1
|
Sasivimolrattana T, Bhattarakosol P. Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells. Front Cell Infect Microbiol 2023; 13:1301859. [PMID: 38076455 PMCID: PMC10704452 DOI: 10.3389/fcimb.2023.1301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has been known as a common viral pathogen that can infect several parts of the body, leading to various clinical manifestations. According to this diverse manifestation, HSV-1 infection in many cell types was demonstrated. Besides the HSV-1 cell tropism, e.g., fibroblast, epithelial, mucosal cells, and neurons, HSV-1 infections can occur in human T lymphocyte cells, especially in activated T cells. In addition, several studies found that actin polymerization and filopodia formation support HSV-1 infection in diverse cell types. Hence, the goal of this review is to explore the mechanism of HSV-1 infection in various types of cells involving filopodia formation and highlight potential future directions for HSV-1 entry-related research. Moreover, this review covers several strategies for possible anti-HSV drugs focused on the entry step, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Jaggi U, Wang S, Mott KR, Ghiasi H. Binding of herpesvirus entry mediator (HVEM) and HSV-1 gD affect reactivation but not latency levels. PLoS Pathog 2023; 19:e1011693. [PMID: 37738264 PMCID: PMC10550154 DOI: 10.1371/journal.ppat.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Spear PG. Opportunities, Technology, and the Joy of Discovery. Annu Rev Virol 2022; 9:1-17. [PMID: 35363539 DOI: 10.1146/annurev-virology-100520-012840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My grandparents were immigrants. My paternal grandfather was illiterate. Yet my parents were able to complete college and to become teachers. I had a conventional upbringing in a small town in Florida, graduating from high school in 1960. I was fortunate enough to graduate cum laude from Florida State University and to earn other credentials leading to faculty positions at outstanding institutions of higher education: the University of Chicago and Northwestern University. At a time when women were rarely the leaders of research groups, I was able to establish a well-funded research program and to make contributions to our understanding of viral entry into cells. My best research was done after I became confident enough to seek productive interactions with collaborators. I am grateful for the collaborators and collaborations that moved our field forward and for my trainees who have gone on to successes in many different careers. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia G Spear
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
4
|
Sari TK, Gianopulos KA, Nicola AV. Conformational Change in Herpes Simplex Virus Entry Glycoproteins Detected by Dot Blot. Methods Mol Biol 2020; 2060:319-326. [PMID: 31617187 DOI: 10.1007/978-1-4939-9814-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conformational changes in viral membrane proteins drive membrane fusion, a critical step in virus entry and infection. Here we describe a simple and rapid virus blotting immunoassay to define conformational changes with a panel of monoclonal antibodies to distinct sites across a viral glycoprotein. This dot blot technique has been utilized to define low pH-triggered changes in the prefusion form of the herpesviral fusogen gB. At pH of <6.2 there are specific changes in herpes simplex virus 1 gB domains I and V. This corresponds broadly to host cell endosomal pH. Many of the identified changes are at least partially reversible. This method can be adapted to document changes in viral proteins that are not fusion proteins, including those induced by alternate triggers such as receptor-binding or protease cleavage.
Collapse
Affiliation(s)
- Tri Komala Sari
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Katrina A Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA. .,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
5
|
Differential Requirements for gE, gI, and UL16 among Herpes Simplex Virus 1 Syncytial Variants Suggest Unique Modes of Dysregulating the Mechanism of Cell-to-Cell Spread. J Virol 2019; 93:JVI.00494-19. [PMID: 31092572 DOI: 10.1128/jvi.00494-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
Like all the herpesviruses, herpes simplex virus encodes machinery that enables it to move through cell junctions to avoid neutralizing antibodies. This cell-to-cell spread mechanism requires the viral fusion machinery (gD, gH/gL, and gB) and numerous accessory proteins. Of all of these, minor alterations to only four proteins (gB, gK, UL20, or UL24) will dysregulate the fusion machinery, allowing the formation of syncytia. In contrast, removal of individual accessory proteins will block cell-to-cell spread, forcing the virus to transmit in a cell-free manner. In the context of a Syn variant, removal of a required accessory protein will block cell fusion, again forcing cell-free spread. This has been investigated most thoroughly for gBsyn variants, which lose their syncytial phenotype in the absence of several accessory proteins, including gE, gI, UL16, and UL21, which are known to physically interact. Recently it was found that UL21 is not needed for gKsyn-, UL20syn-, or UL24syn-induced cell fusion, and hence it was of interest to ascertain whether gE, gI, and UL16 are required for Syn variants other than gBsyn. Null mutants of these were each combined with seven syncytial variants distributed among gK, UL20, and UL24. Surprisingly, very different patterns of accessory protein requirements were revealed. Indeed, for the three gKsyn variants tested, two different patterns were found. Also, three mutants were able to replicate without causing cytopathic effects. These findings show that mutations that produce Syn variants dysregulate the cell-to-cell-spread machinery in unique ways and provide clues for elucidating how this virus moves between cells.IMPORTANCE Approximately 2/3 of adults worldwide are latently infected with herpes simplex virus 1. Upon reactivation, the virus has the ability to evade neutralizing antibodies by moving through cell junctions, but the mechanism of direct cell-to-cell spread is poorly understood. The machinery that assembles between cells includes the viral fusion proteins and various accessory proteins that prevent cells from fusing. Alterations in four proteins will dysregulate the machinery, allowing neighboring cells to fuse to make syncytia, but this can be prevented by removing various individual accessory proteins to further disable the machinery. Previously, the accessory protein UL21 was found to be important for the activity of some syncytial variants but not others. In this study, we discovered that UL16, gE, and gI all act differently in how they control the fusion machinery. A better understanding of the mechanism of cell-to-cell spread may enable the development of drugs that block it.
Collapse
|
6
|
Atanasiu D, Saw WT, Lazear E, Whitbeck JC, Cairns TM, Lou H, Eisenberg RJ, Cohen GH. Using Antibodies and Mutants To Localize the Presumptive gH/gL Binding Site on Herpes Simplex Virus gD. J Virol 2018; 92:e01694-18. [PMID: 30282715 PMCID: PMC6258950 DOI: 10.1128/jvi.01694-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023] Open
Abstract
HSV virus-cell and cell-cell fusion requires multiple interactions between four essential virion envelope glycoproteins, gD, gB, gH, and gL, and between gD and a cellular receptor, nectin-1 or herpesvirus entry mediator (HVEM). Current models suggest that binding of gD to receptors induces a conformational change that leads to activation of gH/gL and consequent triggering of the prefusion form of gB to promote membrane fusion. Since protein-protein interactions guide each step of fusion, identifying the sites of interaction may lead to the identification of potential therapeutic targets that block this process. We have previously identified two "faces" on gD: one for receptor binding and the other for its presumed interaction with gH/gL. We previously separated the gD monoclonal antibodies (MAbs) into five competition communities. MAbs from two communities (MC2 and MC5) neutralize virus infection and block cell-cell fusion but do not block receptor binding, suggesting that they block binding of gD to gH/gL. Using a combination of classical epitope mapping of gD mutants with fusion and entry assays, we identified two residues (R67 and P54) on the presumed gH/gL interaction face of gD that allowed for fusion and viral entry but were no longer sensitive to inhibition by MC2 or MC5, yet both were blocked by other MAbs. As neutralizing antibodies interfere with essential steps in the fusion pathway, our studies strongly suggest that these key residues block the interaction of gD with gH/gL.IMPORTANCE Virus entry and cell-cell fusion mediated by HSV require gD, gH/gL, gB, and a gD receptor. Neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with an essential step in the fusion pathway. Thus, the epitopes of these MAbs identify critical, functional sites on their target proteins. Unlike many anti-gD MAbs, which block binding of gD to a cellular receptor, two, MC2 and MC5, block a separate, downstream step in the fusion pathway which is presumed to be the activation of the modulator of fusion, gH/gL. By combining epitope mapping of a panel of gD mutants with fusion and virus entry assays, we have identified residues that are critical in the binding and function of these two MAbs. This new information helps to define the site of the presumptive interaction of gD with gH/gL, of which we have limited knowledge.
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Lazear
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Charles Whitbeck
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roselyn J Eisenberg
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Carmichael JC, Starkey J, Zhang D, Sarfo A, Chadha P, Wills JW, Han J. Glycoprotein D of HSV-1 is dependent on tegument protein UL16 for packaging and contains a motif that is differentially required for syncytia formation. Virology 2018; 527:64-76. [PMID: 30465930 DOI: 10.1016/j.virol.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
Glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) plays a key role in multiple events during infection including virus entry, cell-to-cell spread, and virus-induced syncytia formation. Here, we provide evidence that an arginine/lysine cluster located at the transmembrane-cytoplasm interface of gD critically contributes to viral spread and cell-cell fusion. Our studies began with the discovery that packaging of gD into virions is almost completely blocked in the absence of tegument protein UL16. We subsequently identified a novel, direct, and regulated interaction between UL16 and gD, but this was not important for syncytia formation. However, a mutational analysis of the membrane-proximal basic residues of gD revealed that they are needed for the gBsyn phenotype, salubrinal-induced fusion of HSV-infected cells, and cell-to-cell spread. Finally, we found that these same gD tail basic residues are not required for cell fusion induced by a gKsyn variant.
Collapse
Affiliation(s)
- Jillian C Carmichael
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jason Starkey
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dan Zhang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Akua Sarfo
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Pooja Chadha
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - John W Wills
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Han
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Preventive Veterinary Medicine, China Agricultural University College of Veterinary Medicine, Beijing 100193, China.
| |
Collapse
|
8
|
Oliver SL, Yang E, Arvin AM. Varicella-Zoster Virus Glycoproteins: Entry, Replication, and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:204-215. [PMID: 28367398 DOI: 10.1007/s40588-016-0044-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Varicella-zoster virus (VZV), an alphaherpesvirus that causes chicken pox (varicella) and shingles (herpes zoster), is a medically important pathogen that causes considerable morbidity and, on occasion, mortality in immunocompromised patients. Herpes zoster can afflict the elderly with a debilitating condition, postherpetic neuralgia, triggering severe, untreatable pain for months or years. The lipid envelope of VZV, similar to all herpesviruses, contains numerous glycoproteins required for replication and pathogenesis. PURPOSE OF REVIEW To summarize the current knowledge about VZV glycoproteins and their roles in cell entry, replication and pathogenesis. RECENT FINDINGS The functions for some VZV glycoproteins are known, such as gB, gH and gL in membrane fusion, cell-cell fusion regulation, and receptor binding properties. However, the molecular mechanisms that trigger or mediate VZV glycoproteins remains poorly understood. SUMMARY VZV glycoproteins are central to successful replication but their modus operandi during replication and pathogenesis remain elusive requiring further mechanistic based studies.
Collapse
Affiliation(s)
- Stefan L Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| | - Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| |
Collapse
|
9
|
Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. J Virol 2016; 90:5622-5635. [PMID: 27030266 DOI: 10.1128/jvi.00446-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/24/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites. IMPORTANCE The DNA genomes of viruses within the subfamily Alphaherpesvirinae are divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region, suggesting Us8A may have an important role in the HSV-1 life cycle. However, the specific role of Us8A in HSV-1 infection remains to be elucidated. Here, we show that Us8A is a virulence factor for HSV-1 infection in mice, and the function of Us8A for viral invasion into the central nervous system from peripheral sites is regulated by Us3-mediated phosphorylation of the protein at Ser-61. This is the first study to report the significance of Us8A and its regulation in HSV-1 infection.
Collapse
|
10
|
Qi Y, Xu Y, Pan Y, Li S, Li B, Pan M, Zhang S, Li Y. Overexpression and purification of HSV-2 glycoprotein D in suspension CHO cells with serum-free medium and immunogenicity analysis. Biotechnol Appl Biochem 2015; 63:312-9. [DOI: 10.1002/bab.1386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/12/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Qi
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Yueyue Xu
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
- Department of Biochemistry and Molecular Biology; School of Preclinical Medicine; Nanjing Medical University; Nanjing People's Republic of China
| | - Ying Pan
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Suqin Li
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Bingjun Li
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Mingjie Pan
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
- Department of Biochemistry and Molecular Biology; School of Preclinical Medicine; Nanjing Medical University; Nanjing People's Republic of China
| | - Shumin Zhang
- National Institutes for Food and Drug Control; Beijing People's Republic of China
| | - Yuexi Li
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| |
Collapse
|
11
|
Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN. Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 2015; 10:e0115475. [PMID: 25643242 PMCID: PMC4314066 DOI: 10.1371/journal.pone.0115475] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV.
Collapse
MESH Headings
- Acyclovir/pharmacology
- Animals
- Antiviral Agents/isolation & purification
- Antiviral Agents/pharmacology
- Cell Line
- Drug Resistance, Viral/drug effects
- Gene Expression Regulation, Viral/drug effects
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/metabolism
- Herpesvirus 2, Human/physiology
- Hot Temperature
- Houttuynia/chemistry
- Humans
- NF-kappa B/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Viral Envelope Proteins/metabolism
- Virion/drug effects
- Virion/physiology
- Virus Internalization/drug effects
- Virus Replication/drug effects
- Water/chemistry
Collapse
Affiliation(s)
- Pei-Yun Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Szu-Yuan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chuan-Liang Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shoei-Sheng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Nan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Contributions of herpes simplex virus 1 envelope proteins to entry by endocytosis. J Virol 2013; 87:13922-6. [PMID: 24109213 DOI: 10.1128/jvi.02500-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the required HSV glycoproteins, gB, gD, and gH-gL, may be sufficient for entry regardless of entry route taken. This may be distinct from entry mechanisms employed by other human herpesviruses.
Collapse
|
13
|
Abstract
Herpesviruses can enter host cells using pH-dependent endocytosis pathways in a cell-specific manner. Envelope glycoprotein B (gB) is conserved among all herpesviruses and is a critical component of the complex that mediates membrane fusion and entry. Here we demonstrate that mildly acidic pH triggers specific conformational changes in herpes simplex virus (HSV) gB. The antigenic structure of gB was specifically altered by exposure to low pH both in vitro and during entry into host cells. The oligomeric conformation of gB was altered at a similar pH range. Exposure to acid pH appeared to convert virion gB into a lower-order oligomer. The detected conformational changes were reversible, similar to those in other class III fusion proteins. Exposure of purified, recombinant gB to mildly acidic pH resulted in similar changes in conformation and caused gB to become more hydrophobic, suggesting that low pH directly affects gB. We propose that intracellular low pH induces alterations in gB conformation that, together with additional triggers such as receptor binding, are essential for virion-cell fusion during herpesviral entry by endocytosis.
Collapse
|
14
|
Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J Virol 2009; 83:11847-56. [PMID: 19759132 DOI: 10.1128/jvi.01397-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.
Collapse
|
15
|
Galdiero S, Vitiello M, D'Isanto M, Falanga A, Cantisani M, Browne H, Pedone C, Galdiero M. The identification and characterization of fusogenic domains in herpes virus glycoprotein B molecules. Chembiochem 2008; 9:758-67. [PMID: 18311743 DOI: 10.1002/cbic.200700457] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The molecular mechanism of entry of herpes viruses requires a multicomponent fusion system. Virus entry and cell-cell fusion of Herpes simplex virus (HSV) requires four glycoproteins: gD, gB and gH/gL. The role of gB remained elusive until recently, when the crystal structure of HSV-1 gB became available. Glycoprotein B homologues represent the most highly conserved group of herpes virus glycoproteins; however, despite the high degree of sequence and structural conservation, differences in post-translational processing are observed for different members of this virus family. Whereas gB of HSV is not proteolytically processed after oligomerization, most other gB homologues are cleaved by a cellular protease into subunits that remain linked through disulfide bonds. Proteolytic cleavage is common for activation of many other viral fusion proteins, so it remains difficult to envisage a common role for different herpes virus gB structures in the fusion mechanism. We selected bovine herpes virus type 1 (BoHV-1) and herpes simplex virus type 1 (HSV-1) as representative viruses expressing cleaved and uncleaved gBs, and have screened their amino acid sequences for regions of highly interfacial hydrophobicity. Synthetic peptides corresponding to such regions were tested for their ability to induce the fusion of large unilamellar vesicles and to inhibit herpes virus infection. These results underline that several regions of the gB protein are involved in the mechanism of membrane interaction.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Clarke RW, Monnier N, Li H, Zhou D, Browne H, Klenerman D. Two-color fluorescence analysis of individual virions determines the distribution of the copy number of proteins in herpes simplex virus particles. Biophys J 2007; 93:1329-37. [PMID: 17513380 PMCID: PMC1929035 DOI: 10.1529/biophysj.107.106351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/11/2007] [Indexed: 11/18/2022] Open
Abstract
We present a single virion method to determine absolute distributions of copy number in the protein composition of viruses and apply it to herpes simplex virus type 1. Using two-color coincidence fluorescence spectroscopy, we determine the virion-to-virion variability in copy numbers of fluorescently labeled tegument and envelope proteins relative to a capsid protein by analyzing fluorescence intensity ratios for ensembles of individual dual-labeled virions and fitting the resulting histogram of ratios. Using EYFP-tagged capsid protein VP26 as a reference for fluorescence intensity, we are able to calculate the mean and also, for the first time to our knowledge, the variation in numbers of gD, VP16, and VP22 tegument. The measurement of the number of glycoprotein D molecules was in good agreement with independent measurements of average numbers of these glycoproteins in bulk virus preparations, validating the method. The accuracy, straightforward data processing, and high throughput of this technique make it widely applicable to the analysis of the molecular composition of large complexes in general, and it is particularly suited to providing insights into virus structure, assembly, and infectivity.
Collapse
Affiliation(s)
- Richard W Clarke
- Department of Chemistry and Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Peralta A, Molinari P, Conte-Grand D, Calamante G, Taboga O. A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties. Appl Microbiol Biotechnol 2007; 75:407-14. [PMID: 17285288 DOI: 10.1007/s00253-006-0825-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 11/29/2022]
Abstract
The ability of a recombinant baculovirus containing the ectodomain of the mature sequence of glycoprotein D (gD) fused to the amino-terminus of baculoviral glycoprotein gp64 to display gD on its surface and to serve as an improved immunogen against bovine herpesvirus-1 was tested. The gD-gp64 fusion protein was correctly expressed on the virus particles as revealed by immunomicroscopy assays. Mice immunized with 5 x 10(8) plaque forming units developed antibodies that specifically reacted in an enzyme-linked immunosorbent assay with recombinant gD and whole bovine herpesvirus-1. These antibodies were able to neutralize bovine herpesvirus-1 in vitro, whereas those elicited by a version of gD expressed in Escherichia coli did not. Our data demonstrated that the display on the virion surface of recombinant baculovirus can provide a tool for the development of recombinant vaccines against bovine herpesvirus-1.
Collapse
Affiliation(s)
- A Peralta
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC25 (1712), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
18
|
Even DL, Henley AM, Geraghty RJ. The requirements for herpes simplex virus type 1 cell-cell spread via nectin-1 parallel those for virus entry. Virus Res 2006; 119:195-207. [PMID: 16823958 DOI: 10.1016/j.virusres.2006.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.
Collapse
Affiliation(s)
- Deborah L Even
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., UKMC MS415, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
19
|
Ryckman BJ, Jarvis MA, Drummond DD, Nelson JA, Johnson DC. Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 2006; 80:710-22. [PMID: 16378974 PMCID: PMC1346879 DOI: 10.1128/jvi.80.2.710-722.2006] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) replication in epithelial and endothelial cells appears to be important in virus spread, disease, and persistence. It has been difficult to study infection of these cell types because HCMV laboratory strains (e.g., AD169 and Towne) have lost their ability to infect cultured epithelial and endothelial cells during extensive propagation in fibroblasts. Clinical strains of HCMV (e.g., TR and FIX) possess a cluster of genes (UL128 to UL150) that are largely mutated in laboratory strains, and recent studies have indicated that these genes facilitate replication in epithelial and endothelial cells. The mechanisms by which these genes promote infection of these two cell types are unclear. We derived an HCMV UL128-to-UL150 deletion mutant from strain TR, TRdelta4, and studied early events in HCMV infection of epithelial and endothelial cells, and the role of genes UL128 to UL150. Analysis of wild-type TR indicated that HCMV enters epithelial and endothelial cells by endocytosis followed by low-pH-dependent fusion, which is different from the pH-independent fusion with the plasma membrane observed with human fibroblasts. TRdelta4 displayed a number of defects in early infection processes. Adsorption and entry of TRdelta4 on epithelial cells were poor compared with those of TR, but these defects could be overcome with higher doses of virus and the use of polyethylene glycol (PEG) to promote fusion between virion and cellular membranes. High multiplicity and PEG treatment did not promote infection of endothelial cells by TRdelta4, yet virus particles were internalized. Together, these data indicate that genes UL128 to UL150 are required for HCMV adsorption and penetration of epithelial cells and to promote some early stage of virus replication, subsequent to virus entry, in endothelial cells.
Collapse
Affiliation(s)
- Brent J Ryckman
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
20
|
Subramanian RP, Dunn JE, Geraghty RJ. The nectin-1alpha transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins. Virology 2005; 339:176-91. [PMID: 16005040 PMCID: PMC1360157 DOI: 10.1016/j.virol.2005.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 04/06/2005] [Accepted: 05/25/2005] [Indexed: 12/28/2022]
Abstract
Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1alpha involved in cell fusion, we measured the ability of nectin-1alpha/nectin-2alpha chimeras, nectin-1alpha/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1alpha to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1alpha cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1alpha and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1alpha interaction in fusion.
Collapse
Affiliation(s)
| | | | - Robert J. Geraghty
- *To whom correspondence and reprint requests should be addressed at University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose St., UKMC MS415, Lexington, KY 40536-0298. Telephone: (859)257-5147 Fax:(859)257-8994 E-mail:
| |
Collapse
|
21
|
Polcicova K, Goldsmith K, Rainish BL, Wisner TW, Johnson DC. The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors. J Virol 2005; 79:11990-2001. [PMID: 16140775 PMCID: PMC1212635 DOI: 10.1128/jvi.79.18.11990-12001.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein.
Collapse
Affiliation(s)
- Katarina Polcicova
- L-220, Room 6366/BSc, Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
22
|
Simpson SA, Manchak MD, Hager EJ, Krummenacher C, Whitbeck JC, Levin MJ, Freed CR, Wilcox CL, Cohen GH, Eisenberg RJ, Pizer LI. Nectin-1/HveC Mediates herpes simplex virus type 1 entry into primary human sensory neurons and fibroblasts. J Neurovirol 2005; 11:208-18. [PMID: 16036799 DOI: 10.1080/13550280590924214] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Immunocytochemistry detects nectin-1/HveC, nectin-2/HveB, and HVEM/HveA on the surface of sensory neurons and fibroblasts grown as primary cultures from human dorsal root ganglia. Viral entry into these cultured cells was assayed by infection with a recombinant herpes simplex virus type 1 (HSV-1) expressing green fluorescent protein. Soluble, truncated nectin-1 polypeptide, as well as polyclonal and monoclonal antibodies against nectin-1, inhibited infection of neurons, whereas polypeptides and antibodies capable of inhibiting HSV-1 interaction with nectin-2 and herpesvirs entry mediator (HVEM) failed to prevent infection of neuronal cells. These results demonstrate that nectin-1 is the primary receptor for HSV-1 entry into human fetal neurons. Viral entry into fibroblasts was also reduced by soluble nectin-1 but not by soluble HVEM. However, in contrast to the results obtained with neurons, antibodies against receptors failed to inhibit entry into fibroblasts, indicating that unlike neurons, fibroblasts have multiple receptors or mechanisms for HSV-1 entry.
Collapse
Affiliation(s)
- Scott A Simpson
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, Kiyono T, Sugaya Y, Isomura H, Ishizaki K, Tsurumi T. Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 2005; 280:30336-41. [PMID: 15964848 DOI: 10.1074/jbc.m500976200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.
Collapse
Affiliation(s)
- Noriko Shirata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Frampton AR, Goins WF, Cohen JB, von Einem J, Osterrieder N, O'Callaghan DJ, Glorioso JC. Equine herpesvirus 1 utilizes a novel herpesvirus entry receptor. J Virol 2005; 79:3169-73. [PMID: 15709036 PMCID: PMC548480 DOI: 10.1128/jvi.79.5.3169-3173.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The well-described herpesvirus entry receptors HveA (TNFRSF14), HveB (nectin 2), and HveC (nectin 1) have been shown to mediate the entry of alphaherpesviruses. Our findings showed that the alphaherpesvirus equine herpesvirus 1 (EHV-1) efficiently entered and replicated in CHO-K1 cells that lack the entry receptors HveA, HveB, and HveC, demonstrating that EHV-1 utilizes a unique entry receptor. As with other alphaherpesviruses, efficient EHV-1 entry was dependent on glycoprotein D and cell surface glycosaminoglycans.
Collapse
Affiliation(s)
- Arthur R Frampton
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1246 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
It was recently demonstrated that herpes simplex virus (HSV) successfully infects Chinese hamster ovary (CHO) cells expressing glycoprotein D (gD) receptors and HeLa cells by an endocytic mechanism (A. V. Nicola, A. M. McEvoy, and S. E. Straus, J. Virol. 77:5324-5332, 2003). Here we define cellular and viral requirements of this pathway. Uptake of intact, enveloped HSV from the cell surface into endocytic vesicles was rapid (t(1/2) of 8 to 9 min) and independent of the known cell surface gD receptors. Following uptake from the surface, recovery of intracellular, infectious virions increased steadily up to 20 min postinfection (p.i.), which corresponds to accumulation of enveloped virus in intracellular compartments. There was a sharp decline in recovery by 30 min p.i., suggesting loss of the virus envelope as a result of capsid penetration from endocytic organelles into the cytosol. In the absence of gD receptors, endocytosed virions did not successfully penetrate into the cytosol but were instead transported to lysosomes for degradation. Inhibitors of phosphatidylinositol (PI) 3-kinase, such as wortmannin, blocked transport of incoming HSV to the nuclear periphery and virus-induced gene expression but had no effect on virus binding or uptake. This suggests a role for PI 3-kinase activity in trafficking of HSV through the cytosol. Viruses that lack viral glycoproteins gB, gD, or gH-gL were defective in transport to the nucleus and had reduced infectivity. Thus, similar to entry via direct penetration at the cell surface, HSV entry into cells by wortmannin-sensitive endocytosis is efficient, involves rapid cellular uptake of viral particles, and requires gB, gD, and gH-gL.
Collapse
Affiliation(s)
- Anthony V Nicola
- Medical Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1888, USA.
| | | |
Collapse
|
26
|
Jones NA, Geraghty RJ. Fusion activity of lipid-anchored envelope glycoproteins of herpes simplex virus type 1. Virology 2004; 324:213-28. [PMID: 15183068 DOI: 10.1016/j.virol.2004.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 10/17/2003] [Accepted: 03/24/2004] [Indexed: 11/25/2022]
Abstract
Expression of the herpes simplex virus type 1 (HSV-1) glycoproteins gB, gD, gH, and gL is necessary and sufficient to cause cell fusion. To identify the requirements for a membrane-spanning domain in HSV-1 glycoprotein-induced cell fusion, we created gB, gD, and gH mutants with transmembrane and cytoplasmic domains replaced by a glycosylphosphatidylinositol (gpi)-addition sequence. The corresponding gBgpi, gDgpi, and gHgpi proteins were expressed with wild-type efficiency at the cell surface and were linked to the plasma membrane via a gpi anchor. The gDgpi mutant promoted cell fusion near wild-type gD levels when co-expressed with gB, gH, and gL in a cell-mixing fusion assay, indicating that the gD transmembrane and cytoplasmic domains were not required for fusion activity. A plasma membrane link was required for fusion because a gD mutant lacking a transmembrane and cytoplasmic domain was nonfunctional for fusion. The gDgpi mutant was also able to cooperate with wild-type gB, gH, and gL to form syncytia, albeit at a size smaller than those formed in the wild-type situation. The gBgpi and gHgpi mutants were unable to promote fusion when expressed with the other wild-type viral glycoproteins, highlighting the requirement of the specific transmembrane and cytoplasmic domains for gB and gH function.
Collapse
Affiliation(s)
- Natasha A Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
27
|
Linehan MM, Richman S, Krummenacher C, Eisenberg RJ, Cohen GH, Iwasaki A. In vivo role of nectin-1 in entry of herpes simplex virus type 1 (HSV-1) and HSV-2 through the vaginal mucosa. J Virol 2004; 78:2530-6. [PMID: 14963155 PMCID: PMC369262 DOI: 10.1128/jvi.78.5.2530-2536.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is transmitted through the genital mucosa during sexual encounters. In recent years, HSV-1 has also become commonly associated with primary genital herpes. The mechanism of viral entry of HSV-1 and HSV-2 in the female genital tract is unknown. In order to understand the molecular interactions required for HSV entry into the vaginal epithelium, we examined the expression of herpesvirus entry mediator nectin-1 in the vagina of human and mouse at different stages of their hormonal cycle. Nectin-1 was highly expressed in the epithelium of human vagina throughout the menstrual cycle, whereas the mouse vaginal epithelium expressed nectin-1 only during the stages of the estrous cycle in which mice are susceptible to vaginal HSV infection. Furthermore, the ability of nectin-1 to mediate viral entry following intravaginal inoculation was examined in a mouse model of genital herpes. Vaginal infection with either HSV-1 or HSV-2 was blocked by preincubation of the virus with soluble recombinant nectin-1. Viral entry through the vaginal mucosa was also inhibited by preincubation of HSV-2 with antibody against gD. Together, these results suggest the importance of nectin-1 in mediating viral entry for both HSV-1 and HSV-2 in the genital mucosa in female hosts.
Collapse
Affiliation(s)
- Melissa M Linehan
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
28
|
Garner JA. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev 2003; 55:1497-513. [PMID: 14597143 DOI: 10.1016/j.addr.2003.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alphaherpesviruses, membrane-enveloped DNA viruses that are responsible for a host of human ailments, bind to, enter and are directly targeted to specific intracellular domains within their mammalian host cells. This review emphasizes recent work on the best studied of the alphaherpesviruses, Herpes simplex virus type 1 (HSV1). One area of focus is on recent work that has identified viral glycoproteins that are important in binding and internalization of the virus to the host cell. Complementary work on the receptors for those viral glycoproteins that reside on the host cell surface is also presented, with some discussion of how receptor variety might lead to the tissue tropism demonstrated by alphaherpes viruses. An additional area of focus in this review is how HSV uses the host cell transport systems to achieve intracellular targeting of the incoming virion toward the cell nucleus, and, after production of newly synthesized and assembled viral progeny, targeting them toward the plasma membrane for release.
Collapse
Affiliation(s)
- Judy A Garner
- Department of Cell and Neurobiology, BMT 401, Keck School of Medicine at USC, 1333 San Pablo St., Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Cheshenko N, Del Rosario B, Woda C, Marcellino D, Satlin LM, Herold BC. Herpes simplex virus triggers activation of calcium-signaling pathways. ACTA ACUST UNITED AC 2003; 163:283-93. [PMID: 14568989 PMCID: PMC2173509 DOI: 10.1083/jcb.200301084] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy.
Collapse
Affiliation(s)
- Natalia Cheshenko
- Deparment of Pediatrics and Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kim JK, Kim YK, Hong J, Kim SY, Lee CK, Kim CJ, Kim YS, Ahn JK. Isolation of the enhanced neurovirulent HSV-1 strains from Korean patients. Virus Genes 2003; 26:115-8. [PMID: 12803462 DOI: 10.1023/a:1023432811186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic DNA virus which has latency in human. In this study, we isolated various HSV-1 strains, named KHS, from the skin lesions of Korean patients and characterized the specific features of each strain. We found that KHS strains produced small, cell associated and nonsyncycial plaques in Vero cells. We classified KHS strains into two substrains, KHS 1 which had highly condensed plaques and KHS 2 which had less condensed plaques. Since gD protein of HSV-1 plays important roles in viral plaque formation, we determined the nucleotide sequences of gD genes of KHS strains. According to deduced amino acid sequences of gD protein in KHS strains compared with prototype strains KOS and F, we found that gD of KHS strains have more putative O-glycosidic sites, serine in KHS 1 and threonine in KHS 2, respectively. To find out the establishment of viral latency, we infected each virus strain into eyes of mice and carried out trigerminal ganglia explanting experiment. We found that both KHS strains established latent infections stably just as did the prototype KOS and F strains. The eye swab experiments were carried out to check the viral replication in vivo. KHS 1 exhibited a longer shedding time in eyes of mice. We also found that KHS 1 has a higher neurotropic affinity by determining the time it took for the virus to reach the trigerminal ganglia from the eyes. Currently, we are studying the possible mechanism of high neuroinvasiveness of KHS 1 strain.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Microbiology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Farnsworth A, Goldsmith K, Johnson DC. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm. J Virol 2003; 77:8481-94. [PMID: 12857917 PMCID: PMC165244 DOI: 10.1128/jvi.77.15.8481-8494.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 05/02/2003] [Indexed: 11/20/2022] Open
Abstract
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.
Collapse
Affiliation(s)
- Aaron Farnsworth
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
32
|
Nicola AV, McEvoy AM, Straus SE. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 2003; 77:5324-32. [PMID: 12692234 PMCID: PMC153978 DOI: 10.1128/jvi.77.9.5324-5332.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) infection of many cultured cells, e.g., Vero cells, can be initiated by receptor binding and pH-neutral fusion with the cell surface. Here we report that a major pathway for HSV entry into the HeLa and CHO-K1 cell lines is dependent on endocytosis and exposure to a low pH. Enveloped virions were readily detected in HeLa or receptor-expressing CHO cell vesicles by electron microscopy at <30 min postinfection. As expected, images of virus fusion with the Vero cell surface were prevalent. Treatment with energy depletion or hypertonic medium, which inhibits endocytosis, prevented uptake of HSV from the HeLa and CHO cell surface relative to uptake from the Vero cell surface. Incubation of HeLa and CHO cells with the weak base ammonium chloride or the ionophore monensin, which elevate the low pH of organelles, blocked HSV entry in a dose-dependent manner. Noncytotoxic concentrations of these agents acted at an early step during infection by HSV type 1 and 2 strains. Entry mediated by the HSV receptor HveA, nectin-1, or nectin-2 was also blocked. As analyzed by fluorescence microscopy, lysosomotropic agents such as the vacuolar H(+)-ATPase inhibitor bafilomycin A1 blocked the delivery of virus capsids to the nuclei of the HeLa and CHO cell lines but had no effect on capsid transport in Vero cells. The results suggest that HSV can utilize two distinct entry pathways, depending on the type of cell encountered.
Collapse
Affiliation(s)
- Anthony V Nicola
- Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
33
|
Mettenleiter TC. Pathogenesis of neurotropic herpesviruses: role of viral glycoproteins in neuroinvasion and transneuronal spread. Virus Res 2003; 92:197-206. [PMID: 12686430 DOI: 10.1016/s0168-1702(02)00352-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroinvasion by herpesviruses requires entry into nerve endings in the periphery, transport to the cell body, replication in the cell body, axonal transport to the synapse and transneuronal viral spread. Entry occurs after receptor binding by fusion of virion envelope and cellular plasma membrane followed by microtubuli-assisted transport of capsids to the nuclear pore. By transneuronal spread, the virus gains access to synaptically linked neuronal circuits. A common set of herpesvirus glycoproteins is involved in entry and direct viral cell-cell spread. However, both processes can be distinguished by involvement of additional viral components. Interestingly, transneuronal spread appears to be functionally linked to intracytoplasmic formation of mature virions. This review will focus on the importance of herpesvirus envelope glycoproteins for infection of neurons and transneuronal spread, and their influence on viral pathogenesis.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany.
| |
Collapse
|
34
|
Collins WJ, Johnson DC. Herpes simplex virus gE/gI expressed in epithelial cells interferes with cell-to-cell spread. J Virol 2003; 77:2686-95. [PMID: 12552008 PMCID: PMC141120 DOI: 10.1128/jvi.77.4.2686-2695.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) glycoprotein heterodimer gE/gI plays an important role in virus cell-to-cell spread in epithelial and neuronal tissues. In an analogous fashion, gE/gI promotes virus spread between certain cell types in culture, e.g., keratinocytes and epithelial cells, cells that are polarized or that form extensive cell junctions. One mechanism by which gE/gI facilitates cell-to-cell spread involves selective sorting of nascent virions to cell junctions, a process that requires the cytoplasmic domain of gE. However, the large extracellular domains of gE/gI also appear to be involved in cell-to-cell spread. Here, we show that coexpression of a truncated form of gE and gI in a human keratinocyte line, HaCaT cells, decreased the spread of HSV between cells. This truncated gE/gI was found extensively at cell junctions. Expression of wild-type gE/gI that accumulates at intracellular sites, in the trans-Golgi network, did not reduce cell-to-cell spread. There was no obvious reduction in production of infectious HSV in cells expressing gE/gI, and virus particles accumulated at cell junctions, not at intracellular sites. Expression of HSV gD, which is known to bind virus receptors, also blocked cell-to-cell spread. Therefore, like gD, gE/gI appears to be able to interact with cellular components of cell junctions, gE/gI receptors which can promote HSV cell-to-cell spread.
Collapse
Affiliation(s)
- Wendy J Collins
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97239, USA
| | | |
Collapse
|
35
|
Abstract
Herpes simplex virus (HSV) is a neurotropic DNA virus with many favorable properties as a gene delivery vector. HSV is highly infectious, so HSV vectors are efficient vehicles for the delivery of exogenous genetic material to cells. Viral replication is readily disrupted by null mutations in immediate early genes that in vitro can be complemented in trans, enabling straightforward production of high-titre pure preparations of non-pathogenic vector. The genome is large (152 Kb) and many of the viral genes are dispensable for replication in vitro, allowing their replacement with large or multiple transgenes. Latent infection with wild-type virus results in episomal viral persistence in sensory neuronal nuclei for the duration of the host lifetime. Transduction with replication-defective vectors causes a latent-like infection in both neural and non-neural tissue; the vectors are non-pathogenic, unable to reactivate and persist long-term. The latency active promoter complex can be exploited in vector design to achieve long-term stable transgene expression in the nervous system. HSV vectors transduce a broad range of tissues because of the wide expression pattern of the cellular receptors recognized by the virus. Increasing understanding of the processes involved in cellular entry has allowed preliminary steps to be taken towards targeting the tropism of HSV vectors. Using replication-defective HSV vectors, highly encouraging results have emerged from recent pre-clinical studies on models of neurological disease, including glioma, peripheral neuropathy, chronic pain and neurodegeneration. Consequently, HSV vectors encoding appropriate transgenes to tackle these pathogenic processes are poised to enter clinical trials.
Collapse
Affiliation(s)
- Edward A Burton
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | | | | |
Collapse
|
36
|
Joseph T, Lyaku J, Fredrickson RA, Cepica A, Kibenge FSB. Use of epitope mapping to identify a PCR template for protein amplification and detection by enzyme-linked immunosorbent assay of bovine herpesvirus type 1 glycoprotein D. J Clin Microbiol 2002; 40:4045-50. [PMID: 12409372 PMCID: PMC139723 DOI: 10.1128/jcm.40.11.4045-4050.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with bovine herpesvirus type 1 (BHV-1) occurs worldwide and causes serious economic losses due to the deaths of animals, abortions, decreased milk production, and loss of body weight. BHV-1 is frequently found in bovine semen and is transmitted through natural service and artificial insemination. The detection of BHV-1 in bovine semen is a long-standing problem in veterinary virology which is important in disease control schemes. In the present study, ordered deletions of the full-length BHV-1 glycoprotein open reading frame were used to identify an epitope recognized by a specific monoclonal antibody (MAb). A glycoprotein D fragment containing this epitope was then amplified using an in vitro protein amplification assay developed previously (J. Zhou, J. Lyaku, R. A. Fredrickson, and F. S. Kibenge, J. Virol. Methods 79:181-189, 1999), and the resulting peptide was detected by indirect enzyme-linked immunosorbent assay (ELISA) with the specific MAb. This method detected 0.0395 50% tissue culture infective dose of BHV-1 in raw bovine semen, which was 1,000-fold more sensitive than traditional PCR. We therefore conclude that this in vitro protein amplification assay combined with ELISA has superior sensitivity for direct virus detection in clinical samples.
Collapse
Affiliation(s)
- Tomy Joseph
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
38
|
Abstract
Herpes simplex virus (HSV) is an encapsulated DNA virus, with many favourable properties for use as a gene transfer vector. For gene therapy applications, it may be desirable to restrict transgene expression to pre-defined subsets of cells. One potential method for achieving targeted transgene expression using the HSV vector system might involve dictating the cell types to which the vector will transfer the therapeutic transgene of interest. HSV delivers its genetic payload to cells directly through the plasmalemma; the mechanisms are complex and involve multiple viral and cell surface determinants. We have investigated several ways in which each component of the cell entry cascade may be manipulated in order to restrict viral DNA and transgene delivery to particular cellular populations. Our results indicate that targeted transduction may be a viable approach to achieving our goal of targeted HSV-mediated transgene expression.
Collapse
Affiliation(s)
- E A Burton
- University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Sciences Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
39
|
Huber MT, Wisner TW, Hegde NR, Goldsmith KA, Rauch DA, Roller RJ, Krummenacher C, Eisenberg RJ, Cohen GH, Johnson DC. Herpes simplex virus with highly reduced gD levels can efficiently enter and spread between human keratinocytes. J Virol 2001; 75:10309-18. [PMID: 11581399 PMCID: PMC114605 DOI: 10.1128/jvi.75.21.10309-10318.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid spread of herpes simplex virus type 1 (HSV-1) in mucosal epithelia and neuronal tissue depends primarily on the ability of the virus to navigate within polarized cells and the tissues they constitute. To understand HSV entry and the spread of virus across cell junctions, we have previously characterized a human keratinocyte cell line, HaCaT. These cells appear to reflect cells infected in vivo more accurately than many of the cultured cells used to propagate HSV. HSV mutants lacking gE/gI are highly compromised in spread within epithelial and neuronal tissues and also show defects in cell-to-cell spread in HaCaT cells, but not in other, nonpolarized cells. HSV gD is normally considered absolutely essential for entry and cell-to-cell spread, both in cultured cells and in vivo. Here, an HSV-1 gD mutant virus, F-US6kan, was found to efficiently enter HaCaT cells and normal human keratinocytes and could spread from cell to cell without gD provided by complementing cells. By contrast, entry and spread into other cells, especially highly transformed cells commonly used to propagate HSV, were extremely inefficient. Further analyses of F-US6kan indicated that this mutant expressed extraordinarily low (1/500 wild-type) levels of gD. Neutralizing anti-gD monoclonal antibodies inhibited entry of F-US6kan, suggesting F-US6kan utilized this small amount of gD to enter cells. HaCaT cells expressed high levels of an HSV gD receptor, HveC, and entry of F-US6kan into HaCaT cells could also be inhibited with antibodies specific for HveC. Interestingly, anti-HveC antibodies were not fully able to inhibit entry of wild-type HSV-1 into HaCaT cells. These results help to uncover important properties of HSV and human keratinocytes. HSV, with exceedingly low levels of a crucial receptor-binding glycoprotein, can enter cells expressing high levels of receptor. In this case, surplus gD may be useful to avoid neutralization by anti-gD antibodies.
Collapse
Affiliation(s)
- M T Huber
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sakisaka T, Taniguchi T, Nakanishi H, Takahashi K, Miyahara M, Ikeda W, Yokoyama S, Peng YF, Yamanishi K, Takai Y. Requirement of interaction of nectin-1alpha/HveC with afadin for efficient cell-cell spread of herpes simplex virus type 1. J Virol 2001; 75:4734-43. [PMID: 11312345 PMCID: PMC114228 DOI: 10.1128/jvi.75.10.4734-4743.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently found a novel cell-cell adhesion system at cadherin-based adherens junctions (AJs), consisting at least of nectin, a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin is associated with cadherin through afadin and alpha-catenin. The cadherin-catenin system increases the concentration of nectin at AJs in an afadin-dependent manner. Nectin constitutes a family consisting of three members: nectin-1, -2, and -3. Nectin-1 serves as an entry and cell-cell spread mediator of herpes simplex virus type 1 (HSV-1). We studied here a role of the interaction of nectin-1alpha with afadin in entry and/or cell-cell spread of HSV-1. By the use of cadherin-deficient L cells overexpressing the full length of nectin-1alpha capable of interacting with afadin and L cells overexpressing a truncated form of nectin-1alpha incapable of interacting with afadin, we found that the interaction of nectin-1alpha with afadin increased the efficiency of cell-cell spread, but not entry, of HSV-1. This interaction did not affect the binding to nectin-1alpha of glycoprotein D, a viral component mediating entry of HSV-1 into host cells. Furthermore, the cadherin-catenin system increased the efficiency of cell-cell spread of HSV-1, although it also increased the efficiency of entry of HSV-1. It is likely that efficient cell-cell spread of HSV-1 is caused by afadin-dependent concentrated localization of nectin-1alpha at cadherin-based AJs.
Collapse
Affiliation(s)
- T Sakisaka
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Milne RS, Connolly SA, Krummenacher C, Eisenberg RJ, Cohen GH. Porcine HveC, a member of the highly conserved HveC/nectin 1 family, is a functional alphaherpesvirus receptor. Virology 2001; 281:315-28. [PMID: 11277703 DOI: 10.1006/viro.2000.0798] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human herpesvirus entry mediator C (HveC) is an alphaherpesvirus receptor which binds to virion glycoprotein D (gD). We identified porcine HveC and studied its interaction with pseudorabies virus (PrV) and herpes simplex virus type 1 (HSV-1) gD. Porcine and human HveC have 96% amino acid identity and HveC from African green monkey, mouse, hamster, and cow are similarly conserved. Porcine HveC mediates entry of HSV-1, HSV-2, PrV, and bovine herpesvirus type 1. Truncated soluble forms of HSV-1 and PrV gD bind competitively to porcine HveC. Biosensor analysis shows that PrV gD binds with a 10-fold higher affinity than HSV-1 gD. Monoclonal antibodies against human HveC recognize the porcine homologue and can block gD binding and entry of HSV-1 and PrV. Porcine HveC is functionally indistinguishable from human HveC. Our results are consistent with the suggestion that HveC is a pan-alphaherpesvirus receptor that interacts with a conserved structural domain of gD.
Collapse
Affiliation(s)
- R S Milne
- Department of Microbiology, School of Dental Medicine, 215 Levy Building, 4010 Locust Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
42
|
Tan X, Brunovskis P, Velicer LF. Transcriptional analysis of Marek's disease virus glycoprotein D, I, and E genes: gD expression is undetectable in cell culture. J Virol 2001; 75:2067-75. [PMID: 11160711 PMCID: PMC114791 DOI: 10.1128/jvi.75.5.2067-2075.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The various alphaherpesviruses, including Marek's disease virus (MDV), have both common and unique features of gene content and expression. The entire MDV U(s) region has been sequenced in our laboratory (P. Brunovskis and L. F. Velicar, Virology 206:324-338, 1995). Genes encoding the MDV glycoprotein D (gD), glycoprotein I (gI), and glycoprotein E (gE) homologs have been found in this region, although no gG homolog was found. In this work, transcription of the tandem MDV gD, gI, and gE genes was studied and found to have both unique characteristics and also features in common with other alphaherpesviruses. MDV gD could not be immunoprecipitated from MDV GA-infected duck embryo fibroblast cells by antisera reactive to its TrpE fusion proteins, while gI and gE could be. When the gD gene was subjected to in vitro-coupled transcription-translation, the precursor polypeptide was produced and could be immunoprecipitated by anti-gD. Northern blot, reverse transcriptase PCR, and RNase protection analyses have shown that (i) no mRNA initiating directly from the gD gene could be detected; (ii) a large but low-abundance 7.5-kb transcript spanning five genes, including the one encoding gD, was seen on longer exposure; and (iii) transcription of the gI and gE genes formed an abundant bicistronic 3.5-kb mRNA, as well as an abundant 2.0-kb gE-specific mRNA. Therefore, the MDV gD gene expression is down-regulated at the transcription level in MDV-infected cell culture, which may be related to the cell-associated nature of MDV in fibroblast cells. Compared to the highly gD-dependent herpes simplex virus and the other extreme of the varicella-zoster virus which lacks the gD gene, MDV is an intermediate type of alphaherpesvirus.
Collapse
Affiliation(s)
- X Tan
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA.
| | | | | |
Collapse
|
43
|
McMillan TN, Johnson DC. Cytoplasmic domain of herpes simplex virus gE causes accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions to cell junctions. J Virol 2001; 75:1928-40. [PMID: 11160692 PMCID: PMC115139 DOI: 10.1128/jvi.75.4.1928-1940.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaherpesviruses express a heterodimeric glycoprotein, gE/gI, that facilitates cell-to-cell spread between epithelial cells and neurons. Herpes simplex virus (HSV) gE/gI accumulates at junctions formed between polarized epithelial cells at late times of infection. However, at earlier times after HSV infection, or when gE/gI is expressed using virus vectors, the glycoprotein localizes to the trans-Golgi network (TGN). The cytoplasmic (CT) domains of gE and gI contain numerous TGN and endosomal sorting motifs and are essential for epithelial cell-to-cell spread. Here, we swapped the CT domains of HSV gE and gI onto another HSV glycoprotein, gD. When the gD-gI(CT) chimeric protein was expressed using a replication-defective adenovirus (Ad) vector, the protein was found on both the apical and basolateral surfaces of epithelial cells, as was gD. By contrast, the gD-gE(CT) chimeric protein, gE/gI, and gE, when expressed by using Ad vectors, localized exclusively to the TGN. However, gD-gE(CT), gE/gI, and TGN46, a cellular TGN protein, became redistributed largely to lateral surfaces and cell junctions during intermediate to late stages of HSV infection. Strikingly, gE and TGN46 remained sequestered in the TGN when cells were infected with a gI(-)HSV mutant. The redistribution of gE/gI to lateral cell surfaces did not involve widespread HSV inhibition of endocytosis because the transferrin receptor and gE were both internalized from the cell surface. Thus, gE/gI accumulates in the TGN in early phases of HSV infection then moves to lateral surfaces, to cell junctions, at late stages of infection, coincident with the redistribution of a TGN marker. These results are related to recent observations that gE/gI participates in the envelopment of nucleocapsids into cytoplasmic vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000) and that gE/gI can sort nascent virions from cytoplasmic vesicles specifically to the lateral surfaces of epithelial cells (D. C. Johnson, M. Webb, T. W. Wisner, and C. Brunetti, J. Virol. 75:821-833, 2000). Therefore, gE/gI localizes to the TGN, through interactions between the CT domain of gE and cellular sorting machinery, and then participates in envelopment of cytosolic nucleocapsids there. Nascent virions are then sorted from the TGN to cell junctions.
Collapse
Affiliation(s)
- T N McMillan
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
44
|
Mossman KL, Macgregor PF, Rozmus JJ, Goryachev AB, Edwards AM, Smiley JR. Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 2001; 75:750-8. [PMID: 11134288 PMCID: PMC113971 DOI: 10.1128/jvi.75.2.750-758.2001] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection induces an antiviral response that is predominantly associated with the synthesis and secretion of soluble interferon. Here, we report that herpes simplex virus type 1 virions induce an interferon-independent antiviral state in human embryonic lung cells that prevents plaquing of a variety of viruses. Microarray analysis of 19,000 human expressed sequence tags revealed induction of a limited set of host genes, the majority of which are also induced by interferon. Genes implicated in controlling the intracellular spread of virus and eliminating virally infected cells were among those induced. Induction of the cellular response occurred in the absence of de novo cellular protein synthesis and required viral penetration. In addition, this response was only seen when viral gene expression was inhibited, suggesting that a newly synthesized viral protein(s) may function as an inhibitor of this response.
Collapse
Affiliation(s)
- K L Mossman
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
45
|
Krummenacher C, Baribaud I, Ponce de Leon M, Whitbeck JC, Lou H, Cohen GH, Eisenberg RJ. Localization of a binding site for herpes simplex virus glycoprotein D on herpesvirus entry mediator C by using antireceptor monoclonal antibodies. J Virol 2000; 74:10863-72. [PMID: 11069980 PMCID: PMC113165 DOI: 10.1128/jvi.74.23.10863-10872.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human herpesvirus entry mediator C (HveC), also known as the poliovirus receptor-related protein 1 (PRR1) and as nectin-1, allows the entry of herpes simplex virus type 1 (HSV-1) and HSV-2 into mammalian cells. The interaction of virus envelope glycoprotein D (gD) with such a receptor is an essential step in the process leading to membrane fusion. HveC is a member of the immunoglobulin (Ig) superfamily and contains three Ig-like domains in its extracellular portion. The gD binding site is located within the first Ig-like domain (V domain) of HveC. We generated a panel of monoclonal antibodies (MAbs) against the ectodomain of HveC. Eleven of these, which detect linear or conformational epitopes within the V domain, were used to map a gD binding site. They allowed the detection of HveC by enzyme-linked immunosorbent assay, Western blotting, and biosensor analysis or directly on the surface of HeLa cells and human neuroblastoma cell lines, as well as simian Vero cells. The anti-HveC V-domain MAbs CK6, CK8, and CK41, as well as the previously described MAb R1.302, blocked HSV entry. Their binding to soluble HveC was blocked by the association of gD with the receptor, indicating that their epitopes overlap a gD binding site. Competition assays on an optical biosensor showed that CK6 and CK8 (linear epitopes) inhibited the binding of CK41 and R1.302 (conformational epitopes) to HveC and vice versa. Epitope mapping showed that CK6 and CK8 bound between residues 80 and 104 of HveC, suggesting that part of the gD binding site colocalizes in the same region.
Collapse
Affiliation(s)
- C Krummenacher
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Skrincosky D, Hocknell P, Whetter L, Secchiero P, Chandran B, Dewhurst S. Identification and analysis of a novel heparin-binding glycoprotein encoded by human herpesvirus 7. J Virol 2000; 74:4530-40. [PMID: 10775589 PMCID: PMC111973 DOI: 10.1128/jvi.74.10.4530-4540.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) and HHV-7 are closely related betaherpesviruses that encode a number of genes with no known counterparts in other herpesviruses. The product of one such gene is the HHV-6 glycoprotein gp82-105, which is a major virion component and a target for neutralizing antibodies. A 1.7-kb cDNA clone from HHV-7 was identified which contains a large open reading frame capable of encoding a predicted primary translational product of 468 amino acids (54 kDa) with 13 cysteine residues and 9 potential N-linked glycosylation sites. This putative protein, which we have termed gp65, was homologous to HHV-6 gp105 (30% identity) and contained a single potential membrane-spanning domain located near its amino terminus. Comparison of the cDNA sequence with that of the viral genome revealed that the gene encoding gp65 contains eight exons, spanning almost 6 kb of the viral genome at the right (3') end of the HHV-7 genome. Northern (RNA) blot analysis with poly(A)(+) RNA from HHV-7-infected cells revealed that the cDNA insert hybridized to a single major RNA species of 1.7 kb. Antiserum raised against a purified, recombinant form of gp65 recognized a protein of roughly 65 kDa in sucrose density gradient-purified HHV-7 preparations; treatment with PNGase F reduced this glycoprotein to a putative precursor of approximately 50 kDa. Gp65-specific antiserum also neutralized the infectivity of HHV-7, while matched preimmune serum did not do so. Finally, analysis of the biochemical properties of recombinant gp65 revealed a specific interaction with heparin and heparan sulfate proteoglycans and not with closely related molecules such as N-acetylheparin and de-N-sulfated heparin. At least two domains of the protein were found to contribute to heparin binding. Taken together, these findings suggest that HHV-7 gp65 may contribute to viral attachment to cell surface proteoglycans.
Collapse
Affiliation(s)
- D Skrincosky
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tran LC, Kissner JM, Westerman LE, Sears AE. A herpes simplex virus 1 recombinant lacking the glycoprotein G coding sequences is defective in entry through apical surfaces of polarized epithelial cells in culture and in vivo. Proc Natl Acad Sci U S A 2000; 97:1818-22. [PMID: 10677539 PMCID: PMC26519 DOI: 10.1073/pnas.020510297] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1998] [Accepted: 11/23/1999] [Indexed: 11/18/2022] Open
Abstract
During infection of a new host, the first surfaces encountered by herpes simplex viruses are the apical membranes of epithelial cells of mucosal surfaces. These cells are highly polarized, and the protein composition of their apical and basolateral membranes are very different, so that different viral entry pathways have evolved for each surface. To determine whether the viral glycoprotein G (gG) is specifically required for efficient infection of a particular surface of polarized cells, apical and basal surfaces were infected with wild-type virus or a gG deletion mutant. After infection of polarized cells in culture, the gG(-) virus was deficient in infection of apical surfaces but was able to infect cells through basal membranes, replicate, and spread into surrounding cells. The gG-dependent step in apical infection was a stage beyond attachment. After in vivo infection of apical surfaces of epithelial cells of nonscarified mouse corneas, infection by glycoprotein C(-) or gG(-) virus was considerably reduced as compared with that observed after infection with wild-type virus. In contrast, when corneas were scarified, allowing virus access to other cell surfaces, the gG and glycoprotein C deletion mutants infected eyes as efficiently as wild-type viruses. A secondary mutation allowing infection of apical surfaces by gG(-) virus arose readily during passage of the virus in nonpolarized cells, indicating that either the gG-dependent step of apical infection can be bypassed or that another viral protein can acquire the same function.
Collapse
Affiliation(s)
- L C Tran
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
48
|
Canziani G, Zhang W, Cines D, Rux A, Willis S, Cohen G, Eisenberg R, Chaiken I. Exploring biomolecular recognition using optical biosensors. Methods 1999; 19:253-69. [PMID: 10527730 DOI: 10.1006/meth.1999.0855] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the basic forces that determine molecular recognition helps to elucidate mechanisms of biological processes and facilitates discovery of innovative biotechnological methods and materials for therapeutics, diagnostics, and separation science. The ability to measure interaction properties of biological macromolecules quantitatively across a wide range of affinity, size, and purity is a growing need of studies aimed at characterizing biomolecular interactions and the structural elements that drive them. Optical biosensors have provided an increasingly impactful technology for such biomolecular interaction analyses. These biosensors record the binding and dissociation of macromolecules in real time by transducing the accumulation of mass of an analyte molecule at the sensor surface coated with ligand molecule into an optical signal. Interactions of analytes and ligands can be analyzed at a microscale and without the need to label either interactant. Sensors enable the detection of bimolecular interaction as well as multimolecular assembly. Most notably, the method is quantitative and kinetic, enabling determination of both steady-state and dynamic parameters of interaction. This article describes the basic methodology of optical biosensors and presents several examples of its use to investigate such biomolecular systems as cytokine growth factor-receptor recognition, coagulation factor assembly, and virus-cell docking.
Collapse
Affiliation(s)
- G Canziani
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nixdorf R, Schmidt J, Karger A, Mettenleiter TC. Infection of Chinese hamster ovary cells by pseudorabies virus. J Virol 1999; 73:8019-26. [PMID: 10482550 PMCID: PMC112817 DOI: 10.1128/jvi.73.10.8019-8026.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells have recently been used for identification of receptors for several alphaherpesviruses, including pseudorabies virus (PrV) (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998). The experiments were based on the fact that CHO cells are inefficient target cells for PrV. However, a detailed analysis of the interaction between PrV and CHO wild-type and recombinant PrV-receptor bearing cells has not been performed. We show here that PrV has a growth defect on CHO cells which leads to a ca. 100-fold reduction in plating efficiency, strongly delayed penetration kinetics, and a 10(4)-fold reduction in one-step growth. Entry of PrV into CHO cells is significantly delayed but is not affected by inhibitors of endocytosis, suggesting that the mechanism of penetration resembles that on permissive cells. The defects in plating efficiency and penetration could be corrected by expression of herpesvirus entry mediators B (HveB), HveC, or HveD, with HveC being the most effective. However, the defects in one-step growth and plaque formation were not corrected by expression of PrV receptors, indicating an additional restriction in viral replication after entry. Surprisingly, PrV infection of CHO cells was sensitive to neutralization by a gB-specific monoclonal antibody, which does not inhibit PrV infection of other host cells. Moreover, the same monoclonal antibody neutralized PrV infectivity on cells displaying the interference phenomenon by overexpression of gD and subsequent intracellular sequestration of gD receptors. Thus, absence of gD receptors on two different host cells leads to an increased sensitivity of PrV toward gB neutralization. We hypothesize that this is due to the increased requirement for interaction of gB with a cellular surface protein in the absence of the gD-gD receptor interaction. As expected, CHO cells are as susceptible as other host cells to infection by PrV gD(-) Pass, an infectious gD-negative PrV mutant. However, PrV gD(-) Pass was also not able to form plaques on CHO cells.
Collapse
Affiliation(s)
- R Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
50
|
Babic N, Rodger G, Arthur J, Minson AC. A study of primary neuronal infection by mutants of herpes simplex virus type 1 lacking dispensable and non-dispensable glycoproteins. J Gen Virol 1999; 80 ( Pt 9):2403-2409. [PMID: 10501494 DOI: 10.1099/0022-1317-80-9-2403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cultures of primary rat dorsal root ganglia neurones were inoculated with various doses of herpes simplex virus mutants deficient in glycoproteins B, D, H, C, G, E, I or J, and the proportion of infected neurones was determined. The behaviour of these mutants on primary neurones was broadly similar to their behaviour on fibroblasts or epithelial cells. Thus, virions lacking the 'nondispensable' glycoproteins B, D or H were incapable of infecting primary neurones, whereas mutants lacking glycoproteins G, E, I or J infected primary neurones with the same efficiency as wild-type virions. Two independently derived mutants lacking gC displayed a marginal phenotype, infecting neurones with a five- to tenfold reduced efficiency relative to wild-type virus and relative to non-neuronal cells in the same cultures. We conclude that the virion glycoprotein requirements for infection of mammalian neurones are similar to those required for infection of fibroblasts and epithelial cells but that glycoprotein C may enhance infection of neurones.
Collapse
Affiliation(s)
- N Babic
- Centre National de la Recherche Scientifique, Laboratoire de Genetique des Virus, 91198 Gif-sur-Yvette Cedex, France2
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK1
| | - G Rodger
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK1
| | - J Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK1
| | - A C Minson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK1
| |
Collapse
|