/pharmacology
- Humans
- Mice
- Orthomyxoviridae Infections/virology
- Madin Darby Canine Kidney Cells
- A549 Cells
- Mice, Inbred C57BL
- Drug Resistance, Viral/genetics
- Amino Acid Substitution
- Influenza, Human/virology
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Female
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Rong-Bao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiao-Xu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Yan-Hui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li-Qi Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| |
Collapse
|
2
|
He D, Wang X, Wu H, Cai K, Song X, Wang X, Hu J, Hu S, Liu X, Ding C, Peng D, Su S, Gu M, Liu X. Characterization of Conserved Evolution in H7N9 Avian Influenza Virus Prior Mass Vaccination. Virulence 2024; 15:2395837. [PMID: 39240070 PMCID: PMC11382709 DOI: 10.1080/21505594.2024.2395837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Vaccination is crucial for the prevention and mitigation of avian influenza infections in China. The inactivated H7N9 vaccine, when administered to poultry, significantly lowers the risk of infection among both poultry and humans, while also markedly decreasing the prevalence of H7N9 detections. Highly pathogenic (HP) H7N9 viruses occasionally appear, whereas their low pathogenicity (LP) counterparts have been scarcely detected since 2018. However, these contributing factors remain poorly understood. We conducted an exploratory investigation of the mechanics via the application of comprehensive bioinformatic approaches. We delineated the Yangtze River Delta (YRD) H7N9 lineage into 5 clades (YRD-A to E). Our findings highlight the emergence and peak occurrence of the LP H7N9-containing YRD-E clade during the 5th epidemic wave in China's primary poultry farming areas. A more effective control of LP H7N9 through vaccination was observed compared to that of its HP H7N9 counterpart. YRD-E exhibited a tardy evolutionary trajectory, denoted by the conservation of its genetic and antigenic variation. Our analysis of YRD-E revealed only minimal amino acid substitutions along its phylogenetic tree and a few selective sweep mutations since 2016. In terms of epidemic fitness, the YRD-E was measured to be lower than that of the HP variants. Collectively, these findings underscore the conserved evolutionary patterns distinguishing the YRD-E. Given the conservation presented in its evolutionary patterns, the YRD-E LP H7N9 is hypothesized to be associated with a reduction following the mass vaccination in a relatively short period owing to its lower probability of antigenic variation that might affect vaccine efficiency.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kairui Cai
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoli Song
- Animal Epidemic Prevention Office, Jiangsu Provincial Animal Disease Control Center, Nanjing, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
James J, Thomas SS, Seekings AH, Mahmood S, Kelly M, Banyard AC, Núñez A, Brookes SM, Slomka MJ. Evaluating the epizootic and zoonotic threat of an H7N9 low-pathogenicity avian influenza virus (LPAIV) variant associated with enhanced pathogenicity in turkeys. J Gen Virol 2024; 105:002008. [PMID: 38980150 PMCID: PMC11316556 DOI: 10.1099/jgv.0.002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.
Collapse
Affiliation(s)
- Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Saumya S. Thomas
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sahar Mahmood
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Michael Kelly
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J. Slomka
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
4
|
Jackson LA, Stapleton JT, Walter EB, Chen WH, Rouphael NG, Anderson EJ, Neuzil KM, Winokur PL, Smith MJ, Schmader KE, Swamy GK, Thompson AB, Mulligan MJ, Rostad CA, Cross K, Tsong R, Wegel A, Roberts PC. Immunogenicity and safety of varying dosages of a fifth-wave influenza A/H7N9 inactivated vaccine given with and without AS03 adjuvant in healthy adults. Vaccine 2024; 42:295-309. [PMID: 38105137 PMCID: PMC10790638 DOI: 10.1016/j.vaccine.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Human infections with the avian influenza A(H7N9) virus were first reported in China in 2013 and continued to occur in annual waves. In the 2016/2017 fifth wave, Yangtze River Delta (YRD) lineage viruses, which differed antigenically from those of earlier waves, predominated. METHODS In this phase 2 double-blinded trial we randomized 720 adults ≥ 19 years of age to receive two injections of a YRD lineage inactivated A/Hong Kong/125/2017 fifth-wave H7N9 vaccine, given 21 days apart, at doses of 3.75, 7.5, and 15 µg of hemagglutinin (HA) with AS03A adjuvant and at doses of 15 and 45 µg of HA without adjuvant. RESULTS Two doses of adjuvanted vaccine were required to induce HA inhibition (HI) antibody titers ≥ 40 in most participants. After two doses of the 15 µg H7N9 formulation, given with or without AS03 adjuvant, the proportion achieving a HI titer ≥ 40 against the vaccine strain at 21 days after the second vaccination was 65 % (95 % CI, 57 %-73 %) and 0 % (95 % CI, 0 %-4%), respectively. Among those who received two doses of the 15 µg adjuvanted formulation the proportion with HI titer ≥ 40 at 21 days after the second vaccination was 76 % (95 % CI, 66 %-84 %) in those 19-64 years of age and 49 % (95 % CI, 37 %-62 %) in those ≥ 65 years of age. Responses to the adjuvanted vaccine formulations did not vary by HA content. Antibody responses declined over time and responses against drifted H7N9 strains were diminished. Overall, the vaccines were well tolerated but, as expected, adjuvanted vaccines were associated with more frequent solicited systemic and local adverse events. CONCLUSIONS AS03 adjuvant improved the immune responses to an inactivated fifth-wave H7N9 influenza vaccine, particularly in younger adults, but invoked lower responses to drifted H7N9 strains. These findings may inform future influenza pandemic preparedness strategies.
Collapse
Affiliation(s)
- Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
| | - Jack T Stapleton
- Departments of Internal Medicine and Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nadine G Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan J Anderson
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia L Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Smith
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine and GRECC, Durham VA Health Care System, Durham, NC, USA
| | - Geeta K Swamy
- Duke Human Vaccine Institute and Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Amelia B Thompson
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Mark J Mulligan
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina A Rostad
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
5
|
Zhao B, Wang W, Song Y, Wen X, Feng S, Li W, Ding Y, Chen Z, He Z, Wang S, Jiao P. Genetic characterization and pathogenicity of H7N9 highly pathogenic avian influenza viruses isolated from South China in 2017. Front Microbiol 2023; 14:1105529. [PMID: 36960283 PMCID: PMC10027924 DOI: 10.3389/fmicb.2023.1105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 03/09/2023] Open
Abstract
Since 2017, the new H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for more than 200,000 cases of chicken infection and more than 120,000 chicken deaths in China. Our previous study found that the Q26 was chicken-origin H7N9 HPAIV. In this study, we analyzed the genetic characterization of Q24, Q65, Q66, Q85, and Q102 H7N9 avian influenza viruses isolated from Guangdong, China in 2017. Our results showed that these viruses were highly pathogenic and belonged to two different genotypes, which suggested they occurred genetic reassortant. To investigate the pathogenicity, transmission, and host immune responses of H7N9 virus in chickens, we selected Q24 and Q26 viruses to inoculate chickens. The Q24 and Q26 viruses killed all inoculated chickens within 3 days and replicated effectively in all tested tissues. They were efficiently transmitted to contact chickens and killed them within 4 days through direct contact. Furthermore, we found that the expressions of several immune-related genes (e.g., TLR3, TLR7, MDA5, MAVS, IFN-β, IL-6, IL-8, OAS, Mx1, MHC I, and MHC II) were upregulated obviously in the lungs and spleen of chickens inoculated with the two H7N9 viruses at 24 h post-inoculation (HPI). Among these, IL-6 and IFN-β in lungs were the most upregulated (by 341.02-381.48-fold and 472.50-500.56-fold, respectively). These results suggest that the new H7N9 viruses isolated in 2017, can replicate and transmit effectively and trigger strong immune responses in chickens, which helps us understand the genetic and pathogenic variations of H7N9 HPAIVs in China.
Collapse
Affiliation(s)
- Bingbing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
- Animal Influenza Laboratory of the Ministry of Agriculture and Rural Affairs, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yating Song
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangyang Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
- *Correspondence: Peirong Jiao, ; Shao Wang,
| | - Peirong Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
- *Correspondence: Peirong Jiao, ; Shao Wang,
| |
Collapse
|
6
|
He J, Hou S, Xiong C, Hu L, Gong L, Yu J, Zhou X, Chen Q, Yuan Y, He L, Zhu M, Li W, Shi Y, Sun Y, Pan H, Su B, Lu Y, Wu J. Avian influenza A virus H7N9 in China, a role reversal from reassortment receptor to the donator. J Med Virol 2023; 95:e28392. [PMID: 36484390 DOI: 10.1002/jmv.28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reassortment can introduce one or more gene segments of influenza A viruses (IAVs) into another, resulting in novel subtypes. Since 2013, a new outbreak of human highly pathogenic avian influenza has emerged in the Yangtze River Delta (YRD) and South-Central regions of China. In this study, using Anhui province as an example, we discuss the possible impact of H7N9 IAVs on future influenza epidemics through a series of gene reassortment events. Sixty-one human H7N9 isolates were obtained from five outbreaks in Anhui province from 2013 to 2019. Bioinformatics analyses revealed that all of them were characterized by low pathogenicity and high human or mammalian tropism and had introduced novel avian influenza A virus (AIV) subtypes such as H7N2, H7N6, H9N9, H5N6, H6N6, and H10N6 through gene reassortment. In reassortment events, Anhui isolates may donate one or more segments of HA, NA, and the six internal protein-coding genes for the novel subtype AIVs. Our study revealed that H7N9, H9N2, and H5N1 can serve as stable and persistent gene pools for AIVs in the YRD and South-Central regions of China. Novel AIV subtypes might be generated continuously by reassortment. These AIVs may have obtained human-type receptor-binding abilities from their donors and prefer binding to them, which can cause human epidemics through accidental spillover infections. Facing the continual threat of emerging avian influenza, constant monitoring of AIVs should be conducted closely for agricultural and public health.
Collapse
Affiliation(s)
- Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sai Hou
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Chenglong Xiong
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Linjie Hu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Junling Yu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qingqing Chen
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yuan Yuan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Lan He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Meng Zhu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Weiwei Li
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yonglin Shi
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yong Sun
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Haifeng Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yihan Lu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jiabing Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Taha MJJ, Abuawwad MT, Alrubasy WA, Sameer SK, Alsafi T, Al-Bustanji Y, Abu-Ismail L, Nashwan AJ. Ocular manifestations of recent viral pandemics: A literature review. Front Med (Lausanne) 2022; 9:1011335. [PMID: 36213628 PMCID: PMC9537761 DOI: 10.3389/fmed.2022.1011335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Viral pandemics often take the world by storm, urging the medical community to prioritize the most evident systemic manifestations, often causing ocular manifestations to go unnoticed. This literature review highlights the ocular complications of the Monkeypox, SARS-CoV-2, MERS, Ebola, H1N1, and Zika viruses as the most recent viral pandemics. Research into the effects of these pandemics began immediately. Moreover, it also discusses the ocular complications of the vaccines and treatments that were used in the scope of the viral pandemics. Additionally, this review discusses the role of the eye as an important route of viral transmission, and thereafter, the International recommendations to reduce the incidence of viral transmission were mentioned. Lastly, this paper wants to lay out a platform for researchers who want to learn more about how viruses show up in the eye.
Collapse
Affiliation(s)
- Mohammad J. J. Taha
- Department of Clinical Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammad T. Abuawwad
- Department of Clinical Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Warda A. Alrubasy
- Department of Clinical Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shams Khalid Sameer
- Department of Clinical Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Taleb Alsafi
- Department of Optometry, Western University College of Optometry, Pomona, CA, United States
| | - Yaqeen Al-Bustanji
- Department of Clinical Medicine, School of Medicine, University of Jordan, Amman, Jordan
| | - Luai Abu-Ismail
- Department of Ophthalmology, Islamic Hospital, Amman, Jordan
| | - Abdulqadir J. Nashwan
- Department of Nursing Education and Research, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Abdulqadir J. Nashwan
| |
Collapse
|
8
|
A dominant internal gene cassette of high pathogenicity avian influenza H7N9 virus raised since 2018. Virus Genes 2022; 58:584-588. [PMID: 35974285 PMCID: PMC9380661 DOI: 10.1007/s11262-022-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
The zoonotic H7N9 avian influenza virus emerged with the H9N2-origin internal gene cassette. Previous studies have reported that genetic reassortments with H9N2 were common in the first five human H7N9 epidemic waves. However, our latest work found that the circulating high pathogenicity H7N9 virus has established a dominant internal gene cassette and has decreased the frequency of reassortment with H9N2 since 2018. This dominant cassette of H7N9 was distinct from the cocirculating H9N2, although they shared a common ancestor. As a result, we suppose that this dominant cassette may benefit the viral population fitness and promote its continuous circulation in chickens.
Collapse
|
9
|
He D, Wang X, Wu H, Wang X, Yan Y, Li Y, Zhan T, Hao X, Hu J, Hu S, Liu X, Ding C, Su S, Gu M, Liu X. Genome-Wide Reassortment Analysis of Influenza A H7N9 Viruses Circulating in China during 2013-2019. Viruses 2022; 14:v14061256. [PMID: 35746727 PMCID: PMC9230085 DOI: 10.3390/v14061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Reassortment with the H9N2 virus gave rise to the zoonotic H7N9 avian influenza virus (AIV), which caused more than five outbreak waves in humans, with high mortality. The frequent exchange of genomic segments between H7N9 and H9N2 has been well-documented. However, the reassortment patterns have not been described and are not yet fully understood. Here, we used phylogenetic analyses to investigate the patterns of intersubtype and intrasubtype/intralineage reassortment across the eight viral segments. The H7N9 virus and its progeny frequently exchanged internal genes with the H9N2 virus but rarely with the other AIV subtypes. Before beginning the intrasubtype/intralineage reassortment analyses, five Yangtze River Delta (YRD A-E) and two Pearl River Delta (PRD A-B) clusters were divided according to the HA gene phylogeny. The seven reset segment genes were also nomenclatured consistently. As revealed by the tanglegram results, high intralineage reassortment rates were determined in waves 2–3 and 5. Additionally, the clusters of PB2 c05 and M c02 were the most dominant in wave 5, which could have contributed to the onset of the largest H7N9 outbreak in 2016–2017. Meanwhile, a portion of the YRD-C cluster (HP H7N9) inherited their PB2, PA, and M segments from the co-circulating YRD-E (LP H7N9) cluster during wave 5. Untanglegram results revealed that the reassortment rate between HA and NA was lower than HA with any of the other six segments. A multidimensional scaling plot revealed a robust genetic linkage between the PB2 and PA genes, indicating that they may share a co-evolutionary history. Furthermore, we observed relatively more robust positive selection pressure on HA, NA, M2, and NS1 proteins. Our findings demonstrate that frequent reassortment, particular reassorted patterns, and adaptive mutations shaped the H7N9 viral genetic diversity and evolution. Increased surveillance is required immediately to better understand the current state of the HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Yang Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| |
Collapse
|
10
|
Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China. Viruses 2022; 14:v14040726. [DOI: 10.3390/v14040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
The H9N2 subtype avian influenza viruses (AIVs) have been circulating in China for more than 20 years, attracting more and more attention due to the potential threat of them. At present, vaccination is a common prevention and control strategy in poultry farms, but as virus antigenicity evolves, the immune protection efficiency of vaccines has constantly been challenged. In this study, we downloaded the hemagglutinin (HA) protein sequences of the H9N2 subtype AIVs from 1994 to 2019 in China—with a total of 5138 sequences. The above sequences were analyzed in terms of time and space, and it was found that h9.4.2.5 was the most popular in various regions of China. Furthermore, the prevalence of H9N2 subtype AIVs in China around 2006 was different. The domestic epidemic branch was relatively diversified from 1994 to 2006. After 2006, the epidemic branch each year was h9.4.2.5. We compared the sequences around 2006 as a whole and screened out 15 different amino acid positions. Based on the HA protein of A/chicken/Guangxi/55/2005 (GX55), the abovementioned amino acid mutations were completed. According to the 12-plasmid reverse genetic system, the rescue of the mutant virus was completed using A/PuertoRico/8/1934 (H1N1) (PR8) as the backbone. The cross hemagglutination inhibition test showed that these mutant sites could transform the parental strain from the old to the new antigenic region. Animal experiments indicated that the mutant virus provided significant protection against the virus from the new antigenic region. This study revealed the antigenic evolution of H9N2 subtype AIVs in China. At the same time, it provided an experimental basis for the development of new vaccines.
Collapse
|
11
|
He D, Gu M, Wang X, Wang X, Li G, Yan Y, Gu J, Zhan T, Wu H, Hao X, Wang G, Hu J, Hu S, Liu X, Su S, Ding C, Liu X. Spatiotemporal Associations and Molecular Evolution of Highly Pathogenic Avian Influenza A H7N9 Virus in China from 2017 to 2021. Viruses 2021; 13:2524. [PMID: 34960793 PMCID: PMC8705967 DOI: 10.3390/v13122524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chan Ding
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Su W, Sia SF, Choy KT, Ji Y, Chen D, Lau EHY, Fu G, Huang Y, Liu J, Peiris M, Pu J, Yen HL. Limited onward transmission potential of reassortment genotypes from chickens co-infected with H9N2 and H7N9 avian influenza viruses. Emerg Microbes Infect 2021; 10:2030-2041. [PMID: 34666614 PMCID: PMC8567909 DOI: 10.1080/22221751.2021.1996209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The segmented genome of influenza A virus has conferred significant evolutionary advantages to this virus through genetic reassortment, a mechanism that facilitates the rapid expansion of viral genetic diversity upon influenza co-infections. Therefore, co-infection of genetically diverse avian influenza viruses in poultry may pose a significant public health risk in generating novel reassortants with increased zoonotic potential. This study investigated the reassortment patterns of a Pearl River Delta-lineage avian influenza A(H7N9) virus and four genetically divergent avian influenza A(H9N2) viruses upon co-infection in embryonated chicken eggs and chickens. To characterize “within-host” and “between-host” genetic diversity, we further monitored the viral genotypes that were subsequently transmitted to contact chickens in serial transmission experiments. We observed that co-infection with A(H7N9) and A(H9N2) viruses may lead to the emergence of novel reassortant viruses in ovo and in chickens, albeit with different reassortment patterns. Novel reassortants detected in donor chickens co-infected with different combinations of the same A(H7N9) virus and different A(H9N2) viruses showed distinct onward transmission potential to contact chickens. Sequential transmission of novel reassortant viruses was only observed in one out of four co-infection combinations. Our results demonstrated different patterns by which influenza viruses may acquire genetic diversity through co-infection in ovo, in vivo, and under sequential transmission conditions.
Collapse
Affiliation(s)
- Wen Su
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Sin Fun Sia
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Yue Ji
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Dongdong Chen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Eric Ho Yin Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, People's Republic of China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, People's Republic of China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
13
|
Molecular epidemiologic characteristics of hemagglutinin from five waves of avian influenza A (H7N9) virus infection, from 2013 to 2017, in Zhejiang Province, China. Arch Virol 2021; 166:3323-3332. [PMID: 34595553 PMCID: PMC8616886 DOI: 10.1007/s00705-021-05233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
There have been five waves of influenza A (H7N9) epidemics in Zhejiang Province between 2013 and 2017. Although the epidemiological characteristics of the five waves have been reported, the molecular genetics aspects, including the phylogeny, evolution, and mutation of hemagglutinin (HA), have not been systematically investigated. A total of 154 H7N9 samples from Zhejiang Province were collected between 2013 and 2017 and sequenced using an Ion Torrent Personal Genome Machine. The starting dates of the waves were 16 March 2013, 1 July 2013, 1 July 2014, 1 July 2015, and 1 July 2016. Single-nucleotide polymorphisms (SNPs) and amino acid mutations were counted after the HA sequences were aligned. The evolution of H7N9 matched the temporal order of the five waves, among which wave 3 played an important role. The 55 SNPs and 14 amino acid mutations with high frequency identified among the five waves revealed the dynamic occurrence of mutation in the process of viral dissemination. Wave 3 contributed greatly to the subsequent epidemic of waves 4 and 5 of H7N9. Compared with wave 1, wave 5 was characterized by more mutations, including A143V and R148K, two mutations that have been reported to weaken the immune response. In addition, some amino acid mutations were observed in wave 5 that led to more lineages. It is necessary to strengthen the surveillance of subsequent H7N9 influenza outbreaks.
Collapse
|
14
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
15
|
Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J Virol 2021; 95:JVI.01578-20. [PMID: 33731452 PMCID: PMC8139711 DOI: 10.1128/jvi.01578-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
H9N2 Avian influenza virus (AIV) is regarded as a principal donor of viral genes through reassortment to co-circulating influenza viruses that can result in zoonotic reassortants. Whether H9N2 virus can maintain sustained evolutionary impact on such reassortants is unclear. Since 2013, avian H7N9 virus had caused five sequential human epidemics in China; the fifth wave in 2016-2017 was by far the largest but the mechanistic explanation behind the scale of infection is not clear. Here, we found that, just prior to the fifth H7N9 virus epidemic, H9N2 viruses had phylogenetically mutated into new sub-clades, changed antigenicity and increased its prevalence in chickens vaccinated with existing H9N2 vaccines. In turn, the new H9N2 virus sub-clades of PB2 and PA genes, housing mammalian adaptive mutations, were reassorted into co-circulating H7N9 virus to create a novel dominant H7N9 virus genotype that was responsible for the fifth H7N9 virus epidemic. H9N2-derived PB2 and PA genes in H7N9 virus conferred enhanced polymerase activity in human cells at 33°C and 37°C, and increased viral replication in the upper and lower respiratory tracts of infected mice which could account for the sharp increase in human cases of H7N9 virus infection in the 2016-2017 epidemic. The role of H9N2 virus in the continual mutation of H7N9 virus highlights the public health significance of H9N2 virus in the generation of variant reassortants of increasing zoonotic potential.IMPORTANCEAvian H9N2 influenza virus, although primarily restricted to chicken populations, is a major threat to human public health by acting as a donor of variant viral genes through reassortment to co-circulating influenza viruses. We established that the high prevalence of evolving H9N2 virus in vaccinated flocks played a key role, as donor of new sub-clade PB2 and PA genes in the generation of a dominant H7N9 virus genotype (G72) with enhanced infectivity in humans during the 2016-2017 N7N9 virus epidemic. Our findings emphasize that the ongoing evolution of prevalent H9N2 virus in chickens is an important source, via reassortment, of mammalian adaptive genes for other influenza virus subtypes. Thus, close monitoring of prevalence and variants of H9N2 virus in chicken flocks is necessary in the detection of zoonotic mutations.
Collapse
|
16
|
Avian Influenza H7N9 Virus Adaptation to Human Hosts. Viruses 2021; 13:v13050871. [PMID: 34068495 PMCID: PMC8150935 DOI: 10.3390/v13050871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
Avian influenza virus A (H7N9), after circulating in avian hosts for decades, was identified as a human pathogen in 2013. Herein, amino acid substitutions possibly essential for human adaptation were identified by comparing the 4706 aligned overlapping nonamer position sequences (1–9, 2–10, etc.) of the reported 2014 and 2017 avian and human H7N9 datasets. The initial set of virus sequences (as of year 2014) exhibited a total of 109 avian-to-human (A2H) signature amino acid substitutions. Each represented the most prevalent substitution at a given avian virus nonamer position that was selectively adapted as the corresponding index (most prevalent sequence) of the human viruses. The majority of these avian substitutions were long-standing in the evolution of H7N9, and only 17 were first detected in 2013 as possibly essential for the initial human adaptation. Strikingly, continued evolution of the avian H7N9 virus has resulted in avian and human protein sequences that are almost identical. This rapid and continued adaptation of the avian H7N9 virus to the human host, with near identity of the avian and human viruses, is associated with increased human infection and a predicted greater risk of human-to-human transmission.
Collapse
|
17
|
Huang D, Dong W, Wang Q. Spatial and temporal analysis of human infection with the avian influenza A (H7N9) virus in China and research on a risk assessment agent-based model. Int J Infect Dis 2021; 106:386-394. [PMID: 33857607 DOI: 10.1016/j.ijid.2021.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES From 2013 to 2017, the avian influenza A (H7N9) virus frequently infected people in China, which seriously affected the public health of society. This study aimed to analyze the spatial characteristics of human infection with the H7N9 virus in China and assess the risk areas of the epidemic. METHODS Using kernel density estimation, standard deviation ellipse analysis, spatial and temporal scanning cluster analysis, and Pearson correlation analysis, the spatial characteristics and possible risk factors of the epidemic were studied. Meteorological factors, time (month), and environmental factors were combined to establish an epidemic risk assessment proxy model to assess the risk range of an epidemic. RESULTS The epidemic situation was significantly correlated with atmospheric pressure, temperature, and daily precipitation (P < 0.05), and there were six temporal and spatial clusters. The fitting accuracy of the epidemic risk assessment agent-based model for lower-risk, low-risk, medium-risk, and high-risk was 0.795, 0.672, 0.853, 0.825, respectively. CONCLUSIONS This H7N9 epidemic was found to have more outbreaks in winter and spring. It gradually spread to the inland areas of China. This model reflects the risk areas of human infection with the H7N9 virus.
Collapse
Affiliation(s)
- Dongqing Huang
- School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China; GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, 650500, China
| | - Wen Dong
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, 650500, China; Faculty Of Geography, Yunnan Normal University, Kunming, 650500, China.
| | - Qian Wang
- School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China; GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
18
|
Wang D, Zhu W, Yang L, Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038620. [PMID: 31964651 DOI: 10.1101/cshperspect.a038620] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.
Collapse
Affiliation(s)
- Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China
| |
Collapse
|
19
|
Winokur P, El Sahly HM, Mulligan MJ, Frey SE, Rupp R, Anderson EJ, Edwards KM, Bernstein DI, Schmader K, Jackson LA, Chen WH, Hill H, Bellamy A. Immunogenicity and safety of different dose schedules and antigen doses of an MF59-adjuvanted H7N9 vaccine in healthy adults aged 65 years and older. Vaccine 2021; 39:1339-1348. [PMID: 33485646 PMCID: PMC8504682 DOI: 10.1016/j.vaccine.2020.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The number of human influenza A (H7N9) infections has escalated since 2013 with high resultant mortality. We conducted a phase II, randomized, partially-blinded trial to evaluate the safety and immunogenicity of an MF59-adjuvanted inactivated, split virion, H7N9 influenza vaccine (H7N9 IIV) administered at various dose levels and schedules in older adults. METHODS 479 adults ≥ 65 years of age in stable health were randomized to one of six groups to receive either 3.75, 7.5 or 15 µg of influenza A/Shanghai/02/2013 (H7N9) IIV adjuvanted with MF59 given as a 3-dose series either on days 1, 28 and 168 or on days 1, 57 and 168. Immunogenicity was assessed using both hemagglutination inhibition (HAI) and microneutralization (MN) assays prior to and 28 days following each dose. Safety was assessed through 1 year following the last dose. RESULTS Subjects in all groups had only modest immune responses, with the HAI GMT < 20 after the second vaccine dose and <29 after the third vaccine dose. HAI titers ≥ 40 were seen in <37% of subjects after the second dose and <49% after the third dose. There were no significant differences seen between the two dose schedules. MN titers followed similar patterns, although the titers were approximately two-fold higher than the HAI titers. Logistic regression modeling demonstrated no statistically significant associations between the immune responses and age, sex or body mass index whereas recent prior receipt of seasonal influenza vaccine significantly reduced the HAI response [OR 0.13 (95% CI 0.05, 0.33); p < 0.001]. Overall, the vaccine was well tolerated. Two mild potentially immune mediated adverse events occurred, lichen planus and guttate psoriasis. CONCLUSIONS MF59-adjuvanted H7N9 IIV was only modestly immunogenic in the older adult population following three doses. There were no significant differences in antibody responses noted among the various antigen doses or the two dose schedules.
Collapse
Affiliation(s)
- Patricia Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States.
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Sharon E Frey
- Department of Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Richard Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, TN, United States
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Wilbur H Chen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
20
|
Li B, Xiang G, He J, Li H, Xu C, Yu A, Zhao Z, Wang X, Zhang L, Zhang H, Zhang H, Xie M, Wang P, Yu D. H7N9 influenza virus surveillance in Gansu, China in 2017. Virus Res 2021; 296:198335. [PMID: 33577861 DOI: 10.1016/j.virusres.2021.198335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
Avian H7N9 influenza virus, which emerged in 2013 China, had caused the fifth wave of peaks in 2016-2017. Gansu Province locate in western China far away from the epicenter of the virus, also detected cases in this wave. During the monitoring, five human cases with H7N9 virus infection, three cases in Jiuquan and two cases in Zhangye, were reported and investigated. A total of 88 environmental samples collected from March to June, in poultry farms and live poultry markets were H7N9 positive by real time RT-PCR assay. The two human viruses were identified as LPAI viruses, and phylogenetic analysis showed that the viruses might be introduced into Gansu by two distinct trade routes. Avian influenza H7N9virus posed a pandemic potential to threaten human health, and monitoring among birds and the environment should be strengthened.
Collapse
Affiliation(s)
- Baodi Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Guofeng Xiang
- Jiuquan Center for Disease Control and Prevention, Jiuquan, Gansu, 735000, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, 230601, China
| | - Hongyu Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Congshan Xu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Aihong Yu
- Zhangye Center for Disease Control and Prevention, Zhangye, Gansu, 734000, China
| | - Zhe Zhao
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Xueying Wang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Lihua Zhang
- Jiuquan Center for Disease Control and Prevention, Jiuquan, Gansu, 735000, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Huimin Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Mingjun Xie
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Peng Wang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China
| | - Deshan Yu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
21
|
Adami EA, Chavez Rico SL, Akamatsu MA, Miyaki C, Raw I, de Oliveira D, Comone P, Oliveira RDN, Sarno de Oliveira ML, Estima Abreu PA, Takano CY, Meros M, Soares-Schanoski A, Lee Ho P. H7N9 pandemic preparedness: A large-scale production of a split inactivated vaccine. Biochem Biophys Res Commun 2021; 545:145-149. [PMID: 33550095 DOI: 10.1016/j.bbrc.2021.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
Abstract
In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 μg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.
Collapse
MESH Headings
- Animals
- Antigens, Viral/biosynthesis
- Antigens, Viral/immunology
- Drug Compounding/methods
- Drug Compounding/statistics & numerical data
- Drug Industry/standards
- Female
- Humans
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Pandemics/prevention & control
- Vaccines, Inactivated/biosynthesis
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/isolation & purification
Collapse
Affiliation(s)
| | | | | | | | - Isaías Raw
- Biotechnology Center, Butantan Institute, 05503-900, SP, Brazil
| | | | | | | | | | | | | | | | - Alessandra Soares-Schanoski
- Bacteriology Laboratory, Butantan Institute, Brazil; Icahn School of Medicine at Mount Sinai, New York, USA.
| | | |
Collapse
|
22
|
Wang W, Chen X, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infection with avian influenza A(H7N9) virus: a systematic review and meta-analysis. J Infect Dis 2020; 226:70-82. [PMID: 33119755 PMCID: PMC9373149 DOI: 10.1093/infdis/jiaa679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022] Open
Abstract
Background The extent of human infections with avian influenza A(H7N9) virus, including mild and asymptomatic infections, is uncertain. Methods We performed a systematic review and meta-analysis of serosurveys for avian influenza A(H7N9) virus infections in humans published during 2013–2020. Three seropositive definitions were assessed to estimate pooled seroprevalence, seroconversion rate, and seroincidence by types of exposures. We applied a scoring system to assess the quality of included studies. Results Of 31 included studies, pooled seroprevalence of A(H7N9) virus antibodies from all participants was 0.02%, with poultry workers, close contacts, and general populations having seroprevalence of 0.1%, 0.2%, and 0.02%, respectively, based on the World Health Organization (WHO)—recommended definition. Although most infections were asymptomatic, evidence of infection was highest in poultry workers (5% seroconversion, 19.1% seroincidence per 100 person-years). Use of different virus clades did not significantly affect seroprevalence estimates. Most serological studies were of low to moderate quality and did not follow standardized seroepidemiological protocols or WHO-recommended laboratory methods. Conclusions Human infections with avian influenza A(H7N9) virus have been uncommon, especially for general populations. Workers with occupational exposures to poultry and close contacts of A(H7N9) human cases had low risks of infection.
Collapse
Affiliation(s)
- Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xinhua Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
23
|
Shan X, Wang Y, Song R, Wei W, Liao H, Huang H, Xu C, Chen L, Li S. Spatial and temporal clusters of avian influenza a (H7N9) virus in humans across five epidemics in mainland China: an epidemiological study of laboratory-confirmed cases. BMC Infect Dis 2020; 20:630. [PMID: 32842978 PMCID: PMC7449057 DOI: 10.1186/s12879-020-05345-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background Avian influenza A (H7N9) virus was first reported in mainland China in 2013, and alarming in 2016–17 due to the surge across a wide geographic area. Our study aimed to identify and explore the spatial and temporal variation across five epidemics to reinforce the epidemic prevention and control. Methods We collected spatial and temporal information about all laboratory-confirmed human cases of A (H7N9) virus infection reported in mainland China covering 2013–17 from the open source. The autocorrelation analysis and intensity of cases were used to analyse the spatial cluster while circular distribution method was used to analyse the temporal cluster. Results Across the five epidemics, a total of 1553 laboratory-confirmed human cases with A (H7N9) virus were reported in mainland China. The global Moran’s I index values of five epidemic were 0.610, 0.132, 0.308, 0.306, 0.336 respectively, among which the differences were statistically significant. The highest intensity was present in the Yangtze River Delta region and the Pearl River Delta region, and the range enlarged from the east of China to inner provinces and even the west of China across the five epidemics. The temporal clusters of the five epidemics were statistically significant, and the peak period was from the end of January to April with the first and the fifth epidemic later than the mean peak period. Conclusions Spatial and temporal clusters of avian influenza A (H7N9) virus in humans are obvious, moreover the regions existing clusters may enlarge across the five epidemics. Yangtze River Delta region and the Pearl River Delta region have the spatial cluster and the peak period is from January to April. The government should facilitate the tangible improvement for the epidemic preparedness according to the characteristics of spatial and temporal clusters of patients with avian influenza A (H7N9) virus.
Collapse
Affiliation(s)
- Xuzheng Shan
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China.,Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongqin Wang
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China
| | - Ruihong Song
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China
| | - Wen Wei
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxiu Liao
- Transaction Management and Information Department, Panzhihua City Center for Disease Control and Prevention, Panzhihua, Sichuan, China
| | - Huang Huang
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China
| | - Chunqiong Xu
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China
| | - Lvlin Chen
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China
| | - Shiyun Li
- Prevention and Health Section, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Tang J, Zhang SX, Zhang J, Li XY, Zhou JF, Zou SM, Bo H, Xin L, Yang L, Liu J, Huang WJ, Dong J, Wang DY. Profile and generation of reduced neuraminidase inhibitor susceptibility in highly pathogenic avian influenza H7N9 virus from human cases in Mainland of China, 2016-2019. Virology 2020; 549:77-84. [PMID: 32853849 DOI: 10.1016/j.virol.2020.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
Abstract
Human infections with highly pathogenic avian influenza (HPAI) H7N9 virus were detected in late 2016. We examined the drug resistance profile of 30 HPAI H7N9 isolates from Mainland of China (2016-2019). Altogether, 23% (7/30) carried neuraminidase inhibitors (NAIs) - resistance mutations, and 13% (4/30) displayed reduced susceptibility to NAIs in neuraminidase (NA) inhibition test. An HPAI H7N9 reassortment virus we prepared was passaged with NAIs for 10 passages. Passage with zanamivir induced an E119G substitution in NA, whereas passage with oseltamivir induced R292K and E119V substitutions that simulated that seen in oseltamivir -treated HPAI H7N9 cases, indicating that the high frequency of resistant strains in the HPAI H7N9 isolates is related to NAIs use. In presence of NAIs, R238I, A146E, G151E and G234T substitutions were found in HA1 region of HA. No amino acid mutations were found in the internal genes of the recombinant virus.
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Shu-Xia Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China.
| |
Collapse
|
25
|
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038489. [PMID: 31871237 DOI: 10.1101/cshperspect.a038489] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
26
|
Chen TH, Chen CC, Huang MH, Huang CH, Jan JT, Wu SC. Use of PELC/CpG Adjuvant for Intranasal Immunization with Recombinant Hemagglutinin to Develop H7N9 Mucosal Vaccine. Vaccines (Basel) 2020; 8:vaccines8020240. [PMID: 32455704 PMCID: PMC7349964 DOI: 10.3390/vaccines8020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Human infections with H7N9 avian influenza A virus can result in severe diseases with high mortality. Developing an effective vaccine is urgently needed to prevent its pandemic potential. Vaccine delivery routes via mucosal surfaces are known to elicit mucosal immune responses such as secretory IgA antibodies in mucosal fluids, thus providing first-line protection at infection sites. PEG-b-PLACL (PELC) is a squalene-based oil-in-water emulsion adjuvant system that can enhance antigen penetration and uptake in nasal mucosal layers with enhanced mucin interactions. In this study, intranasal immunizations with recombinant H7 (rH7) proteins with a PELC/CpG adjuvant, as compared to the use of poly (I:C) or bacterial flagellin adjuvant, elicited higher titers of H7-specific IgG, IgA, hemagglutination inhibition, and neutralizing antibodies in sera, and increased numbers of H7-specific IgG- and IgA-antibody secreting cells in the spleen. Both PELC/CpG and poly (I:C) adjuvants at a dose as low as 5 μg HA provided an 80% survival rate against live virus challenges, but a lower degree of PELC/CpG-induced Th17 responses was observed. Therefore, the mucosal delivery of rH7 proteins formulated in a PELC/CpG adjuvant can be used for H7N9 mucosal vaccine development.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30071, Taiwan;
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-5742906; Fax: +886-3-5715934
| |
Collapse
|
27
|
Quan C, Wang Q, Zhang J, Zhao M, Dai Q, Huang T, Zhang Z, Mao S, Nie Y, Liu J, Xie Y, Zhang B, Bi Y, Shi W, Liu P, Wang D, Feng L, Yu H, Liu WJ, Gao GF. Avian Influenza A Viruses among Occupationally Exposed Populations, China, 2014-2016. Emerg Infect Dis 2020; 25:2215-2225. [PMID: 31742536 PMCID: PMC6874249 DOI: 10.3201/eid2512.190261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To determine the seroprevalence and seroconversion of avian influenza virus (AIV) antibodies in poultry workers, we conducted a seroepidemiologic study in 7 areas of China during December 2014–April 2016. We used viral isolation and reverse transcription PCR to detect AIVs in specimens from live poultry markets. We analyzed 2,124 serum samples obtained from 1,407 poultry workers by using hemagglutination inhibition and microneutralization assays. We noted seroprevalence of AIV antibodies for subtypes H9N2, H7N9, H6N1, H5N1-SC29, H5N6, H5N1-SH199, and H6N6. In serum from participants with longitudinal samples, we noted seroconversion, with >4-fold rise in titers, for H9N2, H7N9, H6N1, H5N1-SC29, H6N6, H5N6, and H5N1-SH199 subtypes. We found no evidence of H10N8 subtype. The distribution of AIV antibodies provided evidence of asymptomatic infection. We found that AIV antibody prevalence in live poultry markets correlated with increased risk for H7N9 and H9N2 infection among poultry workers.
Collapse
|
28
|
Fadlallah GM, Ma F, Zhang Z, Hao M, Hu J, Li M, Liu H, Liang B, Yao Y, Gong R, Zhang B, Liu D, Chen J. Vaccination with Consensus H7 Elicits Broadly Reactive and Protective Antibodies against Eurasian and North American Lineage H7 Viruses. Vaccines (Basel) 2020; 8:E143. [PMID: 32210092 PMCID: PMC7157604 DOI: 10.3390/vaccines8010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
H7 subtype avian influenza viruses have caused outbreaks in poultry, and even human infection, for decades in both Eurasia and North America. Although effective vaccines offer the best protection against avian influenza viruses, antigenically distinct Eurasian and North American lineage subtype H7 viruses require the development of cross-protective vaccine candidates. In this study, a methodology called computationally optimized broadly reactive antigen (COBRA) was used to develop four consensus H7 antigens (CH7-22, CH7-24, CH7-26, and CH7-28). In vitro experiments confirmed the binding of monoclonal antibodies to the head and stem domains of cell surface-expressed consensus HAs, indicating display of their antigenicity. Immunization with DNA vaccines encoding the four antigens was evaluated in a mouse model. Broadly reactive antibodies against H7 viruses from Eurasian and North American lineages were elicited and detected by binding, inhibition, and neutralizing analyses. Further infection with Eurasian H7N9 and North American H7N3 virus strains confirmed that CH7-22 and CH7-24 conferred the most effective protection against hetero-lethal challenge. Our data showed that the consensus H7 vaccines elicit a broadly reactive, protective response against Eurasian and North American lineage H7 viruses, which are suitable for development against other zoonotic influenza viruses.
Collapse
Affiliation(s)
- Gendeal M. Fadlallah
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.M.F.); (F.M.)
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.M.F.); (F.M.)
| | - Zherui Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
| | - Mengchan Hao
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biling Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yanfeng Yao
- National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
29
|
Shi L, Hu Z, Hu J, Liu D, He L, Liu J, Gu H, Gan J, Wang X, Liu X. Single Immunization with Newcastle Disease Virus-Vectored H7N9 Vaccine Confers a Complete Protection Against Challenge with Highly Pathogenic Avian Influenza H7N9 Virus. Avian Dis 2020; 63:61-67. [PMID: 31251520 DOI: 10.1637/11965-090118-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
In the fifth wave of the H7N9 avian influenza epidemic, highly pathogenic avian influenza (HPAI) A (H7N9) viruses have emerged and pose a great challenge to public health and the poultry industry. In addition, there are apparent genetic and antigenic variations between the classical H7N9 avian influenza virus and the newly-emerged H7N9 virus. Therefore, an antigenic-match vaccine is required for the prevention and control of H7N9 avian influenza in poultry in China. In this study, a recombinant Newcastle disease virus (NDV)-vectored vaccine expressing the HA derived from a prevailing HPAI H7N9 virus (GD15) was generated using reverse genetics. The recombinant virus (rAI4HA) showed virus yield and growth capacity in chicken embryos comparable to the parental virus (rAI4). Expression of the HA protein was detected in chicken embryo fibroblasts inoculated with rAI4HA. A chicken immunization study demonstrated that both rAI4HA and rAI4 induced similar anti-NDV hemagglutination inhibition (HI) antibody titers at weeks 2, 3, and 4 after a single immunization. However, rAI4HA-immunized chickens had a low seroconversion rate (20%) and negative HI titers against H7N9. Additionally, rAI4HA elicited high levels of H7N9-specifc IgY antibody as measured by ELISA. More importantly, the recombinant vaccine provided a complete protection against a lethal challenge with HPAI H7N9 virus and significantly inhibited virus shedding after a single immunization. Our results suggest that the recombinant NDV-vectored H7N9 vaccine expressing the antigenic-match HA can confer a complete protection against HPAI H7N9 challenge after a single immunization.
Collapse
Affiliation(s)
- Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Lihong He
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiao Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Han Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Junji Gan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China, .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China, .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China, .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China,
| |
Collapse
|
30
|
Chen J, Zhu H, Horby PW, Wang Q, Zhou J, Jiang H, Liu L, Zhang T, Zhang Y, Chen X, Deng X, Nikolay B, Wang W, Cauchemez S, Guan Y, Uyeki TM, Yu H. Specificity, kinetics and longevity of antibody responses to avian influenza A(H7N9) virus infection in humans. J Infect 2020; 80:310-319. [PMID: 31954742 PMCID: PMC7112568 DOI: 10.1016/j.jinf.2019.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The long-term dynamics of antibody responses in patients with influenza A(H7N9) virus infection are not well understood. METHODS We conducted a longitudinal serological follow-up study in patients who were hospitalized with A(H7N9) virus infection, during 2013-2018. A(H7N9) virus-specific antibody responses were assessed by hemagglutination inhibition (HAI) and neutralization (NT) assays. A random intercept model was used to fit a curve to HAI antibody responses over time. HAI antibody responses were compared by clinical severity. RESULTS Of 67 patients with A(H7N9) virus infection, HAI antibody titers reached 40 on average 11 days after illness onset and peaked at a titer of 290 after three months, and average titers of ≥80 and ≥40 were present until 11 months and 22 months respectively. HAI antibody responses were significantly higher in patients who experienced severe disease, including respiratory failure and acute respiratory distress syndrome, compared with patients who experienced less severe illness. CONCLUSIONS Patients with A(H7N9) virus infection who survived severe disease mounted higher antibody responses that persisted for longer periods compared with those that experienced moderate disease. Studies of convalescent plasma treatment for A(H7N9) patients should consider collection of donor plasma from survivors of severe disease between 1 and 11 months after illness onset.
Collapse
Affiliation(s)
- Junbo Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Huachen Zhu
- Joint Institute of Virology (STU-HKU), Shantou University, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Qianli Wang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Jiaxin Zhou
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Liwei Liu
- Joint Institute of Virology (STU-HKU), Shantou University, Shantou 515041, China
| | - Tianchen Zhang
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330000, China
| | - Yongli Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Xiaowei Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Birgit Nikolay
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| | - Wei Wang
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| | - Yi Guan
- Joint Institute of Virology (STU-HKU), Shantou University, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Building 8, 130 Dong'an Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
31
|
Li X, Guo L, Liu C, Cheng Y, Kong M, Yang L, Zhuang Z, Liu J, Zou M, Dong X, Su X, Gu Q. Human infection with a novel reassortant Eurasian-avian lineage swine H1N1 virus in northern China. Emerg Microbes Infect 2020; 8:1535-1545. [PMID: 31661383 PMCID: PMC6830285 DOI: 10.1080/22221751.2019.1679611] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza A virus infections occur in different species, causing mild to severe respiratory symptoms that lead to a heavy disease burden. Eurasian avian-like swine influenza A(H1N1) viruses (EAS-H1N1) are predominant in pigs and occasionally infect humans. An influenza A(H1N1) virus was isolated from a boy who was suffering from fever and headache and designated as A/Tianjin-baodi/1606/2018(H1N1). Full-genome sequencing and phylogenetic analysis revealed that A/Tianjin-baodi/1606/2018(H1N1) is a novel reassortant EAS-H1N1 containing gene segments from EAS-H1N1 (HA and NA), classical swine H1N1(NS) and A(H1N1)pdm09(PB2, PB2, PA, NP and M) viruses. The isolation and analysis of A/Tianjin-baodi/1606/2018(H1) provide further evidence that EAS-H1N1 poses a threat to human health and greater attention should be paid to surveillance of influenza virus infection in pigs and humans.
Collapse
Affiliation(s)
- Xiaoyan Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Liru Guo
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Caixia Liu
- Jizhou District Center for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Yanhui Cheng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Kong
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Lei Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhichao Zhuang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Jia Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ming Zou
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Xiaochun Dong
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Xu Su
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Qing Gu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| |
Collapse
|
32
|
Chan M, Leung A, Hisanaga T, Pickering B, Griffin BD, Vendramelli R, Tailor N, Wong G, Bi Y, Babiuk S, Berhane Y, Kobasa D. H7N9 Influenza Virus Containing a Polybasic HA Cleavage Site Requires Minimal Host Adaptation to Obtain a Highly Pathogenic Disease Phenotype in Mice. Viruses 2020; 12:v12010065. [PMID: 31948040 PMCID: PMC7020020 DOI: 10.3390/v12010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Low pathogenic avian influenza (LPAI) H7N9 viruses have recently evolved to gain a polybasic cleavage site in the hemagglutinin (HA) protein, resulting in variants with increased lethality in poultry that meet the criteria for highly pathogenic avian influenza (HPAI) viruses. Both LPAI and HPAI variants can cause severe disease in humans (case fatality rate of ~40%). Here, we investigated the virulence of HPAI H7N9 viruses containing a polybasic HA cleavage site (H7N9-PBC) in mice. Inoculation of mice with H7N9-PBC did not result in observable disease; however, mice inoculated with a mouse-adapted version of this virus, generated by a single passage in mice, caused uniformly lethal disease. In addition to the PBC site, we identified three other mutations that are important for host-adaptation and virulence in mice: HA (A452T), PA (D347G), and PB2 (M483K). Using reverse genetics, we confirmed that the HA mutation was the most critical for increased virulence in mice. Our study identifies additional disease determinants in a mammalian model for HPAI H7N9 virus. Furthermore, the ease displayed by the virus to adapt to a new host highlights the potential for H7N9-PBC viruses to rapidly acquire mutations that may enhance their risk to humans or other animal species.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Brad Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320 Yueyang Road, Xuhui District, Shanghai 200031, China;
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, 1050 avenue de la Médecine, QC G1V 0A6, Canada
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China;
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence:
| |
Collapse
|
33
|
Yu H, Zhang K, Ye X, Wang W, Wu W, Wang X, Guan Y, He Z, Wang Y, Jiao P. Comparative Pathogenicity and Transmissibility of the H7N9 Highly Pathogenic Avian Influenza Virus and the H7N9 Low Pathogenic Avian Influenza Virus in Chickens. Viruses 2019; 11:v11111047. [PMID: 31717632 PMCID: PMC6893717 DOI: 10.3390/v11111047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
There were five outbreaks of H7N9 influenza virus in humans in China since it emerged in 2013, infecting >1000 people. The H7N9 low pathogenic influenza virus was inserted into four amino acids in the HA protein cleavage site to mutate into the H7N9 highly pathogenic virus. This emerging virus caused 15 outbreaks in chickens from the end of 2016 to date. Two H7N9 avian influenza virus (AIV) strains, A/chicken/Guangdong/A46/2013 (LPAIV) and A/chicken/Guangdong/Q29/2017 (HPAIV), were selected to compare the pathogenicity and transmissibility between H7N9 LPAIVs and HPAIVs in chickens. We inoculated 3- to 4-week-old specific-pathogen-free (SPF) chickens with 6 log10EID50/0.1 mL viruses via the ocular-nasal route and co-housed four chickens in each group. The inoculated chicken mortality rate in the A46 and Q29 groups was 1/5 and 5/5, respectively. Q29 virus replication was more efficient compared to the A46 virus in inoculated chickens. Infected chickens initiated viral shedding to naïve contact chickens through respiratory and digestive routes. Both viruses transmitted between chickens by naïve contact, but the Q29 virus had a higher pathogenicity in contact chickens than the A46 virus. Compared with early H7N9 LPAIVs, the pathogenicity and transmissibility of the emerging H7N9 HPAIV was stronger in chickens, indicating that H7N9 influenza virus may continue to threaten human and poultry health.
Collapse
Affiliation(s)
- Hao Yu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Kunpeng Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Xumeng Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Wenqing Wang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Wenbo Wu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Xia Wang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Yun Guan
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
| | - Yong Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, China
- Correspondence: (Y.W.); (P.J.); Tel.: +86-020-8528-3309 (P.J.)
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China (W.W.); (Z.H.)
- Correspondence: (Y.W.); (P.J.); Tel.: +86-020-8528-3309 (P.J.)
| |
Collapse
|
34
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
35
|
Buriachenko S, Stegniy B. Development of anexpress-method for influence and genotyping of H1N1 and H7N9 virus avian influenza a strains by PCR-RFLP analysis. SCIENCERISE: BIOLOGICAL SCIENCE 2019. [DOI: 10.15587/2519-8025.2019.179191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Zhu W, Dong J, Zhang Y, Yang L, Li X, Chen T, Zhao X, Wei H, Bo H, Zeng X, Huang W, Li Z, Tang J, Zhou J, Gao R, Xin L, Yang J, Zou S, Chen W, Liu J, Shu Y, Wang D. A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China. Cell Rep 2019; 23:909-917. [PMID: 29669294 DOI: 10.1016/j.celrep.2018.03.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 03/17/2018] [Indexed: 01/11/2023] Open
Abstract
The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses.
Collapse
Affiliation(s)
- Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jing Tang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Wenbing Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China.
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China.
| |
Collapse
|
37
|
Li J, Chen C, Wei J, Huang H, Peng Y, Bi Y, Liu Y, Yang Y. Delayed peak of human infections and ongoing reassortment of H7N9 avian influenza virus in the newly affected western Chinese provinces during Wave Five. Int J Infect Dis 2019; 88:80-87. [PMID: 31499209 DOI: 10.1016/j.ijid.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Eight additional provinces in western China reported human infections for the first time during the fifth wave of human H7N9 infections. The aim of this study was to analyze the epidemiological and virological characteristics of this outbreak. METHODS The epidemiological data of H7N9 cases from the newly affected western Chinese provinces were collected and analyzed. Full-length genome sequences of H7N9 virus were downloaded from the GenBank and GISAID databases, and phylogenetic, genotyping, and genetic analyses were conducted. RESULTS The peak of human infections in the newly affected western Chinese provinces was delayed by 4 months compared to the eastern Chinese provinces, and both low pathogenic (LP) and highly pathogenic (HP) H7N9-infected cases were found. The LP- and HP-H7N9 virus belonged to 10 different genotypes (including four new genotypes), of which G11 and G3 were the dominant genotypes, respectively. Almost all of these viruses originated from eastern and southern China and were most probably imported from neighboring provinces. Genetic characteristics of the circulating viruses were similar to those of the viruses from previously affected provinces during Wave Five. CONCLUSIONS A delayed peak of human infections was observed in the newly affected western Chinese provinces, and reassortment has been ongoing since the introduction of H7N9 viruses. This study highlights the importance of continued surveillance of the circulation and evolution of H7N9 virus in western China.
Collapse
Affiliation(s)
- Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chuming Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxin Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing 101408, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
38
|
Zou X, Guo Q, Zhang W, Chen H, Bai W, Lu B, Zhang W, Fan Y, Liu C, Wang Y, Zhou F, Cao B. Dynamic Variation and Reversion in the Signature Amino Acids of H7N9 Virus During Human Infection. J Infect Dis 2019; 218:586-594. [PMID: 29688498 PMCID: PMC6047446 DOI: 10.1093/infdis/jiy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background Signature amino acids of H7N9 influenza A virus play critical roles in human adaption and pathogenesis, but their dynamic variation is unknown during disease development. Methods We sequentially collected respiratory samples from H7N9 patients at different timepoints and applied next-generation sequencing (NGS) to the whole genome of the H7N9 virus to investigate the variation at signature sites. Results A total of 11 patients were involved, from whom 29 samples were successfully sequenced, including samples from multiple timepoints in 9 patients. Neuraminidase (NA) R292K, basic polymerase 2 (PB2) E627K, and D701N were the 3 most dynamic mutations. The oseltamivir resistance-related NA R292K mutation was present in 9 samples from 5 patients, including 1 sample obtained before antiviral therapy. In all patients with the NA 292K mutation, the oseltamivir-sensitive 292R genotype persisted and was not eliminated by antiviral treatment. The PB2 E627K substitution was present in 18 samples from 8 patients, among which 12 samples demonstrated a mixture of E/K and the 627K frequency exhibited dynamic variation. Dual D701N and E627K mutations emerged but failed to achieve predominance in any of the samples. Conclusions Signature amino acids in PB2 and NA demonstrated high polymorphism and dynamic variation within individual patients during H7N9 virus infection.
Collapse
Affiliation(s)
- Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Qiang Guo
- Department of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu
| | - Wei Zhang
- First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| | - Hui Chen
- Department of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu
| | - Wei Bai
- First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Wang Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Yanyan Fan
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Chao Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Fei Zhou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | | |
Collapse
|
39
|
Ge Y, Chi Y, Min X, Zhao K, Wu B, Wu T, Zhu X, Shi Z, Zhu F, Cui L. The evolution and characterization of influenza A(H7N9) virus under the selective pressure of peramivir. Virology 2019; 536:58-67. [PMID: 31400550 DOI: 10.1016/j.virol.2019.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022]
Abstract
Human infection with H7N9 virus has provoked global public health concern due to the substantial morbidity and mortality. Neuraminidase inhibitors (NAIs) are used as first-line drugs to treat the infection. However, virus quasispecies can evolve rapidly under drug pressure, which may alter various biological characteristics of virus. Using an in vitro evolution platform and next-generation sequencing, we found the presence of peramivir led to changes to the dominant populations of the virus. Two important amino acid substitutions were identified in NA, I222T and H274Y, which caused reduced susceptibilities to oseltamivir or both oseltamivir and peramivir as confirmed by enzyme- and cell-based assays. The NA-H274Y variant showed decreased replicative fitness at the early stage of infection accompanied with impaired NA function. The quasispecies evolution of H7N9 virus and the potential emergence of these two variants should be closely monitored, which may guide the adjustment of antiviral strategies.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Ying Chi
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaoyan Min
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kangchen Zhao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Bin Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Tao Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaojuan Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zhiyang Shi
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Fengcai Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| |
Collapse
|
40
|
Nakayama M, Uchida Y, Shibata A, Kobayashi Y, Mine J, Takemae N, Tsunekuni R, Tanikawa T, Harada R, Osaka H, Saito T. A novel H7N3 reassortant originating from the zoonotic H7N9 highly pathogenic avian influenza viruses that has adapted to ducks. Transbound Emerg Dis 2019; 66:2342-2352. [PMID: 31293102 DOI: 10.1111/tbed.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
The first human case of zoonotic H7N9 avian influenza virus (AIV) infection was reported in March 2013 in China. This virus continues to circulate in poultry in China while mutating to highly pathogenic AIVs (HPAIVs). Through monitoring at airports in Japan, a novel H7N3 reassortant of the zoonotic H7N9 HPAIVs, A/duck/Japan/AQ-HE30-1/2018 (HE30-1), was detected in a poultry meat product illegally brought by a passenger from China into Japan. We analysed the genetic, pathogenic and antigenic characteristics of HE30-1 by comparing it with previous zoonotic H7N9 AIVs and their reassortants. Phylogenetic analysis of the entire HE30-1 genomic sequence revealed that it comprised at least three different sources; the HA (H7), PB1, PA, NP, M and NS segments of HE30-1 were directly derived from H7N9 AIVs, whereas the NA (N3) and PB2 segments of HE30-1 were unrelated to zoonotic H7N9. Experimental infection revealed that HE30-1 was lethal in chickens but not in domestic or mallard ducks. HE30-1 was shed from and replicated in domestic and mallard ducks and chickens, whereas previous zoonotic H7N9 AIVs have not adapted well to ducks. This finding suggests the possibility that HE30-1 may disseminate to remote area by wild bird migration once it establishes in wild bird population. A haemagglutination-inhibition assay indicated that antigenic drift has occurred among the reassortants of zoonotic H7N9 AIVs; HE30-1 showed similar antigenicity to some of those H7N9 AIVs, suggesting it might be prevented by the H5/H7 inactivated vaccine that was introduced in China in 2017. Our study reports the emergence of a new reassortant of zoonotic H7N9 AIVs with novel viral characteristics and warns of the challenge we still face to control the zoonotic H7N9 AIVs and their reassortants.
Collapse
Affiliation(s)
- Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Yoshifumi Kobayashi
- Pathological and Physiochemical Examination Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Rieko Harada
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Hiroyuki Osaka
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
41
|
Recombinant hemagglutinin produced from Chinese Hamster Ovary (CHO) stable cell clones and a PELC/CpG combination adjuvant for H7N9 subunit vaccine development. Vaccine 2019; 37:6933-6941. [PMID: 31383491 PMCID: PMC7115541 DOI: 10.1016/j.vaccine.2019.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/11/2019] [Accepted: 02/15/2019] [Indexed: 01/17/2023]
Abstract
The novel H7N9 avian influenza A virus has caused human infections in China since 2013; some isolates from the fifth wave of infections have emerged as highly pathogenic avian influenza viruses. Recombinant hemagglutinin proteins of H7N9 viruses can be rapidly and efficiently produced with low-level biocontainment facilities. In this study, recombinant H7 antigen was obtained from engineered stable clones of Chinese Hamster Ovary (CHO) cells for subsequent large-scale production. The stable CHO cell clones were also adapted to grow in serum-free suspension cultures. To improve the immunogenicity of the recombinant H7 antigens, we evaluated the use of a novel combination adjuvant of PELC and CpG (PELC/CpG) to augment the anti-H7N9 immune responses in mice. We compared the effects with other adjuvants such as alum, AddaVax (MF59-like), and several Toll-like receptor ligands such as R848, CpG, and poly (I:C). With the PELC/CpG combination adjuvant, CHO cell-expressed rH7 antigens containing terminally sialylated complex type N-glycans were able to induce high titers of neutralizing antibodies in sera and conferred protection following live virus challenges. These data indicate that the CHO cell-expressed recombinant H7 antigens and a PELC/CpG combination adjuvant can be used for H7N9 subunit vaccine development.
Collapse
|
42
|
Xiao Y, Park JK, Williams S, Ramuta M, Cervantes-Medina A, Bristol T, Smith S, Czajkowski L, Han A, Kash JC, Memoli MJ, Taubenberger JK. Deep sequencing of 2009 influenza A/H1N1 virus isolated from volunteer human challenge study participants and natural infections. Virology 2019; 534:96-107. [PMID: 31226666 PMCID: PMC6652224 DOI: 10.1016/j.virol.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Nasal wash samples from 15 human volunteers challenged with GMP manufactured influenza A/California/04/2009(H1N1) and from 5 naturally infected influenza patients of the 2009 pandemic were deep sequenced using viral targeted hybridization enrichment. Ten single nucleotide polymorphism (SNP) positions were found in the challenge virus. Some of the nonsynonymous changes in the inoculant virus were maintained in some challenge participants, but not in others, indicating that virus is evolving away from the Vero cell adapted inoculant, for example SNPs in the neuraminidase. Many SNP sites in challenge patients and naturally infected patients were found, many not identified previously. The SNPs identified, and phylogenetic analyses, showed that intrahost evolution of the virus are different in challenge participants and naturally infected patients. This study, using hybridization enrichment without PCR, provided an accurate and unbiased assessment of differential intrahost viral evolution from a uniform influenza inoculant in humans and comparison to naturally infected patients.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Cervantes-Medina
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Bristol
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Smith
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Czajkowski
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Han
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Memoli
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Tang J, Zhang J, Zhou J, Zhu W, Yang L, Zou S, Wei H, Xin L, Huang W, Li X, Cheng Y, Wang D. Highly pathogenic avian influenza H7N9 viruses with reduced susceptibility to neuraminidase inhibitors showed comparable replication capacity to their sensitive counterparts. Virol J 2019; 16:87. [PMID: 31266524 PMCID: PMC6604316 DOI: 10.1186/s12985-019-1194-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human infection with avian influenza H7N9 virus was first reported in 2013. Since the fifth epidemic, a highly pathogenic avian influenza (HPAI) H7N9 virus has emerged and caused 33 human infections. Several potential NAI resistance sites have been found in human cases. However, the drug susceptibility and replication ability of HPAI H7N9 virus with such substitutions have not yet been studied. METHODS Thirty-three HPAI H7N9 virus strains were isolated from human cases in China, and then sequences were analyzed to identify potential NAI resistance sites. Recombinant influenza viruses were generated to evaluate the effect of NA amino acid substitutions on NAI (oseltamivir or zanamivir) susceptibility and viral replication efficiency in MDCK cells. RESULTS Four potential NAI resistance sites, R292 K, E119V, A246T or H274Y, were screened. All four substitutions conferred either reduced or highly reduced susceptibility to oseltamivir or zanamivir. 292 K not only highly reduced the susceptibility of HPAI H7N9 to oseltamivir but also induced an increase in the IC50 of zanamivir. 119 V or 274Y conferred reduced susceptibility of HPAI H7N9 to oseltamivir. Additionally, 246 T conferred reduced susceptibility to zanamivir. All tested NAI-resistant viruses were capable of replication in MDCK cells. The virus yields of rg006-NA292K were lower than those of rg006-NA292R at 24, 48, 72 and 96 h postinfection (P<0.05). Rg006-NA119V, rg006-NA246T or rg006-NA274Y showed comparable replication capacity to wild-type virus (except for rg006-NA274Y at 96 h, P<0.05). CONCLUSIONS All 4 amino acid substitutions (R292 K, E119V, A246T or H274Y) in NA reduced the susceptibility of HPAI H7N9 to NAIs. The NAI-resistant mutations in HPAI H7N9, in most cases, did not reduce the replication ability of the virus in mammalian cells. Special attention needs to be paid to these mutations, and the development of new anti-H7N9 drugs is of great importance.
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Yanhui Cheng
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| |
Collapse
|
44
|
Yang L, Xie J, Zhang Y, Zhu W, Li X, Wei H, Li Z, Zhao L, Bo H, Liu J, Dong J, Chen T, Shu Y, Weng Y, Wang D. Emergence of waterfowl-originated gene cassettes in HPAI H7N9 viruses caused severe human infection in Fujian, China. Influenza Other Respir Viruses 2019; 13:496-503. [PMID: 31187583 PMCID: PMC6692551 DOI: 10.1111/irv.12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022] Open
Abstract
Background Highly pathogenic avian influenza (HPAI) A(H7N9) virus emerged and caused human infections during the 2016‐2017 epidemic wave of influenza A(H7N9) viruses in China. We report a human infection with HPAI H7N9 virus and six environmental isolates in Fujian Province, China. Methods Environmental surveillance was conducted in live poultry markets and poultry farms in Fujian, China. Clinical and epidemiologic data and samples were collected. Real‐time RT‐PCRs were conducted for each sample, and H7‐positive samples were isolated using embryonated chicken eggs. Full genomes of the isolates were obtained by next‐generation sequencing. Phylogenetic analysis and antigenic analysis were conducted. Results A 59‐year‐old man who raised about 1000 ducks was identified as HPAI H7N9 infection. Six HPAI H7 viruses were isolated from environmental samples, including five H7N9 viruses and one H7N6 virus. Phylogenetic results showed the human and environmental viruses are highly genetically diverse and containing significantly different gene constellation from that of other HPAI H7N9 previously reported. The internal genes derived from H7N9/H9N2, H5N6, and the Eurasian wild‐bird gene pool, indicating waterfowl‐originated genotypes, have emerged in HPAI H7N9/N6 viruses and caused human infection. Conclusion The new genotypes raise the concern that these HPAI H7 viruses might transmit back into migratory birds and spread to other countries as the HPAI H5Nx viruses. Considering their capability of causing severe infections in both human and poultry, the HPAI H7 viruses in this study pose a risk to public health and the poultry industry and highlight the importance of sustained surveillance of these viruses.
Collapse
Affiliation(s)
- Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianfeng Xie
- Fujian center for disease control and prevention, Fuzhou, China.,Fujian provincial key laboratory of zoonosis research, Fuzhou, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Zhao
- Fujian center for disease control and prevention, Fuzhou, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health Shenzhen, Sun Yat-sen University, Guangdong, China
| | - Yuwei Weng
- Fujian center for disease control and prevention, Fuzhou, China.,Fujian provincial key laboratory of zoonosis research, Fuzhou, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
45
|
Development and optimized pairing of mouse monoclonal antibodies for detecting hemagglutinin in novel H7 subtype influenza viruses. SCIENCE CHINA-LIFE SCIENCES 2019; 63:279-289. [PMID: 31147904 PMCID: PMC7089150 DOI: 10.1007/s11427-018-9486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/23/2019] [Indexed: 02/02/2023]
Abstract
The H7 subtype avian influenza threatens public health with respect to poultry and humans. Thus, a specific and sensitive diagnostic test is essential for the management of H7 subtype influenza infections. In this study, five mouse monoclonal antibodies (mAbs) against hemagglutinin (HA) of influenza A/Anhui/1/2013 (H7N9) were produced and characterized by the Western blot, immunofluorescence, and hemagglutination inhibition assays. All five specific mAbs reacted with the HA protein of H7N9 but not with that of H1N1, H3N2, or H5N1. With the combination arrays of capture and detection antibodies, the matched pair mAbs (1C4-coated and 2D7-labeled) were selected and employed in a double-antibody sandwich ELISA (DAS-ELISA). Detection limits of the sandwich ELISA were 0.45 ng mL−1 for the HA protein derived from A/Anhui/1/2013 (H7N9); or 1 and 2 HA units/50 µL for A/Anhui/1/2013 (H7N9) and A/GD/17SF003/2016 (H7N9), respectively. These anti-HA mAbs against subtype H7 and the novel DAS-ELISA provide a valuable approach for specific detection of the H7 subtype influenza virus and quantification of its HA protein, especially for the novel epidemic H7N9.
Collapse
|
46
|
Wi CI, Wheeler PH, Kaur H, Ryu E, Kim D, Juhn Y. Spatio-temporal comparison of pertussis outbreaks in Olmsted County, Minnesota, 2004-2005 and 2012: a population-based study. BMJ Open 2019; 9:e025521. [PMID: 31110089 PMCID: PMC6530371 DOI: 10.1136/bmjopen-2018-025521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Two pertussis outbreaks occurred in Olmsted County, Minnesota, during 2004-2005 and 2012 (5-10 times higher than other years), with significantly higher incidence than for the State. We aimed to assess whether there were similar spatio-temporal patterns between the two outbreaks. SETTING Olmsted County, Minnesota, USA PARTICIPANTS: We conducted a population-based retrospective cohort study of all Olmsted County residents during the 2004-2005 and 2012 outbreaks, including laboratory-positive pertussis cases. PRIMARY OUTCOME MEASURE For each outbreak, we estimated (1) age-specific incidence rate using laboratory-positive pertussis cases (numerator) and the Rochester Epidemiology Project Census (denominator), a medical record-linkage system for virtually all Olmsted County residents, and (2) pertussis case density using kernel density estimation to identify areas with high case density. To account for population size, we calculated relative difference of observed density and expected density based on age-specific incidence. RESULTS We identified 157 and 195 geocoded cases in 2004-2005 and 2012, respectively. Incidence was the highest among adolescents (ages 11 to <14 years) for both outbreaks (9.6 and 7.9 per 1000). The 2004-2005 pertussis outbreak had higher incidence in winter (52% of cases) versus summer in 2012 (53%). We identified a consistent area with higher incidence at the beginning (ie, first quartile) of two outbreaks, but it was inconsistent for later quartiles. The relative difference maps for the two outbreaks suggest a greater role of neighbourhood population size in 2012 compared with 2004-2005. CONCLUSIONS Comparing spatio-temporal patterns between two pertussis outbreaks identified a consistent geographical area with higher incidence of pertussis at the beginning of outbreaks in this community. This finding can be tested in future outbreaks, and, if confirmed, can be used for identifying epidemiological risk factors clustered in such areas for geographically targeted intervention.
Collapse
Affiliation(s)
- Chung-Il Wi
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip H Wheeler
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Harsheen Kaur
- Department of Pediatrics, Univeristy of New Mexico, Albuquerque, New Mexico, USA
| | - Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Dohyeong Kim
- Geospatial Health Research Group, School of Economic, Political and Policy Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Young Juhn
- Department of Community Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
47
|
Lu J, Raghwani J, Pryce R, Bowden TA, Thézé J, Huang S, Song Y, Zou L, Liang L, Bai R, Jing Y, Zhou P, Kang M, Yi L, Wu J, Pybus OG, Ke C. Molecular Evolution, Diversity, and Adaptation of Influenza A(H7N9) Viruses in China. Emerg Infect Dis 2019; 24:1795-1805. [PMID: 30226157 PMCID: PMC6154164 DOI: 10.3201/eid2410.171063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The substantial increase in prevalence and emergence of antigenically divergent or highly pathogenic influenza A(H7N9) viruses during 2016–17 raises concerns about the epizootic potential of these viruses. We investigated the evolution and adaptation of H7N9 viruses by analyzing available data and newly generated virus sequences isolated in Guangdong Province, China, during 2015–2017. Phylogenetic analyses showed that circulating H7N9 viruses belong to distinct lineages with differing spatial distributions. Hemagglutination inhibition assays performed on serum samples from patients infected with these viruses identified 3 antigenic clusters for 16 strains of different virus lineages. We used ancestral sequence reconstruction to identify parallel amino acid changes on multiple separate lineages. We inferred that mutations in hemagglutinin occur primarily at sites involved in receptor recognition or antigenicity. Our results indicate that highly pathogenic strains likely emerged from viruses circulating in eastern Guangdong Province during March 2016 and are associated with a high rate of adaptive molecular evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigenic Variation
- Birds
- China/epidemiology
- Evolution, Molecular
- Genetic Variation
- Genome, Viral
- Genotype
- Geography, Medical
- History, 21st Century
- Humans
- Influenza A Virus, H7N9 Subtype/classification
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza in Birds/epidemiology
- Influenza in Birds/history
- Influenza in Birds/virology
- Influenza, Human/epidemiology
- Influenza, Human/history
- Influenza, Human/virology
- Phylogeny
- RNA, Viral
Collapse
|
48
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
49
|
Lau SYF, Chen E, Wang M, Cheng W, Zee BCY, Han X, Yu Z, Sun R, Chong KC, Wang X. Association between meteorological factors, spatiotemporal effects, and prevalence of influenza A subtype H7 in environmental samples in Zhejiang province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:793-803. [PMID: 30738260 DOI: 10.1016/j.scitotenv.2019.01.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Human infection with the H7N9 virus has been reported recurrently since spring 2013. Given low pathogenicity of the virus in poultry, the outbreak cannot be noticed easily until a case of human infection is reported. Studies showed that the prevalence of influenza A subtype H7 in environmental samples is associated with the number of human H7N9 infection, with the latter associated with meteorological factors. Understanding the association between meteorological factors and the prevalence of H7 subtype in the environmental samples can shed light on how the virus propagates in the environment for disease control. METHOD Environmental samples and meteorological data (precipitation, temperature, relative humidity, sunshine duration, and wind speed) collected in Zhejiang province, China, during 2013-2017 were used. A Bayesian hierarchical binomial logistic spatiotemporal model which captures spatiotemporal effects was adopted to model the prevalence of H7 subtype with the meteorological factors. RESULTS The monthly overall prevalence of H7 subtype in the environmental samples was usually <30%. Compared with the odds at median, moderately low precipitation (49.19-115.60 mm), moderately long sunshine duration (4.22-9.25 h) and low temperature (<9.33 °C) were statistically significantly associated with a higher adjusted odds of detecting an H7-positive sample, whereas moderately high precipitation (119.51-146.85 mm), short and moderately short sunshine duration (<1.77 h; 4.00-4.17 h), and high temperature (>23.09 °C) were statistically significantly associated with a lower adjusted odds. The adjusted odds increased multiplicatively by 1.11 per 1% increase in relative humidity. CONCLUSION Since the prevalence of H7 subtype in environmental samples was associated with meteorological conditions and the number of human H7N9 infection, an environmental surveillance program which incorporates meteorological conditions in planning allows for early detection of the spread of the virus in the environment and better preparation for the outbreak in the human population.
Collapse
Affiliation(s)
- Steven Yuk-Fai Lau
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Enfu Chen
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| | - Maggie Wang
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen, China.
| | - Wei Cheng
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| | - Benny Chung-Ying Zee
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen, China.
| | - Xiaoran Han
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Zhao Yu
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| | - Riyang Sun
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Ka Chun Chong
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen, China.
| | - Xiaoxiao Wang
- Zhejiang Province Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051, China.
| |
Collapse
|
50
|
Su K, Ye S, Li Q, Xie W, Yu H, Qi L, Xiong Y, Zhao H, Li B, Ling H, Tang Y, Xiao B, Rong R, Tang W, Li Y. Influenza A(H7N9) virus emerged and resulted in human infections in Chongqing, southwestern China since 2017. Int J Infect Dis 2019; 81:244-250. [PMID: 30797966 DOI: 10.1016/j.ijid.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVES Influenza A(H7N9) virus has emerged and resulted in human infections in Chongqing, southwestern China since 2017. This study aimed to describe the epidemiological characteristics of the first epidemic in this region. METHODS The epidemiological data of patients were collected. Live poultry markets (LPMs), commercial poultry farms (CPFs) and backyard poultry farms (BPFs) were monitored, and poultry sources were registered. Samples derived from the patients, their close contacts, and the environments were tested for influenza A(H7N9) virus by real-time reverse transcriptase polymerase chain reaction. Genetic sequencing and phylogenetic analysis were also conducted. RESULTS Since the confirmation of the first patient infected with influenza A(H7N9) virus on March 5, 2017, nine patients had been identified within four months in Chongqing. Their mean age was 45 years, 77.8% were male, 66.7% were urban residents and 55.6% were of poultry related occupation. All patients became infected after exposure to live chickens. The median time interval from initial detection of influenza A(H7N9) virus in Chongqing to the patients' onset was 75 days. Since initial detection in February 2017, influenza A(H7N9) virus was detected in 21 (53.8%) counties within four months. The proportion of positive samples was 2.94% (337/11,451) from February 2017 to May 2018, and was higher (χ2=75.78, P<0.001) in LPMs (3.66%, 329/8979) than that in CPFs (0.41%, 5/1229) and BPFs (0.24%, 3/1243). The proportion of positive samples (34.4%, 22/64) at the premises to which the patients were exposed was significantly higher than that (5.7%, 257/4474) in premises with no patients. Phylogenetic analysis indicated that the viruses isolated in Chongqing belonged to the Yangtze River Delta lineage and resembled those circulated in Jiangsu and Anhui provinces between late 2016 and early 2017. CONCLUSION Influenza A(H7N9) virus was newly introduced into Chongqing most likely between late 2016 and early 2017, which swept across half of Chongqing territory and resulted in human infections within months. The most impacted premises and population were LPMs and poultry related workers respectively in the epidemic.
Collapse
Affiliation(s)
- Kun Su
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China; Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Sheng Ye
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Hongyue Yu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Yu Xiong
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Baisong Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Hua Ling
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Yun Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Bangzhong Xiao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Rong Rong
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, People's Republic of China.
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China.
| |
Collapse
|