1
|
Galli JD, Horton M, Durr E, Heidecker GJ, Freed D, Fridman A, Wang D, Zhang L. Evaluation of HSV-2 gE Binding to IgG-Fc and Application for Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10020184. [PMID: 35214644 PMCID: PMC8879737 DOI: 10.3390/vaccines10020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein E (gE) and glycoprotein I (gI) are expressed as a heterodimer on the surface of Herpes simplex virus (HSV). Glycoprotein E binds Fc domain of immunoglobulin G (IgG) and inhibits activities mediated by the IgG Fc domain, contributing to immune evasion by HSV. It has been reported that HSV type 1 gE (gE-1) is capable of binding IgG Fc as a monomer and in a heterodimeric complex with gI, with the heterodimer having 50- to100-fold greater affinity for Fc than gE alone. We report the production of both a soluble form of HSV type 2 gE (gE-2) and a soluble HSV-2 gE/gI heterodimer (gE-2/gI-2). Characterization of soluble gE-2 by surface plasmon resonance (SPR) demonstrates that it is incapable of binding human IgG or the IgG Fc domain. Co-expression with HSV-2 gI (gI-2) and purification of the gE-2/gI-2 heterodimer enable gE-2 to bind human IgG through its Fc domain. We hypothesize that functional epitopes of wildtype gE-2 may be masked by plasma IgG Fc and affect the immunogenicity of the gE-2/gI-2 heterodimer as a vaccine antigen. A series of gE-2 mutations within the surface-exposed Fc:gE-2 interface was designed, and gE-2 mutants were co-expressed with gI-2. Evaluation of twelve gE-2 mutant heterodimers by SPR assay identified nine gE-2 mutations which abrogated or reduced Fc binding while maintaining heterodimer formation with gI. Vaccinating rabbits with the four most Fc-binding deficient gE-2/gI-2 heterodimers elicited comparable anti-heterodimer binding antibody titers and statistically significantly higher serum neutralization antibody levels than wildtype heterodimers. Taken together, these data support the concept of rational antigen design for improved vaccine candidates.
Collapse
Affiliation(s)
- Jennifer D. Galli
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
- Correspondence:
| | - Melanie Horton
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
| | - Gwendolyn J. Heidecker
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
| | - Daniel Freed
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
| | - Arthur Fridman
- Data Science and Scientific Informatics, Merck & Co., Inc., Rahway, NJ 07065, USA;
| | - Dai Wang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
| | - Lan Zhang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA 19486, USA; (M.H.); (E.D.); (G.J.H.); (D.F.); (D.W.); (L.Z.)
| |
Collapse
|
2
|
Horton MS, Minnier M, Cosmi S, Cox K, Galli J, Peters J, Sullivan N, Squadroni B, Tang A, Fridman A, Wang D, Chen Z, Vora KA. Development of a microneutralization assay for HSV-2. J Virol Methods 2021; 297:114268. [PMID: 34437874 DOI: 10.1016/j.jviromet.2021.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Plaque Reduction Neutralization Test (PRNT) is the standard assay used for measuring neutralizing antibody responses to Herpes simplex virus type-2 (HSV-2). The PRNT is a cumbersome, time-consuming and laborious assay. The development of a faster, high throughput microneutralization assay (MNA) for HSV-2 viruses carried out in a 96-well format will allow for rapid testing of large numbers of samples for drug and vaccine development. METHODS We describe the generation of a MNA that utilizes a pair of anti-HSV human monoclonal antibodies (mAbs) for virus detection in HSV-2 infected Vero cells. Antibodies were generated by B-cell cloning from PBMC's isolated from HSV-1 negative/HSV-2 positive donors. We describe the selection and characterization of the antibodies used for virus detection by ELISA with purified, recombinant anti-HSV glycoproteins, antibody binding in infected cells, and Western Blot. We determine the anti-HSV-2 neutralizing titers of immune sera from mice by MNA and PRNT and compare these results by linear regression analysis. RESULTS We show that neutralization titers for HSV-2, determined by the 96-well MNA correlate with titers determined by a PRNT completed in 24-well plates in both the absence (R2 = 0.8250) and presence (R2 = 0.7075) of complement. CONCLUSIONS We have successfully developed an MNA that can be used in place of the burdensome PRNT to determine anti-HSV-2 neutralizing activity in serum. This MNA has much greater throughput than the PRNT, allowing many more samples to be processed in a shorter time saving ∼90 % of the time required by the laboratory scientist to complete the task as compared to the traditional PRNT.
Collapse
Affiliation(s)
- Melanie S Horton
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA.
| | | | - Scott Cosmi
- Eurofins Lancaster Laboratories Professional Scientific Service, Lancaster, PA, USA
| | - Kara Cox
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Jennifer Galli
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Jessica Peters
- Eurofins Lancaster Laboratories Professional Scientific Service, Lancaster, PA, USA
| | - Nicole Sullivan
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Brian Squadroni
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Aimin Tang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Arthur Fridman
- Scientific Informatics, Merck & Co., Inc., Rahway, NJ, USA
| | - Dai Wang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Kalpit A Vora
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
3
|
Jenks JA, Goodwin ML, Permar SR. The Roles of Host and Viral Antibody Fc Receptors in Herpes Simplex Virus (HSV) and Human Cytomegalovirus (HCMV) Infections and Immunity. Front Immunol 2019; 10:2110. [PMID: 31555298 PMCID: PMC6742691 DOI: 10.3389/fimmu.2019.02110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/21/2019] [Indexed: 12/01/2022] Open
Abstract
Herpesvirus infections are a leading cause of neurodevelopmental delay in newborns and end-organ disease in immunocompromised patients. One leading strategy to reduce the disease burden of herpesvirus infections such as herpes simplex virus (HSV) and human cytomegalovirus (HCMV) is to prevent primary acquisition by vaccination, yet vaccine development remains hampered by limited understanding of immune correlates of protection against infection. Traditionally, vaccine development has aimed to increase antibody titers with neutralizing function, which involves the direct binding of antibodies to viral particles. However, recent research has explored the numerous other responses that can be mediated by engagement of the antibody constant region (Fc) with Fc receptors (FcR) present on immune cells or with complement molecules. These functions include antiviral responses such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Uniquely, herpesviruses encode FcR that can act as distractor receptors for host antiviral IgG, thus enabling viral evasion of host defenses. This review focuses on the relative roles of neutralizing and non-neutralizing functions antibodies that target herpesvirus antigens for HSV and HCMV, as well as the roles of Fc-FcR interactions for both host defenses and viral escape.
Collapse
Affiliation(s)
- Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States.,Department of Pediatrics, Children's Health and Discovery Institute, Durham, NC, United States
| |
Collapse
|
4
|
Jaishankar D, Shukla D. Genital Herpes: Insights into Sexually Transmitted Infectious Disease. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:438-450. [PMID: 28357380 PMCID: PMC5354570 DOI: 10.15698/mic2016.09.528] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
Abstract
Etiology, transmission and protection: Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections with recurring manifestations throughout the lifetime of infected hosts. Currently no effective vaccines or prophylactics exist that provide complete protection or immunity from the virus, which is endemic throughout the world. Pathology/Symptomatology: Primary and recurrent infections result in lesions and inflammation around the genital area and the latter accounts for majority of genital herpes instances. Immunocompromised patients including neonates are susceptible to additional systemic infections including debilitating consequences of nervous system inflammation. Epidemiology, incidence and prevalence: More than 500 million people are infected worldwide and most reported cases involve the age groups between 16-40 years, which coincides with an increase in sexual activity among this age group. While these numbers are an estimate, the actual numbers may be underestimated as many people are asymptomatic or do not report the symptoms. Treatment and curability: Currently prescribed medications, mostly nucleoside analogs, only reduce the symptoms caused by an active infection, but do not eliminate the virus or reduce latency. Therefore, no cure exists against genital herpes and infected patients suffer from periodic recurrences of disease symptoms for their entire lives. Molecular mechanisms of infection: The last few decades have generated many new advances in our understanding of the mechanisms that drive HSV infection. The viral entry receptors such as nectin-1 and HVEM have been identified, cytoskeletal signaling and membrane structures such as filopodia have been directly implicated in viral entry, host motor proteins and their viral ligands have been shown to facilitate capsid transport and many host and HSV proteins have been identified that help with viral replication and pathogenesis. New understanding has emerged on the role of autophagy and other innate immune mechanisms that are subverted to enhance HSV pathogenesis. This review summarizes our current understanding of HSV-2 and associated diseases and available or upcoming new treatments.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Departments of Bioengineering and Ophthalmology and Visual
Sciences, University of Illinois at Chicago, IL 60612
- Department of Pathology, University of Illinois at Chicago, IL
60612
| | - Deepak Shukla
- Departments of Bioengineering and Ophthalmology and Visual
Sciences, University of Illinois at Chicago, IL 60612
- Department of Microbiology and Immunology, University of Illinois at
Chicago, IL 60612
| |
Collapse
|
5
|
Differing effects of herpes simplex virus 1 and pseudorabies virus infections on centrosomal function. J Virol 2013; 87:7102-12. [PMID: 23596303 DOI: 10.1128/jvi.00764-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient intracellular transport of the capsid of alphaherpesviruses, such as herpes simplex virus 1 (HSV-1), is known to be dependent upon the microtubule (MT) network. Typically, the MT network radiates from an MT-organizing center (MTOC), which is, in most cases, the centrosome. During herpesvirus egress, it has been assumed that capsids travel first from the nucleus to the centrosome and then from the centrosome to the site of envelopment. Here we report that the centrosome is no longer a primary MTOC in HSV-1-infected cells, but it retains this function in cells infected by another alphaherpesvirus, pseudorabies virus (PrV). As a result, MTs formed at late times after infection with PrV grow from a major, centralized MTOC, while those formed after HSV-1 infection arise from dispersed locations in the cytoplasm, indicating the presence of alternative and minor MTOCs. Thus, loss of the principal MT nucleating center in cells following HSV-1 infection raises questions about the mechanism of HSV-1 capsid egress. It is possible that, rather than passing via the centrosome, capsids may travel directly to the site of envelopment after exiting the nucleus. We suggest that, in HSV-1-infected cells, the disruption of centrosomal functions triggers reorganization of the MT network to favor noncentrosomal MTs and promote efficient viral spread.
Collapse
|
6
|
Wines BD, Trist HM, Farrugia W, Ngo C, Trowsdale J, Areschoug T, Lindahl G, Fraser JD, Ramsland PA. A conserved host and pathogen recognition site on immunoglobulins: structural and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:87-112. [PMID: 21948364 DOI: 10.1007/978-1-4614-0106-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A common site in the constant region (Fc) of immunoglobulins is recognized by host receptors and is a frequent target of proteins expressed by pathogens. This site is located at the junction of two constant domains in the antibody heavy chains and produces a large shallow cavity formed by loops of the CH2 and CH3 domains in IgG and IgA (CH3 and CH4 domains in IgM). Crystal structures have been determined for complexes of IgG-Fc and IgA-Fc with a structurally diverse set of host, pathogen and in vitro selected ligands. While pathogen proteins may directly block interactions with the immunoglobulins thereby evading host immunity, it is likely that the same pathogen molecules also interact with other host factors to carry out their primary biological function. Herein we review the structural and functional aspects of host and pathogen molecular recognition of the common site on the Fc of immunoglobulins. We also propose that some pathogen proteins may promote virulence by affecting the bridging between innate and adaptive immunity.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Immunology, Burnet Institute, Melbourne, VIC 3004, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cheng SB, Ferland P, Webster P, Bearer EL. Herpes simplex virus dances with amyloid precursor protein while exiting the cell. PLoS One 2011; 6:e17966. [PMID: 21483850 PMCID: PMC3069030 DOI: 10.1371/journal.pone.0017966] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 02/19/2011] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic interactions between APP and HSV1 suggest a mechanistic basis for the observed clinical relationship between HSV1 seropositivity and risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Paulette Ferland
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Paul Webster
- House Ear Institute, Los Angeles, California, United States of America
| | - Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Departments of Pathology and of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
8
|
Mutagenesis of varicella-zoster virus glycoprotein I (gI) identifies a cysteine residue critical for gE/gI heterodimer formation, gI structure, and virulence in skin cells. J Virol 2011; 85:4095-110. [PMID: 21345964 DOI: 10.1128/jvi.02596-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Varicella-zoster virus (VZV) is the alphaherpesvirus that causes chicken pox (varicella) and shingles (zoster). The two VZV glycoproteins gE and gI form a heterodimer that mediates efficient cell-to-cell spread. Deletion of gI yields a small-plaque-phenotype virus, ΔgI virus, which is avirulent in human skin using the xenograft model of VZV pathogenesis. In the present study, 10 mutant viruses were generated to determine which residues were required for the typical function of gI. Three phosphorylation sites in the cytoplasmic domain of gI were not required for VZV virulence in vivo. Two deletion mutants mapped a gE binding region in gI to residues 105 to 125. A glycosylation site, N116, in this region did not affect virulence. Substitution of four cysteine residues highly conserved in the Alphaherpesvirinae established that C95 is required for gE/gI heterodimer formation. The C95A and Δ105-125 (with residues 105 to 125 deleted) viruses had small-plaque phenotypes with reduced replication kinetics in vitro similar to those of the ΔgI virus. The Δ105-125 virus was avirulent for human skin in vivo. In contrast, the C95A mutant replicated in vivo but with significantly reduced kinetics compared to those of the wild-type virus. In addition to abolished gE/gI heterodimer formation, gI from the C95A or the Δ105-125 mutant was not recognized by monoclonal antibodies that detect the canonical conformation of gI, demonstrating structural disruption of gI in these viruses. This alteration prevented gI incorporation into virus particles. Thus, residues C95 and 105 to 125 are critical for gI structure required for gE/gI heterodimer formation, virion incorporation, and ultimately, effective viral spread in human skin.
Collapse
|
9
|
Reinhard H, Le VTK, Ohlin M, Hengel H, Trilling M. Exploitation of herpesviral transactivation allows quantitative reporter gene-based assessment of virus entry and neutralization. PLoS One 2011; 6:e14532. [PMID: 21264213 PMCID: PMC3022015 DOI: 10.1371/journal.pone.0014532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/06/2010] [Indexed: 01/12/2023] Open
Abstract
Herpesviral entry is a highly elaborated process requiring many proteins to act in precise conjunction. Neutralizing antibodies interfere with this process to abrogate viral infection. Based on promoter transactivation of a reporter gene we established a novel method to quantify herpesvirus entry and neutralization by antibodies. Following infection with mouse and human cytomegalovirus and Herpes simplex virus 1 we observed promoter transactivation resulting in substantial luciferase expression (>1000-fold). No induction was elicited by UV-inactivated viruses. The response was MOI-dependent and immunoblots confirmed a correlation between luciferase induction and pp72-IE1 expression. Monoclonal antibodies, immune sera and purified immunoglobulin preparations decreased virus-dependent luciferase induction dose-dependently, qualifying this approach as surrogate virus neutralization test. Besides the reduced hands-on time, this assay allows analysis of herpesvirus entry in semi-permissive and non-adherent cells, which were previously non-assessable but play significant roles in herpesvirus pathology.
Collapse
Affiliation(s)
- Henrike Reinhard
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (HH); (MT)
| | - Mirko Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (HH); (MT)
| |
Collapse
|
10
|
The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J Virol 2011; 85:3239-49. [PMID: 21228231 DOI: 10.1128/jvi.02509-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) glycoprotein E (gE) mediates cell-to-cell spread and functions as an IgG Fc receptor (FcγR) that blocks the Fc domain of antibody targeting the virus or infected cell. Efforts to assess the functions of the HSV-1 FcγR in vivo have been hampered by difficulties in preparing an FcγR-negative strain that is relatively intact for spread. Here we report the FcγR and spread phenotypes of NS-gE264, which is a mutant strain that has four amino acids inserted after gE residue 264. The virus is defective in IgG Fc binding yet causes zosteriform disease in the mouse flank model that is only minimally reduced compared with wild-type and the rescue strains. The presence of zosteriform disease suggests that NS-gE264 spread functions are well maintained. The HSV-1 FcγR binds the Fc domain of human, but not murine IgG; therefore, to assess FcγR functions in vivo, mice were passively immunized with human IgG antibody to HSV. When antibody was inoculated intraperitoneally 20 h prior to infection or shortly after virus reached the dorsal root ganglia, disease severity was significantly reduced in mice infected with NS-gE264, but not in mice infected with wild-type or rescue virus. Studies of C3 knockout mice and natural killer cell-depleted mice demonstrated that the HSV-1 FcγR blocked both IgG Fc-mediated complement activation and antibody-dependent cellular cytotoxicity. Therefore, the HSV-1 FcγR promotes immune evasion from IgG Fc-mediated activities and likely contributes to virulence at times when antibody is present, such as during recurrent infections.
Collapse
|
11
|
Innate and adaptive immune responses to herpes simplex virus. Viruses 2009; 1:979-1002. [PMID: 21994578 PMCID: PMC3185534 DOI: 10.3390/v1030979] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 12/19/2022] Open
Abstract
Immune responses against HSV-1 and HSV-2 are complex and involve a delicate interplay between innate signaling pathways and adaptive immune responses. The innate response to HSV involves the induction of type I IFN, whose role in protection against disease is well characterized in vitro and in vivo. Cell types such as NK cells and pDCs contribute to innate anti-HSV responses in vivo. Finally, the adaptive response includes both humoral and cellular components that play important roles in antiviral control and latency. This review summarizes the innate and adaptive effectors that contribute to susceptibility, immune control and pathogenesis of HSV, and highlights the delicate interplay between these two important arms of immunity.
Collapse
|
12
|
The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. J Virol 2008; 82:3490-9. [PMID: 18216124 DOI: 10.1128/jvi.01476-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recognition of immunoglobulin G (IgG) by surface receptors for the Fc domain of immunoglobulin G (Fcgamma), FcgammaRs, can trigger both humoral and cellular immune responses. Two human cytomegalovirus (HCMV)-encoded type I transmembrane receptors with Fcgamma-binding properties (vFcgammaRs), gp34 and gp68, have been identified on the surface of HCMV-infected cells and are assumed to confer protection against IgG-mediated immunity. Here we show that Fcgamma recognition by both vFcgammaRs occurs independently of N-linked glycosylation of Fcgamma, in contrast with the properties of host FcgammaRs. To gain further insight into the interaction with Fcgamma, truncation mutants of the vFcgammaR gp68 ectodomain were probed for Fcgamma binding, resulting in localization of the Fcgamma binding site on gp68 to residues 71 to 289, a region including an immunoglobulin-like domain. Gel filtration and biosensor binding experiments revealed that, unlike host FcgammaRs but similar to the herpes simplex virus type 1 (HSV-1) Fc receptor gE-gI, gp68 binds to the C(H)2-C(H)3 interdomain interface of the Fcgamma dimer with a nanomolar affinity and a 2:1 stoichiometry. Unlike gE-gI, which binds Fcgamma at the slightly basic pH of the extracellular milieu but not at the acidic pH of endosomes, the gp68/Fcgamma complex is stable at pH values from 5.6 to pH 8.1. These data indicate that the mechanistic details of Fc binding by HCMV gp68 differ from those of host FcgammaRs and from that of HSV-1 gE-gI, suggesting distinct functional and recognition properties.
Collapse
|
13
|
Sprague ER, Wang C, Baker D, Bjorkman PJ. Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 2006; 4:e148. [PMID: 16646632 PMCID: PMC1450327 DOI: 10.1371/journal.pbio.0040148] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/07/2006] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-angstroms CgE structure. A 5-angstroms gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C(H)2-C(H)3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.
Collapse
Affiliation(s)
- Elizabeth R Sprague
- 1Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Chu Wang
- 2Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- 2Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- 3Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Pamela J Bjorkman
- 1Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- 4Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California United States of America
| |
Collapse
|
14
|
Quadt I, Günther AK, Voss D, Schelhaas M, Knebel-Mörsdorf D. TATA-binding protein and TBP-associated factors during herpes simplex virus type 1 infection: localization at viral DNA replication sites. Virus Res 2005; 115:207-13. [PMID: 16271277 DOI: 10.1016/j.virusres.2005.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/29/2005] [Accepted: 09/29/2005] [Indexed: 11/18/2022]
Abstract
Host RNA polymerase II (RNAP II) is responsible for viral transcription of the herpes simplex virus type 1 (HSV-1) genome and is relocalized to viral DNA replication compartments. Thus, we investigated whether TATA-binding protein (TBP) and TBP-associated factors (TAFs) are recruited to sites of viral transcription and replication and whether TBP/TAF expressions are influenced upon infection. The protein levels of TBP, hsTAF1/TAF(II)250, hsTAF4/TAF(II)135, and hsTAF5/TAF(II)100 were constant during the early phase of infection and started to decrease late during infection. Only for hsTAF7/TAF(II)55 we sometimes observed a decrease already at 4-8h postinfection (p.i.). Concomitantly with the relocalization of RNAP II, TBP and hsTAFs were redistributed to sites of viral DNA replication and transcription. In the absence of viral DNA replication TBP/hsTAFs were present in distinct nuclear dots, however, enlargement of the nuclear structures did not take place. Our results show that HSV-1 infection has no influence on the protein levels of TFIID components and leads to a redistribution of TBP and hsTAFs to prereplicative sites that enlarge to viral DNA replication compartments.
Collapse
Affiliation(s)
- Ilja Quadt
- Max-Planck-Institute for Neurological Research, D-50931 Köln, Germany
| | | | | | | | | |
Collapse
|
15
|
Budt M, Reinhard H, Bigl A, Hengel H. Herpesviral Fcgamma receptors: culprits attenuating antiviral IgG? Int Immunopharmacol 2005; 4:1135-48. [PMID: 15251110 PMCID: PMC7173100 DOI: 10.1016/j.intimp.2004.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 12/18/2022]
Abstract
Production of IgG in response to virus infection is central to antiviral immune effector functions and a hallmark of B cell memory. Antiviral antibodies (Abs) recognising viral glycoproteins or protein antigen displayed on the surface of virions or virus-infected cells are crucial in rendering the virus noninfectious and in eliminating viruses or infected cells, either acting alone or in conjunction with complement. In many instances, passive transfer of Abs is sufficient to protect from viral infection. Herpesviruses (HV) are equipped with a large array of immunomodulatory functions which increase the efficiency of infection by dampening the antiviral immunity. Members of the α- and β-subfamily of the Herpesviridae are distinct in encoding transmembrane glycoproteins which selectively bind IgG via its Fc domain. The Fc-binding proteins constitute viral Fcγ receptors (vFcγRs) which are expressed on the cell surface of infected cells. Moreover, vFcγRs are abundantly incorporated into the envelope of virions. Despite their molecular and structural heterogeneity, the vFcγRs generally interfere with IgG-mediated effector functions like antibody (Ab)-dependent cellular cytolysis, complement activation and neutralisation of infectivity of virions. vFcγRs may thus contribute to the limited therapeutic potency of antiherpesviral IgG in clinical settings. A detailed molecular understanding of vFcγRs opens up the possibility to design recombinant IgG molecules resisting vFcγRs. Engineering IgG with a better antiviral efficiency represents a new therapeutic option against herpesviral diseases.
Collapse
Affiliation(s)
| | | | | | - Hartmut Hengel
- Corresponding author: Tel.: +49-1888-754-2502; fax: +49-1888-754-2328.
| |
Collapse
|
16
|
Al-Mubarak A, Zhou Y, Chowdhury SI. A glycine-rich bovine herpesvirus 5 (BHV-5) gE-specific epitope within the ectodomain is important for BHV-5 neurovirulence. J Virol 2004; 78:4806-16. [PMID: 15078962 PMCID: PMC387723 DOI: 10.1128/jvi.78.9.4806-4816.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20% of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80% of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.
Collapse
Affiliation(s)
- A Al-Mubarak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
17
|
Viau M, Cholley B, Björck L, Zouali M. Down-modulation of the antigen receptor by a superantigen for human B cells. Immunol Lett 2004; 92:91-6. [PMID: 15081532 DOI: 10.1016/j.imlet.2003.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 10/24/2003] [Indexed: 11/16/2022]
Abstract
B cell superantigens (SAgs) have been implicated in human diseases by demonstrating non-clonotypic expansion of B cells bearing certain immunoglobulin variable region genes. One possibility is that, during infection with microorganisms secreting SAgs, these potent molecules might modulate BcR expression. To test this hypothesis, we investigated the potential effects of a SAg, protein L from Peptostreptococcus magnus, on antigen B cell receptor (BcR) surface expression in vitro. Using fluorescence microscopy, we found that this SAg induced down-regulation of BcR expression. This effect was time-, dose-, and temperature-dependent, and shedding of cell surface IgM molecules into the culture supernatant was not detected. These data demonstrate that SAg-mediated down-regulation of the BcR expression occurs primarily as a result of BcR internalization. In addition, two specific inhibitors of protein tyrosine kinases were found to retard the BcR modulation on the cell surface and inhibit SAg-induced receptor internalization, showing that tyrosine phosphorylation is required for subsequent internalization of mIg-ligand complexes. The down-modulation of BcR expression may have pathological consequences in patients infected with microorganisms secreting SAgs.
Collapse
Affiliation(s)
- Muriel Viau
- Institut National de Santé et de Recherche Médicale, Immunopathologie Humaine, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | |
Collapse
|
18
|
Atalay R, Zimmermann A, Wagner M, Borst E, Benz C, Messerle M, Hengel H. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J Virol 2002; 76:8596-608. [PMID: 12163579 PMCID: PMC136976 DOI: 10.1128/jvi.76.17.8596-8608.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular receptors for the Fc domain of immunoglobulin G (IgG) (FcgammaRs) comprise a family of surface receptors on immune cells connecting humoral and cellular immune responses. Several herpesviruses induce FcgammaR activities in infected cells. Here we identify two distinct human cytomegalovirus (HCMV)-encoded vFcgammaR glycoproteins of 34 and 68 kDa. A panel of HCMV strains exhibited a slight molecular microheterogeneity between Fcgamma-binding proteins, suggesting their viral origin. To locate the responsible genes within the HCMV genome, a large set of targeted HCMV deletion mutants was constructed. The mutant analysis allowed the identification of a spliced UL119-UL118 mRNA to encode vFcgammaR gp68 and TRL11/IRL11 to encode vFcgammaR gp34. Both vFcgammaRs are surface resident type I transmembrane glycoproteins. Significant relatedness of sequences in the extracellular chain of gpUL119-118 and gpTRL11 with particular immunoglobulin supergene family domains present in FcgammaR I and FcgammaRs II/III, respectively, indicates a different ancestry and function of gpUL119-118 and gpTRL11. The HCMV-encoded vFcgammaRs highlight an impressive diversification and redundancy of FcgammaR structures.
Collapse
Affiliation(s)
- Ramazan Atalay
- Robert Koch-Institut, Fachgebiet Virale Infektionen, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Saldanha CE, Lubinski J, Martin C, Nagashunmugam T, Wang L, van Der Keyl H, Tal-Singer R, Friedman HM. Herpes simplex virus type 1 glycoprotein E domains involved in virus spread and disease. J Virol 2000; 74:6712-9. [PMID: 10888608 PMCID: PMC112186 DOI: 10.1128/jvi.74.15.6712-6719.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) functions as an immunoglobulin G (IgG) Fc binding protein and is involved in virus spread. Previously we studied a gE mutant virus that was impaired for IgG Fc binding but intact for spread and another that was normal for both activities. To further evaluate the role of gE in spread, two additional mutant viruses were constructed by introducing linker insertion mutations either outside the IgG Fc binding domain at gE position 210 or within the IgG Fc binding domain at position 380. Both mutant viruses were impaired for spread in epidermal cells in vitro; however, the 380 mutant virus was significantly more impaired and was as defective as gE null virus. gE mutant viruses were inoculated into the murine flank to measure epidermal disease at the inoculation site, travel of virus to dorsal root ganglia, and spread of virus from ganglia back to skin to produce zosteriform lesions. Disease at the inoculation and zosteriform sites was reduced for both mutant viruses, but more so for the 380 mutant virus. Moreover, the 380 mutant virus was highly impaired in its ability to reach the ganglia, as demonstrated by virus culture and real-time quantitative PCR. The results indicate that the domain surrounding amino acid 380 is important for both spread and IgG Fc binding and suggest that this domain is a potential target for antiviral therapy or vaccines.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Blotting, Western
- Cell Line
- Chlorocebus aethiops
- DNA, Viral/analysis
- Female
- Ganglia, Spinal/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Insertional
- Protein Structure, Tertiary
- RNA, Viral/analysis
- Rosette Formation
- Vero Cells
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- C E Saldanha
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6073, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This review describes the diverse array of pathways and molecular targets that are used by viruses to elude immune detection and destruction. These include targeting of pathways for major histocompatibility complex-restricted antigen presentation, apoptosis, cytokine-mediated signaling, and humoral immune responses. The continuous interactions between host and pathogens during their coevolution have shaped the immune system, but also the counter measures used by pathogens. Further study of their interactions should improve our ability to manipulate and exploit the various pathogens.
Collapse
Affiliation(s)
- D Tortorella
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
21
|
Miriagou V, Stevanato L, Manservigi R, Mavromara P. The C-terminal cytoplasmic tail of herpes simplex virus type 1 gE protein is phosphorylated in vivo and in vitro by cellular enzymes in the absence of other viral proteins. J Gen Virol 2000; 81:1027-31. [PMID: 10725429 DOI: 10.1099/0022-1317-81-4-1027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 glycoprotein E (gE-1) is highly phosphorylated in culture cells during infection. In this report, it is shown that phosphorylation is mediated by host enzymes in human cells stably transfected with gE, in the absence of other herpesvirus products. In contrast, a tailless gE product (C terminus deletion mutant) is not phosphorylated. By using an in vitro kinase assay combined with linker-insertion mutagenesis, it is shown that casein kinase II catalyses the phosphorylation of the C-terminal domain of the protein. Also, it is demonstrated that the serine residues at positions 476 and/or 477 in the cytoplasmic portion of the protein are the major acceptors for the phosphate groups.
Collapse
Affiliation(s)
- V Miriagou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens, Greece
| | | | | | | |
Collapse
|
22
|
Chowdhury SI, Lee BJ, Ozkul A, Weiss ML. Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit. J Virol 2000; 74:2094-106. [PMID: 10666239 PMCID: PMC111690 DOI: 10.1128/jvi.74.5.2094-2106.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein E (gE) is important for full virulence potential of the alphaherpesviruses in both natural and laboratory hosts. The gE sequence of the neurovirulent bovine herpesvirus 5 (BHV-5) was determined and compared with that of the nonneurovirulent BHV-1. Alignment of the predicted amino acid sequences of BHV-1 and BHV-5 gE open reading frames showed that they had 72% identity and 77% similarity. To determine the role of gE in the differential neuropathogenesis of BHV-1 and BHV-5, we have constructed BHV-1 and BHV-5 recombinants: gE-deleted BHV-5 (BHV-5gEDelta), BHV-5 expressing BHV-1 gE (BHV-5gE1), and BHV-1 expressing BHV-5 gE (BHV-1gE5). Neurovirulence properties of these recombinant viruses were analyzed using a rabbit seizure model (S. I. Chowdhury et al., J. Comp. Pathol. 117:295-310, 1997) that distinguished wild-type BHV-1 and -5 based on their differential neuropathogenesis. Intranasal inoculation of BHV-5 gEDelta and BHV-5gE1 produced significantly reduced neurological signs that affected only 10% of the infected rabbits. The recombinant BHV-1gE5 did not invade the central nervous system (CNS). Virus isolation and immunohistochemistry data suggest that these recombinants replicate and spread significantly less efficiently in the brain than BHV-5 gE revertant or wild-type BHV-5, which produced severe neurological signs in 70 to 80% rabbits. Taken together, the results of neurological signs, brain lesions, virus isolation, and immunohistochemistry indicate that BHV-5 gE is important for efficient neural spread and neurovirulence within the CNS and could not be replaced by BHV-1 gE. However, BHV-5 gE is not required for initial viral entry into olfactory pathway.
Collapse
Affiliation(s)
- S I Chowdhury
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | |
Collapse
|
23
|
Lubinski J, Wang L, Mastellos D, Sahu A, Lambris JD, Friedman HM. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J Exp Med 1999; 190:1637-46. [PMID: 10587354 PMCID: PMC2195732 DOI: 10.1084/jem.190.11.1637] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 09/30/1999] [Indexed: 11/04/2022] Open
Abstract
Immune evasion is critical for survival of viruses that establish persistent or recurrent infections. However, at the molecular level, little is known about how viruses evade immune attack in vivo. Herpes simplex virus (HSV)-1 glycoprotein gC has two domains that are involved in modulating complement activation; one binds C3, and the other is required for blocking C5 and properdin (P) binding to C3. To evaluate the importance of these regions in vivo, HSV-1 gC mutant viruses were constructed that lacked one or both gC domains and studied in a murine model of infection. Each gC region of complement regulation contributed to virulence; however, the C3 binding domain was far more important, as virus lacking this domain was much less virulent than virus lacking the C5/P inhibitory domain and was as attenuated as virus lacking both domains. Studies in C3 knockout mice and mice reconstituted with C3 confirmed that the gC domains are inhibitors of complement activation, accounting for a 50-fold difference in virulence between mutant and wild-type viruses. We conclude that the C3 binding domain on gC is a major contributor to immune evasion and that this site explains at a molecular level why wild-type virus resists complement attack.
Collapse
Affiliation(s)
- John Lubinski
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Liyang Wang
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Dimitri Mastellos
- Division of Infectious Diseases, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Arvind Sahu
- Division of Infectious Diseases, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - John D. Lambris
- Division of Infectious Diseases, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Harvey M. Friedman
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
24
|
Jacobs A, Breakefield XO, Fraefel C. HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part I. HSV-1 structure, replication and pathogenesis. Neoplasia 1999; 1:387-401. [PMID: 10933054 PMCID: PMC1508113 DOI: 10.1038/sj.neo.7900055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of effective gene therapy strategies for brain tumors and other neurological disorders relies on the understanding of genetic and pathophysiological alterations associated with the disease, on the biological characteristics of the target tissue, and on the development of safe vectors and expression systems to achieve efficient, targeted and regulated, therapeutic gene expression. The herpes simplex virus type 1 (HSV-1) virion is one of the most efficient of all current gene transfer vehicles with regard to nuclear gene delivery in central nervous system-derived cells including brain tumors. HSV-1-related research over the past decades has provided excellent insight into the structure and function of this virus, which, in turn, facilitated the design of innovative vector systems. Here, we review aspects of HSV-1 structure, replication and pathogenesis, which are relevant for the engineering of HSV-1-based vectors.
Collapse
Affiliation(s)
- A Jacobs
- Department of Neurology at the University and MPI for Neurological Research, Cologne, Germany.
| | | | | |
Collapse
|
25
|
Chapman TL, You I, Joseph IM, Bjorkman PJ, Morrison SL, Raghavan M. Characterization of the interaction between the herpes simplex virus type I Fc receptor and immunoglobulin G. J Biol Chem 1999; 274:6911-9. [PMID: 10066744 DOI: 10.1074/jbc.274.11.6911] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type I (HSV-1) virions and HSV-1-infected cells bind to human immunoglobulin G (hIgG) via its Fc region. A complex of two surface glycoproteins encoded by HSV-1, gE and gI, is responsible for Fc binding. We have co-expressed soluble truncated forms of gE and gI in Chinese hamster ovary cells. Soluble gE-gI complexes can be purified from transfected cell supernatants using a purification scheme that is based upon the Fc receptor function of gE-gI. Using gel filtration and analytical ultracentrifugation, we determined that soluble gE-gI is a heterodimer composed of one molecule of gE and one molecule of gI and that gE-gI heterodimers bind hIgG with a 1:1 stoichiometry. Biosensor-based studies of the binding of wild type or mutant IgG proteins to soluble gE-gI indicate that histidine 435 at the CH2-CH3 domain interface of IgG is a critical residue for IgG binding to gE-gI. We observe many similarities between the characteristics of IgG binding by gE-gI and by rheumatoid factors and bacterial Fc receptors such as Staphylococcus aureus protein A. These observations support a model for the origin of some rheumatoid factors, in which they represent anti-idiotypic antibodies directed against antibodies to bacterial and viral Fc receptors.
Collapse
Affiliation(s)
- T L Chapman
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lubinski JM, Wang L, Soulika AM, Burger R, Wetsel RA, Colten H, Cohen GH, Eisenberg RJ, Lambris JD, Friedman HM. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J Virol 1998; 72:8257-63. [PMID: 9733869 PMCID: PMC110183 DOI: 10.1128/jvi.72.10.8257-8263.1998] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1998] [Accepted: 06/25/1998] [Indexed: 11/20/2022] Open
Abstract
Many microorganisms encode proteins that interact with molecules involved in host immunity; however, few of these molecules have been proven to promote immune evasion in vivo. Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) binds complement component C3 and inhibits complement-mediated virus neutralization and lysis of infected cells in vitro. To investigate the importance of the interaction between gC and C3 in vivo, we studied the virulence of a gC-null strain in complement-intact and C3-deficient animals. Using a vaginal infection model in complement-intact guinea pigs, we showed that gC-null virus grows to lower titers and produces less severe vaginitis than wild-type or gC rescued virus, indicating a role for gC in virulence. To determine the importance of complement, studies were performed with C3-deficient guinea pigs; the results demonstrated significant increases in vaginal titers of gC-null virus, while wild-type and gC rescued viruses showed nonsignificant changes in titers. Similar findings were observed for mice where gC null virus produced significantly less disease than gC rescued virus at the skin inoculation site. Proof that C3 is important was provided by studies of C3 knockout mice, where disease scores of gC-null virus were significantly higher than in complement-intact mice. The results indicate that gC-null virus is approximately 100-fold (2 log10) less virulent that wild-type virus in animals and that gC-C3 interactions are involved in pathogenesis.
Collapse
Affiliation(s)
- J M Lubinski
- Departments of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mijnes JD, Lutters BC, Vlot AC, Horzinek MC, Rottier PJ, de Groot RJ. The disulfide-bonded structure of feline herpesvirus glycoprotein I. J Virol 1998; 72:7245-54. [PMID: 9696819 PMCID: PMC109947 DOI: 10.1128/jvi.72.9.7245-7254.1998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/1998] [Accepted: 06/11/1998] [Indexed: 11/20/2022] Open
Abstract
Alphaherpesvirus glycoproteins E and I (gE and gI, respectively) assemble into a hetero-oligomeric complex which promotes cell-to-cell transmission, a determining factor of virulence. Focusing on gI of feline herpesvirus (FHV), we examined the role of disulfide bonds during its biosynthesis, its interaction with gE, and gE-gI-mediated spread of the infection in vitro. The protein's disulfide linkage pattern was determined by single and pairwise substitutions for the four conserved cysteine residues in the ectodomain. The resulting mutants were coexpressed with gE in the vaccinia virus-based vTF7-3 system, and the formation and endoplasmic reticulum (ER)-to-Golgi transport of the hetero-oligomeric complex were monitored. The results were corroborated biochemically by performing an endoproteinase Lys-C digestion of a [35S]Cys-labeled secretory recombinant form of gI followed by tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the peptides under reducing and nonreducing conditions. We found that (i) gI derivatives lacking Cys79 (C1) and/or Cys223 (C4) still assemble with gE into transport-competent complexes, (ii) mutant proteins lacking Cys91 (C2) and/or Cys102 (C3) bind to gE but are retained in the ER, (iii) radiolabeled endoproteinase Lys-C-generated peptide species containing C1 and C4 are linked through disulfide bonds, and (iv) peptides containing both C2 and C3 are not disulfide linked to any other peptide. From these findings emerges a model in which C1 and C4 as well as C2 and C3 form intramolecular disulfide bridges. Since the cysteines in the ectodomain have been conserved during alphaherpesvirus divergence, we postulate that the model applies for all gI proteins. Analysis of an FHV recombinant with a C1-->S substitution confirmed that the C1-C4 disulfide bond is not essential for the formation of a transport-competent gE-gI complex. The mutation affected the posttranslational modification of gI and caused a slight cold-sensitivity defect in the assembly or the intracellular transport of the gE-gI complex but did not affect plaque size. Thus, C1 and the C1-C4 bond are not essential for gE-gI-mediated cell-to-cell spread, at least not in vitro.
Collapse
Affiliation(s)
- J D Mijnes
- Virology Unit, Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS, Sundaresan P, Kang EH, Dubin G, Friedman HM. In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 1998; 72:5351-9. [PMID: 9620988 PMCID: PMC110157 DOI: 10.1128/jvi.72.7.5351-5359.1998] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus (HSV) glycoproteins gE and gI form an immunoglobulin G (IgG) Fc receptor (FcgammaR) that binds the Fc domain of human anti-HSV IgG and inhibits Fc-mediated immune functions in vitro. gE or gI deletion mutant viruses are avirulent, probably because gE and gI are also involved in cell-to-cell spread. In an effort to modify FcgammaR activity without affecting other gE functions, we constructed a mutant virus, NS-gE339, that has four amino acids inserted into gE within the domain homologous to mammalian IgG FcgammaRs. NS-gE339 expresses gE and gI, is FcgammaR-, and does not participate in antibody bipolar bridging since it does not block activities mediated by the Fc domain of anti-HSV IgG. In vivo studies were performed with mice because the HSV-1 FcgammaR does not bind murine IgG; therefore, the absence of an FcgammaR should not affect virulence in mice. NS-gE339 causes disease at the skin inoculation site comparably to wild-type and rescued viruses, indicating that the FcgammaR- mutant virus is pathogenic in animals. Mice were passively immunized with human anti-HSV IgG and then infected with mutant or wild-type virus. We postulated that the HSV-1 FcgammaR should protect wild-type virus from antibody attack. Human anti-HSV IgG greatly reduced viral titers and disease severity in NS-gE339-infected animals while having little effect on wild-type or rescued virus. We conclude that the HSV-1 FcgammaR enables the virus to evade antibody attack in vivo, which likely explains why antibodies are relatively ineffective against HSV infection.
Collapse
Affiliation(s)
- T Nagashunmugam
- Infectious Diseases Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6073, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crnković-Mertens I, Messerle M, Milotić I, Szepan U, Kucić N, Krmpotić A, Jonjić S, Koszinowski UH. Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J Virol 1998; 72:1377-82. [PMID: 9445038 PMCID: PMC124616 DOI: 10.1128/jvi.72.2.1377-1382.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property.
Collapse
Affiliation(s)
- I Crnković-Mertens
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mijnes JD, Lutters BC, Vlot AC, van Anken E, Horzinek MC, Rottier PJ, de Groot RJ. Structure-function analysis of the gE-gI complex of feline herpesvirus: mapping of gI domains required for gE-gI interaction, intracellular transport, and cell-to-cell spread. J Virol 1997; 71:8397-404. [PMID: 9343196 PMCID: PMC192302 DOI: 10.1128/jvi.71.11.8397-8404.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alphaherpesvirus glycoproteins gE and gI form a noncovalently associated hetero-oligomeric complex, which is involved in cell-to-cell spread. In the absence of gI, feline herpesvirus (FHV) gE is transport incompetent and fully retained in the endoplasmic reticulum. Here, we assess the effect of progressive C-terminal truncations of FHV gI on the biosynthesis, intracellular transport, and function of the gE-gI complex. The truncated gI proteins were coexpressed with gE in the vaccinia virus-based vTF7-3 expression system. The results were corroborated and extended by studying FHV recombinants expressing truncated gI derivatives. The following conclusions can be drawn. (i) Deletion of the cytoplasmic tail, the transmembrane region plus the C-terminal half of the ectodomain of gI, does not affect intracellular transport of gE. Apparently, the N-terminal 166 residues of gI constitute a domain involved in gE-gI interaction. (ii) A region mediating stable association with gE is located within the N-terminal 93 residues of gI. (iii) The cytoplasmic domain of gI is not essential for gE-gI-mediated cell-to-cell transmission of FHV, as judged from plaque morphology. Deletion of the cytoplasmic tail of gI reduced plaque size by only 35%. (iv) Recombinants expressing the N-terminal 166 residues of gI display a small-plaque phenotype but produce larger plaques than recombinants with a disrupted gI gene. Thus, a complex consisting of gE and the N-terminal half of the gI ectodomain may retain residual biological activity. The implications of these findings for gE-gI interaction and function are discussed.
Collapse
Affiliation(s)
- J D Mijnes
- Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Nicola AV, Peng C, Lou H, Cohen GH, Eisenberg RJ. Antigenic structure of soluble herpes simplex virus (HSV) glycoprotein D correlates with inhibition of HSV infection. J Virol 1997; 71:2940-6. [PMID: 9060653 PMCID: PMC191422 DOI: 10.1128/jvi.71.4.2940-2946.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Soluble forms of herpes simplex virus (HSV) glycoprotein D (gD) block viral penetration. Likewise, most HSV strains are sensitive to gD-mediated interference by cells expressing gD. The mechanism of both forms of gD-mediated inhibition is thought to be at the receptor level. We analyzed the ability of different forms of soluble, truncated gD (gDt) to inhibit infection by different strains of HSV-1 and HSV-2. Strains that were resistant to gD-mediated interference were also resistant to inhibition by gDt, thereby suggesting a link between these two phenomena. Virion gD was the major viral determinant for resistance to inhibition by gDt. An insertion-deletion mutant, gD-1(delta 290-299t), had an enhanced inhibitory activity against most strains tested. The structure and function of gDt proteins derived from the inhibition-resistant viruses rid1 and ANG were analyzed. gD-1(ridlt) and gD-1(ANGt) had a potent inhibitory effect on plaque formation by wild-type strains of HSV but, surprisingly, little or no effect on their parental strains. As measured by quantitative enzyme-linked immunosorbent assay with a diverse panel of monoclonal antibodies, the antigenic structures of gD-1(rid1t) and gD-1(ANGt) were divergent from that of the wild type yet were similar to each other and to that of gD-1 (delta 290-299t). Thus, three different forms of gD have common antigenic changes that correlate with enhanced inhibitory activity against HSV. We conclude that inhibition of HSV infectivity by soluble gD is influenced by the antigenic conformation of the blocking gDt as well as the form of gD in the target virus.
Collapse
Affiliation(s)
- A V Nicola
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | |
Collapse
|
32
|
Mijnes JD, van der Horst LM, van Anken E, Horzinek MC, Rottier PJ, de Groot RJ. Biosynthesis of glycoproteins E and I of feline herpesvirus: gE-gI interaction is required for intracellular transport. J Virol 1996; 70:5466-75. [PMID: 8764058 PMCID: PMC190504 DOI: 10.1128/jvi.70.8.5466-5475.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The biosynthesis of glycoproteins E and I of feline herpesvirus was studied by using the vaccinia virus vTF7-3 expression system. gE and gI were synthesized as N-glycosylated, endoglycosidase H (EndoH)-sensitive precursors with Mrs of 83,000 and 67,000, respectively. When coexpressed, gE and gI formed sodium dodecyl sulfate-sensitive hetero-oligomeric complexes that were readily transported from the endoplasmic reticulum (ER). Concomitantly, the glycoproteins acquired extensive posttranslational modifications, including O glycosylation, leading to an increase in their apparent molecular weights to 95,000 and 80,000 to 100,000 for gE and gI, respectively. In the absence of gE, most gI remained EndoH sensitive. Only a minor population became EndoH resistant, but these molecules were processed aberrantly as indicated by their Mrs (100,000 to 120,000). By immunofluorescence microscopy, gI was detected primarily in the ER but also at the plasma membrane. gE, when expressed by itself, remained EndoH sensitive and was found only in the ER and the nuclear envelope. These results were corroborated by studying the biosynthesis of gE in feline herpesvirus (FHV)-infected cells. In cells infected with wild-type FHV, gE acquired the same co- and posttranslational modifications as during vTF7-3-driven expression. However, an FHV mutant lacking gI failed to produce mature gE. We conclude that gE is retained in the ER, presumably by associating with molecular chaperones, and becomes transport competent only when in a complex with gI.
Collapse
Affiliation(s)
- J D Mijnes
- Virology Unit, Department of Infectious Diseases, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Rux AH, Moore WT, Lambris JD, Abrams WR, Peng C, Friedman HM, Cohen GH, Eisenberg RJ. Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus. J Virol 1996; 70:5455-65. [PMID: 8764057 PMCID: PMC190503 DOI: 10.1128/jvi.70.8.5455-5465.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A biochemical analysis of glycoprotein C (gC of herpes simplex virus was undertaken to further characterize the structure of the glycoprotein and to determine its disulfide bond arrangement. We used three recombinant forms of gC, gC1(457t), gC1(delta33-123t), and gC2(426t), each truncated prior to the transmembrane region. The proteins were expressed and secreted by using a baculovirus expression system and have been shown to bind to monoclonal antibodies which recognize discontinuous epitopes and to complement component C3b in a dose-dependent manner. We confirmed the N-terminal residues of each mature protein by Edman degradation and confirmed the internal deletion in gC1(delta33-123t). The molecular weight and extent of glycosylation of gC1 (457t), gC1(delta33-123t), and gC2(426t) were determined by treating each protein with endoglycosidases and then subjecting it to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric analysis. The data indicate that eight to nine of the predicted N-linked oligosaccharide sites on gC1(457t) are occupied by glycans of approximately 1,000 Da. In addition, O-linked oligosaccharides are present on gC1(457t), primarily localized to the N-terminal region (amino acids [aa] 33 to 123) of the protein. gC2(426t) contains N-linked oligosaccharides, but no O-linked oligosaccharides were detected. To determine the disulfide bond arrangement of the eight cysteines of gC1(457t),the protein was cleaved with cyanogen bromide. SDS-PAGE analysis followed by Edman degradation identified three cysteine-containing fragments which are not connected by disulfide linkages. Chemical modification of cysteines combined with matrix-assisted laser desorption ionization mass spectrometry identified disulfide bonds between cysteine 1 (aa 127) and cysteine 2 (aa 144) and between cysteine 3 (aa 286) and cysteine 4 (aa 347). Further proteolysis of the cyanogen bromide-generated fragment containing cysteine 5 through cysteine 8, combined with mass spectrometry and Edman degradation, showed that disulfide bonds link cysteine 5 (aa 386) to cysteine 8 (aa 442) and cysteine 6 (aa 390) to cysteine 7 (aa 419). A similar disulfide bond arrangement is postulated to exist in gC homologs from other herpesviruses.
Collapse
Affiliation(s)
- A H Rux
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Friedman HM, Wang L, Fishman NO, Lambris JD, Eisenberg RJ, Cohen GH, Lubinski J. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 1996; 70:4253-60. [PMID: 8676446 PMCID: PMC190356 DOI: 10.1128/jvi.70.7.4253-4260.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type I (HSV-1) glycoprotein gC binds complement component C3b, and purified gC inhibits complement activation. Two HSV strains carrying mutations in the gC gene which rendered them unable to bind C3b were compared with wild-type and marker-rescued viruses to evaluate the role of gC on the virion in protecting HSV-1 from complement-mediated neutralization. The gC mutant viruses were markedly susceptible to neutralization by nonimmune human serum, showing up to a 5,000-fold decline in titer after 1 h of incubation with serum. In contrast, wild-type or marker-rescued viruses showed a twofold reduction in titer. Studies with hypogammaglobulinemic and immunoglobulin G-depleted serum supported the observation that neutralization occurred in the absence of antibody. Neutralization of gC mutant strains by nonimmune serum was rapid; their half-life was 2 to 2.5 min, compared with 1 h for wild-type virus. Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated human serum or C4-deficient guinea pig serum failed to neutralize gC mutant strains, indicating a role for components of the classical complement pathway. gC had little additional effect on neutralization by the combination of antibody plus complement compared with complement alone. The results indicate that the magnitude of the protection offered by gC-1 is larger than previously recognized; that in the absence of gC-1, complement neutralization is rapid and is mediated by components of the classical complement pathway; and that gC mainly protects against antibody-independent complement neutralization, suggesting a probable role for gC early in infection, before antibodies develop.
Collapse
Affiliation(s)
- H M Friedman
- Department of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Huang T, Campadelli-Fiume G. Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis. Proc Natl Acad Sci U S A 1996; 93:1836-40. [PMID: 8700845 PMCID: PMC39868 DOI: 10.1073/pnas.93.5.1836] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycoprotein D (gD) of herpes simplex virus 1 (HSV-1) is required for stable attachment and penetration of the virus into susceptible cells after initial binding. We derived anti-idiotypic antibodies to the neutralizing monoclonal antibody HD1 to gD of HSV-1. These antibodies have the properties expected of antibodies against a gD receptor. Specifically, they bind to the surface of HEp-2, Vero, and HeLa cells susceptible to HSV infection and specifically react with a Mr 62,000 protein in these and other (143TK- and BHK) cell lines. They neutralize virion infectivity, drastically decrease plaque formation by impairing cell-to-cell spread of virions, and reduce polykaryocytosis induced by strain HFEM, which carries a syncytial (syn-) mutation. They do not affect HSV growth in a single-step cycle and plaque formation by an unrelated virus, indicating that they specifically affect the interaction of HSV gD) with a cell surface receptor. We conclude that the Mr 62,000 cell surface protein interacts with gD to enable spread of HSV-1 from cell to cell and virus-induced polykaryocytosis.
Collapse
Affiliation(s)
- T Huang
- Departmental of Experimental Pathology, Section of Microbiology and Virology, University of Bologna, Italy
| | | |
Collapse
|
36
|
Avitabile E, Di Gaeta S, Torrisi MR, Ward PL, Roizman B, Campadelli-Fiume G. Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. J Virol 1995; 69:7472-82. [PMID: 7494253 PMCID: PMC189685 DOI: 10.1128/jvi.69.12.7472-7482.1995] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Earlier studies have shown that the Golgi apparatus was fragmented and dispersed in herpes simplex virus 1-infected Vero and HEp-2 cells but not in human 143TK- cells, that the fragmentation and dispersal required viral functions expressed concurrently with or after the onset of DNA synthesis (G. Campadelli-Fiume, R. Brandimarti, C. Di Lazzaro, P. L. Ward, B. Roizman, and M. R. Torrisi, Proc. Natl. Acad. Sci. USA 90:2798-2802, 1993), and that in 143TK- cells, but not Vero or HEp-2 cells, infected with viral mutants lacking the UL20 gene virions were glycosylated and transported to extracellular space (J. D. Baines, P. L. Ward, G. Campadelli-Fiume, and B. Roizman, J. Virol. 65:6414-6424, 1991; E. Avitabile, P. L. Ward, C. Di Lazzaro, M. R. Torrisi, B. Roizman, and G. Campadelli-Fiume, J. Virol. 68:7397-7405, 1994). Experiments designed to elucidate the role of the microtubules and of intact or fragmented Golgi apparatus in the exocytosis of virions showed the following. (i) In all cell lines tested (Vero, 143TK-, BHK, and Hep-2) microtubules underwent fragmentation particularly evident at the cell periphery and then reorganized into bundles which circumvent the nucleus. This event was not affected by inhibitors of viral DNA synthesis. We conclude that redistribution of microtubules may be required but is not sufficient for the fragmentation and dispersal of the Golgi apparatus. (ii) In all infected cell lines tested, nocodazole caused fragmentation and dispersal of the Golgi and a far more extensive depolymerization of the microtubules than was seen in untreated, infected Vero or HEp-2 cells. Taxol precluded the depolymerization of the microtubules and fragmentation of the Golgi in both infected cell lines. Neither nocodazole nor taxol affected the exocytosis of infectious virus from Vero, HEp-2, or 143TK- cells infected with wild-type virus. We conclude that the effects of nocodazole or of taxol are dominant over the effects of viral infection in the cell lines tested and that viral exocytosis is independent of the organization of microtubules or of the integrity of the Golgi apparatus. Lastly, the data suggest that herpes simplex viruses have evolved an exocytic pathway for which the UL20 protein is a component required in some cells but not others and in which this protein does not merely compensate for the fragmentation and dispersal of the Golgi apparatus.
Collapse
Affiliation(s)
- E Avitabile
- Department of Experimental Pathology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Banfield BW, Leduc Y, Esford L, Schubert K, Tufaro F. Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway. J Virol 1995; 69:3290-8. [PMID: 7745676 PMCID: PMC189040 DOI: 10.1128/jvi.69.6.3290-3298.1995] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel mouse L-cell mutant cell line defective in the biosynthesis of glycosaminoglycans was isolated by selection for cells resistant to herpes simplex virus (HSV) infection. These cells, termed sog9, were derived from mutant parental gro2C cells, which are themselves defective in heparan sulfate biosynthesis and 90% resistant to HSV type 1 (HSV-1) infection compared with control L cells (S. Gruenheid, L. Gatzke, H. Meadows, and F. Tufaro, J. Virol. 67:93-100, 1993). In this report, we show that sog9 cells exhibit a 3-order-of-magnitude reduction in susceptibility to HSV-1 compared with control L cells. In steady-state labeling experiments, sog9 cells accumulated almost no [35S]sulfate-labeled or [6-3H]glucosamine-labeled glycosaminoglycans, suggesting that the initiation of glycosaminoglycan assembly was specifically reduced in these cells. Despite these defects, sog9 cells were fully susceptible to vesicular stomatitis virus (VSV) and permissive for both VSV and HSV replication, assembly, and egress. HSV plaques formed in the sog9 monolayers in proportion to the amount of input virus, suggesting the block to infection was in the virus entry pathway. More importantly, HSV-1 infection of sog9 cells was not significantly reduced by soluble heparan sulfate, indicating that infection was glycosaminoglycan independent. Infection was inhibited by soluble gD-1, however, which suggests that glycoprotein gD plays a role in the infection of this cell line. The block to sog9 cell infection by HSV-1 could be eliminated by adding soluble dextran sulfate to the inoculum, which may act by stabilizing the virus at the sog9 cell surface. Thus, sog9 cells provide direct genetic evidence for a proteoglycan-independent entry pathway for HSV-1, and results with these cells suggest that HSV-1 is a useful reagent for the direct selection of novel animal cell mutants defective in the synthesis of cell surface proteoglycans.
Collapse
Affiliation(s)
- B W Banfield
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
38
|
Johansson PJ, Ota T, Tsuchiya N, Malone CC, Williams RC. Studies of protein A and herpes simplex virus-1 induced Fc gamma-binding specificities. Different binding patterns for IgG3 from Caucasian and Oriental subjects. Immunology 1994; 83:631-8. [PMID: 7875743 PMCID: PMC1415083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) expresses a receptor that binds the Fc portion of IgG. This HSV-1 Fc gamma-binding protein is, like protein A of Staphylococcus aureus, known to bind human IgG1, IgG2 and IgG4 but not IgG3 subclasses. However, IgG3 with the allotype Gm(s+)(t+), prominent in the Oriental population, reacts with protein A. This prompted us to investigate the reactivity of Oriental IgG3 monoclonal myeloma proteins of various allotypes with the HSV-1 Fc gamma-binding protein. Of seven Oriental IgG3 myeloma proteins with allotypes Gm(s+)(t+)(u-)(b+)(g-), Gm(s-)(t-)(u+)(b+)(g-) and Gm(s-)(t-)(u+)(b-)(g+), all reacted with the HSV-1 Fc gamma-binding protein. This was in contrast to negative reactions obtained with three IgG3 myeloma proteins of Caucasian origin with Gm(b+)(g-) or Gm(b-)(g+) phenotypes. The same binding pattern, i.e. binding of IgG3 of Oriental but not of Caucasian origin, was found with protein A. The binding of the monoclonal Oriental IgG3 proteins was again independent of the G3m phenotype. These findings support the concept that the HSV-1 Fc gamma-binding protein A have a similar binding site on the IgG molecule. All monoclonal IgG3 proteins derived from Oriental subjects with or without histidine at position 435 bound to HSV Fc gamma-binding protein. This suggests that Oriental IgG3 myeloma proteins with Gm(s-)(t-) phenotypes have additional critical amino acid residue substitutions important for HSV Fc gamma binding different from those already known.
Collapse
Affiliation(s)
- P J Johansson
- Department of Medicine, University of Florida, Gainesville
| | | | | | | | | |
Collapse
|
39
|
Thäle R, Lucin P, Schneider K, Eggers M, Koszinowski UH. Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J Virol 1994; 68:7757-65. [PMID: 7966565 PMCID: PMC237237 DOI: 10.1128/jvi.68.12.7757-7765.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several herpesviruses, including cytomegalovirus, induce receptors for the Fc domain of murine immunoglobulin G (IgG) molecules. Viral genes coding for these receptors have been characterized only for alphaherpesviruses. In this report, we describe a new approach that led to the identification of an Fc receptor (FcR) of murine cytomegalovirus (MCMV). The Fc fragment of IgG precipitated glycoproteins (gp) of 86 to 88 and 105 kDa from MCMV-infected cells. Deglycosylation by endoglycosidase F resulted in a protein with a molecular mass of 64 kDa. Injection of complete MCMV DNA or of DNA fragments, and the subsequent testing of cytoplasmic binding of IgG by immunofluorescence microscopy, was used to search for the coding region in the MCMV genome. The gene was located in the HindIII J fragment, map units 0.838 to 0.846, where an open reading frame of 1,707 nucleotides predicts a gp of 569 amino acids with a calculated molecular mass of 65 kDa. The sequence of this gp is related to those of the gE proteins of herpes simplex virus type 1 and varicella-zoster virus. The defined length of the mRNA, 1,838 nucleotides, was in agreement with that of a 1.9-kb RNA expressed throughout the replication cycle, starting at the early stages of infection. Expression of the gene fcr1 by recombinant vaccinia virus resulted in the synthesis of gp86/88 and gp105, each with FcR properties, and the correct identification of the gene encoding the FcR was confirmed by the DNA injection method.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line, Transformed
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- DNA Primers
- DNA, Complementary
- Embryo, Mammalian
- Genes, Viral
- Genetic Vectors
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/metabolism
- Kinetics
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Receptors, Fc/biosynthesis
- Receptors, Fc/isolation & purification
- Receptors, Fc/metabolism
- Restriction Mapping
- Vaccinia virus
- Viral Proteins
Collapse
Affiliation(s)
- R Thäle
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Johansson PJ, Malone C, Swietnicki W, Dunn BM, Williams RC. Fv structure of monoclonal antibody II-481 against herpes simplex virus Fc gamma-binding glycoprotein gE contains immunodominant complementarity determining region epitopes that react with human immunoglobulin M rheumatoid factors. J Exp Med 1994; 180:1873-88. [PMID: 7964464 PMCID: PMC2191741 DOI: 10.1084/jem.180.5.1873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human immunoglobulin M (IgM) rheumatoid factors (RFs) show primary direct enzyme-linked immunosorbent assay (ELISA) reactivity with Fab rather than Fc fragments of monoclonal antibody (mAb) II-481 directed against the Fc gamma-binding site of herpes simplex virus glycoprotein gE. This preferential anti-Fab specificity suggests that RFs react with antigen-binding portions of mAb II-481 as anti-idiotypic antibodies directed at the combining site regions of mAb reacting with the Fc gamma-binding region of gE. Analysis of this idiotype-anti-idiotype reaction employed polymerase chain reaction amplification and sequencing of the variable heavy and light (VH and VL) regions of mAb II-481. When VH and VL regions of mAb II-481 were synthesized as overlapping 7-mer peptides on polypropylene pins, a panel of 10 polyclonal and 6 monoclonal human IgM RFs reacted primarily with epitopes within the three solvent-exposed mAb II-481 complementarity determining regions (CDRs). Preincubation of single CDR heptamer peptides with IgM RFs in free solution, resulted in 63-100% inhibition of RF binding to mAb II-481 on the ELISA plate, confirming the antigenic importance of linear CDR regions for RF reactivity. Combinations of two or three CDR peptides frequently produced 94-100% inhibition of RF binding to whole mAb II-481. Control peptides, singly or in combination, showed no inhibition. Computer modeling suggested that the RF-reactive mAb II-481 Fv region and a previously demonstrated RF-reactive CH3 epitope displayed considerable three-dimensional similarities in conformation. These studies may provide insight into limited shape homologies possibly involved in an RF anti-idiotypic reaction.
Collapse
Affiliation(s)
- P J Johansson
- Department of Medicine, University of Florida School of Medicine, Gainesville 32610
| | | | | | | | | |
Collapse
|
41
|
Haarr L, Skulstad S. The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 1994; 102:321-46. [PMID: 8024735 DOI: 10.1111/j.1699-0463.1994.tb04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review is a summary of our present knowledge with respect to the structure of the virion of herpes simplex virus type 1. The virion consists of a capsid into which the DNA is packaged, a tegument and an external envelope. The protein compositions of the structures outside the genome are described as well as the functions of individual proteins. Seven capsid proteins are identified, and two of them are mainly present in precursors of mature DNA-containing capsids. The protein components of the 150 hexamers and 12 pentamers in the icosahedral capsid are known. These capsomers all have a central channel and are connected by Y-shaped triplexes. In contrast to the capsid, the tegument has a less defined structure in which 11 proteins have been identified so far. Most of them are phosphorylated. Eleven virus-encoded glycoproteins are present in the envelope, and there may be a few more membrane proteins not yet identified. Functions of these glycoproteins include attachment to and penetration of the cellular membrane. The structural proteins, their functions, coding genes and localizations are listed in table form.
Collapse
Affiliation(s)
- L Haarr
- National Centre for Research in Virology, University of Bergen, Norway
| | | |
Collapse
|
42
|
Dubin G, Basu S, Mallory DL, Basu M, Tal-Singer R, Friedman HM. Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. J Virol 1994; 68:2478-85. [PMID: 7511171 PMCID: PMC236725 DOI: 10.1128/jvi.68.4.2478-2485.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus type 1 glycoproteins gE and gI form receptors for the Fc domain of immunoglobulin G (IgG) which are expressed on the surface of infected cells and on the virion envelope and which protect the virus from immune attack. Glycoprotein gE-1 is a low-affinity Fc receptor (FcR) that binds IgG aggregates, while gE-1 and gI-1 form a complex which serves as a higher-affinity FcR capable of binding IgG monomers. In this study, we describe two approaches used to map an Fc binding domain on gE-1 for IgG aggregates. First, we constructed nine plasmids encoding gE-1/gD-1 fusions proteins, each containing a large gE-1 peptide inserted into the ectodomain of gD-1. Fusion proteins were tested for FcR activity with IgG-sensitized erythrocytes in a rosetting assay. Three of the fusion proteins containing overlapping gE-1 peptides demonstrated FcR activity; the smallest peptide that retained Fc binding activity includes gE-1 amino acids 183 to 402. These results indicate that an Fc binding domain is located between gE-1 amino acids 183 and 402. To more precisely map the Fc binding domain, we tested a panel of 21 gE-1 linker insertion mutants. Ten mutants with insertions between gE-1 amino acids 235 and 380 failed to bind IgG-sensitized erythrocytes, while each of the remaining mutants demonstrated wild-type Fc binding activity. Taken together, these results indicate that the region of gE-1 between amino acids 235 and 380 forms an FcR domain. A computer-assisted analysis of the amino acid sequence of gE-1 demonstrates an immunoglobulin-like domain contained within this region (residues 322 to 359) which shares homology with mammalian FcRs.
Collapse
Affiliation(s)
- G Dubin
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104-6073
| | | | | | | | | | | |
Collapse
|
43
|
Ghiasi H, Slanina S, Nesburn AB, Wechsler SL. Characterization of baculovirus-expressed herpes simplex virus type 1 glycoprotein K. J Virol 1994; 68:2347-54. [PMID: 8139020 PMCID: PMC236711 DOI: 10.1128/jvi.68.4.2347-2354.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DNA region encoding the complete herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) was inserted into a baculovirus transfer vector, and recombinant viruses expressing gK were isolated. Four gK-related recombinant baculovirus-expressed peptides of 29, 35, 38, and 40 kDa were detected with polyclonal antibody to gK. The 35-, 38-, and 40-kDa species were susceptible to tunicamycin treatment, suggesting that they were glycosylated. The 38- and 40-kDa species corresponded to partially glycosylated precursor gK (pgK) and mature gK, respectively. The 29-kDa peptide probably represented a cleaved, unglycosylated peptide. The 35-kDa peptide probably represented a cleaved, glycosylated peptide that may be a precursor to pgK. Indirect immunofluorescence with polyclonal antibody to gK peptides indicated that the recombinant baculovirus-expressed gK was abundant on the surface of the insect cells in which it was expressed. Mice vaccinated with the baculovirus-expressed gK produced very low levels (< 1:10) of HSV-1 neutralizing antibody. Nonetheless, these mice were partially protected from lethal challenge with HSV-1 (75% survival). This protection was significant (P = 0.02). Despite some protection against death, gK-vaccinated mice showed no protection against the establishment of latency. Surprisingly, gK-vaccinated mice that were challenged ocularly with a stromal disease-producing strain of HSV-1 had significantly higher levels of ocular disease (herpes stromal keratitis) than did mock-vaccinated mice. In summary, this is the first report to show that vaccination with HSV-1 gK can provide protection against lethal HSV-1 challenge and that vaccination with an HSV-1 glycoprotein can significantly increase the severity of HSV-1-induced ocular disease.
Collapse
Affiliation(s)
- H Ghiasi
- Cedars-Sinai Medical Center Research Institute, Los Angeles, California 90048
| | | | | | | |
Collapse
|
44
|
Campadelli G, Brandimarti R, Di Lazzaro C, Ward PL, Roizman B, Torrisi MR. Fragmentation and dispersal of Golgi proteins and redistribution of glycoproteins and glycolipids processed through the Golgi apparatus after infection with herpes simplex virus 1. Proc Natl Acad Sci U S A 1993; 90:2798-802. [PMID: 8385343 PMCID: PMC46183 DOI: 10.1073/pnas.90.7.2798] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Vero monkey cells and HEp-2 human epidermoid carcinoma cells infected with herpes simplex virus 1 the proteins beta-COP, galactosyltransferase, and alpha-mannosidase II associated with the Golgi apparatus appear to be associated with numerous smaller structures dispersed throughout the cytoplasm. Concomitantly, the intracytoplasmic ligands of lectins normally associated wholly (Helix pomatia or Ricinus communis agglutinin) or in part (wheat germ agglutinin) with the Golgi apparatus increased in amount and became dispersed. This phenomenon was seen in some of the baby hamster kidney cells analyzed but not in others and not in the human 143TK- cells. The fragmentation and dispersal of the Golgi apparatus was a late event in the reproductive cycle coinciding with virion assembly, processing of viral glycoproteins, and exocytosis from infected cells. The fragmentation of the Golgi apparatus is morphologically different from that seen with brefeldin A and may reflect disequilibration between the anterograde and retrograde Golgi transport caused by the huge influx of viral glycoproteins contained in virions and membranes flowing through the exocytic pathway.
Collapse
Affiliation(s)
- G Campadelli
- Department of Experimental Pathology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic.
Collapse
Affiliation(s)
- J A Levy
- Department of Medicine, University of California School of Medicine, San Francisco 94143-0128
| |
Collapse
|
46
|
Beynon HL, Haskard DO, Davies KA, Haroutunian R, Walport MJ. Combinations of low concentrations of cytokines and acute agonists synergize in increasing the permeability of endothelial monolayers. Clin Exp Immunol 1993; 91:314-9. [PMID: 8428396 PMCID: PMC1554683 DOI: 10.1111/j.1365-2249.1993.tb05901.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The deposition of circulating immune reactants in blood vessels, an important event in the pathogenesis of certain types of vasculitis, requires an increase in permeability in the endothelial monolayer. An in vitro model to examine the integrity of endothelial cell monolayers and their response to inflammatory mediators has been developed. Human umbilical vein endothelial cells were grown to confluence on an FITC-labelled matrix and monolayer integrity was assessed by the exclusion of a 125I-anti-FITC antibody. Alteration in endothelial monolayer permeability was associated with an increase in uptake of 125I-anti-FITC antibody, expressed as a percentage of the maximal uptake of antibody on to FITC-matrix from which endothelial cells had been stripped. We determined the effects on endothelial monolayer permeability of acute agonists (thrombin and histamine), cytokines (tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), IL-1 and IL-4) and combinations of acute agonists and cytokines. Addition of thrombin in concentrations ranging from 0.5 to 15 U/ml led to an increased uptake of 125I-anti-FITC antibody from 2% to 15% relative to unstimulated endothelium. For other agonists and cytokines the increases in permeability were: (i) histamine (50-400 pmol/ml) increased uptake 5-22%; (ii) TNF (12.5-100 ng/ml) increased uptake 2-12%; (iii) IFN-gamma (125-250 U/ml) increased uptake 1.5-3%. IL-1 beta (50-100 U/ml) and IL-4 (50-100 U/ml) had no effect. Synergistic interactions on endothelial monolayer permeability were seen with the following combinations: (i) IL-4 (100 U/ml) and TNF (12.5 ng/ml) uptake 11%; (ii) IL-4 (100 U/ml) and IFN-gamma (125 U/ml) uptake 6.5%; (iii) TNF (12.5 ng/ml) and IFN-gamma (125 ng/ml) uptake 7%; (iv) thrombin (0.5 U/ml) and histamine (50 pmol/ml) uptake 13.5%; and (v) TNF (12.5 ng/ml) and thrombin (0.5 U/ml) uptake 8.5%. These observations suggest that interactions between cytokines and acute inflammatory mediators such as thrombin and histamine may be important in determining whether immune complexes are deposited in vessel walls. This model system may now be useful for the further investigation in vitro of the mechanisms involved in the pathogenesis of immune complex-mediated vascular damage.
Collapse
Affiliation(s)
- H L Beynon
- Rheumatology Unit, RPMS, Hammersmith Hospital, London, UK
| | | | | | | | | |
Collapse
|
47
|
Abstract
Nearly two decades ago, it was observed that cells infected with herpes simplex virus (HSV) acquired an IgG Fc binding activity. The properties of the viral Fc receptor (FcR) have now been characterized by several laboratories. The Fc binding activity appears on the surface of the infected cell prior to formation of progeny virions. The FcR induced by HSV has been identified as the HSV glycoprotein, gE. When HSV gE forms a complex with a second HSV glycoprotein, gI, the receptor binds IgG with higher affinity. Varicella-zoster virus (VZV), which is closely related to HSV, has also been shown to induce an FcR. Like the HSV FcR, the FcR specified by VZV possesses characteristics common to viral glycoproteins. VZV encodes two glycoproteins, gpI and gpIV, which are the homologs of HSV gE and gI. The VZV glycoproteins have many properties common to cell surface receptors, including O-linked glycans and phosphorylation sites. However, extensive computer-assisted analyses of the amino acid sequences of VZV gpI and gpIV did not uncover regions of homology to the human cellular Fc receptors for IgG.
Collapse
Affiliation(s)
- V Litwin
- Department of Microbiology, University of Iowa College of Medicine, Iowa City
| | | |
Collapse
|
48
|
Chatterjee S, Sarkar S. Studies on endoplasmic reticulum--Golgi complex cycling pathway in herpes simplex virus-infected and brefeldin A-treated human fibroblast cells. Virology 1992; 191:327-37. [PMID: 1329323 DOI: 10.1016/0042-6822(92)90195-u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brefeldin A (BFA), a fungal metabolite, significantly inhibited the release of herpes simplex virus type 1 (HSV-1) from infected human fibroblast cells. Electron micrographs of HSV-1-infected and BFA-treated human cells demonstrated the presence of enveloped particles trapped between outer and inner nuclear membranes. Analyses of viral glycoproteins B, C, and D (gB, gC, and gD) showed faster migrating, immature forms in BFA-treated cells when compared to the mature glycoproteins, as observed in the untreated control cells. The shift in mobilities of the glycoproteins in BFA-treated cells apparently was due to the disassembly of the Golgi complex when evaluated by an indirect immunofluorescence assay. The immature forms of gB, gC, and gD could not be detected on the surface of BFA-treated human fibroblast cells. Removal of BFA resulted in a reorganization of the Golgi complex and formation of fully glycosylated gB, gC, and gD. Moreover, the HSV-1 particles released from the treated cells after the removal of BFA completely restored the infectivity of the viral particles. Our results indicate that human fibroblast cells have an endoplasmic reticulum-Golgi cycling pathway.
Collapse
Affiliation(s)
- S Chatterjee
- Department of Pediatrics, University of Alabama, Birmingham 35294
| | | |
Collapse
|
49
|
Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL. Baculovirus-expressed glycoprotein G of herpes simplex virus type 1 partially protects vaccinated mice against lethal HSV-1 challenge. Virology 1992; 190:233-9. [PMID: 1529531 DOI: 10.1016/0042-6822(92)91209-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The DNA sequence encoding the complete HSV-1 glycoprotein G (gG) was inserted into a baculovirus transfer vector and recombinant viruses expressing gG were isolated. Three gG-related recombinant baculovirus expressed peptides of 37, 42, and 44 kDa were detected by Western blotting using monoclonal antibody to gG. The 42- and 44-kDa species were susceptible to tunicamycin, Endoglycosidase H (Endo-H), and N-glycosidase F (PNGase F) treatments, suggesting that they were glycosylated. Although only very low levels (approximately 1:10) of HSV-1-neutralizing antibody were produced in mice vaccinated with the baculovirus gG, these mice were partially protected from lethal challenge with HSV-1 (75-78% survival) and this level of protection was highly significant (P = 0.002). This is the first report to show that vaccination with HSV-1 gG can provide mice with any level of protection against lethal HSV-1 challenge.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | | | |
Collapse
|
50
|
Flowers CC, O'Callaghan DJ. The equine herpesvirus type 1 (EHV-1) homolog of herpes simplex virus type 1 US9 and the nature of a major deletion within the unique short segment of the EHV-1 KyA strain genome. Virology 1992; 190:307-15. [PMID: 1326805 DOI: 10.1016/0042-6822(92)91217-i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The DNA sequence of the short (S) genomic component of the equine herpesvirus type 1 (EHV-1)KyA strain has been determined recently in our laboratory. Analysis of a 1353-bp BamHI/PvuII clone mapping at the unique short/terminal inverted repeat (Us/TR) junction revealed 507 bp of Us and 846 bp of TR sequences as well as an open reading frame (ORF) that is contained entirely within the Us. This ORF encodes a potential polypeptide of 219 amino acids that shows significant homology to the US9 proteins of herpes simplex virus type 1 (HSV-1), EHV-4, pseudorabies virus (PRV), and varicella zoster virus (VZV). The US9 polypeptides of the two equine herpesviruses exhibit 50% identity but are twice as large as their counterparts in HSV-1, PRV, and VZV. All five US9 proteins are enriched for serine and threonine residues and share a conserved domain of highly basic residues followed by a region of nonpolar amino acids. DNA sequence and Southern blot hybridization analyses revealed that the Us of EHV-1 KyA differs from the Us of EHV-1 KyD and AB1 in that the ORFs encoding glycoproteins I and E and a unique 10-kDa polypeptide are deleted from the KyA genome. These data demonstrate that the predicted 10-kDa protein unique to EHV-1 is nonessential for replication in vitro and that EHV-1 glycoproteins I and E, like their equivalents in HSV-1 and PRV, are also nonessential. These findings and those reported previously by this laboratory and others reveal that the Us segment of EHV-1 comprises nine ORFs, two of which, US4 and 10-kDa ORF, are unique to EHV-1. The gene order of the Us is US2, protein kinase, gG, US4, gD, gI, gE, 10 kDa, and US9.
Collapse
Affiliation(s)
- C C Flowers
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|